JPWO2019043882A1 - チタン板 - Google Patents
チタン板 Download PDFInfo
- Publication number
- JPWO2019043882A1 JPWO2019043882A1 JP2019538857A JP2019538857A JPWO2019043882A1 JP WO2019043882 A1 JPWO2019043882 A1 JP WO2019043882A1 JP 2019538857 A JP2019538857 A JP 2019538857A JP 2019538857 A JP2019538857 A JP 2019538857A JP WO2019043882 A1 JPWO2019043882 A1 JP WO2019043882A1
- Authority
- JP
- Japan
- Prior art keywords
- phase
- less
- strength
- intermetallic compound
- crystal grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010936 titanium Substances 0.000 title claims abstract description 68
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 50
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 239000013078 crystal Substances 0.000 claims abstract description 73
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 54
- 239000000126 substance Substances 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 239000002184 metal Substances 0.000 claims abstract description 16
- 238000009864 tensile test Methods 0.000 claims description 18
- 238000012360 testing method Methods 0.000 claims description 18
- 229910004339 Ti-Si Inorganic materials 0.000 claims description 10
- 229910010978 Ti—Si Inorganic materials 0.000 claims description 10
- 229910004353 Ti-Cu Inorganic materials 0.000 claims description 9
- 238000011156 evaluation Methods 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 abstract description 21
- 229910052802 copper Inorganic materials 0.000 abstract description 16
- 229910052748 manganese Inorganic materials 0.000 abstract description 16
- 229910052742 iron Inorganic materials 0.000 abstract description 14
- 229910052804 chromium Inorganic materials 0.000 abstract description 13
- 229910052710 silicon Inorganic materials 0.000 abstract description 13
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 6
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 2
- 238000000137 annealing Methods 0.000 description 62
- 239000010949 copper Substances 0.000 description 33
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 30
- 238000003466 welding Methods 0.000 description 26
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 15
- 239000000463 material Substances 0.000 description 15
- 239000001301 oxygen Substances 0.000 description 15
- 238000005097 cold rolling Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 230000009467 reduction Effects 0.000 description 12
- 239000012535 impurity Substances 0.000 description 11
- 230000007423 decrease Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000005098 hot rolling Methods 0.000 description 9
- 229910001069 Ti alloy Inorganic materials 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000009466 transformation Effects 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 239000000956 alloy Substances 0.000 description 5
- 238000005275 alloying Methods 0.000 description 5
- 239000010953 base metal Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000004453 electron probe microanalysis Methods 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 230000037303 wrinkles Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910006639 Si—Mn Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000004021 metal welding Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- NSTPXGARCQOSAU-VIFPVBQESA-N N-formyl-L-phenylalanine Chemical compound O=CN[C@H](C(=O)O)CC1=CC=CC=C1 NSTPXGARCQOSAU-VIFPVBQESA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000004063 acid-resistant material Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/183—High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Metal Rolling (AREA)
Abstract
Description
(1)
チタン板であって、
化学成分は、質量%で、
Cu:0.70〜1.50%、
Cr:0〜0.40%、
Mn:0〜0.50%、
Si:0.10〜0.30%、
O:0〜0.10%、
Fe:0〜0.06%、
N:0〜0.03%、
C:0〜0.08%、
H:0〜0.013%、
上記およびTiを除く元素:各々0〜0.1%、かつ、それらの総和は0.3%以下、
残部:Tiであり、
下記(1)式によって定義されるA値が1.15〜2.5質量%であり、
その金属組織は、
α相の面積分率が95%以上、
β相の面積分率が5%以下、
金属間化合物の面積分率が1%以下であり、
α相の平均結晶粒径D(μm)が20〜70μmであり、且つ下記(2)式を満たすチタン板。
A=[Cu]+0.98[Cr]+1.16[Mn]+3.4[Si] ・・・ (1)式
D[μm]≧0.8064×e45.588[O] ・・・ (2)式
ただし、eは自然対数の底である。
(2)
前記金属組織が、α相、β相および金属間化合物の分率の合計が100%である、(1)に記載のチタン板。
(3)
前記金属間化合物がTi−Si系金属間化合物とTi−Cu系金属間化合物である、(1)又は(2)に記載のチタン板。
(4)
板厚が0.3〜1.5mmであり、0.2%耐力が215MPa以上であり、試験片の平行部の幅が6.25mm、試験片の原評点間距離が25mm、試験片の厚さが板厚のままの平型引張試験片での破断伸びが42%以上である、(1)〜(3)のいずれか1項に記載のチタン板。
0.2%耐力:215MPa以上
本発明のチタン板の母材の強度は、0.2%耐力で215MPa以上とした。
また、成形性の点から、チタン板の母材の引張試験時の破断伸びが42%以上を指標とした。より望ましい破断伸びは、45%以上である。破断伸びは、板厚が0.3〜1.5mmであり、試験片の平行部の幅が6.25mm、試験片の原評点間距離が25mm、試験片の厚さが板厚のままの平型引張試験片での破断伸びである。
溶接時の溶接入熱により溶接熱影響部(Heat Affected Zone:HAZ部)の強度が低下して、母材とHAZ部の強度差が大きくなると、使用中にHAZ部のみに変形が集中して好ましくない。そのため、母材と溶接継手との強度低下量Δ0.2%耐力(開発目標値:溶接継手の0.2%耐力−母材の0.2%耐力)は10MPa以下を目標とした。
以下、化学成分についての%は、「質量%」である。
