JP5034796B2 - Oxide-coated nickel fine particles and method for producing the same - Google Patents

Oxide-coated nickel fine particles and method for producing the same Download PDF

Info

Publication number
JP5034796B2
JP5034796B2 JP2007232453A JP2007232453A JP5034796B2 JP 5034796 B2 JP5034796 B2 JP 5034796B2 JP 2007232453 A JP2007232453 A JP 2007232453A JP 2007232453 A JP2007232453 A JP 2007232453A JP 5034796 B2 JP5034796 B2 JP 5034796B2
Authority
JP
Japan
Prior art keywords
fine particles
nickel fine
oxide
aluminum
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007232453A
Other languages
Japanese (ja)
Other versions
JP2008095184A (en
Inventor
靖匡 服部
一臣 漁師
栄治 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007232453A priority Critical patent/JP5034796B2/en
Publication of JP2008095184A publication Critical patent/JP2008095184A/en
Application granted granted Critical
Publication of JP5034796B2 publication Critical patent/JP5034796B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、酸化物被覆ニッケル微粒子とその製造方法に関し、さらに詳しくは、導電ペースト用材料として、金属の酸化されやすいという性質を緩和する一方、金属本来の高い電気伝導性、金属光沢等の性質を発現させることができる、耐酸化性と電気伝導性等に優れた酸化物被覆ニッケル微粒子と、その低コストで効率的な製造方法に関する。ここで得られた酸化物被覆ニッケル微粒子は、耐酸化性に優れた電子材料の配線等の導電膜形成用として用いられる。   The present invention relates to oxide-coated nickel fine particles and a method for producing the same, and more particularly, as a material for conductive paste, while relaxing the property of being easily oxidized of the metal, the properties of the metal, such as high electrical conductivity and metallic luster The present invention relates to oxide-coated nickel fine particles having excellent oxidation resistance and electrical conductivity, and a low-cost and efficient production method. The oxide-coated nickel fine particles obtained here are used for forming a conductive film such as an electronic material wiring excellent in oxidation resistance.

近年、回路形成等の電子部品用の導電ペーストに使用される導電性金属粉として、銅、ニッケル、銀、銀−パラジウム合金等の微粒子が用いられている。これらの金属微粒子中で、特にニッケル微粒子は、銀、銀―パラジウム合金等の貴金属微粒子と比較すると安価であり、かつエレクトロマイグレーションを起こしにくい素材として注目されている。しかしながら、ニッケル微粒子は、大気中において、比較的低温で酸化が進行しやすく、このため導電性が低下するという欠点があり、その使用範囲が制限されていた。
ところで、金属微粒子をフィラーとして含む導電ペーストとしては、ペースト中の金属粉末を焼結させ、配線や電極等に使用する焼成ペーストと、硬化型のポリマーで固めるポリマーペーストとに大別されるが、いずれの場合でも150〜350℃の温度で熱処理が行われることが不可欠であるので、この温度領域での耐酸化性に問題があった。特に、ポリマーペーストにおいては、常温においても徐々に酸化が進行するため、耐酸化性を向上させる手段が求められていた。
In recent years, fine particles such as copper, nickel, silver, and silver-palladium alloys have been used as conductive metal powders used in conductive pastes for electronic components such as circuit formation. Among these metal fine particles, nickel fine particles, in particular, are attracting attention as materials that are inexpensive and less susceptible to electromigration compared to noble metal fine particles such as silver and silver-palladium alloys. However, nickel fine particles tend to oxidize at a relatively low temperature in the atmosphere, and therefore have a drawback that the conductivity is lowered, and the range of use thereof is limited.
By the way, as the conductive paste containing fine metal particles as a filler, it is roughly divided into a sintered paste used to sinter the metal powder in the paste and used for wiring and electrodes, and a polymer paste solidified with a curable polymer. In any case, it is indispensable that the heat treatment is performed at a temperature of 150 to 350 ° C., so that there is a problem in oxidation resistance in this temperature region. In particular, in the polymer paste, since oxidation proceeds gradually even at room temperature, a means for improving the oxidation resistance has been demanded.

このための手段として、酸化物被覆の金属微粒子が考えられる。例えば、熱プラズマに原料混合物を供給し、様々な金属微粒子上に様々な酸化物が被覆された酸化物被覆金属微粒子を得る方法として、平均厚みが1〜10nmの酸化物被覆層が、堅固に、かつ好ましくは全表面に完全に被覆された酸化物被覆金属微粒子が得られることが開示されている(例えば、特許文献1参照。)。しかしながら、この方法では、耐酸化性、金属光沢及び電気抵抗についての記述がないため、金属微粒子本来の特性がどの程度維持されているか明らかではない。一般に、熱プラズマ雰囲気では、溶融、蒸発、及び凝縮により得られる粒子は球状粒子となる場合が多く、例えそうでない場合もその物質の晶癖により決まっており、任意の形状の酸化物被覆粒子を得ることは困難である。しかも、TEM像によると、粒子の凝集により、被覆層同士が一体化しており、粒度分布の制御が難しい。さらには、装置が高価であり、かつ、装置内壁への酸化物付着量が多いため、低コストで製造するのは困難であるという問題がある。   As means for this purpose, oxide-coated metal fine particles can be considered. For example, as a method of supplying a raw material mixture to thermal plasma and obtaining oxide-coated metal fine particles in which various oxides are coated on various metal fine particles, an oxide coating layer having an average thickness of 1 to 10 nm is firmly formed. It is disclosed that oxide-coated metal fine particles that are completely coated on the entire surface can be obtained (see, for example, Patent Document 1). However, in this method, since there is no description about oxidation resistance, metallic luster and electrical resistance, it is not clear how much the original characteristics of the metal fine particles are maintained. In general, in a hot plasma atmosphere, particles obtained by melting, evaporation, and condensation are often spherical particles, and even if not, they are determined by the crystal habit of the substance, and oxide-coated particles of any shape are used. It is difficult to get. Moreover, according to the TEM image, the coating layers are integrated due to aggregation of particles, and it is difficult to control the particle size distribution. Furthermore, since the apparatus is expensive and the amount of oxide attached to the inner wall of the apparatus is large, it is difficult to manufacture at low cost.

また、酸化物被覆層中に貴金属、銅等を含有させることにより、比抵抗を下げつつ、かつ耐酸化性を付与する方法が開示されている(例えば、特許文献2参照。)。しかしながら、この方法では、製法も複雑であるため、低コストで製造するのは困難であるという問題がある。   In addition, a method is disclosed in which noble metal, copper, or the like is included in the oxide coating layer and the oxidation resistance is imparted while lowering the specific resistance (see, for example, Patent Document 2). However, this method has a problem that it is difficult to manufacture at a low cost because the manufacturing method is complicated.

また、銅粉の表面に酸化銅あるいは亜酸化銅からなる第一無機物コート層を有し、その外殻に酸化ケイ素等の種々の無機物コート層を有する銅粉が提案されている(例えば、特許文献3参照。)。これによると、比較的低コストで酸化物被覆銅粉が製造されるが、酸化物第二層はハイブリタイザーを用いてメカノケミカル反応により被覆されており、極めて薄い膜を均一に被覆することが困難なため、良好な比抵抗を得ることは困難であると思われる。例えば、用途としては低温焼成ペースト用を想定しており、粉体の耐酸化性、体積抵抗率等は調査されておらず、製造される酸化物被覆金属微粒子が金属微粒子の優れた性質を維持したまま耐酸化性を高めたものとなるか不明である。   Further, a copper powder having a first inorganic coat layer made of copper oxide or cuprous oxide on the surface of the copper powder and having various inorganic coat layers such as silicon oxide on the outer shell has been proposed (for example, patents) Reference 3). According to this, oxide-coated copper powder is produced at a relatively low cost, but the second oxide layer is coated by a mechanochemical reaction using a hybridizer, so that an extremely thin film can be uniformly coated. Because it is difficult, it seems difficult to obtain a good specific resistance. For example, it is assumed that it is used for low-temperature fired paste, and the oxidation resistance, volume resistivity, etc. of the powder have not been investigated, and the manufactured oxide-coated metal fine particles maintain the excellent properties of metal fine particles It is unclear whether the oxidation resistance will be improved as it is.

以上の状況から、導電ペースト用材料として、安価で導電性に優れかつエレクトロマイグレーション発生が少ない金属を主原料として用い、耐酸化性に優れた酸化物被覆の金属微粒子が求められている。   In view of the above situation, there is a demand for oxide-coated metal fine particles that are excellent in oxidation resistance by using, as a main raw material, a metal that is inexpensive, excellent in electrical conductivity, and has less electromigration as a material for a conductive paste.

特開2000−219901号公報(第1頁、第2頁)JP 2000-219901 A (first page, second page) 特開2004−179139号公報(第1頁、第2頁)JP 2004-179139 A (first page, second page) 特開2005−154861号公報(第1頁、第2頁)JP 2005-154861 A (first page, second page)

本発明の目的は、上記の従来技術の問題点に鑑み、導電ペースト用材料として、ニッケルの酸化されやすいという性質を緩和する一方、ニッケル本来の高い電気伝導性、金属光沢等の性質を発現させることができる、耐酸化性と電気伝導性等に優れた酸化物被覆ニッケル微粒子と、その低コストで効率的な製造方法を提供することにある。   In view of the above-mentioned problems of the prior art, the object of the present invention is to relieve the property of nickel being easily oxidized as a material for a conductive paste, while at the same time exhibiting properties such as nickel's high electrical conductivity and metallic luster. An object of the present invention is to provide an oxide-coated nickel fine particle excellent in oxidation resistance and electrical conductivity, and a low-cost and efficient production method.

本発明者らは、上記目的を達成するために、酸化物被覆ニッケル微粒子について、鋭意研究を重ねた結果、特定の金属微粒子からなる芯粒子と特定の被覆層とから構成される酸化物被覆ニッケル微粒子を、導電ペースト用材料として用いたところ、ニッケルの酸化されやすいという性質を緩和する一方、ニッケル本来の高い電気伝導性、金属光沢等の性質を発現させることができる酸化物被覆ニッケル微粒子が得られること、また、この製造方法として、特定の条件によりアルミニウム水酸化物からなる被覆層を有するニッケル微粒子を形成する工程(A)、次いで、前記被覆層を有するニッケル微粒子を固液分離して、乾燥処理を行う工程(B)、及び最後に.特定の条件でアルミニウム水酸化物を熱分解する工程(C)、を含む方法を用いたところ、上記酸化物被覆ニッケル微粒子が得られることを見出し、本発明を完成した。   In order to achieve the above object, the present inventors have conducted extensive research on oxide-coated nickel fine particles, and as a result, oxide-coated nickel composed of core particles made of specific metal fine particles and a specific coating layer. When the fine particles are used as a material for a conductive paste, oxide-coated nickel fine particles that can relieve the property of nickel being easily oxidized while exhibiting properties such as nickel's high electrical conductivity and metallic luster are obtained. In addition, as a manufacturing method, a step (A) of forming nickel fine particles having a coating layer made of an aluminum hydroxide under specific conditions, and then solid-liquid separating the nickel fine particles having the coating layer, Step (B) of performing a drying process, and finally. When the method including the step (C) of thermally decomposing aluminum hydroxide under specific conditions was used, it was found that the oxide-coated nickel fine particles were obtained, and the present invention was completed.

すなわち、本発明の第の発明によれば、ニッケル微粒子からなる芯粒子(a)と、芯粒子(a)の表面上に形成された連続膜からなるアルミニウムを主成分として含む酸化物からなる被覆層(b)とから構成され、該アルミニウムの含有割合が酸化物被覆ニッケル微粒子全量に対して0.07〜0.4重量%である酸化物被覆ニッケル微粒子の製造方法であって、ニッケル微粒子を含む水性懸濁液中に、アルミニウムの含有割合が酸化物被覆ニッケル微粒子全量に対して0.07〜0.4重量%となるに十分な量のアルミニウム塩と尿素とを含む水溶液を、30〜100℃で加熱処理したものを供給して、アルミニウム水酸化物からなる被覆層を有するニッケル微粒子を形成する工程(A)、前記被覆層を有するニッケル微粒子を固液分離して、乾燥処理を行う工程(B)、及び、前記乾燥処理後の被覆層を有するニッケル微粒子を還元雰囲気下に200〜800℃で加熱して、前記アルミニウム水酸化物を熱分解する工程(C)、を含むことを特徴とする酸化物被覆ニッケル微粒子の製造方法が提供される。 That is, according to the first invention of the present invention, the core particle (a) made of nickel fine particles and the oxide containing as a main component aluminum made of a continuous film formed on the surface of the core particle (a) are formed. A method for producing oxide-coated nickel fine particles comprising a coating layer (b), wherein the aluminum content is 0.07 to 0.4% by weight based on the total amount of oxide-coated nickel fine particles, An aqueous solution containing an aluminum salt and urea in an amount sufficient for the aluminum content to be 0.07 to 0.4% by weight based on the total amount of the oxide-coated nickel fine particles Step (A) of supplying nickel particles having a coating layer made of aluminum hydroxide by supplying a material heated at -100 ° C., and solid-liquid separation of the nickel particles having the coating layer The step (B) of performing the drying treatment, and the step of thermally decomposing the aluminum hydroxide by heating the nickel fine particles having the coating layer after the drying treatment at 200 to 800 ° C. in a reducing atmosphere (C ), And a method for producing oxide-coated nickel fine particles.

また、本発明の第の発明によれば、第の発明において、前記アルミニウム塩は、硫酸アルミニウム又は硝酸アルミニウムであることを特徴とする酸化物被覆ニッケル微粒子の製造方法が提供される。 According to a second aspect of the present invention, there is provided the method for producing oxide-coated nickel fine particles according to the first aspect , wherein the aluminum salt is aluminum sulfate or aluminum nitrate.

また、本発明の第の発明によれば、第又はの発明において、前記懸濁液中に、ヘキサメタリン酸ナトリウムを添加することを特徴とする酸化物被覆ニッケル微粒子の製造方法が提供される。 According to a third aspect of the present invention, there is provided the method for producing oxide-coated nickel fine particles according to the first or second aspect , wherein sodium hexametaphosphate is added to the suspension. The

本発明の酸化物被覆ニッケル微粒子は、導電ペースト用材料として、ニッケルの酸化されやすいという性質を緩和する一方、ニッケル本来の高い電気伝導性、金属光沢等の性質を発現させることができる金属微粒子であり、さらに、芯粒子以上の酸化開始温度及び芯粒子並みの体積抵抗率と金属光沢を有し、酸化物被覆層の層厚が均一な連続膜が形成されるので、その工業的価値は極めて大きい。さらに、本発明の製造方法では、酸化物被覆ニッケル微粒子を低コストで効率的に製造することができるので、その工業的価値は極めて大きい。   The oxide-coated nickel fine particles of the present invention are metal fine particles that can relieve the property of nickel being easily oxidized as a conductive paste material, while at the same time exhibiting properties such as nickel's high electrical conductivity and metallic luster. In addition, a continuous film having an oxidation start temperature higher than that of the core particle, a volume resistivity and a metallic luster equivalent to the core particle, and a uniform thickness of the oxide coating layer is formed, and its industrial value is extremely high. large. Furthermore, in the production method of the present invention, the oxide-coated nickel fine particles can be produced efficiently at a low cost, so that the industrial value is extremely large.

以下、本発明の酸化物被覆ニッケル微粒子とその製造方法を詳細に説明する。
1.酸化物被覆ニッケル微粒子
本発明の酸化物被覆ニッケル微粒子は、ニッケル微粒子からなる芯粒子(a)と、芯粒子(a)の表面上に形成された連続膜からなるアルミニウムを主成分として含む酸化物からなる被覆層(b)とから構成される酸化物被覆ニッケル微粒子であって、
上記アルミニウムの含有割合は、酸化物被覆ニッケル微粒子全量に対して0.07〜0.4重量%であることを特徴とする。
Hereinafter, the oxide-coated nickel fine particles of the present invention and the production method thereof will be described in detail.
1. Oxide-coated nickel fine particles The oxide-coated nickel fine particles of the present invention are oxides containing, as main components, core particles (a) composed of nickel fine particles and aluminum composed of a continuous film formed on the surfaces of the core particles (a). An oxide-coated nickel fine particle comprising a coating layer (b) comprising:
The aluminum content is 0.07 to 0.4% by weight based on the total amount of the oxide-coated nickel fine particles.

本発明の酸化物被覆ニッケル微粒子において、芯粒子(a)としてニッケル微粒子を用いる。これによって、貴金属と比べて安価な材料により、高い電気伝導性及び金属光沢性が付与される。さらに、芯粒子(a)の表面上に形成されたアルミニウムを主成分として含む酸化物からなる被覆層(b)により、導電ペースト用材料として、ニッケルの酸化されやすいという性質を緩和する一方、ニッケル本来の高い電気伝導性、金属光沢等の性質を発現させることができる、すなわち耐酸化性と電気伝導性に優れた特性が達成される。   In the oxide-coated nickel fine particles of the present invention, nickel fine particles are used as the core particles (a). Thereby, high electrical conductivity and metallic luster are imparted by an inexpensive material compared with noble metals. Furthermore, the coating layer (b) made of an oxide containing aluminum as a main component formed on the surface of the core particle (a) relaxes the property of being easily oxidized of nickel as a conductive paste material. The original properties such as high electrical conductivity and metallic luster can be exhibited, that is, characteristics excellent in oxidation resistance and electrical conductivity are achieved.

上記芯粒子(a)に用いるニッケル微粒子としては、特に限定されるものでなく、工業的に製造される純度のものが用いられる。また、その平均粒径は、特に限定されるものでなく、0.1〜25μmが好ましい。なお、平均粒径の測定は、SEM観察により行なった。ここで、平均粒径とは、投影面積が最大となる方向から観察して個々の粒子の最大粒径を求め、その値を平均したものを意味する。   The nickel fine particles used for the core particles (a) are not particularly limited, and those having a purity produced industrially are used. Moreover, the average particle diameter is not specifically limited, 0.1-25 micrometers is preferable. The average particle size was measured by SEM observation. Here, the average particle size means a value obtained by observing from the direction in which the projected area is maximized to obtain the maximum particle size of individual particles and averaging the values.

上記ニッケル微粒子の形状としては、特に限定されるものではないが、[平均粒径/平均厚さ]比が10以上である板状粒子であることが好ましい。これによって、電気伝導性と金属光沢性に優れた導電ペースト用材料が得られる。すなわち、例えば、ポリマーペーストに金属微粒子を使用する場合、接触点を増やし、少ない金属含有量で所望の電気伝導性を得るためには、板状の金属微粒子を使用する場合が多い。また、電気伝導性以外の金属の優れた特性として求められる金属光沢は、自由電子により光が弾かれることによるが、板状の金属微粒子により、より一層強調される。   The shape of the nickel fine particle is not particularly limited, but is preferably a plate-like particle having an [average particle diameter / average thickness] ratio of 10 or more. As a result, a conductive paste material excellent in electrical conductivity and metallic luster can be obtained. That is, for example, when metal fine particles are used in the polymer paste, plate-shaped metal fine particles are often used in order to increase the contact point and obtain desired electrical conductivity with a small metal content. In addition, the metallic luster required as an excellent characteristic of metals other than electrical conductivity is more emphasized by the plate-like metal fine particles, although light is repelled by free electrons.

上記酸化物被覆ニッケル微粒子では、該粒子中のアルミニウムの含有割合は、0.07〜0.4重量%であり、0.07〜0.2重量%が好ましい。すなわち、アルミニウムの含有割合が0.07重量%未満では、被覆層が薄くなりすぎ、TG(熱重量変化)測定から求めた酸化開始温度が350℃未満となるため、耐酸化性の向上効果が不十分である。一方、アルミニウムの含有割合が0.4重量%を超えると、TG測定から求めた酸化開始温度が410℃を超え、耐酸化性の向上効果は増大するが、体積抵抗率が高くなりすぎてしまう。なお、アルミニウムの含有割合が0.2重量%以下では、被覆処理がなされていないニッケル微粒子並みの体積抵抗率が得られる。   In the oxide-coated nickel fine particles, the content ratio of aluminum in the particles is 0.07 to 0.4% by weight, and preferably 0.07 to 0.2% by weight. That is, when the aluminum content is less than 0.07% by weight, the coating layer becomes too thin, and the oxidation start temperature obtained from TG (thermogravimetric change) measurement is less than 350 ° C. It is insufficient. On the other hand, if the aluminum content exceeds 0.4% by weight, the oxidation start temperature obtained from TG measurement exceeds 410 ° C., and the effect of improving oxidation resistance increases, but the volume resistivity becomes too high. . When the aluminum content is 0.2% by weight or less, a volume resistivity equivalent to that of nickel fine particles that are not coated is obtained.

上記被覆層(b)の厚みとしては、特に限定されるものではなく、所望の耐酸化性と電気伝導性が得られるように調整されるが、1〜20nmが好ましく、1〜10nmがより好ましい。   The thickness of the coating layer (b) is not particularly limited, and is adjusted so as to obtain desired oxidation resistance and electrical conductivity, but is preferably 1 to 20 nm, and more preferably 1 to 10 nm. .

上記酸化物被覆ニッケル微粒子の圧粉抵抗測定の体積抵抗率としては、特に限定されるものではないが、粒子の相対充填密度が50%のときに、100〜10000μΩcmであることが好ましい。すなわち、電気伝導性の指標である体積抵抗率は、低いほうが好ましいが、未被覆のニッケル微粒子でも、200μΩcm以上のものが多くあり、100μΩcmが下限である。なお、一方、体積抵抗率が10000μΩcmを超えると、導電性粉末の用途としての使用が著しく限定される。   The volume resistivity in the measurement of dust resistance of the oxide-coated nickel fine particles is not particularly limited, but is preferably 100 to 10,000 μΩcm when the relative packing density of the particles is 50%. That is, the volume resistivity, which is an index of electrical conductivity, is preferably low, but there are many uncoated nickel fine particles of 200 μΩcm or more, and the lower limit is 100 μΩcm. On the other hand, when the volume resistivity exceeds 10,000 μΩcm, the use of the conductive powder as an application is remarkably limited.

上記酸化物被覆ニッケル微粒子において、特に限定されるものではないが、使用する芯粒子とのレーザー光回折散乱式粒度分析計で測定したメディアン径D50の差が10%以下であることが好ましい。なお、レーザー光回折散乱式粒度分析計としては、Microtrack HRA MODEL 9320−X100(Microtrack社製)が挙げられ、溶媒としては0.2重量%のヘキサメタリン酸水溶液を用いることが好ましい。これによって、被覆層の層厚が均一な連続膜が形成され、導電ペースト用材料として望ましい微粒子が得られる。すなわち、導電ペーストの各用途の要求特性に依存するものであるが、基本的には原料である金属微粒子一つ一つを被覆し、粒子が分散した状態にするのが望ましいためである。   The oxide-coated nickel fine particles are not particularly limited, but the difference in median diameter D50 measured with a laser light diffraction / scattering particle size analyzer from the core particles used is preferably 10% or less. An example of the laser light diffraction / scattering particle size analyzer is Microtrack HRA MODEL 9320-X100 (manufactured by Microtrack), and a 0.2% by weight aqueous hexametaphosphate solution is preferably used as the solvent. As a result, a continuous film having a uniform coating layer thickness is formed, and fine particles desirable as a conductive paste material can be obtained. That is, although it depends on the required characteristics of each use of the conductive paste, basically, it is desirable to coat each of the metal fine particles as the raw material so that the particles are dispersed.

2.酸化物被覆ニッケル微粒子の製造方法
本発明の酸化物被覆ニッケル微粒子の製造方法としては、特に限定されるものではないが、例えば、ニッケル微粒子を含む水性懸濁液中に、アルミニウムの含有割合が酸化物被覆ニッケル微粒子全量に対して0.07〜0.4重量%となるに十分な量のアルミニウム塩と尿素とを含む水溶液を、30〜100℃で加熱処理したものを供給して、アルミニウム水酸化物からなる被覆層を有するニッケル微粒子を形成する工程(A)、前記被覆層を有するニッケル微粒子を固液分離して、乾燥処理を行う工程(B)、及び、前記乾燥処理後の被覆層を有するニッケル微粒子を還元雰囲気下に200〜800℃で加熱して、前記アルミニウム水酸化物を熱分解する工程(C)、を含むことを特徴とする。これによって、耐酸化性と電気伝導性に優れた特性を有する酸化物被覆ニッケル微粒子が効率的に得られる。
2. Method for producing oxide-coated nickel fine particles The method for producing oxide-coated nickel fine particles of the present invention is not particularly limited. For example, in an aqueous suspension containing nickel fine particles, the aluminum content is oxidized. Supplied with an aqueous solution containing an aluminum salt and urea in an amount sufficient to be 0.07 to 0.4% by weight based on the total amount of the object-coated nickel fine particles, and heated at 30 to 100 ° C. A step (A) of forming nickel fine particles having a coating layer made of an oxide, a step (B) of solid-liquid separating the nickel fine particles having the coating layer and performing a drying treatment, and a coating layer after the drying treatment A step (C) of heating the nickel fine particles having 200 to 200 to 800 ° C. in a reducing atmosphere to thermally decompose the aluminum hydroxide. As a result, oxide-coated nickel fine particles having characteristics excellent in oxidation resistance and electrical conductivity can be obtained efficiently.

上記製造方法の工程(A)は、ニッケル微粒子を含む水性懸濁液中に、アルミニウムの含有割合が酸化物被覆ニッケル微粒子全量に対して0.07〜0.4重量%となるに十分な量のアルミニウム塩と尿素とを含む水溶液を、30〜100℃で加熱処理したものを供給して、アルミニウム水酸化物からなる被覆層を有するニッケル微粒子を形成する工程である。   Step (A) of the above production method is an amount sufficient for the aluminum content ratio to be 0.07 to 0.4% by weight based on the total amount of the oxide-coated nickel fine particles in the aqueous suspension containing the nickel fine particles. This is a step of forming nickel fine particles having a coating layer made of an aluminum hydroxide by supplying an aqueous solution containing an aluminum salt and urea heated at 30 to 100 ° C.

上記工程(A)において、まず、アルミニウムの含有割合が酸化物被覆ニッケル微粒子全量に対して0.07〜0.4重量%となるに十分な量のアルミニウム塩と尿素を含む水溶液を30〜100℃の温度に加熱処理して、コート液を準備する。なお、アルミニウム塩は被覆剤として、尿素は塩基として用いられる。ここで、尿素の添加と前記温度の加熱により、水溶液中のアルミニウム塩の水酸化を進めることができる。なお、加熱後のコート液は透明であり、微粒子の晶出は認められない。ここで、アルミニウム塩と尿素を含む水溶液中のアルミニウム塩と尿素の濃度は、特に限定されるものではないが、例えばそれぞれ、0.007〜0.14mol/Lと0.9〜18g/Lが好ましい。   In the step (A), first, an aqueous solution containing an aluminum salt and urea in an amount sufficient for the aluminum content to be 0.07 to 0.4% by weight based on the total amount of the oxide-coated nickel fine particles is 30 to 100. A coating solution is prepared by heat treatment at a temperature of ° C. Aluminum salt is used as a coating agent, and urea is used as a base. Here, hydroxylation of the aluminum salt in the aqueous solution can be promoted by addition of urea and heating at the above temperature. The coating solution after heating is transparent and no crystallization of fine particles is observed. Here, the concentration of the aluminum salt and urea in the aqueous solution containing the aluminum salt and urea is not particularly limited, but for example, 0.007 to 0.14 mol / L and 0.9 to 18 g / L, respectively. preferable.

次いで、得られたコート液を懸濁液中に供給すると、ニッケル微粒子上にアルミニウム水酸化物の被覆層が形成される。ここで、コート液の懸濁液への供給割合としては、酸化物被覆ニッケル微粒子全量に対して0.07〜0.4重量%となるに十分な量が選ばれる。なお、アルミニウム水酸化物を形成するための水酸基は水から供給される。この際、ニッケル微粒子と水の重量比としては、特に限定されるものではないが、水酸基を供給するのに十分な水が必要である。   Next, when the obtained coating liquid is supplied into the suspension, a coating layer of aluminum hydroxide is formed on the nickel fine particles. Here, as a supply ratio to the suspension of the coating liquid, an amount sufficient to be 0.07 to 0.4% by weight with respect to the total amount of the oxide-coated nickel fine particles is selected. In addition, the hydroxyl group for forming aluminum hydroxide is supplied from water. At this time, the weight ratio of the nickel fine particles to water is not particularly limited, but sufficient water is required to supply the hydroxyl group.

また、上記方法では、被覆の速度が緩やかであるため、ニッケル微粒子同士の凝集が起きにくい。これにより、芯粒子とのレーザー光回折散乱式粒度分析計で測定したメディアン径D50の差が、小さくなる。すなわち、アルミニウム水酸化物の被覆は懸濁液を攪拌しながら行うが、あまり急激に被覆すると、ニッケル微粒子間の接触点に堆積する水酸化物量が多くなり、結果として、接触点の強度が大きくなり、ニッケル微粒子同士が凝集している状態になってしまう。   Further, in the above method, since the coating speed is slow, aggregation of the nickel fine particles hardly occurs. Thereby, the difference of the median diameter D50 measured with the laser beam diffraction scattering type particle size analyzer with a core particle becomes small. That is, the aluminum hydroxide coating is performed while stirring the suspension, but if the coating is performed too rapidly, the amount of hydroxide deposited at the contact points between the nickel fine particles increases, resulting in a high strength at the contact points. As a result, the nickel fine particles are aggregated.

上記工程(A)で用いるニッケル微粒子としては、板状の酸化物被覆ニッケル微粒子を得る場合には、[平均粒径/平均厚さ]比が10以上の板状粒子を用いることが好ましい。すなわち、得られる酸化物被覆ニッケル微粒子の形状は、主として芯粒子の形状に依存する。ここで、平均厚さは、板状粉を樹脂に埋め込み断面を研磨し、垂直に埋め込まれている粒子を選択して断面をSEMにより観察して求める。ニッケル微粒子の平均粒径は、特に限定されるものではないが、0.1〜25μmが好ましい。一方、平均粒径を考慮すると、[平均粒径/平均厚さ]比が50を超える板状粒子を用いると、板状粒子の強度が低く、粒子が変形することがあり好ましくない。   As the nickel fine particles used in the step (A), when obtaining plate-like oxide-coated nickel fine particles, it is preferable to use plate-like particles having an [average particle diameter / average thickness] ratio of 10 or more. That is, the shape of the resulting oxide-coated nickel fine particles mainly depends on the shape of the core particles. Here, the average thickness is obtained by embedding plate powder in a resin, polishing the cross section, selecting particles embedded vertically, and observing the cross section with an SEM. The average particle diameter of the nickel fine particles is not particularly limited, but is preferably 0.1 to 25 μm. On the other hand, considering the average particle size, it is not preferable to use plate-like particles having an [average particle size / average thickness] ratio of more than 50 because the strength of the plate-like particles is low and the particles may be deformed.

上記工程(A)で用いるアルミニウム塩としては、特に限定されるものではないが、硫酸アルミニウム又は硝酸アルミニウムが挙げられる。   Although it does not specifically limit as an aluminum salt used at the said process (A), Aluminum sulfate or aluminum nitrate is mentioned.

上記工程(A)において、ニッケル微粒子を含む水性懸濁液中の粒子の分散性を向上させるために、特に限定されるものではないが、ヘキサメタリン酸ナトリウムを添加することが好ましい。これにより、ビーカー等の反応容器内壁へのアルミニウム水酸化物の付着も減少するので操業上も好ましい。なお。ヘキサメタリン酸ナトリウムの添加量としては、水に対して0.01〜0.2重量%が好ましい。すなわち、0.01重量%未満では、粒子の分散性の向上効果が不十分であり、一方、0.2重量%を超えると、それ以上の効果の向上が見られない。   In the step (A), in order to improve the dispersibility of the particles in the aqueous suspension containing the nickel fine particles, although not particularly limited, it is preferable to add sodium hexametaphosphate. Thereby, since the adhesion of aluminum hydroxide to the inner wall of the reaction vessel such as a beaker is also reduced, it is preferable from the viewpoint of operation. Note that. The addition amount of sodium hexametaphosphate is preferably 0.01 to 0.2% by weight with respect to water. That is, when the amount is less than 0.01% by weight, the effect of improving the dispersibility of the particles is insufficient. On the other hand, when the amount exceeds 0.2% by weight, no further improvement in the effect is observed.

上記製造方法の工程(B)は、被覆層を有するニッケル微粒子を固液分離して、乾燥処理を行う工程である。ここで、固液分離の方法としては、特に限定されるものではなく、通常のろ過方法が用いられる。また、乾燥処理の方法としては、特に限定されるものではないが、特に金属光沢が必要とされる場合、通常の真空乾燥機等により非酸化状態において100℃以下の温度で水分を除去する方法を用いることが好ましい。   Step (B) of the above production method is a step of subjecting the nickel fine particles having the coating layer to solid-liquid separation and performing a drying treatment. Here, the solid-liquid separation method is not particularly limited, and a normal filtration method is used. Further, the method for the drying treatment is not particularly limited, but in particular, when metallic luster is required, a method of removing moisture at a temperature of 100 ° C. or less in a non-oxidized state by a normal vacuum dryer or the like. Is preferably used.

上記製造方法の工程(C)は、前記乾燥処理後の被覆層を有するニッケル微粒子を還元雰囲気下に200〜800℃で加熱して、前記アルミニウム水酸化物を熱分解する工程である。これにより、ニッケル微粒子からなる芯粒子と、該芯粒子を被覆するアルミニウムを主成分として含む酸化物からなる被覆層とから構成される酸化物被覆ニッケル微粒子が得られる。   Step (C) of the production method is a step of thermally decomposing the aluminum hydroxide by heating the nickel fine particles having the coating layer after the drying treatment at 200 to 800 ° C. in a reducing atmosphere. Thereby, oxide-coated nickel fine particles composed of core particles made of nickel fine particles and a coating layer made of an oxide containing aluminum as a main component covering the core particles are obtained.

ここで、還元雰囲気下で熱処理することが好ましい。すなわち、大気又は不活性ガス雰囲気下で熱処理すると、大気中の酸素及びアルミニウム水酸化物から発生する水蒸気中の酸素により酸化される。また、加熱温度としては、200〜800℃の温度で行うことが好ましい。すなわち、温度が200℃未満では、アルミニウム水酸化物の分解及び脱水反応が不十分であり、導電ペーストとして用いる際に悪影響を及ぼす可能性がある。一方、温度が800℃を超えると、被覆層の割合にもよるが酸化物被覆ニッケル微粒子間での焼結が無視できなくなる。   Here, heat treatment is preferably performed in a reducing atmosphere. That is, when heat treatment is performed in the atmosphere or in an inert gas atmosphere, it is oxidized by oxygen in the atmosphere and oxygen in water vapor generated from aluminum hydroxide. Moreover, as heating temperature, it is preferable to carry out at the temperature of 200-800 degreeC. That is, when the temperature is less than 200 ° C., the decomposition and dehydration reaction of the aluminum hydroxide is insufficient, and there is a possibility that it may have an adverse effect when used as a conductive paste. On the other hand, when the temperature exceeds 800 ° C., sintering between the oxide-coated nickel fine particles cannot be ignored, depending on the ratio of the coating layer.

以上の製造方法により、層厚が均一な連続膜からなるアルミニウムを主成分として含む酸化物からなる被覆層とニッケル微粒子からなる酸化物被覆ニッケル微粒子が低コストで得られる。なお、酸化物被覆層の厚みを適切に薄くしたものでは、耐酸化性を有しながら、高い電気伝導性を有する微粒子が得られる。   By the manufacturing method described above, a coating layer made of an oxide containing aluminum as a main component and made of a continuous film having a uniform layer thickness and oxide-coated nickel fine particles made of nickel fine particles can be obtained at low cost. In addition, when the thickness of the oxide coating layer is appropriately reduced, fine particles having high electrical conductivity while having oxidation resistance can be obtained.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いたアルミニウム(Al)及び尿素の分析、ならびに圧粉抵抗測定による体積抵抗率、芯粒子の平均粒径と平均厚さ、及び酸化開始温度の評価方法は、以下の通りである。
(1)Alの分析:ICP発光分析法で行った。
(2)圧粉抵抗測定による体積抵抗率の測定:圧粉抵抗測定機(三菱化学(株)製 PD−51)で行った。
(3)芯粒子の平均粒径の測定:FE‐SEM((株)日立製作所製、FE−SEM S−4700)により観察して求めた。
(4)酸化開始温度の測定:TG測定を大気気流中で行い、重量が増加し始めて、0.1%増加したときの温度を酸化開始温度と定義し、その温度を求めた。この温度が高い程、耐酸化性に優れているといえる。
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. In addition, the analysis methods of aluminum (Al) and urea used in Examples and Comparative Examples, and the volume resistivity by the dust resistance measurement, the average particle diameter and average thickness of the core particles, and the evaluation method of the oxidation start temperature are as follows: It is as follows.
(1) Analysis of Al: The analysis was performed by ICP emission analysis.
(2) Measurement of volume resistivity by dust resistance measurement: It was carried out with a dust resistance measuring machine (PD-51 manufactured by Mitsubishi Chemical Corporation).
(3) Measurement of average particle diameter of core particles: It was determined by observing with FE-SEM (manufactured by Hitachi, Ltd., FE-SEM S-4700).
(4) Measurement of oxidation start temperature: TG measurement was performed in an air stream, and the temperature when the weight began to increase and increased by 0.1% was defined as the oxidation start temperature, and the temperature was determined. It can be said that the higher the temperature, the better the oxidation resistance.

(実施例1)
まず、Al(SO濃度0.028mol/L、及び尿素濃度3.6g/Lの水溶液からなるコート液を作製し、0.4μmのメンブレンフィルターで吸引濾過しゴミを取り除いた。次いで、その水溶液をオーブン中で100℃にて2時間保持した後、室温に取り出し急冷した。
次に、平均粒径20μmのニッケル微粒子(INCO社製、225)1.71gと、純水180mLと、純水の0.02重量%のヘキサメタリン酸ナトリウムとからなる懸濁液を作製した。
この懸濁液を攪拌機により200rpmで攪拌しながら、前記コート液11.25mLを0.6mL/分の速度で供給した。供給終了後50分間保持した後、吸引ろ過し、真空乾燥機により60℃で乾燥した。
得られたアルミニウム水酸化物で被覆されたニッケル微粒子を、水素0.2L/分、及び窒素9.8L/分の混合雰囲気中で10℃/分の速度で700℃まで昇温した後、60℃まで炉内で冷却して、酸化物被覆ニッケル微粒子を得た。
その後、得られた酸化アルミニウム被覆ニッケル微粒子のAl品位、及び酸化開始温度を求めた。また、断面のTEM観察を行った。その結果、Al品位は0.34重量%であった。また、酸化開始温度は384℃であった。また、図1に、断面のTEM像を示す。図1より、約10〜20nmの厚みで均一に被覆されていることが分かる。
Example 1
First, a coating solution composed of an aqueous solution having an Al 2 (SO 4 ) 3 concentration of 0.028 mol / L and a urea concentration of 3.6 g / L was produced, and suction filtered through a 0.4 μm membrane filter to remove dust. The aqueous solution was then kept in an oven at 100 ° C. for 2 hours, and then taken out to room temperature and rapidly cooled.
Next, a suspension composed of 1.71 g of nickel fine particles having an average particle diameter of 20 μm (manufactured by INCO, 225), 180 mL of pure water, and 0.02% by weight of sodium hexametaphosphate with pure water was prepared.
While the suspension was stirred at 200 rpm with a stirrer, 11.25 mL of the coating solution was supplied at a rate of 0.6 mL / min. After maintaining the supply for 50 minutes, the solution was suction filtered and dried at 60 ° C. with a vacuum dryer.
After the nickel fine particles coated with the obtained aluminum hydroxide were heated to 700 ° C. at a rate of 10 ° C./min in a mixed atmosphere of hydrogen 0.2 L / min and nitrogen 9.8 L / min, It cooled in the furnace to 0 degreeC, and the oxide covering nickel fine particle was obtained.
Thereafter, the Al quality of the obtained aluminum oxide-coated nickel fine particles and the oxidation start temperature were determined. Moreover, TEM observation of the cross section was performed. As a result, the Al quality was 0.34% by weight. Moreover, the oxidation start temperature was 384 degreeC. FIG. 1 shows a TEM image of a cross section. From FIG. 1, it can be seen that the film is uniformly coated with a thickness of about 10 to 20 nm.

(実施例2)
懸濁液のニッケル微粒子が10.28g、純水が1080mLであること、及びコート液67.5mLを3.6mL/分の速度で供給したこと以外は実施例1と同様に行ない、その後、得られた酸化アルミニウム被覆ニッケル微粒子のAl品位、酸化開始温度、及び圧粉抵抗測定による体積抵抗率を求めた。その結果、Al品位は0.28重量%であった。また、酸化開始温度は382℃であった。また、粒子の相対充填密度50%における体積抵抗率は約560μΩcmであった。
(Example 2)
The same procedure as in Example 1 was conducted except that the nickel fine particles in the suspension were 10.28 g, the pure water was 1080 mL, and the coating liquid 67.5 mL was supplied at a rate of 3.6 mL / min. The Al quality of the obtained aluminum oxide-coated nickel fine particles, the oxidation start temperature, and the volume resistivity measured by dust resistance measurement were obtained. As a result, the Al quality was 0.28% by weight. The oxidation start temperature was 382 ° C. Further, the volume resistivity at a relative packing density of 50% of the particles was about 560 μΩcm.

(実施例3)
懸濁液のニッケル微粒子が200g、純水が8000mLであること、及びコート液1300mLを69mL/分の速度で供給したこと以外は実施例1と同様に行ない、その後、得られた酸化アルミニウム被覆ニッケル微粒子のAl品位、酸化開始温度、及び圧粉抵抗測定による体積抵抗率を求めた。その結果、Al品位は0.17重量%であった。また、酸化開始温度は408℃であった。また、粒子の相対充填密度50%における体積抵抗率は約260μΩcmであった。
(Example 3)
The same procedure as in Example 1 was performed except that the nickel fine particles in the suspension were 200 g, the pure water was 8000 mL, and the coating solution 1300 mL was supplied at a rate of 69 mL / min. The volume resistivity was determined by measuring the Al quality of the fine particles, the oxidation start temperature, and the dust resistance measurement. As a result, the Al quality was 0.17% by weight. The oxidation start temperature was 408 ° C. The volume resistivity at a relative packing density of 50% was about 260 μΩcm.

(実施例4)
懸濁液のニッケル微粒子が200g、純水が8000mLであること、及びコート液650mLを69mL/分の速度で供給したこと以外は実施例1と同様に行ない、その後、得られた酸化アルミニウム被覆ニッケル微粒子のAl品位、酸化開始温度、及び圧粉抵抗測定による体積抵抗率を求めた。その結果、Al品位は0.09重量%であった。また、酸化開始温度は382℃であった。また、粒子の相対充填密度50%における体積抵抗率は約190μΩcmであった。
(Example 4)
The same procedure as in Example 1 was carried out except that the nickel fine particles in the suspension were 200 g, the pure water was 8000 mL, and the coating liquid 650 mL was supplied at a rate of 69 mL / min, and then the aluminum oxide-coated nickel obtained The volume resistivity was determined by measuring the Al quality of the fine particles, the oxidation start temperature, and the dust resistance measurement. As a result, the Al quality was 0.09% by weight. The oxidation start temperature was 382 ° C. The volume resistivity at a relative packing density of 50% was about 190 μΩcm.

(比較例1)
実施例1〜4で用いたニッケル微粒子を用いて、被覆処理を行わないで酸化開始温度と粒子の相対充填密度50%における体積抵抗率を測定した。その結果、酸化開始温度は341℃であった。また、粒子の相対充填密度50%における体積抵抗率は約260μΩcmであった。
(Comparative Example 1)
Using the nickel fine particles used in Examples 1 to 4, the oxidation resistivity was measured and the volume resistivity at a relative packing density of 50% was measured without performing the coating treatment. As a result, the oxidation start temperature was 341 ° C. The volume resistivity at a relative packing density of 50% was about 260 μΩcm.

(比較例2)
懸濁液のニッケル微粒子が200g、純水が8000mLであること、及びコート液2600mLを69mL/分の速度で供給したこと以外は実施例1と同様に行ない、その後、得られた酸化アルミニウム被覆ニッケル微粒子のAl品位、酸化開始温度、及び圧粉抵抗測定による体積抵抗率を求めた。その結果、Al品位は0.05重量%であった。また、酸化開始温度は303℃であった。また、粒子の相対充填密度50%における体積抵抗率は約160μΩcmであった。
(Comparative Example 2)
The same procedure as in Example 1 was performed except that the nickel fine particles in the suspension were 200 g, the pure water was 8000 mL, and the coating solution 2600 mL was supplied at a rate of 69 mL / min. Thereafter, the obtained aluminum oxide-coated nickel The volume resistivity was determined by measuring the Al quality of the fine particles, the oxidation start temperature, and the dust resistance measurement. As a result, the Al quality was 0.05% by weight. The oxidation start temperature was 303 ° C. Further, the volume resistivity at a relative packing density of 50% of the particles was about 160 μΩcm.

以上より、実施例1〜4では、アルミニウムの含有割合が耐酸化性と電気伝導性において十分な量の所定のコート液及び所定の懸濁液を用いて本発明の方法に従って被覆処理が行われたので、所望のアルミニウム含有割合が得られ、使用したニッケル微粒子と同等の電気伝導性を有し、かつ耐酸化性が高い酸化物被覆ニッケル微粒子が得られることが分かる。これに対して、比較例1では被覆処理がなされず、又、比較例2では被覆処理がこれらの条件に合わないので、得られたニッケル微粒子において、所望のアルミニウム含有割合が得られず、酸化開始温度又は電気伝導性において満足すべき結果が得られないことが分かる。   As described above, in Examples 1 to 4, the coating treatment is performed according to the method of the present invention using a predetermined coating liquid and a predetermined suspension with a sufficient amount of aluminum in oxidation resistance and electrical conductivity. Therefore, it can be seen that a desired aluminum content ratio is obtained, and oxide-coated nickel fine particles having electric conductivity equivalent to that of the used nickel fine particles and high oxidation resistance can be obtained. In contrast, in Comparative Example 1, no coating treatment was performed, and in Comparative Example 2, since the coating treatment did not meet these conditions, the desired aluminum content ratio was not obtained in the obtained nickel fine particles, and oxidation was not performed. It can be seen that satisfactory results are not obtained in the starting temperature or electrical conductivity.

以上より明らかなように、本発明の酸化物被覆ニッケル微粒子とその製造方法は、特に金属微粒子を用いる回路形成等の電子部品用の導電ペースト、及び金属光沢性顔料分野で利用される。   As is clear from the above, the oxide-coated nickel fine particles and the method for producing the same of the present invention are used particularly in the field of conductive pastes for electronic parts such as circuit formation using metal fine particles, and metal glossy pigments.

実施例1で得られた酸化アルミニウム被覆ニッケル微粒子の断面TEM像を表す図である(撮影倍率10万倍)。It is a figure showing the cross-sectional TEM image of the aluminum oxide coating nickel fine particle obtained in Example 1 (imaging magnification of 100,000 times).

Claims (3)

ニッケル微粒子からなる芯粒子(a)と、芯粒子(a)の表面上に形成された連続膜からなるアルミニウムを主成分として含む酸化物からなる被覆層(b)とから構成され、該アルミニウムの含有割合が酸化物被覆ニッケル微粒子全量に対して0.07〜0.4重量%である酸化物被覆ニッケル微粒子の製造方法であって、
ニッケル微粒子を含む水性懸濁液中に、アルミニウムの含有割合が酸化物被覆ニッケル微粒子全量に対して0.07〜0.4重量%となるに十分な量のアルミニウム塩と尿素とを含む水溶液を、30〜100℃で加熱処理したものを供給して、アルミニウム水酸化物からなる被覆層を有するニッケル微粒子を形成する工程(A)、
前記被覆層を有するニッケル微粒子を固液分離して、乾燥処理を行う工程(B)、及び、
前記乾燥処理後の被覆層を有するニッケル微粒子を還元雰囲気下に200〜800℃で加熱して、前記アルミニウム水酸化物を熱分解する工程(C)、
を含むことを特徴とする酸化物被覆ニッケル微粒子の製造方法。
A core particle (a) made of nickel fine particles, and a coating layer (b) made of an oxide containing as a main component aluminum made of a continuous film formed on the surface of the core particle (a). A method for producing oxide-coated nickel fine particles having a content ratio of 0.07 to 0.4% by weight based on the total amount of oxide-coated nickel fine particles,
In an aqueous suspension containing nickel fine particles, an aqueous solution containing an aluminum salt and urea in an amount sufficient for the aluminum content to be 0.07 to 0.4% by weight based on the total amount of the oxide-coated nickel fine particles. Supplying the heat-treated one at 30 to 100 ° C. to form nickel fine particles having a coating layer made of aluminum hydroxide (A),
A step (B) of solid-liquid separating the nickel fine particles having the coating layer and performing a drying treatment; and
Heating the nickel fine particles having the coating layer after the drying treatment in a reducing atmosphere at 200 to 800 ° C. to thermally decompose the aluminum hydroxide (C),
A method for producing oxide-coated nickel fine particles, comprising:
前記アルミニウム塩は、硫酸アルミニウム又は硝酸アルミニウムであることを特徴とする請求項に記載の酸化物被覆ニッケル微粒子の製造方法。 2. The method for producing oxide-coated nickel fine particles according to claim 1 , wherein the aluminum salt is aluminum sulfate or aluminum nitrate. 前記懸濁液中に、ヘキサメタリン酸ナトリウムを添加することを特徴とする請求項又はに記載の酸化物被覆ニッケル微粒子の製造方法。 The method for producing oxide-coated nickel fine particles according to claim 1 or 2 , wherein sodium hexametaphosphate is added to the suspension.
JP2007232453A 2006-09-11 2007-09-07 Oxide-coated nickel fine particles and method for producing the same Expired - Fee Related JP5034796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007232453A JP5034796B2 (en) 2006-09-11 2007-09-07 Oxide-coated nickel fine particles and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006245058 2006-09-11
JP2006245058 2006-09-11
JP2007232453A JP5034796B2 (en) 2006-09-11 2007-09-07 Oxide-coated nickel fine particles and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012102097A Division JP5440647B2 (en) 2006-09-11 2012-04-27 Oxide coated nickel fine particles

Publications (2)

Publication Number Publication Date
JP2008095184A JP2008095184A (en) 2008-04-24
JP5034796B2 true JP5034796B2 (en) 2012-09-26

Family

ID=39378341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007232453A Expired - Fee Related JP5034796B2 (en) 2006-09-11 2007-09-07 Oxide-coated nickel fine particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP5034796B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11887781B2 (en) 2014-04-01 2024-01-30 Forge Nano, Inc. Energy storage devices having coated passive particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6732658B2 (en) * 2014-04-01 2020-07-29 ニューマティコート テクノロジーズ リミティド ライアビリティ カンパニー Passive electronic components containing coated nanoparticles and methods of making and using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4076107B2 (en) * 1999-03-31 2008-04-16 三井金属鉱業株式会社 Method for producing composite nickel fine powder
KR100528330B1 (en) * 2003-02-19 2005-11-16 삼성전자주식회사 Method for coating surface of inorganic powder and coated inorganic powder manufactured using the same
JP4859362B2 (en) * 2004-11-04 2012-01-25 三井金属鉱業株式会社 Flake nickel powder, method for producing the same, and conductive paste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11887781B2 (en) 2014-04-01 2024-01-30 Forge Nano, Inc. Energy storage devices having coated passive particles

Also Published As

Publication number Publication date
JP2008095184A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP7143223B2 (en) Copper powder, method for manufacturing stereolithographic object using the same, and stereolithographic object using copper
JP2017150086A (en) Silver coated copper alloy powder and manufacturing method therefor
WO2007040195A1 (en) Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
EP2311586A1 (en) Metal microparticle containing composition and process for production of the same
JP2006161081A (en) Silvered copper powder, its manufacturing method, and conductive paste
JP6224933B2 (en) Silver-coated copper alloy powder and method for producing the same
JP2006265585A (en) Method for producing copper powder and copper powder
WO2018181482A1 (en) Copper particles and manufacturing method therefor
Jung et al. Ultrasonic spray pyrolysis for air-stable copper particles and their conductive films
JP4182234B2 (en) Copper powder for conductive paste and method for producing the same
JP4614101B2 (en) Silver powder, method for producing the same, and conductive paste containing the silver powder
KR20180047524A (en) Heat pipe and it's wick containing Metal-Carbon composite material
JP4957465B2 (en) Oxide-coated copper fine particles and method for producing the same
JP5034796B2 (en) Oxide-coated nickel fine particles and method for producing the same
JP4666663B2 (en) Silver compound-coated copper powder, method for producing the silver compound-coated copper powder, storage method for the silver compound-coated copper powder, and conductive paste using the silver compound-coated copper powder
JP4701426B2 (en) Copper powder and copper powder manufacturing method
JP2006118032A (en) Flake copper powder provided with copper oxide coat layer, method for producing flake copper powder provided with copper oxide coat layer and conductive slurry comprising flake copper powder provided with copper oxide coat layer
JP5440647B2 (en) Oxide coated nickel fine particles
JP4164010B2 (en) Inorganic ultrafine particle coated metal powder and method for producing the same
JP4197151B2 (en) Two-layer coated copper powder, method for producing the two-layer coated copper powder, and conductive paste using the two-layer coated copper powder
JP5003648B2 (en) Method for producing oxide-coated copper fine particles
JP4150638B2 (en) Inorganic oxide-coated metal powder and method for producing the inorganic oxide-coated metal powder
JP2006210197A (en) Metal coating film and its formation method
JP2018028145A (en) Silver alloy powder and method for producing the same
JP5003668B2 (en) Method for producing oxide-coated copper fine particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5034796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees