JPWO2019026106A1 - 溶融亜鉛めっき鋼板 - Google Patents

溶融亜鉛めっき鋼板 Download PDF

Info

Publication number
JPWO2019026106A1
JPWO2019026106A1 JP2017558756A JP2017558756A JPWO2019026106A1 JP WO2019026106 A1 JPWO2019026106 A1 JP WO2019026106A1 JP 2017558756 A JP2017558756 A JP 2017558756A JP 2017558756 A JP2017558756 A JP 2017558756A JP WO2019026106 A1 JPWO2019026106 A1 JP WO2019026106A1
Authority
JP
Japan
Prior art keywords
layer
steel sheet
hot
dip galvanized
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017558756A
Other languages
English (en)
Other versions
JP6281671B1 (ja
Inventor
森下 敦司
敦司 森下
泰平 金藤
泰平 金藤
智史 内田
智史 内田
達也 中田
達也 中田
山口 裕司
裕司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP6281671B1 publication Critical patent/JP6281671B1/ja
Publication of JPWO2019026106A1 publication Critical patent/JPWO2019026106A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

母材鋼板の少なくとも一方の側に溶融亜鉛めっき層を有する溶融亜鉛めっき鋼板であって、前記溶融亜鉛めっき層におけるFe含有量が0%超3.0%以下であり、Al含有量が0%超1.0%以下であり、前記溶融亜鉛めっき層と前記母材鋼板との界面にFe−Al合金層を有し、前記Fe−Al合金層の厚さが0.1μm〜2.0μmであり、前記母材鋼板の幅方向における前記Fe−Al合金層の厚さの最大値と最小値との差が0.5μm以内であり、前記母材鋼板内に、前記Fe−Al合金層に直接接する微細化層を有し、前記微細化層の平均厚さが0.1μm〜5.0μm、前記微細化層内におけるフェライト相の平均粒径が0.1μm〜3.0μmであり、前記微細化層中にSiおよびMnの1種または2種以上の酸化物を含有し、前記酸化物の最大径が0.01μm〜0.4μmであり、前記母材鋼板の幅方向における前記微細化層の厚さの最大値と最小値との差が2.0μm以内であることを特徴とする。

Description

本発明は、強度、延性、穴拡げ性、めっき密着性及び外観の均一性に優れた溶融亜鉛めっき鋼板に関するものである。
主に自動車の骨格部材に使用される鋼板について、高強度化の要求が高まってきている。これら高強度鋼板においては、高い強度と優れた成形性を得るため、強度向上に寄与するSi及びMnに代表される合金元素が含有されることが一般的である。しかし、Si及びMnに代表される合金元素はめっき密着性を低下させる作用も有する。
また、自動車用鋼板については、一般に屋外で使用されるため、優れた耐食性が要求されるのが通常である。
ところで、自動車の外板などの用途においては、プレス加工により板の周辺部に苛酷な曲げ加工(ヘム曲げ)を施すのが通常である。また自動車外板のみならず、その他の用途においても、プレス加工により苛酷な曲げ加工や、穴広げ加工などを施して使用することが多い。そして、従来の溶融亜鉛めっき鋼板に苛酷な曲げ加工や穴広げ加工などを施した場合、その加工部分で、めっき層が母材鋼板から剥離してしまうことがあった。このようにめっき層が剥離すれば、その個所の耐食性が失われて、母材鋼板に早期に腐食、発錆が生じてしまう問題がある。まためっき層の剥離には至らないまでも、めっき層と母材鋼板との密着性が失われて、その部分にわずかでも空隙が生じれば、その空隙に外気又は水分が浸入して、めっき層による防食機能が失われる。その結果、前記同様に母材鋼板に早期に腐食、発錆が生じてしまう。
これらのような問題から、苛酷な曲げ加工などを施して使用される高強度鋼板としては、母材鋼板に対するめっき層の密着性が優れた溶融亜鉛めっき層を備えためっき鋼板が強く望まれている。
めっき層の密着性を高めるため、例えば特許文献1〜3に代表されるように、鋼板の内部に酸化物を生成させ、めっき剥離の原因となる地鉄とめっき層との界面の酸化物を減らす方法が提案されている。しかしながら、このような酸化物を鋼板表層で生成させる場合、鋼板表層の炭素が酸素と結びついてガス化する。その結果、炭素が鋼板から離脱するため、この炭素が離脱した領域の強度が著しく低下する場合がある。鋼板表層の強度が低下した場合、表層部の特性に強く依存する耐疲労特性は劣化し、疲労強度が大きく低下する懸念がある。
あるいは、めっき層の密着性を高めるため、特許文献4では、一般的な焼鈍工程の前に新たな焼鈍工程および酸洗工程を追加して施すことで、母材鋼板表面を改質し、めっき密着性を高める方法が提案されている。しかしながら、特許文献4に記載の方法では、一般的な高強度めっき鋼板の製造方法に対し、工程が増えるため、コストの面で課題がある。
さらに、特許文献5においては、母材鋼板の表層部から炭素を除去し、めっきの密着性を高める方法が提案されている。しかしながら、特許文献5に記載の方法では、炭素を除去した領域の強度が著しく低下する。このため、特許文献5に記載の方法は、表層部の特性に強く依存する耐疲労特性が劣化し、疲労強度が大きく低下する懸念がある。
また、特許文献6、7では、めっき層中のMn、AlおよびSi量を好適な範囲に制御し、めっき密着性を向上した鋼板が提案されている。特許文献6、7に記載の鋼板では、製造時にめっき層中の元素量を高い精度で制御する必要があり、操業上の負荷が大きく、コスト面で課題がある。
めっき密着性を高める手法として、特許文献8では、鋼板のミクロ組織がフェライトのみからなる高強度鋼板が提案されている。しかしながら、特許文献8に記載の鋼板では、ミクロ組織が軟質なフェライトのみであるため、十分に高い強度が得られない。
ここで、溶融亜鉛めっき処理後に合金化処理を施した合金化溶融亜鉛めっき鋼板が幅広く用いられている。合金化処理は、めっき層をZnの融点以上の温度に加熱し、多量のFe原子を母材鋼板中からめっき層中に拡散させ、めっき層をZn−Fe合金主体の層とする処理である。例えば、特許文献9、10、11には、めっき密着性に優れた合金化溶融亜鉛めっき鋼板が提案されている。しかしながら、めっき層を十分に合金化するには、鋼板を高温に加熱する必要がある。鋼板を高温に加熱すると、鋼板内部のミクロ組織が変質し、特に粗大な鉄系炭化物が生成しやすく、鋼板の特性が損なわれることがあるため、好ましくない。
一方、例えば、特許文献12に記載される溶融亜鉛めっき鋼板では、幅方向におけるめっき層のFe含有量の不均一性に由来する外観むらの発生が課題であった。
特開2008−019465号公報 特開2005−060742号公報 特開平9−176815号公報 特開2001−026853号公報 特開2002−088459号公報 特開2003−055751号公報 特開2003−096541号公報 特開2005−200750号公報 特開平11−140587号公報 特開2001−303226号公報 特開2005−060743号公報 国際公開第2016/072477号
以上のような現状に鑑み、本発明は、強度、延性、穴拡げ性、スポット溶接性、めっき密着性及び外観の均一性に優れた溶融亜鉛めっき鋼板を提供するものである。
本発明者らは、めっき密着性及び外観の均一性に優れた溶融亜鉛めっき鋼板を得るために鋭意検討を重ねた。その結果、Si及びMnを多量に含有する鋼板をめっき原板として用いた場合であっても、特定量のAlが含有されためっき浴を用いて形成しためっき層と母材鋼板との界面に形成されたFe−Al合金層の直下にフェライト相の極微細粒からなる特定の微細化層を形成させることで加工時のクラック発生及び伝播を抑制させることができ、それが起点となるめっき剥離を抑制できることを見出した。また、Si及びMnを多量に含有する鋼板をめっき原板として用いた場合、鋼板の幅方向において内部酸化層が不均一に形成され、それが原因で溶融亜鉛めっき鋼板のめっき層のFe含有量が不均一になり、外観にむらが発生することが明らかになった。そこで、本発明者らは、内部酸化層が不均一に形成される要因について更に鋭意検討を行い、それが熱延鋼板を巻き取った後の幅方向における酸素濃度の違いにあることが明らかになった。本発明者らは、このようなめっき層に起因する外観むらを抑制すべく更に鋭意検討を行った。その結果、鋼板の幅方向における微細化層及びFe−Al合金層の厚みを特定の範囲に制御することで、めっき密着性のみならず外観の均一性にも優れる溶融亜鉛めっき鋼板を得ることができることがわかった。
本発明は、かかる知見に基づいて完成させたものであり、その態様は以下の通りである。
(1)
母材鋼板の少なくとも一方の側に溶融亜鉛めっき層を有する溶融亜鉛めっき鋼板であって、
前記母材鋼板が、質量%で、
C:0.040%〜0.400%、
Si:0.05%〜2.50%、
Mn:0.50%〜3.50%、
P:0.0001%〜0.1000%、
S:0.0001%〜0.0100%、
Al:0.001%〜1.500%、
N:0.0001%〜0.0100%、
O:0.0001%〜0.0100%、
Ti:0.000%〜0.150%、
Nb:0.000%〜0.100%、
V:0.000%〜0.300%、
Cr:0.00%〜2.00%、
Ni:0.00%〜2.00%、
Cu:0.00%〜2.00%、
Mo:0.00%〜2.00%、
B:0.0000%〜0.0100%、
W:0.00%〜2.00%、
Ca、Ce、Mg、Zr、La及びREM:合計で0.0000%〜0.0100%、及び
残部:Fe及び不純物、
で表される化学組成を有し、
前記溶融亜鉛めっき層におけるFe含有量が0%超3.0%以下であり、Al含有量が0%超1.0%以下であり、
前記溶融亜鉛めっき層と前記母材鋼板との界面にFe−Al合金層を有し、
前記Fe−Al合金層の厚さが0.1μm〜2.0μmであり、
前記母材鋼板の幅方向における前記Fe−Al合金層の厚さの最大値と最小値との差が0.5μm以内であり、
前記母材鋼板内に、前記Fe−Al合金層に直接接する微細化層を有し、前記微細化層の平均厚さが0.1μm〜5.0μm、前記微細化層内におけるフェライト相の平均粒径が0.1μm〜3.0μmであり、前記微細化層中にSiおよびMnの1種または2種以上の酸化物を含有し、前記酸化物の最大径が0.01μm〜0.4μmであり、
前記母材鋼板の幅方向における前記微細化層の厚さの最大値と最小値との差が2.0μm以内であることを特徴とする溶融亜鉛めっき鋼板。
(2)
前記母材鋼板は、Si含有量(質量%)を[Si]、Al含有量(質量%)を[Al]としたときに下記の式1を満たし、
前記母材鋼板の全厚に対して、前記母材鋼板の表面から1/4厚を中心とした1/8厚〜3/8厚の範囲における残留オーステナイトが体積分率で1%以上であることを特徴とする(1)に記載の溶融亜鉛めっき鋼板。
[Si]+0.7[Al]≧0.30 (式1)
(3)
前記溶融亜鉛めっき層における片面当たりのめっき付着量が10g/m以上100g/m以下であることを特徴とする(1)又は(2)に記載の溶融亜鉛めっき鋼板。
(4)
前記化学組成において、
Ti:0.001%〜0.150%、
Nb:0.001%〜0.100%、若しくは
V:0.001%〜0.300%、
又はこれらの任意の組み合わせが満たされることを特徴とする(1)乃至(3)のいずれか1つに記載の溶融亜鉛めっき鋼板。
(5)
前記化学組成において、
Cr:0.01%〜2.00%、
Ni:0.01%〜2.00%、
Cu:0.01%〜2.00%、
Mo:0.01%〜2.00%、
B:0.0001%〜0.0100%、若しくは
W:0.01%〜2.00%、
又はこれらの任意の組み合わせが満たされることを特徴とする(1)乃至(4)のいずれか1つに記載の溶融亜鉛めっき鋼板。
(6)
前記化学組成において、
Ca、Ce、Mg、Zr、La及びREM:合計で0.0001%〜0.0100%
が満たされることを特徴とする(1)乃至(5)のいずれか1つに記載の溶融亜鉛めっき鋼板。
本発明によれば、強度、延性、穴拡げ性、スポット溶接性、めっき密着性及び外観の均一性に優れた溶融亜鉛めっき鋼板を提供できる。
図1は、本発明の実施形態に係る溶融亜鉛めっき鋼板を示す断面図である。
以下、本発明の実施形態について詳細に説明する。
まず、本発明の実施形態に係る溶融亜鉛めっき鋼板について、添付の図面を参照しながら説明する。図1は、本発明の実施形態に係る溶融亜鉛めっき鋼板を示す断面図である。本実施形態に係る溶融亜鉛めっき鋼板1は、母材鋼板2の表面に溶融亜鉛めっき層3を備え、溶融亜鉛めっき層3と母材鋼板2の表面との界面にFe−Al合金層4を備え、母材鋼板2内に、Fe−Al合金層4に接する微細化層5と、脱炭層6とを備える。
(母材鋼板2)
本発明の実施形態に係る溶融亜鉛めっき鋼板1を構成する母材鋼板2及びその製造に用いるスラブの化学組成について説明する。詳細は後述するが、本発明の実施形態に係る溶融亜鉛めっき鋼板1は、スラブの鋳造、熱間圧延、冷間圧延、焼鈍及びめっき等を経て製造される。従って、母材鋼板2及びその製造に用いるスラブの化学組成は、母材鋼板2の特性のみならず、これらの処理を考慮したものである。以下の説明において、母材鋼板2又はスラブに含まれる各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味する。母材鋼板は、C:0.040%〜0.400%、Si:0.05%〜2.50%、Mn:0.50%〜3.50%、P:0.0001%〜0.1000%、S:0.0001%〜0.0100%、Al:0.001%〜1.500%、N:0.0001%〜0.0100%、O:0.0001%〜0.0100%、Ti:0.000%〜0.150%、Nb:0.000%〜0.100%、V:0.000%〜0.300%、Cr:0.00%〜2.00%、Ni:0.00%〜2.00%、Cu:0.00%〜2.00%、Mo:0.00%〜2.00%、B:0.0000%〜0.0100%、W:0.00%〜2.00%、Ca、Ce、Mg、Zr、La及びREM:合計で0.0000%〜0.0100%、及び残部:Fe及び不純物で表される化学組成を有している。不純物としては、鉱石やスクラップ等の原材料に含まれるもの、製造工程において含まれるもの、が例示される。
(C:0.040%〜0.400%)
Cは、母材鋼板の強度を高める。C含有量が0.400%超では、スポット溶接性が劣化する。従って、C含有量は0.400%以下とする。スポット溶接性の観点から、C含有量は、好ましくは0.300%以下とし、より好ましくは0.220%以下とする。より高い強度を得るために、C含有量は、好ましくは0.055%以上とし、より好ましくは0.070%以上とする。
(Si:0.05%〜2.50%)
Siは、母材鋼板における鉄系炭化物の生成を抑制し、強度と成形性を高める。一方、Siは、鋼板を脆化させる。Si含有量が2.50%超では、鋳造したスラブが割れやすくなる。従って、Si含有量は2.50%以下とする。Siは、焼鈍の際に母材鋼板の表面に酸化物を形成し、めっきの密着性を著しく損なうため、Si含有量は、好ましくは2.00%以下とし、より好ましくは1.60%以下とする。Si含有量が0.05%未満では、母材鋼板にめっきを施す際に、粗大な鉄系炭化物が多量に生成され、強度及び成形性が劣化する。従って、Si含有量は0.05%以上とする。鉄系炭化物の生成を抑制する観点から、Si含有量は、好ましくは0.10%以上とし、より好ましくは0.25%以上とする。
(Mn:0.50%〜3.50%)
Mnは、母材鋼板の焼入れ性を高めることにより強度を高める。Mn含有量が3.50%超では、母材鋼板の板厚中央部にMn濃度の高い部分が生じて、脆化が起こりやすくなり、鋳造したスラブが割れやすくなる。従って、Mn含有量は3.50%以下とする。スポット溶接性が劣化する観点から、Mn含有量は、好ましくは3.00%以下とし、より好ましくは2.80%以下とする。Mn含有量が0.50%未満では、焼鈍後の冷却中に軟質な組織が多量に形成されるため、十分に高い引張強度を確保することが難しい。従って、Mn含有量は0.50%以上とする。より高い強度を得るために、Mn含有量は、好ましくは0.80%以上とし、より好ましくは1.00%以上とする。
(P:0.0001%〜0.1000%)
Pは、鋼材を脆化させる。P含有量が0.1000%超では、鋳造したスラブが割れやすくなる。従って、P含有量は0.1000%以下とする。また、Pは、スポット溶接によって溶融する部分を脆化させる。十分な溶接継手の強度を得るためには、P含有量は、好ましくは0.0400%以下とし、より好ましくは0.0200%以下とする。P含有量が0.0001%未満では、製造コストの大幅に増加する。従って、P含有量は0.0001%以上とし、好ましくは0.0010%以上とする。
(S:0.0001%〜0.0100%)
Sは、Mnと結びついて粗大なMnSを形成し、延性、伸びフランジ性及び曲げ性といった成形性を低下させる。従って、S含有量は0.0100%以下とする。また、Sは、スポット溶接性を劣化させる。従って、S含有量は、好ましくは0.0060%以下とし、より好ましくは0.0035%以下とする。S含有量が0.0001%未満では、製造コストが大幅に増加する。従って、S含有量は、0.0001%以上とし、好ましくは0.0005%以上とし、より好ましくは0.0010%以上とする。
(Al:0.001%〜1.500%)
Alは、鋼材を脆化させる。Al含有量が1.500%超では、鋳造したスラブが割れやすくなる。従って、Al含有量は1.500%以下とする。スポット溶接性が劣化する観点から、Al含有量は、好ましくは1.200%以下とし、より好ましくは1.000%以下とする。Al含有量の下限値は特に限定されないが、Alは、鋼中に不純物として含有される。Al含有量を0.001%未満とするためには、製造コストが大幅に増加する。従って、Al含有量は0.001%以上とする。Alは、鋼の脱酸元素である。脱酸の効果をより十分に得るために、Al含有量は、好ましくは0.010%以上とする。
(N:0.0001%〜0.0100%)
Nは、粗大な窒化物を形成し、延性、伸びフランジ性及び曲げ性といった成形性を劣化させる。N含有量が0.0100%超では、成形性が著しく劣化する。従って、N含有量は0.0100%以下とする。N含有量が過剰であると、溶接時にブローホールが発生することがあるため、N含有量は、好ましくは0.0070%以下とし、より好ましくは0.0050%以下とする。N含有量の下限値は特に限定されないが、Nは、鋼中に不純物として含有される。N含有量を0.0001%未満とするためには、製造コストが大幅に増加する。従って、N含有量は0.0001%以上とし、好ましくは0.0003%以上とし、より好ましくは0.0005%以上とする。
(O:0.0001%〜0.0100%)
Oは、酸化物を形成し、延性、伸びフランジ性及び曲げ性といった成形性を劣化させる。O含有量が0.0100%超では、成形性が著しく劣化する。従って、O含有量は0.0100%以下とし、好ましくは0.0050%以下とし、より好ましくは0.0030%以下とする。O含有量の下限値は特に限定されないが、Oは、鋼中に不純物として含有される。O含有量を0.0001%未満とするためには、製造コストが大幅に増加する。従って、N含有量は0.0001%以上とし、好ましくは0.0003%以上とし、より好ましくは0.0005%以上とする。
([Si]+0.7[Al]:0.30以上)
Si及びAlは、ベイナイト変態に伴う炭化物の生成を抑制する。残留オーステナイトを得るためには、Si及び/又はAlを所定量以上含有されることが好ましい。残留オーステナイトを得ることにより、TRIP効果が得られるからである。この観点から、母材鋼板は、Si含有量(質量%)を[Si]、Al含有量(質量%)を[Al]としたときに下記の式1を満たすことが好ましい。すなわち、下記の式1の左辺([Si]+0.7[Al])の値は、好ましくは0.30以上とし、より好ましくは0.45以上とし、さらに好ましくは0.70以上とする。
[Si]+0.7[Al]≧0.30 (式1)
Ti、Nb、V、Cr、Ni、Cu、Mo、B、W、Ca、Ce、Mg、Zr、La及びREMは、必須元素ではなく、鋼板に所定量を限度に適宜含有されていてもよい任意元素である。
(Ti:0.000%〜0.150%)
Tiは、析出物強化、フェライト結晶粒の成長抑制による細粒強化、及び再結晶の抑制を通じた転位強化によって、鋼板の強度を高める。従って、Tiが含有されていてもよい。Ti含有量が0.150%超では、炭窒化物の析出が多くなり、成形性が劣化することがある。従って、Ti含有量は0.150%以下とする。成形性の観点から、Ti含有量は好ましくは0.080%以下とする。Ti含有量の下限値は特に限定されないが、強度を高める効果を十分に得るためには、Ti含有量は好ましくは0.001%以上とする。上記効果をより十分に得るためには、Ti含有量はより好ましくは0.010%以上とする。
(Nb:0.000%〜0.100%)
Nbは、析出物強化、フェライト結晶粒の成長抑制による細粒強化、及び再結晶の抑制を通じた転位強化により、鋼板の強度を高める。従って、Nbが含有されていてもよい。Nb含有量が0.100%超では、炭窒化物の析出が多くなり、成形性が劣化することがある。従って、Nb含有量は0.100%以下とする。成形性の観点から、Nb含有量は好ましくは0.060%以下とする。Nb含有量の下限値は特に限定されないが、強度を高める効果を十分に得るためには、Nb含有量は好ましくは0.001%以上とする。上記効果をより十分に得るためには、Nb含有量はより好ましくは0.005%以上とする。
(V:0.000%〜0.300%)
Vは、析出物強化、フェライト結晶粒の成長抑制による細粒強化、及び再結晶の抑制を通じた転位強化により、鋼板の強度を高める。従って、Vが含有されていてもよい。V含有量が0.300%超では、炭窒化物の析出が多くなり、成形性が劣化することがある。従って、V含有量は0.300%以下とし、好ましくは0.200%以下とする。V含有量の下限値は特に限定されないが、強度を高める効果を十分に得るためには、V含有量は好ましくは0.001%以上とし、より好ましくは0.010%以上とする。
(Cr:0.00%〜2.00%)
Crは、高温での相変態を抑制し、鋼板の強度を更に高める。従って、Crは、C及び/又はMnの一部に代えて含有されていてもよい。Cr含有量が2.00%超では、熱間圧延における加工性が損なわれて生産性が低下することがある。従って、Cr含有量は2.00%以下とし、好ましくは1.20%以下とする。Cr含有量の下限値は特に限定されないが、強度を更に高める効果を十分に得るためには、Cr含有量は好ましくは0.01%以上とし、より好ましくは0.10%以上とする。
(Ni:0.00%〜2.00%)
Niは、高温での相変態を抑制し、鋼板の強度を更に高める。従って、Niは、C及び/又はMnの一部に代えて含有されていてもよい。Ni含有量が2.00%超では、溶接性が損なわれることがある。従って、Ni含有量は2.00%以下とし、好ましくは1.20%以下とする。Ni含有量の下限値は特に限定されないが、強度を更に高める効果を十分に得るためには、Ni含有量は好ましくは0.01%以上とし、より好ましくは0.10%以上とする。
(Cu:0.00%〜2.00%)
Cuは、微細な粒子として鋼中に存在することにより強度を高める。従って、Cuは、C及び/又はMnの一部に代えて含有されていてもよい。Cu含有量が2.00%超では、溶接性が損なわれることがある。従って、Cu含有量は2.00%以下とし、好ましくは1.20%以下とする。Cu含有量の下限値は特に限定されないが、強度を更に高める効果を十分に得るためには、Cu含有量は好ましくは0.01%以上とし、より好ましくは0.10%以上とする。
(Mo:0.00%〜2.00%)
Moは、高温での相変態を抑制し、鋼板の強度を更に高める。従って、Moは、C及び/又はMnの一部に代えて含有されていてもよい。Mo含有量が2.00%超では、熱間圧延における加工性が損なわれて生産性が低下することがある。従って、Mo含有量は2.00%以下とし、好ましくは1.20%以下とする。Mo含有量の下限値は特に限定されないが、強度を更に高める効果を十分に得るためには、Mo含有量は好ましくは0.01%以上とし、より好ましくは0.05%以上とする。
(B:0.0000%〜0.0100%)
Bは、高温での相変態を抑制し、鋼板の強度を更に高める。従って、Bは、C及び/又はMnの一部に代えて含有されていてもよい。B含有量が0.0100%超では、熱間圧延における加工性が損なわれて生産性が低下することがある。従って、B含有量は0.0100%以下とする。生産性の観点から、B含有量は好ましくは0.0050%以下とする。B含有量の下限値は特に限定されないが、強度を更に高める効果を十分に得るためには、B含有量は好ましくは0.0001%以上とし、より好ましくは0.0005%以上とする。
(W:0.00%〜2.00%)
Wは、高温での相変態を抑制し、鋼板の強度を更に高める。従って、Wは、C及び/又はMnの一部に代えて含有されていてもよい。W含有量が2.00%超では、熱間圧延における加工性が損なわれて生産性が低下することがある。従って、W含有量は2.00%以下とし、好ましくは1.20%以下とする。W含有量の下限値は特に限定されないが、強度を更に高める効果を十分に得るためには、W含有量は好ましくは0.01%以上とし、より好ましくは0.10%以上とする。
(Ca、Ce、Mg、Zr、La及びREM:合計で0.0000%〜0.0100%)
Ca、Ce、Mg、Zr、La又はREMは、成形性を改善する。従って、Ca、Ce、Mg、Zr、La又はREMが含有されていてもよい。Ca、Ce、Mg、Zr、La及びREMの含有量が合計で0.0100%超では、延性を損なうおそれがある。従って、Ca、Ce、Mg、Zr、La及びREMの含有量は合計で0.0100%以下とし、好ましくは合計で0.0070%以下とする。Ca、Ce、Mg、Zr、La及びREMの含有量の下限値は特に限定されないが、鋼板の成形性を改善する効果を十分に得るためには、Ca、Ce、Mg、Zr、La及びREMの含有量は好ましくは合計で0.0001%以上とし、より好ましくは合計で0.0010%以上とする。なお、REMとは、Rare Earth Metalの略であり、ランタノイド系列に属する元素を指す。本発明の実施形態においては、REMやCeは例えばミッシュメタルとして添加され、LaやCeの他にランタノイド系列の元素を複合的に含有されることがある。LaやCe以外のランタノイド系列の元素が不純物として含有されていてもよい。また、金属Laや金属Ceが含有されていてもよい。
なお、Ti、Nb、V、Cr、Ni、Cu、Mo、B及びWは、不純物として上記各元素の含有量の下限値未満であれば含有していてもよい。Ca、Ce、Mg、Zr、La及びREMについても、不純物として上記合計量の下限値未満であれば含有していてもよい。
(溶融亜鉛めっき層3)
[溶融亜鉛めっき層3におけるFe含有量:0%超3.0%以下]
溶融亜鉛めっき層3におけるFe含有量は、0%超3.0%以下である。Fe含有量が0%である溶融亜鉛めっき層3を実質的に製造するのは困難である。従って、Fe含有量は0%超とする。めっき密着性を確保する観点から、Fe含有量は、好ましくは0.3%以上とし、より好ましくは0.5%以上とする。Fe含有量が3.0%超では、めっき密着性が低下する。従って、Fe含有量は3.0%以下とする。めっき密着性を確保する観点から、Fe含有量は、好ましくは2.5%以下とし、より好ましくは2.0%以下とする。
[溶融亜鉛めっき層3におけるAl含有量:0%超1.0%以下]
溶融亜鉛めっき層3におけるAl含有量は、0%超1.0%以下である。Al含有量が0%では、Fe原子が溶融亜鉛めっき層3中に拡散してZn−Fe合金が生成する合金化が進行し、めっき密着性が低下する。従って、Al含有量は0%超とする。このような合金化の進行を抑制する観点から、Al含有量は、好ましくは0.1%以上とし、より好ましくは0.2%以上とする。Al含有量が1.0%超では、めっき密着性が低下する。従って、Al含有量は1.0%以下とする。めっき密着性を確保する観点から、Al含有量は、好ましくは0.8%以下とし、より好ましくは0.5%以下とする。
[溶融亜鉛めっき層3における片面当たりのめっき付着量:10g/m以上100g/m以下]
めっき付着量が10g/m未満では、十分な耐食性が得られないことがある。従って、めっき付着量は好ましくは10g/m以上とする。耐食性の観点から、めっき付着量は、より好ましくは20g/m以上とし、さらに好ましくは30g/m以上とする。めっき付着量が100g/m超では、スポット溶接を行った際の電極損耗が激しくなり、連続して溶接を行った際に溶融ナゲット径が減少し、溶接継手の強度が劣化することがある。従って、めっき付着量は好ましくは100g/m以下とする。連続溶接性の観点から、めっき付着量は、より好ましくは93g/m以下とし、さらに好ましくは85g/m以下とする。
溶融亜鉛めっき層3には、Ag、B、Be、Bi、Ca、Cd、Co、Cr、Cs、Cu、Ge、Hf、I、K、La、Li、Mg、Mn、Mo、Na、Nb、Ni、Pb、Rb、Sb、Si、Sn、Sr、Ta、Ti、V、W、Zr及びREMのうち1種以上が含有されていてもよい。これらの元素が含有されることにより、耐食性や加工性が改善される。
溶融亜鉛めっき層3には、ζ相(FeZn13)からなる柱状晶が含有されていてもよい。めっき密着性の観点から、溶融亜鉛めっき層3と母材鋼板2との全界面におけるζ相の被覆割合は、好ましくは20%未満とする。
(Fe−Al合金層4)
[Fe−Al合金層4の厚さ:0.1μm〜2.0μm]
本発明の実施形態において、溶融亜鉛めっき層3と母材鋼板2の表面との界面にはFe−Al合金層4が形成されている。Fe−Al合金層4の形成により、Zn−Fe合金が生成する合金化を抑制し、めっき密着性の低下を抑制することができる。さらに、合金化むらによる外観むらの発生を抑制することができる。合金化むらによる外観むらは、溶融亜鉛めっき処理後に合金化処理を施した合金化溶融亜鉛めっき鋼板よりも、合金化処理を施さない溶融亜鉛めっき鋼板の方が生じやすい。Fe−Al合金層4の厚さが0.1μm未満では、めっき密着性及び外観が劣化する。従って、Fe−Al合金層4の厚さは0.1μm以上とする。Fe−Al合金層4の厚さが2.0μm超では、めっき密着性が低下する。従って、Fe−Al合金層4の厚さは2.0μm以下とし、好ましくは1.0μm以下とする。
[母材鋼板2の幅方向におけるFe−Al合金層4の厚さの最大値と最小値との差:0.5μm以内]
母材鋼板2の幅方向におけるFe−Al合金層4の厚さの最大値と最小値との差とは、Fe−Al合金層4の両エッジから50mmの位置とその間を7等分した各位置との計8箇所のFe−Al合金層4の厚さを測定し、その中の最大値と最小値との差を意味する。Fe−Al合金層4の厚さが薄いほど、Zn−Fe合金が生成する合金化が進行しやすい。そのため、母材鋼板2の幅方向におけるFe−Al合金層4の厚さの差が大きいほど、それが合金化むらとなる。Fe−Al合金層4の厚さの最大値と最小値との差が0.5μm超では、めっき密着性及びめっき外観の均一性が劣化する。従って、Fe−Al合金層4の厚さの最大値と最小値との差は0.5μm以内とし、好ましくは0.4μm以内とし、より好ましくは0.3μm以内とする。
(微細化層5)
母材鋼板2内には、Fe−Al合金層4に接する微細化層5と、脱炭層6とを備える。微細化層5及び脱炭層6は、後述するように焼鈍する際に特定の温度域及び特定の雰囲気に制御した条件下で脱炭反応が進行することによって生成する層である。そのため、微細化層5を構成する組織は、酸化物や介在物粒子を除くと、実質的にフェライト相7が主体であり、脱炭層6を構成する組織についても、酸化物や介在物粒子を除くと、実質的にフェライト相8が主体である。具体的には、フェライト相7、8の体積分率が70%以上であり、残部はオーステナイト相、ベイナイト相、マルテンサイト相及びパーライト相のうち1種以上の混合組織である。微細化層5は、母材鋼板2の最表部におけるフェライト相7の平均粒径が、脱炭層6におけるフェライト相8の平均粒径の1/2以下である場合に存在する。微細化層5と脱炭層6との境界は、微細化層5におけるフェライト相7の平均粒径が、脱炭層6におけるフェライト相8の平均粒径の1/2超となる境界とする。
[微細化層5の平均厚さ:0.1μm〜5.0μm]
微細化層5の平均厚さが0.1μm未満では、クラックが発生し、伸展を抑制することができないため、めっき密着性が劣化する。従って、微細化層5の平均厚さは0.1μm以上とし、好ましくは0.2μm以上とし、より好ましくは0.3μm以上とする。微細化層5の平均厚さが5.0μm超では、Zn−Fe合金が生成する合金化が進行して、溶融亜鉛めっき層3中のFe含有量が増加するため、めっき密着性が劣化する。従って、微細化層5の平均厚さは5.0μm以下とし、好ましくは4.0μm以下とし、より好ましくは3.0μmとする。
[フェライト相7の平均粒径:0.1μm〜3.0μm]
フェライト相7の平均粒径が0.1μm未満では、クラックが発生し、伸展を抑制することができないため、めっき密着性が劣化する。従って、フェライト相7の平均粒径は0.1μm以上とする。フェライト相7の平均粒径が3.0μm超では、めっき密着性が劣化する。従って、フェライト相7の平均粒径は3.0μm以下とし、好ましくは2.0μm以下とする。
微細化層5の平均厚さ及び微細化層5内におけるフェライト相7の平均粒径は、以下に示す方法により測定する。溶融亜鉛めっき鋼板1から、母材鋼板2の圧延方向に平行な断面を観察面とした試料を採取する。試料の観察面をCP(Cross section polisher)装置により加工し、FE−SEM(Field Emission Scanning Electron Microscopy)での反射電子像を5000倍で観察し、測定する。
[酸化物の最大径:0.01μm〜0.4μm]
微細化層5中には、Si及びMnのうち1種以上の酸化物が含有される。酸化物として、例えば、SiO、MnSiO、MnSiO、FeSiO、FeSiO、MnOからなる群から選ばれた1種以上が挙げられる。この酸化物は、後述するように、焼鈍時に特定の温度域で母材鋼板2内に形成される。酸化物粒子によって母材鋼板2の表層におけるフェライト相結晶の成長が抑制されるため、微細化層5が形成される。酸化物の最大径が0.01μm未満では、微細化層5が十分に形成されないため、めっき密着性が劣化する。従って、酸化物の最大径は0.01μm以上とし、好ましくは0.05μm以上とする。酸化物の最大径が0.4μm超では、フェライト相7が粗大化し、微細化層5が十分に形成されないとともに、酸化物自体がめっき剥離の起点となるため、めっき密着性が劣化する。従って、酸化物の最大径は0.4μm以下とし、好ましくは0.2μm以下とする。
酸化物の最大径は、以下に示す方法により測定する。溶融亜鉛めっき鋼板1から、母材鋼板2の圧延方向に平行な断面を観察面とした試料を採取する。試料の観察面をFIB(Focused Ion Beam)加工して薄膜試料を作製する。その後、薄膜試料をFE−TEM(Field Emission Transmission Electr on Microscopy)を用いて30000倍で観察する。各薄膜試料について5視野観察し、全視野で計測された計測値のうち最大の直径を酸化物の最大径とする。
[母材鋼板2の幅方向における微細化層5の厚さの最大値と最小値との差:2.0μm以内]
母材鋼板2の幅方向における微細化層5の厚さの最大値と最小値との差とは、微細化層5の両エッジから50mmの位置とその間を7等分した各位置との計8箇所の微細化層5の厚さを測定し、その中の最大値と最小値との差を意味する。微細化層5の厚さが厚いほど、Zn−Fe合金が生成する合金化が進行しやすい。そのため、母材鋼板2の幅方向における微細化層5の厚さの差が大きいほど、それが合金化むらとなる。微細化層5の厚さの最大値と最小値との差が2.0μm超では、めっき密着性及びめっき外観の均一性が劣化する。従って、微細化層5の厚さの最大値と最小値との差は2.0μm以内とし、好ましくは1.5μm以内とし、より好ましくは1.0μm以内とする。
(ミクロ組織)
本発明の実施形態に係る溶融亜鉛めっき鋼板1における母材鋼板2のミクロ組織については特に限定されないが、次のようなミクロ組織とすることが好ましい。鋼板の特性はミクロ組織によって変化する。ミクロ組織を定量化する場合、鋼板の全領域にわたって定量化することは現実的でないため、母材鋼板2の表面から1/4厚を中心とした1/8厚〜3/8厚の範囲におけるミクロ組織を、鋼板を代表するミクロ組織として定量化し、規定する。板厚の中央部は、強い凝固偏析によりミクロ組織が変化するため、鋼板を代表するミクロ組織とはいえない。母材鋼板2の表層付近は、局所的な温度変化及び/又は外気との反応によりミクロ組織が変化するため、鋼板を代表するミクロ組織とはいえない。
本発明の実施形態に係る溶融亜鉛めっき鋼板1における母材鋼板2のミクロ組織は、粒状フェライト、針状フェライト、未再結晶フェライト、パーライト、ベイナイト、ベイニティックフェライト、マルテンサイト、焼戻マルテンサイト、残留オーステナイト、粗大セメンタイトのうち1種以上であってもよい。母材鋼板2は、溶融亜鉛めっき鋼板1の用途に応じた特性を得るため、各相、各組織の体積分率の内訳、組織サイズ、配置を適宜選択することができる。
[残留オーステナイト:1%以上]
残留オーステナイトは、強度と延性とのバランスを大きく高める組織である。母材鋼板2の表面から1/4厚を中心とした1/8厚〜3/8厚の範囲における残留オーステナイトの体積分率が1%未満では、強度と延性とのバランスを高める効果が小さい場合がある。従って、残留オーステナイトの体積分率は好ましくは1%以上とする。強度と延性とのバランスをさらに高めるために、残留オーステナイトの体積分率は、より好ましくは3%以上とし、さらに好ましくは5%以上とする。多量の残留オーステナイトを得るためには、C含有量を大幅に増加させる。しかし、多量のCによって溶接性を著しく損なう懸念がある。従って、残留オーステナイトの体積分率は好ましくは25%以下とする。残留オーステナイトは変形に伴って硬質なマルテンサイトに変態し、そのマルテンサイトが破壊の起点として働くことにより、伸びフランジ性が劣化することがある。従って、残留オーステナイトの体積分率はより好ましくは20%以下とする。
本発明の実施形態に係る溶融亜鉛めっき鋼板1の母材鋼板2に含まれる各組織の体積分率は、例えば、以下に示す方法により測定される。
本実施形態に係る溶融亜鉛めっき鋼板1における母材鋼板2に含まれる残留オーステナイトの体積分率は、X線回折法により評価する。母材鋼板2の表面から1/4厚を中心とした1/8厚〜3/8厚の範囲において、板面に平行な面を鏡面に仕上げ、X線回折法によってFCC(Face Centered Cubic)鉄の面積分率を測定し、その測定値を残留オーステナイトの体積分率とする。
本実施形態に係る溶融亜鉛めっき鋼板1における母材鋼板2に含まれるフェライト、ベイニティックフェライト、ベイナイト、焼戻しマルテンサイト、フレッシュマルテンサイト、パーライト及び粗大セメンタイトの体積分率は、電界放射型走査型電子顕微鏡(FE−SEM:Field Emission Scanning Electron Microscope)により測定される。母材鋼板2の圧延方向に平行な断面を観察面とした試料を採取する。この試料の観察面を研磨し、ナイタールエッチングする。観察面の板厚の1/4厚を中心とした1/8厚〜3/8厚の範囲をFE−SEMで観察して面積分率を測定し、その測定値を体積分率とみなす。
本実施形態に係る溶融亜鉛めっき鋼板1において、母材鋼板2の板厚は特に限定されない。溶融亜鉛めっき鋼板1の平坦性、冷却時の制御性の観点から、母材鋼板2の板厚は、好ましくは0.6mm以上5.0mm未満とする。
次に、本発明の実施形態に係る溶融亜鉛めっき鋼板を製造する方法について説明する。この方法では、上記の化学組成を有するスラブの鋳造、熱間圧延、冷間圧延、焼鈍、めっき及びめっき後の冷却を行う。焼鈍とめっきとの間及び/又はめっき後の冷却において、残留オーステナイトを得るために必要に応じてベイナイト変態処理を行う。
(鋳造)
まず、熱間圧延に供するスラブを鋳造する。熱間圧延に供するスラブは、連続鋳造スラブや薄スラブキャスター等で製造したものを用いることができる。
(熱間圧延)
鋳造に起因する結晶方位の異方性を抑制するため、スラブの加熱温度は、好ましくは1080℃以上とし、より好ましくは1150℃以上とする。一方、スラブの加熱温度の上限値は、特に限定されるものではない。スラブの加熱温度が1300℃超では、多量のエネルギーを投入する場合があり、製造コストが大幅に増加することがある。従って、スラブの加熱温度は好ましくは1300℃以下とする。
スラブを加熱した後、熱間圧延を行う。熱間圧延の完了温度(圧延完了温度)が850℃未満では、圧延反力が高まり、所定の板厚を安定して得ることが困難となる。従って、熱間圧延の完了温度は好ましくは850℃以上とし、より好ましくは875℃以上とする。熱間圧延の完了温度が980℃超では、スラブの加熱が終了後、熱間圧延が完了するまでの間に、鋼板を加熱する場合があり、コストが増加することがある。従って、熱間圧延の完了温度は、好ましくは980℃以下とし、より好ましくは960℃以下とする。
次に、熱間圧延した後の熱延鋼板をコイルとして巻き取る。なお、熱間圧延後巻取り前に冷却する際の平均冷却速度は、好ましくは10℃/秒以上とする。より低温で変態を進めることによって、熱延鋼板の粒径を微細にし、冷間圧延及び焼鈍後の母材鋼板の有効結晶粒径を微細にするためである。
巻取り温度は、好ましくは350℃以上750℃以下とする。熱延鋼板のミクロ組織として、パーライト及び/又は長径が1μm以上の粗大セメンタイトを分散して生成させ、冷間圧延によって熱延鋼板に導入される歪を局在化させる。その後、焼鈍において様々な結晶方位のオーステナイトに逆変態させるためである。これによって、焼鈍後の母材鋼板の有効結晶粒を微細化する。巻取り温度が350℃未満では、パーライト及び/又は粗大セメンタイトが生成しない場合がある。従って、巻取り温度は好ましくは350℃以上とする。熱延鋼板の強度を低くし、冷間圧延を容易に行うため、巻取り温度はより好ましくは450℃以上とする。巻取り温度が750℃超では、圧延方向に長い帯状のパーライト及びフェライトが生成し、冷間圧延及び焼鈍後にフェライトから生成する母材鋼板の有効結晶粒が、圧延方向に伸長し、粗大化することがある。従って、巻取り温度は好ましくは750℃以下とする。焼鈍後の母材鋼板の有効結晶粒径を微細化するため、巻取り温度はより好ましくは680℃以下とする。熱延鋼板を巻き取った後、内部酸化層が鋼板のエッジ部よりも中央部の方が厚く形成される場合があり、内部酸化層がスケール層の下に不均一に形成される。これは、巻取り温度が650℃を超えると顕著になる。この内部酸化層が後述する酸洗、冷間圧延によっても除去されない場合には、微細化層やFe−Al合金層が不均一に形成されるため、めっき密着性及び外観の均一性が劣化する可能性がある。従って、巻取り温度はさらに好ましくは650℃以下とする。
次に、このようにして製造した熱延鋼板を酸洗する。酸洗は、熱延鋼板の表面に形成された酸化物を除去するため、母材鋼板のめっき性向上に寄与する。酸洗は、一回で行ってもよく、複数回に分けて行ってもよい。スケール層の下に生成する内部酸化層は、微細化層やFe−Al合金層の均一な形成、それによる外観の均一性を確保する観点から、酸洗を強化してできるだけ除去した方がよい。酸洗条件は、内部酸化層が除去できれば、特に限定されるものではない。例えば、酸洗効率と経済性の観点から、酸洗には塩酸を使用することが好ましい。内部酸化層を除去する条件としては、例えば、塩酸の濃度は塩化水素として好ましくは5質量%以上とし、酸洗温度は好ましくは80℃以上とし、酸洗時間は好ましくは30秒以上とする。例えば、巻取り温度が650℃超では、酸洗をより強化して内部酸化層をできるだけ除去した方がよく、酸洗時間はより好ましくは60秒以上とする。
(冷間圧延)
次に、酸洗後の熱延鋼板に冷間圧延を行う。圧下率の合計が85%超では、鋼板の延性が失われ、冷間圧延中に鋼板が破断することがある。従って、圧下率の合計は、好ましくは85%以下とし、より好ましくは75%以下とし、さらに好ましくは70%以下とする。圧下率の合計の下限値は、特に限定されるものではない。圧下率の合計が0.05%未満では、母材鋼板の形状が不均質となり、めっきが均一に付着せず、外観が損なわれることがある。従って、圧下率の合計は、好ましくは0.05%以上とし、より好ましくは0.10%以上とする。なお、冷間圧延は複数のパスで行うことが好ましいが、冷間圧延のパス数や各パスへの圧下率の配分は問わない。
圧下率の合計が10%超20%未満では、その後の焼鈍において再結晶が十分に進まず、多量の転位を含んで展性を失った粗大な結晶粒が鋼板の表層近くに残るため、曲げ性及び耐疲労特性が劣化する場合がある。そのため、圧下率の合計を小さくし、結晶粒への転位の蓄積を軽微にして結晶粒の展性を残すことが有効である。または、圧下率の合計を大きくし、焼鈍において再結晶を十分に進行させ、加工組織を内部に転位の蓄積が少ない再結晶粒にすることが有効である。結晶粒への転位の蓄積を軽微にする観点から、圧下率の合計は好ましくは10%以下とし、より好ましくは5.0%以下とする。一方、焼鈍において再結晶を十分に進めるためには、圧下率の合計は、好ましくは20%以上とし、より好ましくは30%以上とする。
(焼鈍)
次に、冷延鋼板に焼鈍を施す。焼鈍には、予熱帯と均熱帯とめっき帯とを有する連続焼鈍めっきラインを用いることが好ましい。冷延鋼板に焼鈍を行いながら予熱帯と均熱帯とを通過させ、冷延鋼板がめっき帯に到達するまでに焼鈍が終了し、めっき帯においてめっきを行うことが好ましい。
上述のように、連続焼鈍めっきラインを用いた場合には、例えば、以下に示す方法を用いることが好ましい。特に、所定の微細化層及びFe−Al合金層を均一に生成させ、めっき密着性及び外観の均一性を確保するためには、予熱帯における雰囲気や加熱方式の制御、均熱帯における雰囲気の制御は重要である。
予熱帯においては、水蒸気分圧P(HO)と水素分圧P(H)の比のLog値であるLog(P(HO)/P(H))を−1.7〜−0.2に制御した雰囲気下で、空気比を0.7〜1.0とした予熱バーナーを用いて、400℃〜800℃に加熱しながら冷延鋼板を通板させる。予熱帯において、水蒸気分圧P(HO)と水素分圧P(H)との比を調整することは、後続の溶融亜鉛めっきにおいて界面にFe−Al合金相を幅方向に均一に析出させること及びめっき前の鋼板の表面性状に影響を及ぼす。予熱帯においては空気比を調整することで、Si等の強脱酸元素の酸化膜が鋼板の表面に生成することが抑制される。空気比を調整すると共に、水蒸気分圧P(HO)と水素分圧P(H)との比を調整することで、鋼板表面での過剰な脱炭素が抑制される。これによって後続のめっき工程において、鋼板表面の粒界における過剰なFe−Zn合金反応を抑制して、Fe−Al合金反応が選択的に起こるようにする。Fe−Al合金反応が選択的に起こることで、均一なFe−Al合金層の形成を促し、優れためっき密着性、外観均一化を得ることができる。Log(P(HO)/P(H))が−0.2超では、後続のめっき工程でFe−Zn合金化が起こりやすくなり、めっき中のFe濃度が高くなる。それにより、めっき密着性が低下し、外観むらも生じやすくなる。一方、Log(P(HO)/P(H))が−1.7未満では、鋼板表面に炭素濃度の高い部分が生成して、表面に微細化層が形成しないため、めっき密着性が低下する。
「空気比」とは、単位体積の混合ガスに含まれる空気の体積と、単位体積の混合ガスに含まれる燃料ガスを完全燃焼させるために理論上必要となる空気の体積との比であり、下記の式で示される。
空気比=[単位体積の混合ガスに含まれる空気の体積(m)]/[単位体積の混合ガスに含まれる燃料ガスを完全燃焼させるために理論上必要となる空気の体積(m)]
空気比が1.0超では、鋼板の表層部に過剰なFe酸化膜が生成され、焼鈍後の脱炭層が肥大化し、微細化層も過剰に生成する。このため、過度にめっきの合金化が進み、めっき密着性、チッピング性及びパウダリング性が低下する。従って、空気比は、好ましくは1.0以下とし、より好ましくは0.9以下とする。空気比が0.7未満では、微細化層が形成されず、めっき密着性が低下する。従って、空気比は、好ましくは0.7以上とし、より好ましくは0.8以上とする。
予熱帯を通板させる鋼板の温度が400℃未満では、十分な微細化層を形成することができない。従って、予熱帯を通板させる鋼板の温度は、好ましくは400℃以上とし、より好ましくは600℃以上とする。予熱帯を通板させる鋼板の温度が800℃超では、粗大なSi及び/又はMnを含む酸化物が鋼板の表面に生成し、めっき密着性が低下する。従って、予熱帯を通板させる鋼板の温度は、好ましくは800℃以下とし、より好ましくは750℃以下とする。
予熱帯における加熱速度が遅いと内部酸化が進行し、鋼板の内部に粗大な酸化物が生成する。特に、600℃〜750℃における加熱速度は重要である。鋼板の表層部が過度に脱炭されて粗大な酸化物が生成されるのを抑制するために、600℃〜750℃における平均加熱速度は好ましくは1.0℃/秒以上とする。平均加熱速度が1.0℃/秒未満では、微細化層中に粗大な酸化物が生成し、めっき密着性やパウダリング性が低下する。従って、平均加熱速度は好ましくは1.0℃/秒以上とする。鋼板の表層部が過度に脱炭されて粗大な酸化物が生成されるのを抑制する観点から、平均加熱速度は、より好ましくは1.5℃/秒以上とし、より好ましくは2.0℃/秒以上とする。予熱帯における処理時間を確保する観点から、平均加熱速度は、好ましくは50℃/秒以下とする。平均加熱速度が50℃/秒以下では、均一な微細化層が得られやすく、めっき密着性及び外観の均一性に優れた溶融亜鉛めっき層が得られる。
焼鈍における最高加熱温度は、鋼板の成形性に関わるミクロ組織の体積分率を所定の範囲に制御するため、重要な因子である。最高加熱温度が低いと、鋼中に粗大な鉄系炭化物が溶け残り、成形性が劣化する。鉄系炭化物を十分に固溶させ、成形性を高めるには、最高加熱温度は好ましくは750℃以上とする。特に、残留オーステナイトを得るためには、最高加熱温度はより好ましくは(Ac1+50)℃以上とする。最高加熱温度の上限値は特に限定されるものではないが、めっき密着性の観点から、母材鋼板の表面に生成される酸化物を少なくするためには、最高加熱温度は、好ましくは950℃以下とし、より好ましくは900℃以下とする。
鋼板のAc1点は、それぞれオーステナイト逆変態の開始点である。具体的には、Ac1点は、熱間圧延後の熱延鋼板から小片を切り出し、10℃/秒で1200℃まで加熱し、その間の体積膨張を測定することで得られる。
焼鈍における最高加熱温度は、均熱帯において到達する。この均熱帯における雰囲気はLog(P(HO)/P(H))を−1.7〜−0.2に制御する。Log(P(HO)/P(H))が−1.7未満では、微細化層が形成されず、めっき密着性が低下する。従って、Log(P(HO)/P(H))は好ましくは−1.7以上とする。Log(P(HO)/P(H))が−0.2超では、脱炭が過度に進行して、母材鋼板の表層における硬質相が著しく減少するとともに、微細化層中に粗大な酸化物が形成し、めっき密着性及びパウダリング性が低下する。従って、Log(P(HO)/P(H))は好ましくは−0.2以下とする。
均熱帯におけるLog(P(HO)/P(H))が−1.7〜−0.2では、めっき剥離の起点となるSi酸化物及び/又はMn酸化物が鋼板の最表面層に形成されず、鋼板の表層の内部に最大径が0.01μm〜0.4μmであるSi及び/又はMnの微細な酸化物が形成される。Si及び/又はMnの微細な酸化物は、焼鈍中におけるFe再結晶の成長を抑制する。また、焼鈍雰囲気中の水蒸気が母材鋼板の表層を脱炭させるため、焼鈍後の母材鋼板の表層におけるミクロ組織はフェライト相になる。その結果、焼鈍後の母材鋼板の表層には、平均厚さが0.1μm〜5.0μmであり、フェライト相の平均粒径が0.1μm〜3.0μmであり、最大径が0.01μm〜0.4μmであるSi及び/又はMnの酸化物を含有する微細化層が形成される。
最高加熱温度に到達後からめっき浴に到達するまでのめっき前の冷却条件は、特に限定されるものではない。残留オーステナイトを得るためには、パーライト及びセメンタイトの生成を抑制する。そのため、めっき前の冷却条件としては、750℃から700℃までの平均冷却速度は、好ましくは1.0℃/秒以上とし、より好ましくは5.0℃/秒以上とする。平均冷却速度の上限値は特に限定されるものではないが、過度に大きな平均冷却速度を得るためには、特殊な冷却設備又はめっきに干渉しない冷媒を使用することもある。この観点から、750℃から700℃までの平均冷却速度は、好ましくは100℃/秒以下とし、より好ましくは70℃/秒以下とする。
めっき前の冷却に引き続き、焼戻しマルテンサイトを得るために、鋼板の温度が500℃に到達してからめっき浴に到達するまでの間に、マルテンサイト変態処理として鋼板を所定の温度域に一定時間停留させてもよい。マルテンサイト変態処理温度は、好ましくはマルテンサイト変態開始温度(Ms点)以下とし、より好ましくは(Ms点−20)℃以下とする。マルテンサイト変態処理温度は、好ましくは50℃以上とし、より好ましくは100℃以上とする。マルテンサイト変態処理時間は、好ましくは1秒間〜100秒間とし、より好ましくは10秒間〜60秒間とする。なお、マルテンサイト変態処理で得られるマルテンサイトは、めっきを行う際に鋼板が高温のめっき浴に侵入することにより焼戻しマルテンサイトに変化する。
VFをフェライトの体積分率(%)、C含有量(質量%)を[C]、Si含有量(質量%)を[Si]、Mn含有量(質量%)を[Mn]、Cr含有量(質量%)を[Cr]、Ni含有量(質量%)を[Ni]、Al含有量(質量%)を[Al]としたとき、Ms点は下記の式により計算することができる。なお、溶融亜鉛めっき鋼板を製造中にフェライトの体積分率を直接測定することは困難である。このため、連続焼鈍ラインに通板させる前の冷延鋼板の小片を切り出し、その小片を連続焼鈍ラインに通板させた場合と同じ温度履歴で焼鈍して、小片におけるフェライトの体積変化を測定し、その測定値を用いて算出した値をフェライトの体積分率(VF)とする。
Ms点[℃]=541−474[C]/(1−VF)−15[Si]−35[Mn]−17[Cr]−17[Ni]+19[Al]
めっき前の冷却後、残留オーステナイトを得るために、ベイナイト変態処理として鋼板を250℃〜500℃の温度域に一定時間停留させてもよい。ベイナイト変態処理は、焼鈍とめっきとの間に行ってもよいし、めっき後の冷却時に行ってもよいし、焼鈍とめっきとの間及びめっき後の冷却時の両方で行ってもよい。
焼鈍とめっきとの間及びめっき後の冷却時の両方でベイナイト変態処理を行う場合、ベイナイト変態処理の停留時間の和は、好ましくは15秒以上500秒以下とする。停留時間の和が15秒未満では、ベイナイト変態が十分に進まず、十分な残留オーステナイトが得られない。従って、停留時間の和は、好ましくは15秒以上とし、より好ましくは25秒以上とする。停留時間の和が500秒超では、パーライト及び/又は粗大なセメンタイトが生成する。従って、停留時間の和は、好ましくは500秒以下とし、より好ましくは300秒以下とする。
焼鈍とめっきとの間でベイナイト変態処理を行う場合、ベイナイト変態処理温度が500℃超では、パーライト及び/又は粗大なセメンタイトが生成し、残留オーステナイトが得られない。従って、ベイナイト変態処理温度は好ましくは500℃以下とする。ベイナイト変態に伴うオーステナイトへの炭素の濃縮を促進するため、ベイナイト変態処理温度は、より好ましくは485℃以下とし、さらに好ましくは470℃以下とする。ベイナイト変態処理温度が250℃未満では、ベイナイト変態が十分に進まず、残留オーステナイトが得られない。従って、ベイナイト変態処理温度は好ましくは250℃以上とする。ベイナイト変態を効率的に進めるため、ベイナイト変態処理温度は、より好ましくは300℃以上とし、さらに好ましくは340℃以上とする。なお、めっき前の冷却後に、ベイナイト変態処理とマルテンサイト変態処理の両方を行う場合は、ベイナイト変態処理の前にマルテンサイト変態処理を行うこととする。
(めっき)
次に、得られた母材鋼板をめっき浴に浸漬する。めっき浴は、亜鉛を主体とし、めっき浴中の全Al量から全Fe量を引いた値である有効Al量が0.180質量%〜0.250質量%である組成を有する。めっき浴中の有効Al量が0.180質量%未満では、Fe−Al合金層が十分に形成されず、溶融亜鉛めっき層中にFeが侵入し、めっき密着性が損なわれる。従って、めっき浴中の有効Al量は、好ましくは0.180質量%以上とし、より好ましくは0.185質量%以上とし、さらに好ましくは0.190質量%以上とする。めっき浴中の有効Al量が0.250質量%超では、母材鋼板の表面と溶融亜鉛めっき層との界面のFe−Al合金層が過度に生成し、めっき密着性が損なわれる。従って、めっき浴中の有効Al量は、好ましくは0.250質量%以下とし、より好ましくは0.240質量%以下とし、さらに好ましくは0.230質量%以下とする。
めっき浴には、Ag、B、Be、Bi、Ca、Cd、Co、Cr、Cs、Cu、Ge、Hf、I、K、La、Li、Mg、Mn、Mo、Na、Nb、Ni、Pb、Rb、Sb、Si、Sn、Sr、Ta、Ti、V、W、Zr及びREMのうち1種以上の元素が含有されていてもよい。各元素の含有量によっては、溶融亜鉛めっき層の耐食性及び加工性が改善される。
めっき浴温度が440℃未満では、めっき浴の粘度が過大に高まり、溶融亜鉛めっき層の厚さを制御することが困難となり、溶融亜鉛めっき鋼板の外観を損なう。従って、めっき浴の温度は、好ましくは440℃以上とし、より好ましくは445℃以上とする。めっき浴温度が470℃超では、多量のヒュームが発生し、安全に製造することが困難となる。従って、めっき浴温度は、好ましくは470℃以下とし、より好ましくは460℃以下とする。
母材鋼板がめっき浴に進入する際の鋼板の温度が430℃未満では、めっき浴の温度を440℃以上で安定させるために、めっき浴に多量の熱量を与えるため、実用的でない。従って、母材鋼板がめっき浴に進入する際の鋼板の温度は、好ましくは430℃以上とする。所定のFe−Al合金層を形成するためには、母材鋼板がめっき浴に進入する際の鋼板の温度は、より好ましくは440℃以上とする。母材鋼板がめっき浴に進入する際の鋼板の温度が480℃超では、めっき浴の温度を470℃以下で安定させるために、めっき浴から多量の熱量を抜熱する設備を導入するため、製造コストが高くなる。従って、母材鋼板がめっき浴に進入する際の鋼板の温度は、好ましくは480℃以下とする。所定のFe−Al合金層を形成するためには、母材鋼板がめっき浴に進入する際の鋼板の温度は、より好ましくは470℃以下とする。
めっき浴の温度は、440℃〜470℃の範囲内の温度で安定していることがより好ましい。めっき浴の温度が不安定であると、Fe−Al合金層や溶融亜鉛めっき層中のFe含有量が不均一となり、めっき層の外観が不均一となり、めっき密着性が劣化する。めっき浴の温度を安定させるためには、めっき浴に進入する際の鋼板の温度とめっき浴の温度とを略一致させることが好ましい。具体的には、実製造設備の温度制御性の限界から、めっき浴に進入する際の鋼板の温度をめっき浴の温度の±10℃以内とすることが好ましく、めっき浴の温度の±5℃以内とすることがより好ましい。
なお、めっき浴の浸漬後、所定のめっき付着量とするため、鋼板の表面に窒素を主体とする高圧ガスを吹き付け、表層の過剰な亜鉛を除去することが好ましい。その後、室温まで冷却する。冷却の際、母材鋼板から溶融亜鉛めっき層へのFe原子の拡散がほとんど進まず、ζ相の生成がほぼ停止する温度(350℃)までは、めっき密着性を確保する観点から、冷却速度を好ましくは1℃/秒以上とする。
350℃まで冷却した後、残留オーステナイトを得るために、250℃〜350℃の温度範囲で停留させるベイナイト変態処理を行ってもよい。ベイナイト変態処理温度が250℃未満では、ベイナイト変態が十分に進まず、残留オーステナイトが十分に得られない。従って、ベイナイト変態処理温度は、好ましくは250℃以上とする。ベイナイト変態を効率的に進めるため、ベイナイト変態処理温度は、より好ましくは300℃以上とする。ベイナイト変態処理温度が350℃超では、母材鋼板から溶融亜鉛めっき層にFe原子が過度に拡散し、めっき密着性が劣化する。従って、ベイナイト変態処理温度は、好ましくは350℃以下とし、より好ましくは340℃以下とする。
残留オーステナイトを更に安定化するために、250℃以下まで冷却した後、再加熱処理を施してもよい。再加熱処理の処理温度及び処理時間は、必要に応じて適宜設定してもよい。再加熱処理温度が250℃未満では、十分な効果が得られない。従って、再加熱処理温度は、好ましくは250℃以上とし、より好ましくは280℃以上とする。再加熱処理温度が350℃超では、母材鋼板から溶融亜鉛めっき層にFe原子が拡散し、めっき密着性が劣化する。従って、再加熱処理温度は、好ましくは350℃以下とし、より好ましくは330℃以下とする。再加熱処理時間が1000秒超では、上記効果が飽和する。従って、再加熱処理時間は好ましくは1000秒以下とする。
このようにして、本発明の実施形態に係る溶融亜鉛めっき鋼板を製造することができる。
本発明の実施形態においては、例えば、上述した方法により得られた溶融亜鉛めっき鋼板の溶融亜鉛めっき層の表面に、リン酸化物及び/又はリンを含む複合酸化物からなる皮膜を付与してもよい。リン酸化物及び/又はリンを含む複合酸化物からなる皮膜は、溶融亜鉛めっき鋼板を加工する際に潤滑剤として機能させることができ、母材鋼板の表面に形成した溶融亜鉛めっき層を保護することができる。
本発明の実施形態においては、例えば、室温まで冷却した溶融亜鉛めっき鋼板に、形状矯正のために圧下率を3.00%以下とした冷間圧延を施してもよい。
なお、本発明の実施形態に係る溶融亜鉛めっき鋼板を製造する方法は、母材鋼板の板厚が0.6mm以上5.0mm未満である溶融亜鉛めっき鋼板の製造に適用されることが好ましい。母材鋼板の板厚が0.6mm未満では、母材鋼板の形状を平坦に保つことが困難となる場合がある。母材鋼板の板厚が5.0mm以上では、焼鈍及びめっきにおける冷却の制御が困難となる場合がある。
なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
次に、本発明の実施例について説明する。実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
表1〜表4に示す化学組成(鋼種A〜鋼種AT)を有するスラブを鋳造し、表5及び表6に示す条件(スラブ加熱温度、圧延完了温度)で熱間圧延し、表5及び表6に示す条件(熱延完了から巻取りまでの平均冷却速度、巻取温度)で冷却し、熱延鋼板を得た。その後、80℃の10%塩酸を用い、表5及び表6に示す酸洗時間で、熱延鋼板に酸洗を施し、表5及び表6に示す圧下率で冷間圧延を施し、冷延鋼板を得た。表1〜表4中の下線は、その数値が本発明の範囲から外れていることを示す。鋼種A〜鋼種ATの残部は、Fe及び不純物とした。表5〜表6中の下線は、その数値が溶融亜鉛めっき鋼板を製造するのに適した範囲から外れていることを示す。
次に、得られた冷延鋼板に、表7及び表8に示す条件(予熱帯における空気比、予熱帯での予熱完了温度、予熱帯雰囲気中のLog(P(HO)/P(H))、還元帯雰囲気中のLog(P(HO)/P(H))、600℃〜750℃の温度域での平均加熱速度、最高加熱温度(Tm))で焼鈍を施した。なお、実験例1〜実験例50の予熱完了温度は、623℃〜722℃の範囲とした。次に、表7及び表8に示す条件(冷却速度1(750℃〜700℃の温度域での平均冷却速度)、冷却速度2(700℃〜500℃の温度域での平均冷却速度)、ベイナイト変態処理1条件(処理温度、処理時間)、マルテンサイト変態処理(処理温度、処理時間))で冷却処理を施した。なお、ベイナイト変態処理1、マルテンサイト変態処理を施さなかった鋼板については、表7及び表8中の当該処理の条件欄には「−」と記載した。表7〜表8中の下線は、その数値が溶融亜鉛めっき鋼板を製造するのに適した範囲から外れていることを示す。
次に、表9及び表10に示すめっき条件(有効Al量、めっき浴の温度(浴温)、鋼板の進入温度、浸漬時間)で亜鉛めっき浴に浸漬し、めっきを施した。めっき後、表9及び10に示す条件(冷却速度(めっき後鋼板温度〜350℃の温度域での平均冷却速度)、ベイナイト変態処理2条件(処理温度、処理時間)、再加熱処理条件(処理温度、処理時間))で冷却処理を施した。なお、ベイナイト変態処理2、再加熱処理を施さなかった鋼板については、表9及び表10中の当該処理の条件欄には「−」と記載した。さらに、表9及び表10に示す圧下率で冷間圧延を施し、実験例1〜実験例97の溶融亜鉛めっき鋼板を得た。ただし、一部の実験例においては、実験を中断したものもある。表9〜表10中の下線は、その数値が溶融亜鉛めっき鋼板を製造するのに適した範囲から外れていることを示す。
得られためっき鋼板(実験例1〜実験例97)について、母材鋼板のミクロ組織及び溶融亜鉛めっき層の観察を行った。表11及び表12に母材鋼板のミクロ組織及び溶融亜鉛めっき層の観察結果を示す。表11及び表12中の下線は、その数値が本発明の範囲から外れていることを示す。
まず、溶融亜鉛めっき鋼板から母材鋼板の圧延方向に平行な断面を観察面とした試料を採取した。試料の観察面について、電界放射型走査型電子顕微鏡(FE−SEM)による組織観察及びEBSD法による高分解能結晶方位解析を行い、母材鋼板の表面から、母材鋼板の板厚の1/8厚〜3/8厚の範囲におけるミクロ組織を観察し、構成組織を同定した。表13及び表14において、Fは粒状フェライト、WFは針状フェライト、NRFは未再結晶フェライト、Pはパーライト、θは粗大セメンタイト、BFはベイニティックフェライト、Bはベイナイト、Mはマルテンサイト、tMは焼戻マルテンサイト、γは残留オーステナイトがそれぞれ観察されたことを表す。
また、溶融亜鉛めっき鋼板から25mm×25mmの小片を試験片として採取した。試験片の板厚の表面から1/8厚〜3/8厚の範囲において、板面に平行な面を鏡面に仕上げ、X線回折法によって残留オーステナイトの体積分率(γ分率)を測定した。
めっきの付着量は、インヒビター入りの塩酸を用いて溶融亜鉛めっき層を溶融し、溶融前後の重量を比較して求めた。さらに、Fe及びAlをICPで定量することにより、溶融亜鉛めっき層中のFe濃度及びAl濃度を測定した。
さらに、溶融亜鉛めっき鋼板から、母材鋼板の圧延方向に平行な断面を観察面とした試料を採取し、上述した測定方法を用いて、母材鋼板の表面と溶融亜鉛めっき層との界面に形成されたFe−Al合金層の平均厚さと、母材鋼板の幅方向におけるFe−Al合金層の厚さの最大値と最小値との差と、Fe−Al合金層に接する微細化層の平均厚さと、母材鋼板の幅方向における微細化層の厚さの最大値と最小値との差と、微細化層内におけるフェライト相の平均粒径と、微細化層中のSi及びMnのうち1種以上の酸化物の直径の最大値とを求めた。その結果を表11及び表12に示す。
次に、溶融亜鉛めっき鋼板の特性を調べるため、引張試験、穴拡げ試験、曲げ試験、密着性評価試験、スポット溶接試験、腐食試験、チッピング性試験、パウダリング性試験、めっき外観の均一性評価を行った。表13及び表14に、各実験例における特性を示す。
引張試験は、溶融亜鉛めっき鋼板からJIS Z 2201に記載の5号試験片を作成し、JIS Z 2241に記載の方法で行い、降伏強度(YS)、引張最大強度(TS)、全伸び(El)を求めた。なお、引張特性は、引張最大強度(TS)が420MPa以上の場合を良好なものとして評価した。
穴拡げ試験は、JIS Z 2256に記載の方法で行った。成形性のうち、延性(全伸び)(El)及び穴拡げ性(λ)は、引張最大強度(TS)に伴って変化するが、下記の式(2)を満たす場合に強度、延性及び穴拡げ性を良好とした。
TS1.5×El×λ0.5 ≧ 2.0×10 ・・・式(2)
めっき密着性は、5%の単軸引張ひずみを与えた溶融亜鉛めっき鋼板に対し、デュポン衝撃試験を施した。衝撃試験後の溶融亜鉛めっき鋼板に粘着テープを貼り、その後引き剥がし、めっきが剥離しなかった場合を特に良好(◎)とし、めっきが5%以上剥離した場合を不良(×)とし、めっきの剥離が5%未満の場合を良好(○)とした。デュポン衝撃試験は、先端の曲率半径を1/2インチとする撃ち型を使用し、3kgの錘を1mの高さから落下させて行った。
スポット溶接性は、連続打点試験を行って評価した。溶融部の直径が板厚の平方根の5.3〜5.7倍となる溶接条件において、1000回のスポット溶接を連続して行い、溶融部の直径を1点目dと1000点目d1000とで比較し、d1000/dが0.90以上である場合を良好(○)、0.90未満の場合を不良(×)とした。
耐食性の評価には、溶融亜鉛めっき鋼板を150mm×70mmに切り出した試験片を用いた。試験片に、りん酸亜鉛系のディップ型化成処理を施し、続いてカチオン電着塗装を20μm施し、35μmの中塗、35μmの上塗を施した後、裏面と端部を絶縁テープでシールした。耐食性試験には、SST6hr、乾燥4hr、湿潤4hr、冷凍4hrを1サイクルとするCCTを使用した。塗装後の耐食性の評価は、塗装面にカッターで母材鋼板まで達するクロスカットを施し、CCT60サイクル後の膨れ幅を測定した。膨れ幅が3.0mm以下の場合を良好(○)とし、3.0mm超の場合を不良(×)とした。
チッピング性は、溶融亜鉛めっき鋼板を70mm×150mmに切出した試験片を用いて評価した。まず、試験片に対して、自動車用の脱脂、化成皮膜の形成、3コート塗装を行った。次に、試験片を−20℃に冷却保持した状態で、2kgf/cmのエアー圧で砕石(0.3g〜0.5g)10個を垂直に照射した。砕石の照射は、各試験片につき5回ずつ繰り返し実施した。その後、各試験片について、合計50個のチッピング痕を観察し、その剥離界面の位置に基づいて以下の基準で評価した。剥離界面が溶融亜鉛めっき層より上(溶融亜鉛めっき層−化成皮膜の界面、又は電着塗装−中塗塗装の界面)であるものを良好(○)とし、めっき層−地鉄での界面剥離が1つでもあるものを不良(×)とした。
パウダリング性は、溶融亜鉛めっき層の加工性を評価するため、V曲げ加工(JIS Z 2248)を使用して評価した。溶融亜鉛めっき鋼板を50mm×90mmに切断し、1R−90°V字金型プレスで成型体を形成し、試験体とした。各試験体の谷部において、テープ剥離を実施した。具体的には、試験体の曲げ加工部上に巾24mmのセロハンテープを押し当てて引き離し、セロハンテープの長さ90mmの部分を目視で判断した。評価基準は以下の通りとした。溶融亜鉛めっき層の剥離が加工部面積に対して5%以下のものを良好(○)とし、溶融亜鉛めっき層の剥離が加工部面積に対して5%超のものを不良(×)とした。
外観の均一性評価は、鋼板の幅方向における両エッジから50mmの位置とその間を7等分した位置との計8箇所の明度(L*値)を測定し、最大値から最小値を引いた差が5未満のものを良好(○)、5以上10未満のものをやや不良(△)、10以上のものを不良(×)とした。
Figure 2019026106
Figure 2019026106
Figure 2019026106
Figure 2019026106
Figure 2019026106
Figure 2019026106
Figure 2019026106
Figure 2019026106
Figure 2019026106
Figure 2019026106
Figure 2019026106
Figure 2019026106
Figure 2019026106
Figure 2019026106
有効Al量が0.180%である実験例64及び実験例86では、Fe−Al合金層が幅方向に均一に生成されており、上記特許文献12に記載されるめっき密着性の低下はなかった。
実験例3では、めっき浴中の有効Al濃度が極めて低く、Fe−Al合金層が形成されず、かつ、溶融亜鉛めっき層中のFe含有量が過度に高まり、十分なめっき密着性、チッピング性、パウダリング性、めっきの外観均一性が得られなかった。
実験例6では、熱延鋼板に冷間圧延を施さなかったため、鋼板の平坦度が悪く、焼鈍を行えず、実験を中止した。
実験例20では、めっき後の冷却速度が小さく、溶融亜鉛めっき層中のFe含有量が過度に高まり、十分なめっき密着性、チッピング性、パウダリング性が得られなかった
実験例26では、焼鈍における加熱速度が小さく、母材鋼板における酸化物の成長が過度に進み、母材鋼板の表面に破壊の起点となる粗大な酸化物が生じたため、めっき密着性、パウダリング性が劣化した。
実験例28では、冷間圧延における圧下率が過度に大きく、鋼板が破断したため、実験を中止した。
実験例33では、均熱帯におけるLog(P(HO)/P(H))が大きく、母材鋼板の表層の微細化層が過度に厚くなり、Zn−Fe合金が生成する溶融亜鉛めっき層の合金化が過度に進行し、溶融亜鉛めっき層中のFe含有量が増加したため、めっき密着性、チッピング性、パウダリング性が劣化した。
実験例36では、予熱帯における空気比が大きく、鋼板の表面における脱炭が過度に進行したため、微細化層の平均厚さが厚くなり、Zn−Fe合金が生成する溶融亜鉛めっき層の合金化が過度に進行し、溶融亜鉛めっき層中のFe含有量が増加したため、めっき密着性、チッピング性、パウダリング性が劣化した。
実験例40では、めっき浴中の有効Al濃度が低く、十分な厚さのFe−Al合金層が生成せず、溶融亜鉛めっき層中のFe含有量が過度に高まり、十分なめっき密着性、チッピング性、パウダリング性、めっきの外観均一性が得られなかった。
実験例42では、めっき浴中の有効Al濃度が高く、溶融亜鉛めっき層中のAl含有量が過度に高まり、過度に厚いFe−Al合金層が生成し、十分なめっき密着性、スポット溶接性が得られなかった。
実験例46では、均熱帯におけるLog(P(HO)/P(H))が小さく、不めっきが発生し、めっき密着性が劣化した。実験例46では、微細化層が形成されておらず、母材鋼板の表面におけるフェライト相の平均粒径は3.6μmであり、表面から深さ0.5μmまでの範囲における鋼板内部の酸化物の直径の最大値は0.01μm未満であった。
実験例47では、Si含有量が大きく、鋳造において、スラブが冷却中に割れたため、実験を中断した。
実験例48では、Mn含有量が大きく、熱間圧延において、スラブが加熱中に割れたため、実験を中断した。
実験例49では、P含有量が大きく、熱間圧延において、スラブが加熱中に割れたため、実験を中断した。
実験例50では、Al含有量が大きく、鋳造において、スラブが冷却中に割れたため、実験を中断した。
実験例54では、焼鈍における最高加熱温度が低く、残留オーステナイトが生成せず、粗大なセメンタイトが鋼板中に多数存在し、TS1.5×El×λ0.5が劣化し、十分な特性が得られなかった。
実験例55では、750℃から700℃までの平均冷却速度が小さく、多量の炭化物が生成し、残留オーステナイトが得られなかったため、強度と成形性とのバランスが劣化した。
実験例58では、めっき処理後のベイナイト変態処理温度が高く、溶融亜鉛めっき層中のFe含有量が増加したため、めっき密着性、チッピング性、パウダリング性が劣化した。
実験例59では、めっき処理前のベイナイト変態処理時間が短く、ベイナイト変態が十分に進行せず、残留オーステナイトが得られなかったため、強度と成形性とのバランスが劣化した。
実験例60では、めっき浴中の有効Al量が過度に小さく、十分な厚さのFe−Al合金層が生成せず、溶融亜鉛めっき層中のFe含有量が過度に高まり、十分なめっき密着性、チッピング性、パウダリング性が得られなかった。
実験例65では、700℃から500℃までの平均冷却速度が小さく、多量の炭化物が生成し、残留オーステナイトが得られなかったため、強度と成形性とのバランスが劣化した。
実験例66では、めっき処理後のベイナイト変態処理温度が低く、ベイナイト変態の進行が過度に抑制され、残留オーステナイトが得られなかったため、強度と成形性とのバランスが劣化した。
実験例67では、めっき浴中の有効Al濃度が高く、溶融亜鉛めっき層中のAl含有量が過度に高まり、過度に厚いFe−Al合金層が生成し、十分なめっき密着性、スポット溶接性が得られなかった。
実験例68では、熱間圧延の完了温度が低く、鋼板の形状が著しく悪化したため、実験を中止した。
実験例72では、巻取温度が低く、冷間圧延において鋼板が破断したため、実験を中止した。
実験例73では、予熱帯におけるLog(P(HO)/P(H))が小さく、不めっきが発生し、表層の粒径が微細化せず、めっき密着性が劣化した。実験例73では、微細化層が形成されておらず、母材鋼板の表面におけるフェライト相の平均粒径は3.3μmであり、表面から深さ0.5μmまでの範囲における鋼板内部の酸化物の最大径は0.01μm未満であった。
実験例74では、めっき処理前及びめっき処理後のいずれにおいてもベイナイト変態処理を施さず、残留オーステナイトが得られなかったため、強度と成形性とのバランスが劣化した。
実験例75では、めっき処理前のベイナイト変態処理温度が高く、多量の炭化物が生成し、残留オーステナイトが得られなかったため、強度と成形性とのバランスが劣化した。
実験例76では、めっき処理前のベイナイト変態処理温度が低く、ベイナイト変態の進行が過度に抑制され、残留オーステナイトが得られなかったため、強度と成形性とのバランスが劣化した。
実験例78では、焼鈍における最高加熱温度がAc1+50℃より低く、残留オーステナイトが生成せず、粗大なセメンタイトが鋼板中に多数存在し、TS1.5×El×λ0.5が劣化し、十分な特性が得られなかった。
実験例80では、めっき処理前のベイナイト変態処理時間とめっき処理後のベイナイト変態処理時間の和が小さく、ベイナイト変態が十分に進行せず、残留オーステナイトが得られなかったため、強度と成形性とのバランスが劣化した。
実験例84では、Si含有量及びAl含有量が式(1)を満たさず、多量の炭化物が生成し、残留オーステナイトが得られなかったため、強度と成形性とのバランスが劣化した。
実験例87では、めっき処理前のベイナイト変態処理時間が長く、多量の炭化物が生成し、残留オーステナイトが得られなかったため、強度と成形性とのバランスが劣化した。
実験例88では、C含有量が大きく、スポット溶接性及び成形性が劣化した。
実験例89では、C含有量が小さく、残留オーステナイトが生成せず、硬質相の体積分率が小さくなり、十分な引張強度が得られなかった。
実験例90では、Mn含有量が小さく、焼鈍及びめっきにおいて多量のパーライト及び粗大セメンタイトが生成し、残留オーステナイトが生成せず、鋼板の引張強度及び成形性が十分に得られなかった。
実験例91では、S含有量が大きく、多量の粗大硫化物が生成したため、延性及び穴拡げ性が劣化した。
実験例92では、N含有量が大きく、多量の粗大窒化物が生成したため、延性及び穴拡げ性が劣化した。
実験例93では、O含有量が大きく、多量の粗大酸化物が生成したため、延性及び穴拡げ性が劣化した。
実験例94では、予熱完了温度が高く、母材鋼板における酸化物の成長が過度に進み、母材鋼板の表面に破壊の起点となる粗大な酸化物が生じたため、めっき密着性が劣化した。
実施例95では、予熱帯におけるLog(P(HO)/P(H))が大きく、母材鋼板の表層の微細化層が過度に厚くなり、Zn−Fe合金が生成する溶融亜鉛めっき層の合金化が過度に進行し、溶融亜鉛めっき層中のFe含有量が増加したため、めっき密着性、チッピング性、パウダリング性が劣化した。また、鋼板の幅方向におけるFe−Al合金層の厚さの最大値と最小値の差が0.5μm超であり、めっき外観が不均一であった。
実験例10、実験例22、実験例30、実験例43、実験例44では、巻取温度が650℃以上であり、鋼板の幅方向におけるFe−Al合金層の厚さの最大値と最小値の差が0.5μm超であり、めっき外観がやや不均一であった。また、鋼板の幅方向における微細化層の厚さの最大値と最小値の差が2.0μm超であった。実験例11、実験例45では、巻取温度が650℃以上であったが、酸洗時間を長くすることで、鋼板の幅方向における微細化層の厚さの最大値と最小値の差が2.0μm以内となり、良好なめっきの外観均一性が得られた。実施例97では、巻取温度が650℃未満であったが、酸洗時間が15秒と短かったため、不均一に生成した内部酸化層を完全に除去することができず、鋼板の幅方向における微細化層の厚さの最大値と最小値の差が2.0μm超となり、めっき外観がやや不均一であった。実験例99では、予熱帯における平均加熱速度が50℃/秒超であったため、鋼板の幅方向におけるFe−Al合金層の厚さの最大値と最小値の差が0.5μm超となり、鋼板の幅方向における微細化層の厚さの最大値と最小値の差が2.0μm超となり、めっき外観がやや不均一であった。
本発明は、例えば、自動車の外板等に好適な溶融亜鉛めっき鋼板に関連する産業に利用することができる。

Claims (6)

  1. 母材鋼板の少なくとも一方の側に溶融亜鉛めっき層を有する溶融亜鉛めっき鋼板であって、
    前記母材鋼板が、質量%で、
    C:0.040%〜0.400%、
    Si:0.05%〜2.50%、
    Mn:0.50%〜3.50%、
    P:0.0001%〜0.1000%、
    S:0.0001%〜0.0100%、
    Al:0.001%〜1.500%、
    N:0.0001%〜0.0100%、
    O:0.0001%〜0.0100%、
    Ti:0.000%〜0.150%、
    Nb:0.000%〜0.100%、
    V:0.000%〜0.300%、
    Cr:0.00%〜2.00%、
    Ni:0.00%〜2.00%、
    Cu:0.00%〜2.00%、
    Mo:0.00%〜2.00%、
    B:0.0000%〜0.0100%、
    W:0.00%〜2.00%、
    Ca、Ce、Mg、Zr、La及びREM:合計で0.0000%〜0.0100%、及び
    残部:Fe及び不純物、
    で表される化学組成を有し、
    前記溶融亜鉛めっき層におけるFe含有量が0%超3.0%以下であり、Al含有量が0%超1.0%以下であり、
    前記溶融亜鉛めっき層と前記母材鋼板との界面にFe−Al合金層を有し、
    前記Fe−Al合金層の厚さが0.1μm〜2.0μmであり、
    前記母材鋼板の幅方向における前記Fe−Al合金層の厚さの最大値と最小値との差が0.5μm以内であり、
    前記母材鋼板内に、前記Fe−Al合金層に直接接する微細化層を有し、前記微細化層の平均厚さが0.1μm〜5.0μm、前記微細化層内におけるフェライト相の平均粒径が0.1μm〜3.0μmであり、前記微細化層中にSiおよびMnの1種または2種以上の酸化物を含有し、前記酸化物の最大径が0.01μm〜0.4μmであり、
    前記母材鋼板の幅方向における前記微細化層の厚さの最大値と最小値との差が2.0μm以内であることを特徴とする溶融亜鉛めっき鋼板。
  2. 前記母材鋼板は、Si含有量(質量%)を[Si]、Al含有量(質量%)を[Al]としたときに下記の式1を満たし、
    前記母材鋼板の全厚に対して、前記母材鋼板の表面から1/4厚を中心とした1/8厚〜3/8厚の範囲における残留オーステナイトが体積分率で1%以上であることを特徴とする請求項1に記載の溶融亜鉛めっき鋼板。
    [Si]+0.7[Al]≧0.30 (式1)
  3. 前記溶融亜鉛めっき層における片面当たりのめっき付着量が10g/m以上100g/m以下であることを特徴とする請求項1又は2に記載の溶融亜鉛めっき鋼板。
  4. 前記化学組成において、
    Ti:0.001%〜0.150%、
    Nb:0.001%〜0.100%、若しくは
    V:0.001%〜0.300%、
    又はこれらの任意の組み合わせが満たされることを特徴とする請求項1乃至3のいずれか1項に記載の溶融亜鉛めっき鋼板。
  5. 前記化学組成において、
    Cr:0.01%〜2.00%、
    Ni:0.01%〜2.00%、
    Cu:0.01%〜2.00%、
    Mo:0.01%〜2.00%、
    B:0.0001%〜0.0100%、若しくは
    W:0.01%〜2.00%、
    又はこれらの任意の組み合わせが満たされることを特徴とする請求項1乃至4のいずれか1項に記載の溶融亜鉛めっき鋼板。
  6. 前記化学組成において、
    Ca、Ce、Mg、Zr、La及びREM:合計で0.0001%〜0.0100%
    が満たされることを特徴とする請求項1乃至5のいずれか1項に記載の溶融亜鉛めっき鋼板。
JP2017558756A 2017-07-31 2017-07-31 溶融亜鉛めっき鋼板 Active JP6281671B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/027637 WO2019026106A1 (ja) 2017-07-31 2017-07-31 溶融亜鉛めっき鋼板

Publications (2)

Publication Number Publication Date
JP6281671B1 JP6281671B1 (ja) 2018-02-21
JPWO2019026106A1 true JPWO2019026106A1 (ja) 2019-08-08

Family

ID=61231481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017558756A Active JP6281671B1 (ja) 2017-07-31 2017-07-31 溶融亜鉛めっき鋼板

Country Status (7)

Country Link
US (1) US11268181B2 (ja)
EP (1) EP3663424B1 (ja)
JP (1) JP6281671B1 (ja)
KR (1) KR102344787B1 (ja)
CN (1) CN110914464B (ja)
BR (1) BR112020001437A2 (ja)
WO (1) WO2019026106A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7137492B2 (ja) * 2018-03-28 2022-09-14 株式会社神戸製鋼所 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法
CN111886353B (zh) * 2018-03-28 2022-02-22 株式会社神户制钢所 合金化热浸镀锌钢板以及合金化热浸镀锌钢板的制造方法
JP6428987B1 (ja) * 2018-03-30 2018-11-28 新日鐵住金株式会社 合金化溶融亜鉛めっき鋼板
CN108754306B (zh) * 2018-05-24 2020-06-09 江苏大学 一种高强度高韧性耐磨合金及其制备方法
KR102153172B1 (ko) * 2018-08-30 2020-09-07 주식회사 포스코 열간 성형성 및 내식성이 우수한 알루미늄-아연 합금 도금강판 및 그 제조방법
JP6750762B1 (ja) * 2018-12-21 2020-09-02 Jfeスチール株式会社 スポット溶接部材
CN111801436B (zh) 2019-02-05 2021-10-29 日本制铁株式会社 钢构件、钢板及它们的制造方法
CN115135798B (zh) * 2020-07-14 2023-10-31 日本制铁株式会社 热冲压构件及其制造方法
KR102414737B1 (ko) 2020-08-10 2022-06-29 주식회사 미라지모형 모래시계 형상의 교육용 도구
JPWO2022239071A1 (ja) * 2021-05-10 2022-11-17
KR20240007934A (ko) * 2021-06-15 2024-01-17 제이에프이 스틸 가부시키가이샤 고강도 아연 도금 강판 및 부재 그리고 그들의 제조 방법
WO2022264585A1 (ja) * 2021-06-15 2022-12-22 Jfeスチール株式会社 高強度亜鉛めっき鋼板および部材ならびにそれらの製造方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3126911B2 (ja) 1995-12-27 2001-01-22 川崎製鉄株式会社 めっき密着性の良好な高強度溶融亜鉛めっき鋼板
JP3520741B2 (ja) 1997-11-05 2004-04-19 Jfeスチール株式会社 めっき密着性に優れた合金化溶融亜鉛めっき鋼板
JP3752898B2 (ja) 1999-07-15 2006-03-08 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法
JP4552310B2 (ja) 1999-11-08 2010-09-29 Jfeスチール株式会社 強度−延性バランスとめっき密着性に優れた溶融亜鉛めっき鋼板およびその製造方法
JP3661559B2 (ja) 2000-04-25 2005-06-15 住友金属工業株式会社 加工性とめっき密着性に優れた合金化溶融亜鉛めっき高張力鋼板とその製造方法
JP3898923B2 (ja) 2001-06-06 2007-03-28 新日本製鐵株式会社 高加工時のめっき密着性および延性に優れた高強度溶融Znめっき鋼板及びその製造方法
JP4631241B2 (ja) 2001-09-21 2011-02-16 Jfeスチール株式会社 強度延性バランス、めっき密着性と耐食性に優れた高張力溶融亜鉛めっき鋼板および高張力合金化溶融亜鉛めっき鋼板
CA2459134C (en) 2002-03-01 2009-09-01 Jfe Steel Corporation Coated steel sheet and method for manufacturing the same
JP4119804B2 (ja) 2003-08-19 2008-07-16 新日本製鐵株式会社 密着性の優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法
JP4192051B2 (ja) 2003-08-19 2008-12-03 新日本製鐵株式会社 高強度合金化溶融亜鉛めっき鋼板の製造方法と製造設備
JP4457673B2 (ja) 2004-01-19 2010-04-28 Jfeスチール株式会社 耐二次加工脆性およびめっき密着性に優れた高成形性燃料タンク用めっき冷延鋼板およびその製造方法
US8592049B2 (en) * 2006-01-30 2013-11-26 Nippon Steel & Sumitomo Metal Corporation High strength hot dip galvanized steel sheet and high strength galvannealed steel sheet excellent in shapeability and plateability
JP4837464B2 (ja) 2006-07-11 2011-12-14 新日本製鐵株式会社 めっき密着性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP5370104B2 (ja) * 2009-11-30 2013-12-18 新日鐵住金株式会社 耐水素脆化特性に優れた引張最大強度900MPa以上の高強度鋼板および高強度冷延鋼板の製造方法、高強度亜鉛めっき鋼板の製造方法
CN101948991B (zh) * 2010-09-21 2012-12-05 浙江华达钢业有限公司 一种耐腐蚀热镀锌钢板及其制备方法
CN101984130A (zh) * 2010-10-12 2011-03-09 中国电力科学研究院 一种紧固件高耐腐蚀性热浸镀合金镀层及其制备工艺
ES2899474T3 (es) * 2011-04-01 2022-03-11 Nippon Steel Corp Componente de alta resistencia moldeado por estampación en caliente que tiene excelente resistencia a la corrosión después del metalizado
WO2013047821A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 焼付硬化性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
TWI467027B (zh) * 2011-09-30 2015-01-01 Nippon Steel & Sumitomo Metal Corp High strength galvanized steel sheet
JP5354135B2 (ja) * 2011-09-30 2013-11-27 新日鐵住金株式会社 機械切断特性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP5780171B2 (ja) * 2012-02-09 2015-09-16 新日鐵住金株式会社 曲げ性に優れた高強度冷延鋼板、高強度亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP5626324B2 (ja) * 2012-12-11 2014-11-19 Jfeスチール株式会社 溶融亜鉛めっき鋼板の製造方法
TWI586834B (zh) * 2014-03-21 2017-06-11 China Steel Corp Method of Hot - dip Galvanizing for Si - Mn High Strength Steel
EP3692896A1 (en) * 2014-11-04 2020-08-12 Samsung Electronics Co., Ltd. Electronic device, and method for analyzing face information in electronic device
MX2017005503A (es) 2014-11-05 2017-08-16 Nippon Steel & Sumitomo Metal Corp Hoja de acero galvanizada por inmersion en caliente.
EP3216886A4 (en) * 2014-11-05 2018-04-11 Nippon Steel & Sumitomo Metal Corporation Hot-dip galvanized steel sheet
BR112017008460A2 (pt) 2014-11-05 2017-12-26 Nippon Steel & Sumitomo Metal Corp chapa de aço galvanizada por imersão a quente
JP6085348B2 (ja) 2015-01-09 2017-02-22 株式会社神戸製鋼所 高強度めっき鋼板、並びにその製造方法
WO2016111273A1 (ja) * 2015-01-09 2016-07-14 株式会社神戸製鋼所 高強度めっき鋼板、並びにその製造方法
US11426975B2 (en) * 2017-07-31 2022-08-30 Nippon Steel Corporation Hot-dip galvanized steel sheet
JP6315154B1 (ja) * 2017-07-31 2018-04-25 新日鐵住金株式会社 溶融亜鉛めっき鋼板

Also Published As

Publication number Publication date
JP6281671B1 (ja) 2018-02-21
KR102344787B1 (ko) 2021-12-30
WO2019026106A1 (ja) 2019-02-07
KR20200019196A (ko) 2020-02-21
EP3663424A4 (en) 2020-11-25
US20200232083A1 (en) 2020-07-23
CN110914464A (zh) 2020-03-24
CN110914464B (zh) 2021-10-15
EP3663424B1 (en) 2024-02-28
BR112020001437A2 (pt) 2020-07-28
US11268181B2 (en) 2022-03-08
EP3663424A1 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
JP6281671B1 (ja) 溶融亜鉛めっき鋼板
JP6315154B1 (ja) 溶融亜鉛めっき鋼板
JP6390713B2 (ja) 溶融亜鉛めっき鋼板
KR101950618B1 (ko) 용융 아연 도금 강판
JP6315155B1 (ja) 溶融亜鉛めっき鋼板
US10822683B2 (en) Hot-dip galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171109

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171109

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180108

R151 Written notification of patent or utility model registration

Ref document number: 6281671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350