Cuは高強度化への寄与が大きく、チタンを形成するhcp構造を有するα相中への固溶量も多い。しかし、固溶範囲であっても添加量が多すぎると結晶粒成長が抑制され、伸びが低下してしまう。そのため、0.70%以上1.50%以下含有される必要がある。上限について、望ましくは1.45%、1.40%、1.35%または1.30%以下であり、さらに望ましくは1.20%または1.10%以下である。一方、下限については、Cu以外にCr、Mnのいずれをも含有しない場合、0.70%以上添加しないと必要な強度が得られない。強度向上のため、その下限を0.75%、0.80%、0.85%または0.90%としてもよい。
Siは、強度向上に寄与するため0.10%以上添加する。しかしながら、添加量が多すぎるとTi−Si系金属間化合物の生成を促進することで結晶粒成長を抑制し、伸びが低下する。特に、Cu、Cr、Mn、Niに比べて、添加質量としては少量でも、結晶粒の微細化および強度向上の効果は大きい。そのため、添加量は0.30%以下にする。なお、Si添加量は、溶接後の強度確保(HAZ部の粗大化抑制)にも影響する。HAZ部での耐力低下を抑制するためにも、Si量は、0.10〜0.30%とする。必要に応じて、その下限を、0.12%、0.14%または0.16%としてもよく、その上限を0.28%、0.26%、0.24%または0.22%としてもよい。
Crは、強度向上に寄与するため必要に応じて添加する。しかしながら、添加量が多すぎるとβ相の生成を促進することで結晶粒成長を抑制し、伸びが低下するため、0.40%以下とする。Cu、Mn、Si、Niの添加により十分に強化される場合は含有されていなくてもよい。強度向上のため、Crの下限を0.05%または0.10%としてもよい。しかし、Crの含有は必須でなく、その下限は0%である。必要に応じて、その上限を0.35%、0.30%、0.25%または0.20%としてもよい。
Mnは、強度向上に寄与するため必要に応じて添加する。しかしながら、添加量が多すぎるとβ相の生成を促進することで結晶粒成長を抑制し、伸びが低下するため、0.50%以下とする。Cu、Cr、Si、Niの添加により十分に強化される場合は含有されていなくてもよい。強度向上のため、Mnの下限を0.05%または0.10%としてもよい。しかし、Mnの含有は必須でなく、その下限は0%である。必要に応じて、その上限を0.40%、0.30%、0.25%、0.15%または0.10%としてもよい。
酸素(O)はTiとの結合力が強く、金属Tiを工業的に製造する際に不可避に含まれる不純物であるが、O量が多すぎると高強度化し、成形性は劣化する。そのためには0.10%以下に抑制する必要がある。Oは不純物として含有するが、その下限を規定する必要はなく、その下限は0%である。しかしながら、その下限を0.005%、0.010%、0.015%、0.020%または0.030%としてもよい。その上限を、0.090%、0.080%、0.070%または0.065%としてもよい。
鉄(Fe)は金属Tiを工業的に製造する際に不可避に含まれる不純物であるが、Fe量が多すぎると、β相の生成を促進するため結晶粒成長を抑制する。そのため、鉄量は0.06%以下とする。0.06%以下であれば、0.2%耐力への影響が小さく無視できる。望ましくは0.05%以下であり、さらに望ましくは0.04%以下である。Feは不純物であり、その下限は0%である。しかし、その下限を0.01%、0.015%、0.02%または0.03%としてもよい。
窒素(N)も酸素と同等以上の高強度化を進め、成形性を劣化させる。ただし、Oよりも原料に含まれる量は少ないため、Oよりも少なくすることができる。そのため、0.03%以下とする。望ましくは0.025%以下または0.02%以下であり、さらに望ましくは0.015%以下または0.01%以下である。なお、Nは、工業的に製造する際に0.0001%以上含有されるケースが多いが、その下限は0%である。その下限を0.0001%、0.001%または0.002%としてもよい。その上限を0.025%または0.02%としてもよい。
Cは、酸素や窒素と同様に高強度化を進めるが、その効果は酸素や窒素に比べて小さい。酸素に比べて半分以下であり、含有量が0.08%以下であれば、0.2%耐力への影響は無視できる。ただし、含有量が少ない方が成形性に優れるため、好ましくは0.05%以下、より好ましくは0.03%以下、0,02%以下または0.01%である。C量の下限を規定する必要はなく、その下限は0%である。必要があれば、その下限を0.001%としてもよい。
Hは、脆化を引き起こす元素であり、室温での固溶限は10ppm前後であるため、これ以上のHが含有される場合には水素化物が形成され、脆化することが懸念される。一般的に、含有量が0.013%以下であれば、脆化の懸念はあるものの実用上問題なく用いられている。また、酸素に比べて含有量が少ないため、0.2%耐力への影響は無視できる。好ましくは0.010%以下であり、さらに好ましくは0.008%以下、0.006%以下、0.004%以下または0.003%以下である。H量の下限を規定する必要はなく、その下限は0%である。必要があれば、その下限を0.0001%としてもよい。
本発明のチタン板は、上記の化学成分を満足し、さらに、下記(1)式によって定義されるA値が1.15〜2.5質量%である。
A=[Cu]+0.98[Cr]+1.16[Mn]+3.4[Si] ・・・ (1)式
本発明のチタン板は、α相の面積分率が95%以上、β相の面積分率が5%以下、金属間化合物の面積分率が1%以下である。
α相、β相、金属間化合物の各面積分率はSEM観察およびEPMA分析により、面積率を求めることによって行われる。SEM観察において、反射電子像(組成像)を観察することで、Ti−Si系金属間化合物は黒く見える。Ti−Cu系金属間化合物とβ相は白く見えるため、これらを分離することが必要となる。そのためには加速電圧15kVで500倍の1視野(200μm×200μm相当)でEPMAによる面分析をSi、Cu、Feに加えて、Cr、Mnを含有する場合にはCr、Mnについて行う。なお、1視野に限らず、複数視野で合計200μm×200μm相当の面積を観察し、それらの平均を求めても良い。β相にはFe、Cr、Mnが濃化しており、Ti−Cu系金属間化合物には濃化していない。そのため、反射電子像と元素分布を比べることで、白色部を分離識別する。その後、反射電子像における面積率を測定することでそれぞれの面積分率とする。測定試料は測定面をダイヤモンド粒子による鏡面仕上げとし、導電性確保のためにCやAuの蒸着を行ってもよい。図5に、Ti−Cu−Si−Mn成分系について約100μm×約100μmの領域でEPMA分析した時の模式図を示す。各元素の濃化位置を灰色から黒色で表わしている。また、図中の破線は組織の粒界を表わしている。Fe、Mnは同じ位置に濃化しており、粒界や粒内に存在する。CuはFe、Mnと同じ位置に濃化している部分もあるが、CuはFe、Mnとは別の場所にも存在しており、これがTi−Cu系金属間化合物である。SiはほとんどがFe、Mn、Cuとは異なる場所に存在している。そのため、Cuの濃化位置の中でFe、Mnが濃化していない場所(矢印部分)の面積率を測定することで、金属間化合物の面積率を求めることができる。具体的には、Feが0.2%以上の領域をβ相とみなし、Feが0.2%未満の領域の中でCuが5%以上である領域をTi−Cu系金属間化合物とみなし、Siが1%以上の領域をTi−Si系金属間化合物とみなす。このようにして分離して得られた領域の面積率を求める。
α相の平均結晶粒径D(μm):20〜70μm
図6にα相の平均結晶粒径D(μm)とTIG溶接前後における0.2%耐力の変化量Δ0.2%耐力(=母材の0.2%耐力−溶接継手の0.2%耐力)との関係を示す。なお、図6中の各プロット点は、α相の平均結晶粒径以外の化学成分範囲(酸素(O)を除く)およびA値はいずれも本発明の範囲内である。具体的には、Ti−1.01%Cu−0.19%Si−0.03%Fe成分系で、酸素量を変化させて溶解し、板厚0.5mmの薄板を熱間圧延、冷間圧延、焼鈍によって作製した。熱処理条件を種々変えて結晶粒径を調整した。組織はいずれもβ相がなく、金属間化合物の面積分率も1%以下であった。作製した薄板をTIG溶接し、溶接ビードが平行部中央部になるように溶接継手の引張試験片を採取した。TIG溶接時には日鉄住金溶接工業株式会社製のNSSW Ti−28(JIS Z3331 STi0100J該当)を使用した。溶接条件は、電流:50A、電圧:15V、速度:80cm/minである。引張試験片の形状は平行部の幅が6.25mm、試験片の原評点間距離が25mm、試験片の厚さが板厚のままの平型引張試験片である。ただし、溶接時に板が反ったために形状矯正を行い、形状矯正によるひずみの除去のために550℃で30minの焼鈍を行った。この焼鈍による粒径の変化がなかったことを、確認した。ひずみ速度はひずみ量1%までを0.5%/minで行い、その後破断までを30%/minで行った。
また、母材から取り出した試験片について引張試験を行い、酸素量とα相の平均結晶粒径Dの関係と破断伸びについて調べたところ、図7のようになった。図7中、○:破断伸び42%以上、×:破断伸び42%未満、実線:(2)式である。図7中に記入した曲線である(2)式を下回らない範囲では、破断伸びが42%以上となった。そのため、(2)式を条件とした。
ただし、eは自然対数の底である。
本発明のチタン板は上記のようにSi:0.10〜0.30%を含有するが、Si添加量は、溶接継手の強度確保(HAZ部の粗大化抑制)にも影響する。チタン板に溶接が施された場合、溶融部から母材部にかけて温度分布が形成され、[1]溶融部およびβ変態点以上もしくはβ変態点近傍まで加熱されて針状組織化する領域、[2]α相とβ相が混在することでα相の粒成長が抑制される領域、[3]β相やα相が粗大化する領域、[4]金属間化合物が析出する領域、が連続的に形成される。領域[1]では集合組織のランダム化や粒形状、溶接時のO、Nなどの吸収によって母材部よりもやや高強度となる。領域[2]や領域[4]ではβ相もしくは金属間化合物によってα相の粒成長が抑制されるために母材部と同程度の結晶粒径を維持しており、母材と大きな強度差は無い。一方、領域[3]ではα相が粗大化することで、Hall−Petch則にしたがって強度低下する。そのため、試験片の幅が6.25mm程度の狭幅の溶接継手引張試験では、HAZ部の中でも粗粒化した領域[3]で破断する。
本発明のチタン板は、上記化学成分およびA値を満足するTi鋳塊に熱間圧延、冷間圧延を施し、冷間圧延後の焼鈍の条件を所定の条件にすることにより製造できる。必要に応じて冷間圧延後の焼鈍の後に調質圧延を行ってもよい。各製造条件について、以下に詳細に説明する。
熱間圧延には、VAR(真空アーク溶解)、EBR(電子ビーム溶解)、プラズマアーク溶解等により通常の方法で、製造されたインゴットを用いる。これは矩形であればそのまま熱間圧延してもよい。そうでない場合は鍛造や分塊圧延を行って矩形に成形する。このようにして得られた矩形のスラブは、通常の熱延温度、圧下率である、800〜1000℃、圧下率50%以上で熱間圧延を行う。
冷間圧延前にひずみ取りの焼鈍と通常の脱スケールを行う。ひずみ取り焼鈍(中間焼鈍)は実施しなくてもよく、温度や時間を特に制限することは無い。通例として、ひずみ取り焼鈍は、β変態点より低い温度で行っており、具体的にはβ変態点より30℃以上低い温度で行う。本合金系ではβ変態点は合金組成によっても異なるが、860〜900℃の範囲であることから、本発明では800℃前後で実施することが望ましい。脱スケールはショットブラスト、酸洗、機械切削など方法は問わない。ただし、脱スケールが不十分だと冷延時に割れが発生してしまうことがある。なお、冷間圧延は、通常通り、熱延板を圧下率50%以上で行う。
冷間圧延後の焼鈍は、まず最初に低温のバッチ式焼鈍を行い、次に高温の連続式焼鈍とする必要がある。その他の方法、例えば、1回だけの焼鈍(高温または低温のバッチ式または連続式焼鈍)では、本発明の組織を得ることはできず、目標の特性を達成できない。また、2回の焼鈍であっても、低温のバッチ式焼鈍後の高温の連続式焼鈍以外の方法では、本発明の組織を得ることはできず、目標の特性を達成できない。
低温バッチ式焼鈍で析出した金属間化合物を減らすために、次いで、高温焼鈍で高温域に少なくとも10秒以上保持をする。保持する温度は、780〜820℃とする。このときの保持時間を長時間にすると硬化層を厚くするため最大でも2minとする。バッチ式焼鈍ではこのような短時間の焼鈍を行うことができず、連続式焼鈍とする必要がある。高温の連続式焼鈍では、Ti−Si系金属間化合物の面積分率を低下させることができるが、Ti−Si系金属間化合物は析出が早いため、高温の連続式焼鈍後の冷却速度は、保持温度から550℃までを5℃/s以上とする。
No.2は、A値が1.15質量%未満であり、0.2%耐力が低かった。また、Siが添加されていないので溶接継手の強度低下が大きくなった。
No.3は、Siが添加されていないので溶接継手の強度低下が大きくなった。
No.4は、A値が1.15質量%未満であり、0.2%耐力が低かった。なお、溶接継手の強度低下が小さいのは、母材のα相の平均結晶粒径Dが大きいからである。
No.5は、母材のα相の平均結晶粒径Dが70μmを超えており、加工した際に表面にシワが発生した。なお、粒径Dが大きいのでA値が1.15以上でも0.2%耐力が低かった。なお、溶接継手の強度低下が小さいのは、母材のα相の平均結晶粒径Dが大きいからである。
No.6は、A値が1.15質量%未満であり、0.2%耐力が低かった。また、Siが添加されていないので溶接継手の強度低下が大きくなった。
No.7は、Siが添加されていないので溶接継手の強度低下が大きくなった。
No.8は、A値が1.15質量%未満であり、0.2%耐力が低かった。また、Siが添加されていないので溶接継手の強度低下が大きくなった。
No.9は、Siが添加されていないので溶接継手の強度低下が大きくなった。
No.10は、A値が1.15質量%未満であり、0.2%耐力が低かった。また、Siが添加されていないので溶接継手の強度低下が大きくなった。
No.11は、Siが添加されていないので溶接継手の強度低下が大きくなった。
No.12は、A値が1.15質量%未満であり、0.2%耐力が低かった。また、Siが添加されていないので溶接継手の強度低下が大きくなった。
No.13は、Siが添加されていないので溶接継手の強度低下が大きくなった。
No.14、15は、焼鈍が低温すぎてα相の平均結晶粒径Dが20μm未満となり、破断伸びが小さくなった。
No.16、17は、焼鈍により2枚の板が接合してしまい、はがすことができなかった。そのため、引張試験は未実施である。
No.18、19は、焼鈍が低温すぎてα相の平均結晶粒径Dが20μm未満となり、破断伸びが小さくなった。
No.20、21は、高温域で長時間焼鈍したため、破断伸びが小さくなった。
No.22〜29は、α相の平均結晶粒径Dが(2)式を満たさず、破断伸びが小さくなり、溶接継手の強度低下も大きくなった。また、No.22〜25は、焼鈍が低温すぎてα相の平均結晶粒径Dが20μm未満となり、金属間化合物の面積分率も高くなった。
No.30〜33は、α相の平均結晶粒径Dが20μm未満となり、破断伸びが小さくなった。また、溶接継手の強度低下が大きくなった。
No.38、39は、焼鈍が低温すぎ、炉冷のため、α相の平均結晶粒径Dが20μm未満となり、金属間化合物の面積分率も高くなった。
No.40、41は、焼鈍が高温であったため2枚の板が接合してしまい、はがすことができなかった。そのため、引張試験は未実施である。
No.42、43は、焼鈍が低温すぎ、炉冷のため、α相の平均結晶粒径Dが20μm未満となり、金属間化合物の面積分率も高くなった。
No.44、45は、α相の平均結晶粒径Dが(2)式を満たさず、破断伸びが小さくなった。
No.46〜49は、焼鈍が低温すぎ、炉冷のため、α相の平均結晶粒径Dが20μm未満となり、金属間化合物の面積分率も高くなった。
No.50、51は、母材のα相の平均結晶粒径Dが70μmを超えており、加工した際に表面にシワが発生し、0.2%耐力が低かった。また、Siが添加されていないので溶接継手の強度低下が大きくなった。
No.52、53は、α相の平均結晶粒径Dが20μm未満となり、また、Siが添加されていないので溶接継手の強度低下が大きくなった。
No.54〜56は、Siが添加されていないので溶接継手の強度低下が大きくなった。
No.57〜59は、α相の平均結晶粒径Dが20μm未満となり、また、Siが添加されていないので溶接継手の強度低下が大きくなった。
No.63は、α相の平均結晶粒径Dが(2)式を満たさず、破断伸びが小さくなった。
No.64、α相の平均結晶粒径Dが20μm未満となり、破断伸びが小さくなった。
No.65は、α相の平均結晶粒径Dが(2)式を満たさず、破断伸びが小さくなった。
No.66、67は、α相の平均結晶粒径Dが20μm未満となり、破断伸びが小さくなった。
No.68は、焼鈍が高温であったため2枚の板が接合してしまい、はがすことができなかった。そのため、引張試験は未実施である。
No.69は、A値が1.15質量%未満であり、0.2%耐力が低かった。
No.70、71は、Siが添加されていないので溶接継手の強度低下が大きくなった。
No.72〜75は、α相の平均結晶粒径Dが20μm未満となり、溶接継手の強度低下が大きくなった。
No.76〜79は、金属間化合物の面積分率が1%を超え、破断伸びが小さくなった。
No.81は、α相の平均結晶粒径Dが20μm未満となり、破断伸びが小さくなった。
No.82、83は、バッチ式焼鈍の冷却速度が遅いため金属間化合物の面積分率が1%を超え、破断伸びが小さくなった。また、外観が劣っていた
No.84は、バッチ式焼鈍で焼き付きが発生し、外観が劣っていた
No.85は、連続式焼鈍が高温であったため、β相の面積分率が5%を超え、破断伸びが小さくなった。
Claims (4)
- チタン板であって、
化学成分は、質量%で、
Cu:0.70〜1.50%、
Cr:0〜0.40%、
Mn:0〜0.50%、
Si:0.10〜0.30%、
O:0〜0.10%、
Fe:0〜0.06%、
N:0〜0.03%、
C:0〜0.08%、
H:0〜0.013%、
上記およびTiを除く元素:各々0〜0.1%、かつ、それらの総和は0.3%以下、
残部:Tiであり、
下記(1)式によって定義されるA値が1.15〜2.5質量%であり、
その金属組織は、
α相の面積分率が95%以上、
β相の面積分率が5%以下、
金属間化合物の面積分率が1%以下であり、
α相の平均結晶粒径D(μm)が20〜70μmであり、且つ下記(2)式を満たすチタン板。
A=[Cu]+0.98[Cr]+1.16[Mn]+3.4[Si] ・・・ (1)式
D[μm]≧0.8064×e45.588[O] ・・・ (2)式
ただし、eは自然対数の底である。 - 前記金属組織が、α相、β相および金属間化合物の面積分率の合計が100%である、請求項1に記載のチタン板。
- 前記金属間化合物がTi−Si系金属間化合物とTi−Cu系金属間化合物である、請求項1又は2に記載のチタン板。
- 板厚が0.3〜1.5mmであり、0.2%耐力が215MPa以上であり、試験片の平行部の幅が6.25mm、試験片の原評点間距離が25mm、試験片の厚さが板厚のままの平型引張試験片での破断伸びが42%以上である、請求項1〜3のいずれか1項に記載のチタン板。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/031403 WO2019043882A1 (ja) | 2017-08-31 | 2017-08-31 | チタン板 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019043882A1 true JPWO2019043882A1 (ja) | 2020-03-26 |
JP6844706B2 JP6844706B2 (ja) | 2021-03-17 |
Family
ID=65527412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019538857A Active JP6844706B2 (ja) | 2017-08-31 | 2017-08-31 | チタン板 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11459649B2 (ja) |
EP (1) | EP3623487B1 (ja) |
JP (1) | JP6844706B2 (ja) |
KR (1) | KR102334071B1 (ja) |
CN (1) | CN111032894B (ja) |
PL (1) | PL3623487T3 (ja) |
WO (1) | WO2019043882A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020213715A1 (ja) * | 2019-04-17 | 2020-10-22 | 日本製鉄株式会社 | チタン板および銅箔製造ドラム |
KR102608727B1 (ko) * | 2019-04-17 | 2023-12-04 | 닛폰세이테츠 가부시키가이샤 | 티타늄판, 티타늄 압연 코일 및 구리박 제조 드럼 |
WO2021020532A1 (ja) * | 2019-07-30 | 2021-02-04 | 日本製鉄株式会社 | チタン合金板及び自動車排気系部品 |
TWI750748B (zh) * | 2020-07-27 | 2021-12-21 | 日商日本製鐵股份有限公司 | 金屬箔製造用鈦材及金屬箔製造用鈦材之製造方法及金屬箔製造滾筒 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009068026A (ja) * | 2007-09-10 | 2009-04-02 | Nippon Steel Corp | 耐酸化性および成形性に優れた排気系部品用チタン合金材および、その製造方法ならびに、その合金材を用いた排気装置 |
JP2010121186A (ja) * | 2008-11-20 | 2010-06-03 | Kobe Steel Ltd | 高強度で成形性に優れたチタン合金板およびチタン合金板の製造方法 |
JP2010242197A (ja) * | 2009-04-09 | 2010-10-28 | Kobe Steel Ltd | 高強度で曲げ加工性並びにプレス成形性に優れたチタン合金板およびチタン合金板の製造方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0488183A (ja) | 1990-07-31 | 1992-03-23 | Toagosei Chem Ind Co Ltd | 塩化アルカリ水溶液中の塩素酸塩の蓄積防止方法 |
JPH061211A (ja) | 1992-06-22 | 1994-01-11 | Akebono Brake Ind Co Ltd | 流体式リターダ制御装置 |
US5366570A (en) * | 1993-03-02 | 1994-11-22 | Cermics Venture International | Titanium matrix composites |
JPH094395A (ja) | 1995-06-19 | 1997-01-07 | Bridgestone Corp | 帯状部材貼着装置 |
JP2000096165A (ja) | 1998-09-25 | 2000-04-04 | Sumitomo Metal Ind Ltd | 抗菌性および耐生物付着性に優れたTi合金およびその製造方法 |
JP4094395B2 (ja) | 2002-04-10 | 2008-06-04 | 新日本製鐵株式会社 | 電解Cu箔製造ドラム用チタン板およびその製造方法 |
JP4088183B2 (ja) | 2003-01-31 | 2008-05-21 | 株式会社神戸製鋼所 | 成形性に優れたチタン板及びその製造方法 |
JP4061211B2 (ja) | 2003-02-20 | 2008-03-12 | 新日本製鐵株式会社 | 電解銅箔製造用カソード電極に用いるチタン合金及びその製造方法 |
JP4486530B2 (ja) | 2004-03-19 | 2010-06-23 | 新日本製鐵株式会社 | 冷間加工性に優れる耐熱チタン合金板およびその製造方法 |
JP4157891B2 (ja) | 2006-03-30 | 2008-10-01 | 株式会社神戸製鋼所 | 耐高温酸化性に優れたチタン合金およびエンジン排気管 |
JP4157893B2 (ja) | 2006-03-30 | 2008-10-01 | 株式会社神戸製鋼所 | 耐高温酸化性に優れた表面処理チタン材およびエンジン排気管 |
JP5298368B2 (ja) | 2008-07-28 | 2013-09-25 | 株式会社神戸製鋼所 | 高強度かつ成形性に優れたチタン合金板とその製造方法 |
JP5365266B2 (ja) | 2009-03-05 | 2013-12-11 | 新日鐵住金株式会社 | プレス成形性に優れたチタン合金薄板およびその製造方法 |
JP4819200B2 (ja) | 2009-12-28 | 2011-11-24 | 新日本製鐵株式会社 | 耐酸化性に優れた排気系部品用耐熱チタン合金材、耐酸化性に優れた排気系部品用耐熱チタン合金板の製造方法、及び排気装置 |
US10358698B2 (en) * | 2009-12-28 | 2019-07-23 | Nippon Steel Corporation | Heat resistant titanium alloy material for exhaust system part use excellent in oxidation resistance, method of production of heat resistant titanium alloy material for exhaust system part use excellent in oxidation resistance, and exhaust system |
JP5937865B2 (ja) * | 2011-05-30 | 2016-06-22 | 株式会社神戸製鋼所 | プレス成形性と強度のバランス、及び耐食性に優れた純チタン板の製造方法 |
JP5925219B2 (ja) * | 2012-01-23 | 2016-05-25 | キヤノン株式会社 | 放射線ターゲット、放射線発生管、放射線発生装置、放射線撮影システム及びその製造方法 |
JP5477519B1 (ja) * | 2012-08-15 | 2014-04-23 | 新日鐵住金株式会社 | 強度および靭性に優れた省資源型チタン合金部材およびその製造方法 |
US10480050B2 (en) * | 2015-03-02 | 2019-11-19 | Nippon Steel Corporation | Titanium sheet and method for producing the same |
-
2017
- 2017-08-31 JP JP2019538857A patent/JP6844706B2/ja active Active
- 2017-08-31 PL PL17923823T patent/PL3623487T3/pl unknown
- 2017-08-31 EP EP17923823.3A patent/EP3623487B1/en active Active
- 2017-08-31 KR KR1020207002712A patent/KR102334071B1/ko active IP Right Grant
- 2017-08-31 WO PCT/JP2017/031403 patent/WO2019043882A1/ja unknown
- 2017-08-31 CN CN201780094137.XA patent/CN111032894B/zh active Active
- 2017-08-31 US US16/634,834 patent/US11459649B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009068026A (ja) * | 2007-09-10 | 2009-04-02 | Nippon Steel Corp | 耐酸化性および成形性に優れた排気系部品用チタン合金材および、その製造方法ならびに、その合金材を用いた排気装置 |
JP2010121186A (ja) * | 2008-11-20 | 2010-06-03 | Kobe Steel Ltd | 高強度で成形性に優れたチタン合金板およびチタン合金板の製造方法 |
JP2010242197A (ja) * | 2009-04-09 | 2010-10-28 | Kobe Steel Ltd | 高強度で曲げ加工性並びにプレス成形性に優れたチタン合金板およびチタン合金板の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3623487A1 (en) | 2020-03-18 |
PL3623487T3 (pl) | 2022-02-21 |
WO2019043882A1 (ja) | 2019-03-07 |
EP3623487B1 (en) | 2021-11-24 |
JP6844706B2 (ja) | 2021-03-17 |
CN111032894B (zh) | 2021-08-17 |
US11459649B2 (en) | 2022-10-04 |
KR102334071B1 (ko) | 2021-12-03 |
US20200385848A1 (en) | 2020-12-10 |
KR20200024262A (ko) | 2020-03-06 |
CN111032894A (zh) | 2020-04-17 |
EP3623487A4 (en) | 2020-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2023156492A (ja) | チタン合金 | |
US10913242B2 (en) | Titanium material for hot rolling | |
EP1726670B1 (en) | Use of a heat resistant titanium alloy sheet excellent in cold workability in an exhaust system of a vehicle | |
CN109154037B (zh) | 具有改善的高温性能和超塑性的α-β钛合金 | |
JP6844706B2 (ja) | チタン板 | |
JP6263040B2 (ja) | チタン板 | |
WO2010093016A1 (ja) | チタン板 | |
JP5973975B2 (ja) | チタン板 | |
TWI650427B (zh) | 鈦板 | |
KR101387551B1 (ko) | 내산화성 및 성형성이 우수한 고강도 티타늄 합금 및 이의 제조방법 | |
US10480050B2 (en) | Titanium sheet and method for producing the same | |
KR101967910B1 (ko) | 상온 성형성이 우수한 고강도 티타늄 합금 및 그 제조방법 | |
JP2017155334A (ja) | 熱間成形用アルミニウム合金板及びその製造方法 | |
JP2009161816A (ja) | チタン材 | |
JP2016023354A (ja) | 熱間成形用アルミニウム合金板及びその製造方法 | |
WO2004027103A1 (ja) | 成形性に優れる展伸用マグネシウム薄板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191108 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201006 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210126 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210208 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6844706 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |