JPWO2019017467A1 - Copper powder, method of manufacturing stereolithography product using the same, and stereolithography product of copper - Google Patents

Copper powder, method of manufacturing stereolithography product using the same, and stereolithography product of copper Download PDF

Info

Publication number
JPWO2019017467A1
JPWO2019017467A1 JP2018559400A JP2018559400A JPWO2019017467A1 JP WO2019017467 A1 JPWO2019017467 A1 JP WO2019017467A1 JP 2018559400 A JP2018559400 A JP 2018559400A JP 2018559400 A JP2018559400 A JP 2018559400A JP WO2019017467 A1 JPWO2019017467 A1 JP WO2019017467A1
Authority
JP
Japan
Prior art keywords
copper
copper powder
less
powder
primary particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018559400A
Other languages
Japanese (ja)
Other versions
JP7143223B2 (en
Inventor
哲宗 黒村
哲宗 黒村
三宅 行一
行一 三宅
俊一郎 渡辺
俊一郎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Publication of JPWO2019017467A1 publication Critical patent/JPWO2019017467A1/en
Priority to JP2022137329A priority Critical patent/JP7377324B2/en
Application granted granted Critical
Publication of JP7143223B2 publication Critical patent/JP7143223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

[課題]純銅と同等の組成を具備しかつ銅による稠密な光造形物を得ることができる銅粉を提供する。[解決手段]一次粒子の平均粒径D50が1μm以上100μm以下である銅粉であって、前記一次粒子は、表面に、銅酸化物を含む光吸収層を有し、前記銅粉全体に対する酸素含有量が0.05質量%以上2.2質量%以下であり、波長1070nmにおける反射率が60%以下である銅粉とする。[Problem] To provide a copper powder having a composition equivalent to that of pure copper and capable of obtaining a dense stereolithography product of copper. [Solution] A copper powder having an average particle diameter D50 of primary particles of 1 μm or more and 100 μm or less, wherein the primary particles have a light absorbing layer containing a copper oxide on a surface thereof, and oxygen is contained in the entire copper powder. The copper powder has a content of 0.05% by mass or more and 2.2% by mass or less and a reflectance at a wavelength of 1070 nm of 60% or less.

Description

本発明は銅粉に関し、より詳細には、レーザー光などのエネルギー線の照射により三次元形状の造形物を得る金属光造形法に使用される銅粉に関する。   The present invention relates to copper powder, and more particularly to copper powder used in a metal stereolithography method for obtaining a three-dimensional shaped object by irradiation with energy rays such as laser light.

三次元の造形物を簡単に成形することができる三次元造形装置、所謂3Dプリンターの普及が進んでいる。このような三次元造形装置を用いた造形物の製造方法のなかでも、金属造形物を得る方法として金属光造形法が知られている。金属光造形法は、金属粉からなる層の表面に、高エネルギーのレーザー等のエネルギー線を照射して金属粉粒子を焼結ないし溶融固化させ、それを数十ミクロンの層としたものを積層し、繰り返し接合することにより、三次元の造形物を得る方法である。一部の金属種を原料に用いた方法では実用化も進み、Co−Cr合金、チタン合金、マルエージング鋼、ステンレス、ニッケル基超合金などの金属粉を原料として用いた金属光造形法は、得られる造形物の加工精度や製品としての完成度が高く、実用化され始めている。しかしながら、現状の金属光造形法では使用可能な金属種が限られており、得られる金属製品も一定の範囲のものに限られる。   A 3D printer, which is capable of easily forming a 3D object, a so-called 3D printer, is becoming popular. Among the methods of manufacturing a modeled object using such a three-dimensional modeling apparatus, the metal optical modeling method is known as a method of obtaining a metal modeled object. In metal stereolithography, the surface of a layer made of metal powder is irradiated with an energy ray such as a high-energy laser to sinter or melt and solidify the metal powder particles, and a layer of several tens of microns is laminated. It is a method of obtaining a three-dimensional modeled object by repeatedly joining them. Practical application is progressing in the method using some metal species as a raw material, and the metal stereolithography method using metal powder such as Co-Cr alloy, titanium alloy, maraging steel, stainless steel, nickel-base superalloy as a raw material is The obtained molded products have high processing accuracy and high degree of perfection as products, and are being put to practical use. However, in the present metal stereolithography methods, usable metal species are limited, and the obtained metal products are limited to a certain range.

その主な理由として、原料とする金属粉の光吸収性の問題が挙げられる。即ち、金属光造形法は金属粉がレーザー光などのエネルギー線を吸収し加熱されることで、金属粉粒子が焼結ないし溶融固化することを利用している。このため、原料として用いる金属粉は光エネルギーを効率的に吸収できるものであることが必要である。金属光造形法で使用される汎用的なレーザーの波長は近赤外ないし遠赤外領域であり、レーザーの波長域での光吸収率が低い金属(例えば、アルミニウム、金、銀、銅など)は表層部に照射されたレーザー光等から効率良く十分な熱量を受け取ることができないため、得られた金属光造形物の焼結密度が低くなってしまう。また、熱伝導性の高い金属は、レーザー光のエネルギー線を熱として一旦吸収しても、十分な焼結や溶融固化がなされる前に短時間で放熱してしまうため、稠密な金属光造形物を得ることが困難である。さらに銅については、その融点が約1084℃と比較的高いことも、焼結を難しくする要因になっている。そのため銅は、熱伝導性や電気伝導度が高く加工性にも優れた金属であるにもかかわらず、金属光造形法には用いられてこなかった。   The main reason for this is the problem of light absorption of the metal powder used as the raw material. That is, the metal stereolithography method utilizes the fact that the metal powder particles are sintered or melted and solidified when the metal powder absorbs energy rays such as laser light and is heated. Therefore, the metal powder used as a raw material needs to be capable of efficiently absorbing light energy. The wavelengths of general-purpose lasers used in metal stereolithography are in the near-infrared or far-infrared region, and metals with low light absorption in the laser wavelength range (for example, aluminum, gold, silver, copper, etc.) Cannot efficiently receive a sufficient amount of heat from the laser light or the like with which the surface layer portion is irradiated, so that the sintered density of the obtained metal photolithography product becomes low. Moreover, even if a metal with high thermal conductivity absorbs the energy rays of laser light as heat, it radiates heat in a short time before sufficient sintering and melting/solidification are performed, so dense metal stereolithography It is difficult to get things. Further, the relatively high melting point of copper, which is about 1084° C., is another factor that makes sintering difficult. Therefore, although copper is a metal having high thermal conductivity and electrical conductivity and excellent workability, it has not been used in metal stereolithography.

また、平均粒径の小さい金属粉を用いると、金属粉からなる層の充填密度を高くできるため、稠密な金属光造形物が得られ易い。しかしながら、平均粒径が特に小さい金属粉では、凝集が生じて金属粉の流動性が大きく低下するため、スキージングにより金属粉からなる層を形成した際に均一な厚さの金属粉からなる層が得られ難くなる。ここでスキージングとは、金属光造形法において、供給された金属粉からなる層の表面にブレードやヘラ、ローラー等を当てて移動させ、金属粉からなる層の表面を平滑にし余剰の金属粉を除去することである。   Further, when the metal powder having a small average particle diameter is used, the packing density of the layer made of the metal powder can be increased, and thus a dense metal stereolithography product can be easily obtained. However, in the case of a metal powder having a particularly small average particle diameter, the fluidity of the metal powder is significantly reduced due to agglomeration, so that when a layer made of metal powder is formed by squeezing, a layer made of metal powder having a uniform thickness Is difficult to obtain. Here, squeegeeing, in the metal stereolithography method, a blade, a spatula, a roller, etc. are applied to the surface of the layer made of the supplied metal powder to move it, and the surface of the layer made of the metal powder is made smooth and surplus metal powder. Is to remove.

上記のような問題に対して、特許文献1は銅にクロムおよび珪素を添加した銅合金粉末を金属光造形法に適用することを提案している。また特許文献2は、金属粉に黒鉛粉末を添加することでレーザー光の吸収性を上げ、マイクロクラックの発生を低減することを提案している。また特許文献3は、銅合金等の金属粉の表面を粗化処理し、その後さらにスパッタリング等の処理を行うことにより、レーザー吸収性に優れた金属粉が得られることを提案している。   With respect to the above problems, Patent Document 1 proposes to apply a copper alloy powder in which chromium and silicon are added to copper to a metal stereolithography method. Further, Patent Document 2 proposes that graphite powder is added to the metal powder to increase the absorption of laser light and reduce the occurrence of microcracks. Patent Document 3 proposes that a metal powder having excellent laser absorption can be obtained by roughening the surface of a metal powder such as a copper alloy and then further performing a process such as sputtering.

特開2016−211062号公報JP, 2016-211062, A 特開2008−81840号公報JP, 2008-81840, A 国際公開第2018/062527号International Publication No. 2018/062527

しかしながら、銅粉に他の材料が添加され銅合金粉になると、得られる造形物の銅本来の特性、例えば、導電性や熱伝導性、加工性や純銅と同等の金属色が損なわれてしまうことが多い。このため銅粉の光吸収性を上げるために、例えば他の材料の含有量を高くしてしまうと、得られる光造形物においては銅本来の特性が損なわれ、目標とする純銅と同等の組成を具備した造形物が得られないことになる。   However, when other materials are added to the copper powder to form a copper alloy powder, the original properties of copper of the obtained shaped product, for example, electrical conductivity, thermal conductivity, workability, and metal color equivalent to pure copper are impaired. Often. Therefore, in order to improve the light absorption of the copper powder, for example, if the content of other materials is increased, the original characteristics of copper are impaired in the obtained stereolithography product, and a composition equivalent to the target pure copper is obtained. It means that a molded article equipped with is not obtained.

したがって本発明の目的は、純銅と同等の組成を具備し、かつ稠密な銅による光造形物を得ることができる銅粉を提供することである。   Therefore, an object of the present invention is to provide a copper powder having a composition equivalent to that of pure copper and capable of obtaining a densely patterned stereolithography product.

本発明の発明者らは、銅粉を構成する銅粒子(一次粒子)の表面に、特定の量の銅酸化物を含む光吸収層を設けて銅粒子の反射率を下げることにより、純銅と同等の組成を具備しつつ、稠密な光造形物が得られるとの知見を得た。本発明は係る知見に基づくものである。なお本明細書において、「銅粒子」とは純銅の一次粒子を示し、「銅粉」とは銅粒子の二次粒子を含めて、銅粒子が複数個集まったものを示すこととする。   The inventors of the present invention provide pure copper by reducing the reflectance of copper particles by providing a light absorbing layer containing a specific amount of copper oxide on the surface of copper particles (primary particles) constituting copper powder. It was found that a dense stereolithography product can be obtained while having the same composition. The present invention is based on such findings. In the present specification, “copper particles” mean primary particles of pure copper, and “copper powder” means aggregates of a plurality of copper particles including secondary particles of copper particles.

本発明による銅粉は、
一次粒子の平均粒径D50が1μm以上100μm以下である銅粉であって、
前記一次粒子は、表面に、銅酸化物を含む光吸収層を有し、
前記銅粉全体に対する酸素含有量が0.05質量%以上2.2質量%以下であり、
波長1070nmにおける反射率が60%以下である。
Copper powder according to the present invention,
A copper powder having an average particle diameter D50 of primary particles of 1 μm or more and 100 μm or less,
The primary particles have a light absorbing layer containing copper oxide on the surface,
The oxygen content relative to the entire copper powder is 0.05% by mass or more and 2.2% by mass or less,
The reflectance at a wavelength of 1070 nm is 60% or less.

本発明によれば、銅粉を構成する銅粒子の表面に、銅粉全体に対する酸素含有量が一定量以下となるように銅酸化物を含む光吸収層を設けて銅粒子の反射率を下げることにより、純銅と同等の組成を具備し、かつ稠密な光造形物を得ることができる銅粉を実現できる。   According to the present invention, on the surface of the copper particles constituting the copper powder, the light absorption layer containing copper oxide is provided so that the oxygen content relative to the entire copper powder is not more than a certain amount, and the reflectance of the copper particles is reduced. As a result, a copper powder having a composition equivalent to that of pure copper and capable of obtaining a dense stereolithography product can be realized.

粉体流動性分析装置の通気試験モードを説明するための概略図。The schematic diagram for explaining the ventilation test mode of a powder fluidity analyzer. トータルエネルギー値を求めるための説明図。Explanatory drawing for calculating|requiring a total energy value. 粉体流動性分析装置のせん断試験モードを説明するための概略図。The schematic diagram for explaining the shear test mode of a powder fluidity analyzer. Cohesion値を求めるための説明図。Explanatory drawing for calculating a Cohesion value. 実施例3の光造形物断面の光学顕微鏡写真(25倍)。The optical microscope photograph (25 times) of the cross-section of the stereolithography object of Example 3. 比較例1の光造形物断面の光学顕微鏡写真(25倍)。The optical microscope photograph (25 times) of the cross section of the stereolithography thing of the comparative example 1.

本発明の銅粉は、一次粒子の平均粒径D50が1μm以上100μm以下であり、銅粉を構成する一次粒子は、表面に、銅酸化物を含む光吸収層を有し、銅粉全体に対する酸素含有量が0.05質量%以上2.2質量%以下としたものである。本発明においては、銅粉を構成する一次粒子がその表面に、銅粉全体に対する酸素含有量が一定量以下となるような銅酸化物を含む光吸収層を有することによって、波長1070nmにおける銅粉の反射率を60%以下とすることができる。こうして原料の銅粉の光吸収率を向上させた処理銅粉とすることで、純銅と同等の組成を具備し、かつ稠密な造形物を得ることができる。
即ち、銅は、平板の銅板の光吸収率が、金属光造形法において使用される一般的なYbファイバーレーザー光の波長領域(1030nm以上1070nm以下)で数%程度であり、レーザー光の光を吸収しにくい性質を持つ金属である。また熱伝導度もチタン、鉄、ニッケル等と比較して非常に高いため、そのままではレーザー光の照射によって加熱することが容易でない。そこで本発明のように、波長1070nmにおける銅粉の反射率が60%以下となるような光吸収層として、銅粉全体に対する酸素含有量が特定範囲内にある銅酸化物層を銅粒子の表面に設けることにより、純銅と同等の組成を具備し、かつ稠密な光造形物を得ることができる。
The copper powder of the present invention has an average particle diameter D50 of the primary particles of 1 μm or more and 100 μm or less, and the primary particles constituting the copper powder have a light absorbing layer containing a copper oxide on the surface, and the copper powder with respect to the entire copper powder is The oxygen content is 0.05 mass% or more and 2.2 mass% or less. In the present invention, the primary particles constituting the copper powder have on their surface a light absorbing layer containing a copper oxide such that the oxygen content with respect to the entire copper powder is a certain amount or less, so that the copper powder at a wavelength of 1070 nm is obtained. Can have a reflectance of 60% or less. In this way, by using the treated copper powder in which the light absorption rate of the raw material copper powder is improved, it is possible to obtain a dense molded article having a composition equivalent to that of pure copper.
That is, with copper, the light absorption rate of a flat copper plate is about several percent in the wavelength range (1030 nm or more and 1070 nm or less) of general Yb fiber laser light used in metal stereolithography, It is a metal that is difficult to absorb. In addition, since the thermal conductivity is very high as compared with titanium, iron, nickel, etc., it is not easy to heat by irradiation with laser light as it is. Therefore, as in the present invention, a copper oxide layer having an oxygen content within a specific range with respect to the entire copper powder is used as a light absorbing layer such that the reflectance of the copper powder at a wavelength of 1070 nm is 60% or less. In this case, it is possible to obtain a dense stereolithography product having a composition equivalent to that of pure copper.

なお本明細書において「平均粒径D50」とは、レーザー回折散乱式粒度分布測定法等によって測定される累積体積50容量%における体積累積粒径D50値を意味する。また「反射率」とは、積分球ユニットを備えた分光光度計を用いて測定される分光反射率を意味し、特定波長の光に対して測定された被測定面(銅粉)における全反射光量をもとに、分光反射率等が既知の標準反射板(例えば硫酸バリウム標準反射板)の特定の波長領域における全反射光量を基準として算出された比率を意味する。通常使用されている銅粉は、波長1070nmにおける反射率が70%〜80%程度である。本発明においては、銅粒子の表面に、銅酸化物を含む光吸収層を設けて、反射率を60%以下となるようにしたものである。以下、本発明の銅粉について詳細に説明する。   In the present specification, the “average particle diameter D50” means the volume cumulative particle diameter D50 value at a cumulative volume of 50% by volume measured by a laser diffraction/scattering particle size distribution measuring method or the like. In addition, "reflectance" means the spectral reflectance measured using a spectrophotometer equipped with an integrating sphere unit, and total reflection on the measured surface (copper powder) measured for light of a specific wavelength. It means a ratio calculated based on the amount of total reflection light in a specific wavelength region of a standard reflection plate (for example, barium sulfate standard reflection plate) having a known spectral reflectance based on the amount of light. Generally used copper powder has a reflectance of about 70% to 80% at a wavelength of 1070 nm. In the present invention, a light absorbing layer containing copper oxide is provided on the surface of the copper particles so that the reflectance is 60% or less. Hereinafter, the copper powder of the present invention will be described in detail.

光吸収層を形成する前の銅粉としては、一次粒子の平均粒径D50が1μm以上100μm以下のものであれば特に制限なく使用することができる。例えば、ヒドラジン等の各種の還元剤を用い、酢酸銅や硫酸銅などの銅化合物を湿式で還元することで銅粉を得ることができる。また銅の溶湯を用い、アトマイズ法によっても銅粉を得ることができる。   As the copper powder before forming the light absorption layer, any copper powder having an average particle diameter D50 of primary particles of 1 μm or more and 100 μm or less can be used without particular limitation. For example, copper powder can be obtained by wet-reducing a copper compound such as copper acetate or copper sulfate using various reducing agents such as hydrazine. Also, copper powder can be obtained by an atomizing method using molten copper.

銅粒子の形状は特に制限されるものではないが、金属光造形法に使用する場合、スキージングによって粉体の充填密度の高い銅粉体層を形成する観点からは、球状に近い形状であることが好ましい。そのため、アトマイズ法によって得られた銅粉を使用することが好ましい。アトマイズ法としては、ガスアトマイズ法と水アトマイズ法が挙げられるが、銅粒子をより球状に近いものとするならばガスアトマイズ法が好ましい。   The shape of the copper particles is not particularly limited, but when used in metal stereolithography, from the viewpoint of forming a copper powder layer having a high packing density of powder by squeezing, it has a shape close to a sphere. Preferably. Therefore, it is preferable to use the copper powder obtained by the atomization method. Examples of the atomizing method include a gas atomizing method and a water atomizing method, and the gas atomizing method is preferable if the copper particles are made more spherical.

上記のようにして得られる銅粉は、銅粒子の大きさを揃えるために必要に応じて分級することができる。 この分級は、目標とする平均粒径のものとなるように、適切な分級装置を用いて、得られた銅粉から粗粉や微粉を分離することにより容易に実施することができる。   The copper powder obtained as described above can be classified as necessary in order to make the sizes of the copper particles uniform. This classification can be easily carried out by separating coarse powder and fine powder from the obtained copper powder using an appropriate classifier so that the target average particle diameter is obtained.

上記のようにして得られた銅粉は、一次粒子の平均粒径D50が1μm以上100μm以下のものを使用する。一次粒子の平均粒径が上記範囲にある銅粉を使用することで、光造形物を製造する際に充填密度の高い銅粉体層を形成できるとともに、銅粉を焼結した後の造形物の焼結密度も高くすることができる。近年の金属光造形法では、より精細な光造形物が求められる傾向にあり、また銅粉の流動性を確保するため、使用する銅粒子の平均粒径は、8μm以上50μm以下であることが好ましく、10μm以上50μm以下であることより好ましく、15μm以上50μm以下であることが特に好ましい。   The copper powder obtained as described above has an average primary particle diameter D50 of 1 μm or more and 100 μm or less. By using a copper powder having an average particle diameter of the primary particles in the above range, it is possible to form a copper powder layer having a high packing density when manufacturing a stereolithography product, and a molded product after sintering the copper powder. The sintered density of can also be increased. In recent years, metal stereolithography tends to require finer stereolithography, and in order to ensure the fluidity of copper powder, the average particle diameter of the copper particles used is 8 μm or more and 50 μm or less. The thickness is preferably 10 μm or more and 50 μm or less, more preferably 15 μm or more and 50 μm or less.

また、本発明による銅粉は、一次粒子の体積累積粒径D90が10μm以上であることが好ましい。一次粒子の平均粒径D50が1μm以上100μm以下で、かつ体積累積粒径D90が10μm以上であるような銅粉とすることにより、光造形法により銅粉を用いて光造形物を製造する際のスキージング工程において、均一な厚みの銅粉層を形成し易くなる。また、本発明による銅粉は、一次粒子の体積累積粒径D10が5μm以上40μm以下であることも、黒化処理時の過剰な反応を抑制しつつ粉末の流動性を確保する観点から好ましい。なお一次粒子の体積累積粒径D90とは、レーザー回折散乱式粒度分布測定法等によって測定される累積体積90容量%における体積累積粒径D90値を意味し、一次粒子の体積累積粒径D10とは、レーザー回折散乱式粒度分布測定法等によって測定される累積体積10容量%における体積累積粒径D10値を意味する。   Further, in the copper powder according to the present invention, the volume cumulative particle diameter D90 of primary particles is preferably 10 μm or more. When a stereolithography product is manufactured using copper powder by a stereolithography method, by using copper powder having an average particle diameter D50 of primary particles of 1 μm or more and 100 μm or less and a volume cumulative particle diameter D90 of 10 μm or more In the squeegeeing process, it becomes easy to form a copper powder layer having a uniform thickness. Further, the copper powder according to the present invention is also preferable in that the volume cumulative particle diameter D10 of the primary particles is 5 μm or more and 40 μm or less from the viewpoint of suppressing the excessive reaction during the blackening treatment and ensuring the fluidity of the powder. The volume cumulative particle diameter D90 of the primary particles means a volume cumulative particle diameter D90 value at a cumulative volume of 90% by volume measured by a laser diffraction/scattering particle size distribution measuring method or the like, and is defined as the volume cumulative particle diameter D10 of the primary particles. Means a volume cumulative particle diameter D10 value in a cumulative volume of 10% by volume measured by a laser diffraction/scattering particle size distribution measuring method or the like.

本発明においては、銅粉の一次粒子のアスペクト比が2以下であることが好ましい。このような真球形状に近い銅粉とすることにより、上述したスキージング工程において均一な厚みの銅粉層を形成し易くなる。なおアスペクト比とは、銅粉を、例えば走査型電子顕微鏡等を用いて観察し、倍率1,000倍または3,000倍のSEM画像により、粒子100個について各粒子の長径と短径を測定し、長径を短径で除した値を平均した値をいうものとする。   In the present invention, the aspect ratio of the primary particles of the copper powder is preferably 2 or less. By using such a copper powder having a nearly spherical shape, it becomes easy to form a copper powder layer having a uniform thickness in the above-mentioned squeezing step. Note that the aspect ratio is to observe the copper powder using, for example, a scanning electron microscope, and measure the major axis and minor axis of each particle for 100 particles by an SEM image with a magnification of 1,000 times or 3,000 times. Then, the value obtained by dividing the major axis by the minor axis is averaged.

次に、上記した銅粒子の表面に銅酸化物を含む光吸収層を形成する方法について説明する。本発明の一実施態様では、上記のようにして得られた銅粒子の表面に、銅酸化物を含む光吸収層を設ける。本発明の発明者らは、銅粒子の表面に、銅粉全体に対する酸素含有量が0.05質量%以上2.2質量%以下となるように銅酸化物を含む光吸収層を設けることにより、銅粉の波長1070nmにおける反射率を60%以下とすることができ、その結果、純銅と同等の組成を具備し、かつ稠密な光造形物が得られることを見出した。また、銅粒子の表面に、銅粉全体に対する酸素含有量が上記範囲内となるような銅酸化物を含む光吸収層を設けることにより、この光吸収層が銅粉の流動性を向上させることができることも判明した。   Next, a method for forming the light absorbing layer containing copper oxide on the surface of the above-mentioned copper particles will be described. In one embodiment of the present invention, a light absorbing layer containing copper oxide is provided on the surface of the copper particles obtained as described above. The inventors of the present invention provide a light absorbing layer containing copper oxide on the surface of copper particles so that the oxygen content with respect to the entire copper powder is 0.05% by mass or more and 2.2% by mass or less. It was found that the reflectance of the copper powder at a wavelength of 1070 nm can be set to 60% or less, and as a result, a dense stereolithography product having a composition equivalent to that of pure copper can be obtained. Further, on the surface of the copper particles, by providing a light absorption layer containing a copper oxide such that the oxygen content relative to the entire copper powder is within the above range, the light absorption layer improves the fluidity of the copper powder. It also turned out to be possible.

即ち、銅粒子は上記したとおり純銅のままでは波長1070nmにおける反射率が70〜80%と高いものの、銅粒子の表面に銅酸化物を含む光吸収層を設けることにより光吸収性が増し、波長1070nmにおける反射率を60%以下とすることができる。銅粉全体に対する酸素含有量が0.05質量%未満であると波長1070nmにおける反射率を60%以下とすることができず、稠密な光造形物を得ることができず、一方、2.2質量%を超えると、銅粉中の銅酸化物の割合が高くなるため金属銅が本来有している諸特性(高い導電性および熱伝導性など)を呈しにくくなるため好ましくない。なお銅粉全体に対する酸素含有量は、酸素ガス分析等により算出することができる。銅粉全体に対する酸素含有量の好ましい範囲は0.08質量%以上2.2質量%以下であり、より好ましい範囲は0.1質量%以上2.0質量%以下である。銅粉全体としての波長1070nmにおける反射率は、銅粉全体に対する酸素含有量にもよるが、純銅本来の性質を損なわない観点から10%以上とし、また銅粉の加熱され易さからは35%以下とすることが好ましい。   That is, although the copper particles have a high reflectance of 70 to 80% at a wavelength of 1070 nm when pure copper is used as described above, the light absorbing property is increased by providing a light absorbing layer containing a copper oxide on the surface of the copper particles, and the wavelength is increased. The reflectance at 1070 nm can be set to 60% or less. When the oxygen content is less than 0.05 mass% with respect to the entire copper powder, the reflectance at a wavelength of 1070 nm cannot be 60% or less, and a dense stereolithography object cannot be obtained, while 2.2. When the content is more than mass%, the proportion of copper oxide in the copper powder becomes high, so that it becomes difficult to exhibit the characteristics originally possessed by metallic copper (such as high electrical conductivity and thermal conductivity), which is not preferable. The oxygen content of the entire copper powder can be calculated by oxygen gas analysis or the like. A preferable range of the oxygen content relative to the entire copper powder is 0.08 mass% or more and 2.2 mass% or less, and a more preferable range is 0.1 mass% or more and 2.0 mass% or less. The reflectance of the entire copper powder at a wavelength of 1070 nm depends on the oxygen content relative to the entire copper powder, but is 10% or more from the viewpoint of not impairing the original properties of pure copper, and 35% from the ease of heating of the copper powder. The following is preferable.

本発明による銅粉は、銅粉全体に対する酸素含有量(質量%)を銅粉のBET比表面積(m/g)で除した値が4.0質量%・g/m以下であることが好ましく、より好ましくは1.0質量%・g/m以上4.0質量%・g/m以下であり、特に好ましくは1.5質量%・g/m以上3.5質量%・g/m以下である。酸素含有量を銅粉のBET比表面積で除した値が大きすぎると、銅粉の波長1070nmにおける反射率が低下して光吸収率が向上して銅による稠密な光造形物が得られるものの、純銅と同等の組成を有する光造形物が得られ難くなる傾向にある。即ち本発明者らは、銅粉の酸素含有量をBET比表面積で除した値が、純銅と同等の組成を具備し、かつ稠密な銅による光造形物を得るための一つの指標となることを見出したものである。BET比表面積は、例えばマイクロトラック・ベル社製BELSORP−MR6を用いて、BET一点法により測定することができる。In the copper powder according to the present invention, the value obtained by dividing the oxygen content (mass %) with respect to the entire copper powder by the BET specific surface area (m 2 /g) of the copper powder is 4.0 mass%·g/m 2 or less. Is more preferable, 1.0% by mass/g/m 2 or more and 4.0% by mass/g/m 2 or less is particularly preferable, and 1.5% by mass/g/m 2 or more and 3.5% by mass is particularly preferable.・G/m 2 or less. If the value obtained by dividing the oxygen content by the BET specific surface area of the copper powder is too large, the reflectance at the wavelength of 1070 nm of the copper powder is reduced and the light absorptivity is improved, so that a dense stereolithography product of copper can be obtained. It tends to be difficult to obtain a stereolithography product having a composition equivalent to that of pure copper. That is, the present inventors have found that the value obtained by dividing the oxygen content of the copper powder by the BET specific surface area is one index for obtaining a stereolithography object having a composition equivalent to that of pure copper and dense copper. Is found. The BET specific surface area can be measured by the BET one-point method using, for example, BELSORP-MR6 manufactured by Microtrac Bell.

上記のようにして形成された銅酸化物を含む光吸収層において、銅酸化物はCuOおよびCuOを含む。銅酸化物中のCuOおよびCuOの割合は、XPS分析によりの測定することができる。具体的にはX線光電子分光法により測定されるCu2p2/3のピークを、CuOとCu及びCuOのピークに波形分離し、それぞれのピーク面積比から、全体を100%としたときのCuOおよびCuOの割合を算出する。このCuOの割合は20%以上99%以下であることが好ましい。CuOの割合が上記の範囲にあれば、光吸収層表面の微細な凹凸により摩擦力が低減し、銅粉の流動性が高くなる。In the light absorption layer containing copper oxide formed as described above, the copper oxide contains CuO and Cu 2 O. The proportions of CuO and Cu 2 O in the copper oxide can be measured by XPS analysis. Specifically, the peak of Cu 2p2/3 measured by X-ray photoelectron spectroscopy is waveform-separated into the peaks of CuO and Cu and Cu 2 O, and from the respective peak area ratios, the total is 100%. calculating the ratio of CuO and Cu 2 O. The proportion of CuO is preferably 20% or more and 99% or less. When the proportion of CuO is within the above range, the frictional force is reduced due to the fine irregularities on the surface of the light absorption layer, and the fluidity of the copper powder is increased.

さらに本発明においては、銅粒子の表面に銅酸化物からなる光吸収層を形成することにより、銅粉が経時変化しにくいものとすることができる。即ち、金属銅は空気や湿気により極めて酸化され易く、保管中に粉体物性が変動し易いことが知られている。同一ロットの金属銅粉を使用していても、保管によって銅粉の特性が経時変化してしまうため、所望の物性を有する光造形物が得られなくなる可能性がある。これを抑制するため金属銅粉の表面に銅酸化物等からなる光吸収層を設けることで、大気や湿気との酸化反応の進行を制御することができ、その結果、より安定的に光造形物を得ることができる。   Further, in the present invention, by forming a light absorbing layer made of copper oxide on the surface of the copper particles, it is possible to make the copper powder less likely to change with time. That is, it is known that metallic copper is extremely easily oxidized by air and moisture, and the physical properties of powder are likely to change during storage. Even when the same lot of metallic copper powder is used, the characteristics of the copper powder change with time due to storage, and thus there is a possibility that a stereolithographic product having desired physical properties cannot be obtained. In order to suppress this, by providing a light absorbing layer made of copper oxide or the like on the surface of the metal copper powder, it is possible to control the progress of the oxidation reaction with the atmosphere and moisture, and as a result, more stable stereolithography You can get things.

銅酸化物を含む光吸収層を形成する方法としては、公知の方法を採用することができる。例えば銅粉を、酸素雰囲気下で酸化させる方法、FeまたはCuイオン含有溶液、塩化物イオンなどのハロゲンイオン含有溶液、過酸化水素などの溶液に浸漬して、銅表面を酸化させる方法、あるいは、ハロゲンガスで処理する方法などが知られている。形成する光吸収層の均質性や層厚の制御のし易さの観点からは、次亜塩素酸塩と水酸化ナトリウムの混合水溶液、亜塩素酸塩と水酸化ナトリウムの混合水溶液、ペルオキソ二硫酸と水酸化ナトリウムの混合水溶液等を用いて銅粉の表面に銅酸化物からなる層(光吸収層)を形成する方法を選択することが好ましい。具体的には、次亜塩素酸塩と水酸化ナトリウムの混合水溶液、または亜塩素酸塩と水酸化ナトリウムの混合水溶液に銅粉を浸漬することで、銅粉表面に銅酸化物からなる層を形成することができる。   As a method for forming the light absorption layer containing copper oxide, a known method can be adopted. For example, a method of oxidizing copper powder in an oxygen atmosphere, a solution containing Fe or Cu ions, a solution containing halogen ions such as chloride ions, a method of oxidizing the copper surface by immersing in a solution such as hydrogen peroxide, or A method of treating with a halogen gas is known. From the viewpoint of homogeneity of the light absorption layer to be formed and ease of controlling the layer thickness, a mixed aqueous solution of hypochlorite and sodium hydroxide, a mixed aqueous solution of chlorite and sodium hydroxide, and peroxodisulfate. It is preferable to select a method of forming a layer (light absorbing layer) made of copper oxide on the surface of copper powder using a mixed aqueous solution of sodium hydroxide and sodium hydroxide. Specifically, by immersing the copper powder in a mixed aqueous solution of hypochlorite and sodium hydroxide or a mixed aqueous solution of chlorite and sodium hydroxide, a layer made of copper oxide is formed on the surface of the copper powder. Can be formed.

銅酸化物を含む光吸収層の平均厚さは20nm以上1300nm以下であることが好ましく、より好ましくは30nm以上1000nm以下である。但し上記した範囲内の平均厚さを有する銅酸化物を含む光吸収層の厚さは、使用する銅粉一次粒子の平均粒径D50の30%以下であることが好ましく、10%以下とすることがより好ましい。銅酸化物を含む光吸収層の平均厚さは、上記した溶液の濃度や処理条件(時間、温度)によって調整することができる。銅酸化物を含む光吸収層の平均厚さが1300nmを超えると、あるいは銅粉一次粒子の平均粒径D50の30%を超えると、銅粉の光吸収性は増すものの一次粒子の凝集体が形成され易くなり、従って銅粉の流動性が低下する。また、銅粉全体に占める酸素の割合が多くなるため、得られる光造形物が、金属銅が本来有している諸特性(高い導電性および熱伝導性など)を呈しにくくなる。なお本明細書において、光吸収層の平均厚さは、X線光電子分光(XPS)法およびイオンエッチングを併用した深さ方向分析によって評価することができ、具体的にはJIS K 0146に準拠した方法により測定されたSiO換算深さを意味する。The average thickness of the light absorbing layer containing copper oxide is preferably 20 nm or more and 1300 nm or less, and more preferably 30 nm or more and 1000 nm or less. However, the thickness of the light absorbing layer containing the copper oxide having the average thickness within the above range is preferably 30% or less of the average particle diameter D50 of the copper powder primary particles to be used, and 10% or less. Is more preferable. The average thickness of the light absorbing layer containing copper oxide can be adjusted by the concentration of the solution and the processing conditions (time, temperature). When the average thickness of the light absorbing layer containing copper oxide exceeds 1300 nm, or when it exceeds 30% of the average particle diameter D50 of the copper powder primary particles, the light absorbing property of the copper powder increases, but aggregates of primary particles are formed. It is easily formed, and thus the fluidity of the copper powder is reduced. In addition, since the proportion of oxygen in the entire copper powder increases, it becomes difficult for the obtained stereolithography product to exhibit various characteristics originally possessed by metallic copper (such as high electrical conductivity and thermal conductivity). In the present specification, the average thickness of the light absorption layer can be evaluated by a depth direction analysis in which an X-ray photoelectron spectroscopy (XPS) method and ion etching are used in combination, and specifically, it is based on JIS K 0146. It means the SiO 2 equivalent depth measured by the method.

本発明の銅粉は、純銅であって、一次粒子(銅粒子)の平均粒径D50が1μm以上100μm以下の銅粉である。当該銅粉には上記したような銅酸化物を含む光吸収層が表面に形成されているため、三次元造形装置のレーザー光を効率的に吸収でき、その結果、純銅と同等の組成を具備し、かつ稠密な光造形物を得ることができる。また本発明においては、銅粒子の表面に上記したような銅酸化物を含む光吸収層を形成することにより銅粉の流動性が向上するため、造形物を製造する際のスキージングが容易となり、厚み方向に均一な分布をした銅粉からなる層を準備することができる。本発明の銅粉は、金属光造形法により適したものとするために、銅粉の流動度を5秒/50g以上30秒/50g以下とすることができる。なお本明細書において、流動度とはJIS Z 2502に準拠して測定された値を意味する。   The copper powder of the present invention is pure copper and has an average particle diameter D50 of primary particles (copper particles) of 1 μm or more and 100 μm or less. Since the light absorption layer containing the copper oxide as described above is formed on the surface of the copper powder, the laser light of the three-dimensional modeling apparatus can be efficiently absorbed, and as a result, it has the same composition as pure copper. In addition, it is possible to obtain a dense stereolithography product. Further, in the present invention, since the fluidity of the copper powder is improved by forming a light absorbing layer containing the above-described copper oxide on the surface of the copper particles, squeegeeing at the time of producing a molded article becomes easy. A layer made of copper powder having a uniform distribution in the thickness direction can be prepared. The copper powder of the present invention can have a fluidity of 5 seconds/50 g or more and 30 seconds/50 g or less in order to make it more suitable for metal stereolithography. In addition, in this specification, a fluidity means the value measured based on JISZ2502.

銅粉の流動特性は、粉体流動性分析装置、例えばパウダーレオメーター(FT4、freeman technology製)を用いて評価することができる。粉体流動性分析装置には数種類の測定モードがあるが、通気試験モードとせん断試験モードの2種類の試験を行い銅粉の動的流動性評価を評価することができる。通気試験モードでは、図1に示すように、粉体に鉛直方向下方より所定の流量で通気を行いながら、粉体中をブレード(回転翼)がらせん状にH1の高さからH2の高さに回転しながら移動することで測定される回転トルクと垂直荷重とを用いて動的流動性の測定を行うことができる。測定条件を以下に示す。
ブレード直径:23.5mm
ブレードの先端スピード:100mm/s
容器の体積:25ml(内径25mm)
ブレードの進入角度:−5°
The flow characteristics of the copper powder can be evaluated by using a powder fluidity analyzer, for example, a powder rheometer (FT4, manufactured by freeman technology). Although the powder fluidity analyzer has several measurement modes, two types of tests, a ventilation test mode and a shear test mode, can be performed to evaluate the dynamic fluidity evaluation of copper powder. In the aeration test mode, as shown in FIG. 1, the powder is ventilated from below in the vertical direction at a predetermined flow rate, and the blade (rotary blade) spirals in the powder from the height of H1 to the height of H2. The dynamic fluidity can be measured by using the rotational torque and the vertical load measured by moving while rotating. The measurement conditions are shown below.
Blade diameter: 23.5 mm
Blade tip speed: 100 mm/s
Container volume: 25 ml (inner diameter 25 mm)
Blade entry angle: -5°

粉体流動性分析装置を用いた通気試験において、通気しないときのトータルエネルギー値をE(mJ)、4mm/sで通気した時のトータルエネルギー値をE(mJ)、銅粉の一次粒子の平均粒径D50をD(mm)、とした場合に、下記式:
F=E/E・1/D
で表される流動性パラメータFが、0.05mm−1以上10mm−1以下であることが好ましく、0.5mm−1以上8mm−1以下であることがより好ましい。
In an aeration test using a powder fluidity analyzer, the total energy value when not aerated is E 1 (mJ), the total energy value when aerated at 4 mm/s is E 2 (mJ), primary particles of copper powder When the average particle diameter D50 of is D (mm), the following formula:
F=E 2 /E 1 ·1/D
The fluidity parameter F represented by is preferably 0.05 mm −1 or more and 10 mm −1 or less, and more preferably 0.5 mm −1 or more and 8 mm −1 or less.

なお、トータルエネルギー値は、図2に示すように垂直荷重と回転トルクを移動距離に応じてプロットした時の面積の積算として得られる。一般的に、粉体の付着凝集性に関する指標として、下記式:
AR=E/E
(式中のEおよびEは上記の定義と同じである)
で表される通気指標AR(Aeration Ratio)が知られている。これは通気指標ARが小さいほど、粉体の付着凝集性が弱いことを示している。また粉体中を通過するガス速度の増加に伴い流動性エネルギーは低下することが知られているが、これは粒子間の接触点の減少による摩擦抵抗の低下による影響がより大きいためである。本発明の発明者らは、銅粒子の平均粒径が大きくなると同一体積当たりの接触点が少なくなる結果、同じ付着凝集性を有している銅粉であっても、通気指標ARも小さくなる傾向があることを見出した。そして通気指標ARを銅粒子の平均粒径で規格化することにより、銅粒子が異なる平均粒径を有する銅粉であっても、銅粉の付着凝集性を評価することができるとの知見を得た。上記した流動性パラメータFは、通気指標ARの逆数を銅粉一次粒子の平均粒径D50で除したものであり銅粉の付着凝集性を評価する際の指標となるものと考えられる。
The total energy value is obtained as an integrated area when the vertical load and the rotational torque are plotted according to the moving distance as shown in FIG. Generally, the following formula is used as an index relating to the adhesion and cohesiveness of powder:
AR=E 1 /E 2
(E 1 and E 2 in the formula are the same as defined above)
The ventilation index AR (Aeration Ratio) represented by is known. This indicates that the smaller the ventilation index AR, the weaker the adhesion and cohesiveness of the powder. It is also known that the fluidity energy decreases as the gas velocity passing through the powder increases, but this is because the influence of the decrease in frictional resistance due to the decrease in contact points between particles is greater. The inventors of the present invention have found that as the average particle size of copper particles increases, the number of contact points per same volume decreases, and as a result, the ventilation index AR also decreases even with copper powder having the same adhesion and cohesiveness. I found that there is a tendency. Then, by normalizing the ventilation index AR with the average particle diameter of the copper particles, it was found that the adhesion and cohesiveness of the copper powder can be evaluated even if the copper particles have different average particle diameters. Obtained. The above-mentioned fluidity parameter F is obtained by dividing the reciprocal of the ventilation index AR by the average particle diameter D50 of the copper powder primary particles, and is considered to be an index when evaluating the adhesion and cohesiveness of the copper powder.

一次粒子である銅粒子の平均粒径D50が1μm以上100μm以下の範囲にある銅粉では、流動性パラメータFは10mm−1を超えているが、銅粒子の表面に上記したような銅酸化物を含む光吸収層を設けることにより、流動性パラメータFが10mm−1以下に低減されるものと考えられる。その理由は明らかではないが、光吸収層表面に形成された微細な凹凸が存在することで摩擦力が低減するためであると推察される。なお、Eを計測するときの通気量は、特に制限されるものではないが、ここでは4mm/sとした。In the copper powder in which the average particle diameter D50 of the copper particles as the primary particles is in the range of 1 μm or more and 100 μm or less, the fluidity parameter F exceeds 10 mm −1 , but the copper oxide as described above on the surface of the copper particles. It is considered that the fluidity parameter F is reduced to 10 mm −1 or less by providing the light absorption layer containing Although the reason for this is not clear, it is presumed that the frictional force is reduced due to the presence of fine irregularities formed on the surface of the light absorption layer. The air flow rate when measuring E 2 is not particularly limited, but is set to 4 mm/s here.

せん断試験モードでは、図3に示すように、粉体に所定の垂直応力に保持したせん断冶具を押し付け、回転方向に応力を付与した時のせん断応力を測定する。測定条件を以下に示す。
せん断冶具直径:23.5mm
せん断速度:18°/min
容器の体積:10ml(内径25mm)
垂直荷重:1.00kPa,1.25kPa,1.50kPa,1.75kPa,2.00kPa
In the shear test mode, as shown in FIG. 3, a shear jig held at a predetermined vertical stress is pressed against the powder to measure the shear stress when the stress is applied in the rotation direction. The measurement conditions are shown below.
Shearing jig diameter: 23.5mm
Shear rate: 18°/min
Volume of container: 10 ml (inner diameter 25 mm)
Vertical load: 1.00kPa, 1.25kPa, 1.50kPa, 1.75kPa, 2.00kPa

粉体流動性分析装置を用いて、せん断試験モードで測定した、垂直応力が0kPaのときのせん断応力が、0.01kPa以上0.3kPa以下であることが好ましく、0.05kPa以上0.25kPa以下であることが好ましい。ここでせん断応力とは、一定の垂直応力下で回転する方向に粉体に応力を付与した際に、降伏応力に達して粉体が流動し始める際の応力を意味する。垂直応力が0kPaのときのせん断応力を粒子間の付着力として求めることができ、この付着力はCohesion値と呼ばれている。Cohesion値は、図4に示すように、各垂直応力下で測定されるせん断応力をプロットし、外挿することにより求められる。金属光造形法において、高品質な造形物を得るために、粉体をより均質かつ安定的にスキージングすることが求められており、これを達成するためには粉体粒子どうしの付着力が弱く、容易に流動することが重要となる。即ち、粉体流動性分析装置を用いて測定されるCohesion値が上記せん断応力の範囲内にあるような銅粉とすることにより、金属光造形法におけるスキージングを容易に行うことができるようになり、その結果、密度がより高く、かつ、より精密な形状の造形物を得ることができる。   The shear stress when the vertical stress is 0 kPa measured in a shear test mode using a powder fluidity analyzer is preferably 0.01 kPa or more and 0.3 kPa or less, and 0.05 kPa or more and 0.25 kPa or less. Is preferred. Here, the shear stress means a stress when the powder reaches a yield stress and starts to flow when a stress is applied to the powder in a rotating direction under a constant vertical stress. The shear stress when the vertical stress is 0 kPa can be obtained as an adhesive force between particles, and this adhesive force is called a Cohesion value. The Cohesion value is obtained by plotting the shear stress measured under each normal stress and extrapolating it, as shown in FIG. In metal stereolithography, it is required to squeege the powder more uniformly and stably in order to obtain a high-quality molded object. To achieve this, the adhesive force between the powder particles is required. Weak and easy to flow is important. That is, by using a copper powder having a Cohesion value measured using a powder fluidity analyzer within the shear stress range, squeegeeing in metal stereolithography can be easily performed. As a result, a molded article having a higher density and a more precise shape can be obtained.

上記したような銅粉を用いて、銅による光造形物を得る方法について説明する。先ず造形用ステージに銅粉を供給し、スキージング用ブレードを用いて粉体表面をスキージングすることで所定の厚さの銅粉層を形成する(工程1)。なお特に本発明におけるスキージングとは、金属光造形法において供給された金属粉からなる層の表面にブレードやヘラ、ローラー等を当てて移動させ、金属粉からなる層の表面を平滑にし、余剰の金属粉を除去することである。次いで、レーザー光等の光ビームを銅粉層上部の任意の位置に照射する。この照射位置は、造形したい物品の三次元CADデータに基づいて作成された断層平面図から定めることができる。光ビームが照射された位置にある複数の銅粒子どうしが焼結または溶融固化し、第1層が形成される(工程2)。続いて、第1層の厚さに相当する深さ分だけ、造形用ステージの位置を移動させる(工程3)。この工程1〜工程3を繰り返し、第1層に第2層、第3層と複数の層を順に積層させて、銅による光造形物が製造される。このような金属光造形装置には、光ビームとして赤外線レーザーが一般的に搭載されており、波長が1064nmの赤外線を含む波長帯域である固体レーザー、950nm以上1900nm以下の波長帯域のファイバーレーザー、10.6μmの波長帯域のCOレーザー等が使用されている。ファイバーレーザーのガラスコアへの増幅媒質としては、Yb(1030nm以上1070nm以下)、Nd(約950nm)、Tm(約1900nm)、Er(約1550nm)等の希土類元素が一般的である。本発明の銅粉は波長1070nmにおける反射率が60%以下であることから、中心波長が1070nmのYb添加ファイバーレーザーを使用することが好ましい。レーザーの照射モードはビーム品質や集光性の違いがあるものの、シングルモードとマルチモードのどちらでもよい。また上記造形方法はあくまで光造形法を用いた場合の一例であり、これに限られるものではない。A method for obtaining a copper stereolithography product using the above-described copper powder will be described. First, copper powder is supplied to the modeling stage, and the powder surface is squeezed using a squeegee blade to form a copper powder layer having a predetermined thickness (step 1). Note that particularly squeegee in the present invention, a blade or a spatula on the surface of the layer made of metal powder supplied in the metal stereolithography, moved by moving the roller, etc., smooth the surface of the layer made of metal powder, surplus Is to remove the metal powder. Then, a light beam such as a laser beam is applied to an arbitrary position above the copper powder layer. This irradiation position can be determined from a tomographic plan view created based on the three-dimensional CAD data of the article to be modeled. The plurality of copper particles at the positions irradiated with the light beam are sintered or melted and solidified to form the first layer (step 2). Then, the position of the modeling stage is moved by a depth corresponding to the thickness of the first layer (step 3). By repeating these steps 1 to 3, a second layer, a third layer and a plurality of layers are sequentially laminated on the first layer to manufacture a stereolithography object made of copper. An infrared laser is generally mounted as a light beam in such a metal stereolithography apparatus, and a solid-state laser having a wavelength band including infrared rays having a wavelength of 1064 nm, a fiber laser having a wavelength band of 950 nm or more and 1900 nm or less, 10 A CO 2 laser or the like having a wavelength band of 0.6 μm is used. Rare earth elements such as Yb (1030 nm or more and 1070 nm or less), Nd (about 950 nm), Tm (about 1900 nm), Er (about 1550 nm) are generally used as an amplification medium for the glass core of the fiber laser. Since the copper powder of the present invention has a reflectance of 60% or less at a wavelength of 1070 nm, it is preferable to use a Yb-doped fiber laser having a center wavelength of 1070 nm. The laser irradiation mode may be either single mode or multi-mode, although there are differences in beam quality and focusing property. Further, the above-described modeling method is merely an example in which the optical modeling method is used, and the present invention is not limited to this.

上記のようにして銅粉から得られた光造形物は稠密なものである。そのため、機械強度の高い、銅による光造形物を得ることができる。例えば、JIS Z 2244に準拠して測定されるビッカース硬度(Hv)が80Hv以上300Hv以下であるような銅による光造形物を得ることができる。また銅酸化物を含む光吸収層を銅粒子が備える場合であっても、銅による光造形物全体に占める銅酸化物の割合はごく僅かであるため純銅と同等の組成を有し、銅による光造形物は金属銅本来の特性(高い導電性および熱伝導性など)を具備することができる。具体的には、本発明の銅粉を用いることにより、酸素含有量が0.05質量%以上2.2質量%以下である純銅と同等の組成を具備し、かつ銅による稠密な光造形物を得ることができる。本発明の光造形物は、銅粉以外の材料が含まれることを排除するものではないが、光造形物における銅の純度は、97.8質量%以上であることが好ましく、98.5質量%以上であることがより好ましく、99.0質量%以上であることがさらに好ましい。   The stereolithography product obtained from the copper powder as described above is dense. Therefore, it is possible to obtain an optical molding product made of copper having high mechanical strength. For example, it is possible to obtain a stereolithographic object made of copper having a Vickers hardness (Hv) measured according to JIS Z 2244 of 80 Hv or more and 300 Hv or less. Even when the copper particles are provided with a light absorption layer containing copper oxide, it has a composition equivalent to that of pure copper because the proportion of copper oxide in the entire stereolithography product made of copper is very small. The stereolithography object can have the original characteristics of metallic copper (such as high electrical conductivity and thermal conductivity). Specifically, by using the copper powder of the present invention, a dense stereolithography product having a composition equivalent to that of pure copper having an oxygen content of 0.05% by mass or more and 2.2% by mass or less and made of copper Can be obtained. Although the stereolithography of the present invention does not exclude inclusion of materials other than copper powder, the purity of copper in the stereolithography is preferably 97.8% by mass or more, and 98.5% by mass. % Or more, and more preferably 99.0 mass% or more.

次に本発明の実施形態について以下の実施例を参照して具体的に説明するが、本発明はこれら実施例に限定されるものではない。   Next, embodiments of the present invention will be specifically described with reference to the following examples, but the present invention is not limited to these examples.

<銅粉の準備>
ガスアトマイズ法により製造した下記3種類の銅粉を準備した。
銅粉1:MA−C15、三井金属鉱業株式会社製(一次粒子の平均粒径D50:15μm、D90:25μm)
銅粉2:MA−CHS、三井金属鉱業株式会社製(一次粒子の平均粒径D50:33μm、D90:53μm)
銅粉3:MA−CNS、三井金属鉱業株式会社製(一次粒子の平均粒径D50:64μm、D90:86μm)
<Preparation of copper powder>
The following three types of copper powder manufactured by the gas atomizing method were prepared.
Copper powder 1: MA-C15, manufactured by Mitsui Mining & Smelting Co., Ltd. (average particle size of primary particles D50: 15 μm, D90: 25 μm)
Copper powder 2: MA-CHS, manufactured by Mitsui Mining & Smelting Co., Ltd. (average particle size of primary particles D50: 33 μm, D90: 53 μm)
Copper powder 3: MA-CNS, manufactured by Mitsui Mining & Smelting Co., Ltd. (average particle size of primary particles D50: 64 μm, D90: 86 μm)

<光吸収層の形成>
亜塩素酸ナトリウム(BO−200A、マクダーミッド・パフォーマンス・ソリューションズ・ジャパン株式会社製)を40体積%と、水酸化ナトリウム(BO−200B、マクダーミッド・パフォーマンス・ソリューションズ・ジャパン株式会社製)を15体積%と無機塩(BO−200C、マクダーミッド・パフォーマンス・ソリューションズ・ジャパン株式会社製)を4体積%と純水41体積%とを含む混合液を調製した。準備した銅粉1〜3のそれぞれを、濃度が0.25kg/Lとなるように調製した混合液に全量が浸漬されるようにし、撹拌羽根を用いて物理撹拌を行った。処理条件は、表1に示した温度および時間とした。撹拌後、混合液を濾過することにより銅粉を分離し、十分に水洗した銅粉を常温で12時間放置した後、窒素雰囲気下、140℃で乾燥することにより、光吸収層が形成された実施例1〜8および比較例1〜5の銅粉(以下、処理銅粉という)を得た。
なおこれらの処理銅粉のうち、比較例5の処理銅粉は、国際公開第2018/062527号に記載されている実施例13の銅粉と同一の条件で処理を行ったものであるが、国際公開第2018/062527号に記載されている実施例13の銅粉と同一の条件で銅粉の処理を行うと、銅粉と処理液とが激しく反応し発泡が著しく粗化処理が実施できなかったため、処理条件を硫酸20g/Lおよび過酸化水素10g/Lの水溶液を30℃に保持して5分間浸漬する条件に変更して行った。しかしこの粗化処理条件の変更は、銅粉表面の酸化量や黒化処理の反応にはほとんど影響しないと考えられるため、国際公開第2018/062527号に記載されている実施例13の銅粉と同等の粗化処理であるとみなすことができる。また粗化処理した後の光吸収層形成は、国際公開第2018/062527号に記載されている実施例13と同様に二段階浸漬処理により行い、処理銅粉を製造した。
<Formation of light absorption layer>
Sodium chlorite (BO-200A, manufactured by MacDermid Performance Solutions Japan Co., Ltd.) is 40% by volume, and sodium hydroxide (BO-200B, manufactured by MacDermid Performance Solutions Japan Co., Ltd.) is 15% by volume. A mixed solution containing 4% by volume of an inorganic salt (BO-200C, manufactured by MacDermid Performance Solutions Japan Co., Ltd.) and 41% by volume of pure water was prepared. All of the prepared copper powders 1 to 3 were immersed in a mixed solution prepared so that the concentration became 0.25 kg/L, and physical stirring was performed using a stirring blade. The treatment conditions were the temperature and time shown in Table 1. After stirring, the mixed solution was filtered to separate the copper powder, and the copper powder that had been sufficiently washed with water was left at room temperature for 12 hours, and then dried at 140° C. in a nitrogen atmosphere to form a light absorbing layer. Copper powders of Examples 1 to 8 and Comparative Examples 1 to 5 (hereinafter referred to as treated copper powders) were obtained.
Of these treated copper powders, the treated copper powder of Comparative Example 5 was treated under the same conditions as the copper powder of Example 13 described in WO2018/062527, When the copper powder is treated under the same conditions as the copper powder of Example 13 described in International Publication No. 2018/062527, the copper powder reacts violently with the treatment liquid, and foaming remarkably causes roughening treatment. Therefore, the treatment conditions were changed to conditions in which an aqueous solution containing 20 g/L of sulfuric acid and 10 g/L of hydrogen peroxide was kept at 30° C. and immersed for 5 minutes. However, since it is considered that this change in the roughening treatment conditions has almost no effect on the amount of oxidation of the copper powder surface or the reaction of the blackening treatment, the copper powder of Example 13 described in International Publication No. 2018/062527 is disclosed. It can be considered that the roughening treatment is equivalent to. Further, the light absorption layer formation after the roughening treatment was performed by the two-step dipping treatment in the same manner as in Example 13 described in International Publication No. 2018/062527 to produce treated copper powder.

銅粉1〜3および上記のようにして得られた各処理銅粉の諸特性を下記のようにして測定した。
(1)反射率
銅粉1〜3および各処理銅粉の反射率は、分光光度計(U−4100、株式会社 日立ハイテクノロジーズ製)を用いて、銅粉を凹型のホルダーに充填し、石英カバーガラスで封じて、波長を1070nmとして積分球法により測定した。
The properties of the copper powders 1 to 3 and the treated copper powders obtained as described above were measured as follows.
(1) Reflectivity The reflectivity of the copper powders 1 to 3 and each of the treated copper powders was measured by using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation) to fill a concave holder with copper powder and then use quartz. The sample was sealed with a cover glass, and the wavelength was set to 1070 nm, and measurement was performed by an integrating sphere method.

(2)アスペクト比
銅粉1〜3および各処理銅粉を走査型電子顕微鏡(XL−30FEG、日本FEI社製)により観察し、倍率1,000倍または3,000倍のSEM画像により、粒子100個について各粒子の長径と短径を測定し、長径を短径で除した値の平均値を算出し、アスペクト比を求めた。
(2) Aspect ratio The copper powders 1 to 3 and the treated copper powders are observed with a scanning electron microscope (XL-30FEG, manufactured by Japan FEI Co., Ltd.), and the SEM image at a magnification of 1,000 times or 3,000 times gives particles. The major axis and minor axis of each particle were measured for 100 particles, and the average value of the values obtained by dividing the major axis by the minor axis was calculated to obtain the aspect ratio.

(3)酸素含有量
銅粉1〜3および各処理銅粉、並びにこれらの粉体を用いて製造された造形物の酸素含有量(質量%)を、酸素分析装置(EMGA−820ST、堀場製作所株式会社製)を用いて、He雰囲気中で加熱溶融することで測定した。
(3) Oxygen content Copper powders 1 to 3 and each treated copper powder, and the oxygen content (mass %) of a model manufactured using these powders were measured by an oxygen analyzer (EMGA-820ST, Horiba Seisakusho). It was measured by heating and melting in a He atmosphere.

(4)BET比表面積
銅粉1〜3および各処理銅粉のBET比表面積を、マイクロトラック・ベル社製BELSORP−MR6を用いてBET一点法で測定した。
(4) BET Specific Surface Area The BET specific surface areas of the copper powders 1 to 3 and each of the treated copper powders were measured by the BET one-point method using BELSORP-MR6 manufactured by Microtrac Bell.

(5)耐酸化性
処理銅粉の耐酸化性を評価するため、銅粉2、および銅粉2を処理した処理銅粉を用いて常温常湿環境下での保管試験を行った。試験は平均室温22℃(範囲20.5〜24.5℃)、平均湿度55%(範囲26〜74%)の環境下で20日間、銅粉ないし各処理銅粉をそれぞれ蒸発皿に載せて保管した後、酸素分析装置を用いて上記と同様にして酸素含有量(質量%)を測定した。耐酸化性は、保管前後での酸素含有量の差を保管前の酸素含有量で除した値を100分率で表した増加率で評価した。増加率が低いほど耐酸化性が高いことを表す。
(5) Oxidation resistance In order to evaluate the oxidation resistance of the treated copper powder, a storage test was performed under normal temperature and normal humidity environment using the copper powder 2 and the treated copper powder treated with the copper powder 2. The test was carried out under the environment of an average room temperature of 22° C. (range 20.5 to 24.5° C.) and an average humidity of 55% (range 26 to 74%) for 20 days by placing copper powder or each treated copper powder on an evaporation dish. After storage, the oxygen content (mass %) was measured using an oxygen analyzer in the same manner as above. Oxidation resistance was evaluated by the rate of increase expressed as a percentage obtained by dividing the difference in oxygen content before and after storage by the oxygen content before storage. The lower the increase rate, the higher the oxidation resistance.

(6)光吸収層の厚さ
X線光電子分光(XPS)法およびイオンエッチングを併用した深さ方向分析装置(Quantum2000、アルバック・ファイ株式会社製)を用いて、励起線源をモノクロAl−Kα線(hν=1486.7eV)とし、検出器と試料台との角度を45度とし、解析ソフトとしてアルバック・ファイ製MultiPak9.0を使用し、JIS K 0146に準拠して光吸収層の厚さを測定した。より具体的には7.7nm/分(SiO換算)の速度でイオンエッチングを行いながらXPS分析を行い、金属銅及び銅酸化物に由来するCuLMM線のピーク(540eV以上610eV以下に現れるピーク)を内部標準試料を用いてそれぞれのピークを分離した。即ち酸化物由来のCuLMMメインピーク(570eV以上571eV以下)と金属由来のCuLMMメインピーク(568eV以上569eV以下)とに分離(バックグラウンドモード:Shirley)し、酸化物由来のCuLMMの信号強度が50%の位置のエッチング深さを光吸収層の平均厚さとした。また、XPSのCu2p2/3のメインピーク(930eV以上940eV以下に現れるピーク)を、CuO(933.0eV以上937.0eV以下)とCu及びCuO(930.0eV以上933.0eV以下)のピークに波形分離(バックグラウンドモード:Shirley)し、それぞれのピーク面積比からCuOおよびCuOの比率(%)を算出した。
(6) Thickness of light absorption layer A monochrome Al-Kα excitation source was used by using a depth direction analyzer (Quantum 2000, manufactured by ULVAC-PHI Co., Ltd.) that uses both X-ray photoelectron spectroscopy (XPS) method and ion etching. Line (hν = 1486.7 eV), the angle between the detector and the sample stage was 45 degrees, and MultiPak 9.0 made by ULVAC-PHI was used as analysis software, and the thickness of the light absorption layer according to JIS K 0146. Was measured. More specifically, XPS analysis is performed while performing ion etching at a rate of 7.7 nm/min (SiO 2 conversion), and a CuLMM line peak derived from metallic copper and copper oxide (a peak appearing at 540 eV or more and 610 eV or less). Each peak was separated using an internal standard sample. That is, the CuLMM main peak (570 eV or more and 571 eV or less) derived from the oxide and the CuLMM main peak (568 eV or more and 569 eV or less) derived from the metal are separated (background mode: Shirley), and the signal intensity of the CuLMM derived from the oxide is 50%. The etching depth at the position was defined as the average thickness of the light absorption layer. In addition, the main peak of Cu2p 2/3 of XPS (peak appearing at 930 eV or more and 940 eV or less) of CuO (933.0 eV or more and 937.0 eV or less) and Cu and Cu 2 O (930.0 eV or more and 933.0 eV or less) Waveforms were separated into peaks (background mode: Shirley), and the ratio (%) of CuO and Cu 2 O was calculated from the respective peak area ratios.

(7)流動性
パウダーレオメーター(FT4、freeman technology製)を用いて、せん断応力測定モードにてCohesion値の測定を行った。測定方法は上述した通りである。また通気試験モードにて、通気しないときのトータルエネルギー値E(mJ)、および4mm/sで通気した時のトータルエネルギー値E(mJ)を測定した。得られたEおよびEの値と、銅粉の平均粒径Dとから、F=E/E・1/Dで表される流動性パラメータFを算出した。
さらに、流動度測定器(筒井理化学器械株式会社)を用いて、各粉体ごとに50gをロートに投入し、JIS Z 2502に準拠した方法により、粉体の流動度(秒)の測定を行った。上記(1)〜(5)の測定結果は表1に示すとおりであった。なお表1中に示すとおり、実施例6で用いた処理銅粉、並びに比較例1および比較例2で用いた銅粉は、流動度測定の際にロートから落下する際に引っかかりがあり、ロートに投入した粉体(銅粉または処理銅粉)の全部が落下しなかった(なお、粉体の全部が落下しなかったものは、表1中、「×」と表記した)。
(8)粉末敷度
銅粉のスキージング性能を評価するため、平滑なガラス基板上に薬さじ一杯の銅粉を載置し、アプリケーター(日本シーダーサービス社製ベーカー式アプリケーター)を用いて、ガラス基板とアプリケーターとのギャップを100μmに設定し、手動で円筒形アプリケーターを15cm移動させて、銅粉をガラス基板上に拡げた。ガラス基板上に敷拡された銅粉の形状を写真撮影し、二値化することにより敷拡された銅粉の面積を測定した。撮影面積全体に対する敷拡された銅粉の面積割合(%)を算出し、以下の評価基準により粉末敷度を評価した。
◎:95%以上
○:90%以上95%未満
△:80%以上90%未満
×:80%未満
評価結果は下記表1に示されるとおりであった。
(7) Fluidity The Cohesion value was measured in a shear stress measurement mode using a powder rheometer (FT4, manufactured by freeman technology). The measuring method is as described above. In addition, in the ventilation test mode, the total energy value E 1 (mJ) without ventilation and the total energy value E 2 (mJ) with ventilation at 4 mm/s were measured. From the obtained values of E 1 and E 2 and the average particle diameter D of the copper powder, a fluidity parameter F represented by F=E 2 /E 1 ·1/D was calculated.
Furthermore, using a fluidity meter (Tsutsui Rikagaku Kikai Co., Ltd.), 50 g of each powder was placed in a funnel, and the fluidity (second) of the powder was measured by a method according to JIS Z 2502. It was The measurement results of (1) to (5) above are as shown in Table 1. As shown in Table 1, the treated copper powder used in Example 6 and the copper powder used in Comparative Examples 1 and 2 had a catch when falling from the funnel at the time of fluidity measurement, All of the powder (copper powder or treated copper powder) charged in (1) was not dropped (note that all of the powder was not dropped is indicated by "X" in Table 1).
(8) Powder Coverage To evaluate the squeezing performance of copper powder, a spoonful of copper powder was placed on a smooth glass substrate, and a glass was applied using an applicator (Baker type applicator manufactured by Nippon Cedar Service Co., Ltd.). The gap between the substrate and the applicator was set to 100 μm, and the cylindrical applicator was manually moved by 15 cm to spread the copper powder on the glass substrate. The shape of the copper powder spread on the glass substrate was photographed and binarized to measure the area of the copper powder spread. The area ratio (%) of the spread copper powder to the entire imaging area was calculated, and the powder spread degree was evaluated according to the following evaluation criteria.
A: 95% or more O: 90% or more and less than 95% B: 80% or more and less than 90% X: less than 80% The evaluation results are shown in Table 1 below.

<光造形物の製造>
銅粉2および各処理銅粉のそれぞれを、金属光造形機(LUMEX Avance−25、株式会社松浦機械製作所)を用いて造形した。S50C製ベースプレート(125×125×10mm)を用いて、窒素ガスのフロー下で、レーザー光による単位体積あたりのエネルギー密度を160J/mm、単位面積あたりのエネルギー密度を8J/mm、出力320W、スポット径0.2mm、積層ピッチ0.05mm、走査ピッチ0.2mmとした。縦10mm×横10mm×高さ1.8mmの銅による光造形物をベースプレートの中央横一列に、20mmの間隔ごとに3個サンプルを製造した。
なお、表1中の比較例4の処理銅粉は凝集性が強く大きな塊状となり、造形に適切な大きさの処理銅粉が回収できなかった。その結果、所望の焼結層を形成するに至らなかったため、金属光造形機によって光造形物を得ることができなかった。
<Manufacturing of stereolithography>
Each of the copper powder 2 and each treated copper powder was modeled using a metal stereolithography machine (LUMEX Avance-25, Matsuura Machinery Co., Ltd.). Using an S50C base plate (125×125×10 mm), under a flow of nitrogen gas, the energy density per unit volume by laser light is 160 J/mm 3 , the energy density per unit area is 8 J/mm 2 , and the output is 320 W. The spot diameter was 0.2 mm, the stacking pitch was 0.05 mm, and the scanning pitch was 0.2 mm. Three stereolithography samples of copper having a length of 10 mm, a width of 10 mm, and a height of 1.8 mm were produced in a central horizontal row of the base plate at intervals of 20 mm.
The treated copper powder of Comparative Example 4 in Table 1 had a strong cohesive property and formed into a large lump, and the treated copper powder of a size suitable for modeling could not be collected. As a result, it was not possible to form a desired sintered layer, and thus it was not possible to obtain a stereolithography product by the metal stereolithography machine.

<光造形物の特性評価>
得られた銅による光造形物の稠密性評価として、光学顕微鏡(25倍)により垂直断面の中央900μm×120μmの領域を観察し、焼結ないし溶融固化した部分(マトリックス領域)と気孔部分(非マトリックス領域)との2領域に分割し、焼結ないし溶融固化した部分の面積占有率(%)を算出し、実施例または比較例毎に各3個のサンプルの平均値を求めた。この測定の際、ベースプレート付近で、鉄と銅の合金が生成している領域がみられたが、この領域は算入せず、外観から金属銅特有の光沢を有している領域のみを評価した。
銅による光造形物のビッカース硬度(Hv)はJIS Z 2244に準拠して測定を行った。測定結果は下記の表に示される通りであった。実施例3の光造形物の断面光学顕微鏡写真(25倍)を図5に、比較例1の光造形物の断面光学顕微鏡写真(25倍)を図6に示す。
<Characteristic evaluation of stereolithography>
As an evaluation of the denseness of the obtained stereolithography of copper, an optical microscope (25 times) was used to observe a central 900 μm×120 μm region of the vertical cross section, and a sintered or melt-solidified portion (matrix area) and a pore portion (non-) were observed. The area occupancy (%) of the sintered or melt-solidified portion was calculated by dividing the sample into two regions (matrix region) and the average value of three samples for each of the examples and comparative examples. At the time of this measurement, a region where an alloy of iron and copper was formed was seen near the base plate, but this region was not included, and only the region having a luster peculiar to metallic copper was evaluated from the appearance. ..
The Vickers hardness (Hv) of the stereolithography product made of copper was measured according to JIS Z 2244. The measurement results were as shown in the table below. FIG. 5 shows a cross-sectional optical microscope photograph (25 times) of the stereolithographic object of Example 3, and FIG. 6 shows a cross-sectional optical microscope photograph (25 times) of the stereolithographic object of Comparative Example 1.

Claims (13)

一次粒子の平均粒径D50が1μm以上100μm以下である銅粉であって、
前記一次粒子は、表面に、銅酸化物を含む光吸収層を有し、
前記銅粉全体に対する酸素含有量が0.05質量%以上2.2質量%以下であり、
波長1070nmにおける反射率が60%以下である、銅粉。
A copper powder having an average particle diameter D50 of primary particles of 1 μm or more and 100 μm or less,
The primary particles have a light absorbing layer containing copper oxide on the surface,
The oxygen content relative to the entire copper powder is 0.05% by mass or more and 2.2% by mass or less,
Copper powder having a reflectance of 60% or less at a wavelength of 1070 nm.
前記一次粒子のアスペクト比が2以下である、請求項1に記載の銅粉。   The copper powder according to claim 1, wherein an aspect ratio of the primary particles is 2 or less. 前記銅粉全体に対する酸素含有量(質量%)を、前記銅粉のBET比表面積(m/g)で除した値が、4質量%・g/m以下である、請求項1または2のいずれか一項に記載の銅粉。The value obtained by dividing the oxygen content (mass %) with respect to the entire copper powder by the BET specific surface area (m 2 /g) of the copper powder is 4 mass%·g/m 2 or less. The copper powder according to any one of 1. 粉体流動性分析装置を用いて、通気試験モードで測定した通気しないときのトータルエネルギー値をE(mJ)、4mm/sで通気したときのトータルエネルギー値をE(mJ)、銅粉の一次粒子の平均粒径D50をD(mm)、
とした場合に、下記式:
F=E/E・1/D
で表される流動性パラメータFが、10(mm−1)以下である、請求項1〜3のいずれか一項に記載の銅粉。
Using a powder flowability analyzer, the total energy value measured in the ventilation test mode without ventilation was E 1 (mJ), and the total energy value with ventilation at 4 mm/s was E 2 (mJ), copper powder. The average particle size D50 of the primary particles is D (mm),
Then, the following formula:
F=E 2 /E 1 ·1/D
The copper powder according to any one of claims 1 to 3, wherein the fluidity parameter F represented by is 10 (mm -1 ) or less.
前記流動性パラメータFが、0.05(mm−1)以上10(mm−1)以下である、請求項4に記載の銅粉。The copper powder according to claim 4, wherein the fluidity parameter F is 0.05 (mm -1 ) or more and 10 (mm -1 ) or less. 前記光吸収層の平均厚さが、20nm以上1300nm以下であり、かつ前記一次粒子の平均粒径D50の30%以下である、である、請求項1〜5のいずれか一項に記載の銅粉。   The copper according to any one of claims 1 to 5, wherein an average thickness of the light absorption layer is 20 nm or more and 1300 nm or less and is 30% or less of an average particle diameter D50 of the primary particles. powder. JIS Z 2502に準拠して測定された流動度が5秒/50g以上30秒/50g以下である、請求項1〜6のいずれか一項に記載の銅粉。   The copper powder according to any one of claims 1 to 6, which has a fluidity of 5 seconds/50 g or more and 30 seconds/50 g or less measured in accordance with JIS Z 2502. 前記一次粒子の平均粒径D50が50μm以下である、請求項1〜7のいずれか一項に記載の銅粉。   The copper powder according to any one of claims 1 to 7, wherein the average particle diameter D50 of the primary particles is 50 µm or less. 前記一次粒子の平均粒径D50が8μm以上である、請求項1〜8のいずれか一項に記載の銅粉。   The copper powder according to any one of claims 1 to 8, wherein the average particle diameter D50 of the primary particles is 8 µm or more. 前記一次粒子の体積累積粒径D90が10μm以上である、請求項1〜9のいずれか一項に記載の銅粉。   The copper powder according to any one of claims 1 to 9, wherein a volume cumulative particle diameter D90 of the primary particles is 10 µm or more. 請求項1〜10のいずれか一項に記載の銅粉をレーザー光により焼結または溶融固化させる工程を含む、銅による光造形物の製造方法。   A method for producing a stereolithographic object using copper, comprising a step of sintering or melting and solidifying the copper powder according to any one of claims 1 to 10 by laser light. 前記レーザー光が、Yb添加ファイバーレーザーである、請求項11に記載の銅による光造形物の製造方法。   The method for producing a stereolithographic object using copper according to claim 11, wherein the laser light is a Yb-doped fiber laser. 酸素含有量が0.05質量%以上2.2質量%以下であり、ビッカース硬度が80Hv以上300Hv以下である、銅による光造形物。   A stereolithography object made of copper having an oxygen content of 0.05% by mass or more and 2.2% by mass or less and a Vickers hardness of 80 Hv or more and 300 Hv or less.
JP2018559400A 2017-07-21 2018-07-20 Copper powder, method for manufacturing stereolithographic object using the same, and stereolithographic object using copper Active JP7143223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022137329A JP7377324B2 (en) 2017-07-21 2022-08-30 Copper powder, method for manufacturing a stereolithographic object using the same, and stereolithographic object using copper

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017142190 2017-07-21
JP2017142190 2017-07-21
PCT/JP2018/027250 WO2019017467A1 (en) 2017-07-21 2018-07-20 Copper powder, method for producing stereolithographic model using same, and stereolithographic model using copper

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022137329A Division JP7377324B2 (en) 2017-07-21 2022-08-30 Copper powder, method for manufacturing a stereolithographic object using the same, and stereolithographic object using copper

Publications (2)

Publication Number Publication Date
JPWO2019017467A1 true JPWO2019017467A1 (en) 2020-05-28
JP7143223B2 JP7143223B2 (en) 2022-09-28

Family

ID=65016478

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018559400A Active JP7143223B2 (en) 2017-07-21 2018-07-20 Copper powder, method for manufacturing stereolithographic object using the same, and stereolithographic object using copper
JP2022137329A Active JP7377324B2 (en) 2017-07-21 2022-08-30 Copper powder, method for manufacturing a stereolithographic object using the same, and stereolithographic object using copper

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022137329A Active JP7377324B2 (en) 2017-07-21 2022-08-30 Copper powder, method for manufacturing a stereolithographic object using the same, and stereolithographic object using copper

Country Status (2)

Country Link
JP (2) JP7143223B2 (en)
WO (1) WO2019017467A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7119380B2 (en) * 2018-01-18 2022-08-17 三菱マテリアル株式会社 Copper powder and its manufacturing method
JP7176219B2 (en) * 2018-04-04 2022-11-22 大同特殊鋼株式会社 Metal powder material and method for producing metal powder material
WO2020016301A1 (en) * 2018-07-19 2020-01-23 Heraeus Additive Manufacturing Gmbh Use of powders of highly reflective metals for additive manufacture
JP6721934B2 (en) * 2018-12-04 2020-07-15 メック株式会社 Additive-manufactured copper powder, manufacturing method of additive-molded copper powder, additive-manufactured product manufacturing method, and additive-molded product
US20210387255A1 (en) * 2018-12-04 2021-12-16 Mec Company., Ltd. Copper powder for 3d printing, method for producing copper powder for 3d printing, method for producing 3d printed article, and 3d printed article
CN113939605B (en) * 2019-06-13 2023-03-21 福田金属箔粉工业株式会社 Copper powder for laminate molding, method for producing laminate molding, and laminate molding apparatus
CN110548866B (en) * 2019-10-18 2022-02-15 广东工业大学 Metal powder with rough surface, preparation method and application in SLS/SLM technology
WO2023181329A1 (en) * 2022-03-25 2023-09-28 福田金属箔粉工業株式会社 Copper alloy powder for additive layer manufacturing, production method and evaluation method therefor, method for producing additive layer-manufactured copper alloy article, and additive layer-manufactured copper alloy article
FR3142686A1 (en) * 2022-12-06 2024-06-07 Commissariat à l'Energie Atomique et aux Energies Alternatives COPPER PARTICLES BEARING A PROTECTIVE LAYER, POWDERS COMPRISING THEM, AND THEIR USE FOR THE PREPARATION OF COPPER PARTS

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125754A (en) * 1997-06-27 1999-01-29 Kyocera Corp Manufacture of copper-metallized composition and glass-ceramic substrate
JP2002356702A (en) * 2001-05-30 2002-12-13 Dowa Mining Co Ltd Copper powder for low temperature burning or copper powder for electroconductive paste
JP2003105402A (en) * 2001-09-28 2003-04-09 Mitsui Mining & Smelting Co Ltd Copper powder for conductive paste, conductive paste using the copper powder and chip component containing conductive body using the conductive paste
JP2006118032A (en) * 2004-10-25 2006-05-11 Mitsui Mining & Smelting Co Ltd Flake copper powder provided with copper oxide coat layer, method for producing flake copper powder provided with copper oxide coat layer and conductive slurry comprising flake copper powder provided with copper oxide coat layer
JP2007084906A (en) * 2005-09-26 2007-04-05 Fukuda Metal Foil & Powder Co Ltd Ag-BASED METAL POWDER, Cu-BASED METAL POWDER, AND METHOD FOR PRODUCING THE SAME
JP2014156634A (en) * 2013-02-15 2014-08-28 Toyota Motor Corp Powder for cold spray, production method thereof, and film deposition method of copper-based film by use thereof
WO2017061443A1 (en) * 2015-10-05 2017-04-13 住友金属鉱山株式会社 Sn-COATED COPPER POWDER, CONDUCTIVE PASTE USING SAME, AND PRODUCING METHOD FOR Sn-COATED COPPER POWDER

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6030186B1 (en) * 2015-05-13 2016-11-24 株式会社ダイヘン Copper alloy powder, manufacturing method of layered object, and layered object
JP2017141505A (en) * 2016-02-09 2017-08-17 株式会社ジェイテクト Apparatus for manufacturing molded article and method for manufacturing molded article
WO2018062527A1 (en) * 2016-09-29 2018-04-05 Jx金属株式会社 Surface treatment metal powder for laser sintering
CN106623953A (en) * 2016-12-28 2017-05-10 东莞市精研粉体科技有限公司 Preparing method of low-reflectivity spherical copper powder for 3D printing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125754A (en) * 1997-06-27 1999-01-29 Kyocera Corp Manufacture of copper-metallized composition and glass-ceramic substrate
JP2002356702A (en) * 2001-05-30 2002-12-13 Dowa Mining Co Ltd Copper powder for low temperature burning or copper powder for electroconductive paste
JP2003105402A (en) * 2001-09-28 2003-04-09 Mitsui Mining & Smelting Co Ltd Copper powder for conductive paste, conductive paste using the copper powder and chip component containing conductive body using the conductive paste
JP2006118032A (en) * 2004-10-25 2006-05-11 Mitsui Mining & Smelting Co Ltd Flake copper powder provided with copper oxide coat layer, method for producing flake copper powder provided with copper oxide coat layer and conductive slurry comprising flake copper powder provided with copper oxide coat layer
JP2007084906A (en) * 2005-09-26 2007-04-05 Fukuda Metal Foil & Powder Co Ltd Ag-BASED METAL POWDER, Cu-BASED METAL POWDER, AND METHOD FOR PRODUCING THE SAME
JP2014156634A (en) * 2013-02-15 2014-08-28 Toyota Motor Corp Powder for cold spray, production method thereof, and film deposition method of copper-based film by use thereof
WO2017061443A1 (en) * 2015-10-05 2017-04-13 住友金属鉱山株式会社 Sn-COATED COPPER POWDER, CONDUCTIVE PASTE USING SAME, AND PRODUCING METHOD FOR Sn-COATED COPPER POWDER

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D.A. RAMIREZ ET AL: "Novel precipitate−microstructural arccture develop", ACTA MATERIALIA, vol. 59, JPN6022014362, 2 April 2011 (2011-04-02), US, pages 4088 - 4099, ISSN: 0004798125 *

Also Published As

Publication number Publication date
JP7143223B2 (en) 2022-09-28
JP7377324B2 (en) 2023-11-09
JP2022172242A (en) 2022-11-15
WO2019017467A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP7377324B2 (en) Copper powder, method for manufacturing a stereolithographic object using the same, and stereolithographic object using copper
US20200055116A1 (en) Copper alloy particles, surface-coated copper-based particles, and mixed particles
US5240742A (en) Method of producing metal coatings on metal powders
TWI541365B (en) Silver-coated copper alloy powder and method for producing same
JP7042945B2 (en) Silver-coated metal powder and its manufacturing method
JP2009270130A (en) Silver powder or silver alloy powder, method for producing shaped article of silver or silver alloy, and shaped article of silver or silver alloy
WO2015173211A1 (en) Method for producing a component from an amorphous-phase metal alloy
JP7001061B2 (en) Manufacturing method of additive manufacturing
JP2018199862A (en) Carbon-coated metal powder, powder material for additional production comprising the same, and method for producing additionally produced article
US4975333A (en) Metal coatings on metal powders
JP4583164B2 (en) Silver-copper composite powder and method for producing silver-copper composite powder
JP2019112700A (en) Production method of metal powder material
JP7313195B2 (en) Method for producing metal powder and method for producing silver-coated metal powder
WO2019168166A1 (en) Copper alloy powder having excellent laser absorptivity
WO2019038910A1 (en) Evaluation method of powder for laminate molding, and powder for laminate molding
WO2019225589A1 (en) Copper-based powder, surface-coated copper-based powder and mixed powder thereof, laminated article and method for producing same, and various metallic components
JP2023012810A (en) Copper-based powder, method for producing the same, and method for producing stereolithographic molding using copper-based powder
JP6721934B2 (en) Additive-manufactured copper powder, manufacturing method of additive-molded copper powder, additive-manufactured product manufacturing method, and additive-molded product
TWI708855B (en) Manufacturing method of laminated molding using pure copper powder with Si coating
JP2019108587A (en) Metal powder and method for producing the same, and lamination-molded article and method for producing the same
JP2022122462A (en) Carbon-fixed carbon steel powder
JP2022076864A (en) Copper alloy powder
CN112792333A (en) Preparation method and application of stainless steel powder coated with epoxy resin
JP7424108B2 (en) Heat-treated unsintered copper alloy powder for additive manufacturing and its manufacturing method
JP5034796B2 (en) Oxide-coated nickel fine particles and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220914

R150 Certificate of patent or registration of utility model

Ref document number: 7143223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150