JP4614101B2 - Silver powder, method for producing the same, and conductive paste containing the silver powder - Google Patents

Silver powder, method for producing the same, and conductive paste containing the silver powder Download PDF

Info

Publication number
JP4614101B2
JP4614101B2 JP2006126243A JP2006126243A JP4614101B2 JP 4614101 B2 JP4614101 B2 JP 4614101B2 JP 2006126243 A JP2006126243 A JP 2006126243A JP 2006126243 A JP2006126243 A JP 2006126243A JP 4614101 B2 JP4614101 B2 JP 4614101B2
Authority
JP
Japan
Prior art keywords
silver
silver powder
silver nanoparticles
nanoparticles
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006126243A
Other languages
Japanese (ja)
Other versions
JP2007297671A (en
Inventor
康男 柿原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2006126243A priority Critical patent/JP4614101B2/en
Publication of JP2007297671A publication Critical patent/JP2007297671A/en
Application granted granted Critical
Publication of JP4614101B2 publication Critical patent/JP4614101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、電子部品の実装や回路形成に好適な導電性材料用銀粉およびその製造方法に関する。   The present invention relates to silver powder for conductive materials suitable for mounting electronic components and circuit formation, and a method for producing the same.

近年、電子材料市場の方向性としては低温加熱において低抵抗値が得られる導電性ペーストが要求されている。ここで、導電性ペーストとは加熱により溶剤、分散剤を分解・飛散させ導電性粉末同士を焼結させる高温焼成タイプの導電性ペーストと、ポリマー中に導電性粉末を混合し、より低温の加熱によりポリマーを硬化させるとともに導電性粉末同士を接触させることで導電性を得る加熱硬化タイプの導電性ペーストのことである。加熱硬化タイプの導電性ペーストは導電性接着剤としても利用され、はんだ接合と同様な接合方法として開発が進められている。
低温加熱により低抵抗値を得るという要求に対して金属ナノ粒子を含有した上記の導電性ペーストが検討されている。特に銀ナノ粒子は銀のバルクの抵抗値が他の金属に比べて低く、またナノメートルサイズにより生じる融点降下現象により低温での焼結が可能なため、様々に検討されている。
In recent years, a conductive paste capable of obtaining a low resistance value at low temperature heating has been demanded as a direction of the electronic material market. Here, the conductive paste is a high-temperature firing type conductive paste that decomposes and disperses the solvent and dispersant by heating and sinters the conductive powder, and the conductive powder is mixed in the polymer, and the heating is performed at a lower temperature. Is a heat-curing type conductive paste that obtains conductivity by curing the polymer and bringing the conductive powders into contact with each other. Heat-curing type conductive paste is also used as a conductive adhesive and is being developed as a bonding method similar to solder bonding.
In response to the requirement to obtain a low resistance value by low-temperature heating, the above conductive paste containing metal nanoparticles has been studied. In particular, silver nanoparticles have been studied in various ways because they have a lower silver bulk resistance than other metals and can be sintered at a low temperature due to a melting point drop phenomenon caused by nanometer size.

銀ナノ粒子を原料に用いて導電性ペーストを調製し、回路配線や導電性薄膜を作製する方法例としては特開2002−299833号公報、特開2002−334618号公報、特開2004−273205号公報などが開示されている。   Examples of methods for preparing a conductive paste using silver nanoparticles as a raw material to produce a circuit wiring or a conductive thin film include Japanese Patent Laid-Open Nos. 2002-299833, 2002-334618, and 2004-273205. Publications and the like are disclosed.

ところで、導電性ペーストに使用される金属ナノ粒子は、通常は金属ナノ粒子の分散安定性を確保するために有機物の分散剤が付与されている。この分散剤により金属ナノ粒子は、高濃度においても長期にわたって粒子成長や焼結を起こすことなく溶液中で分散安定性を保つことが可能になる。   By the way, the metal nanoparticles used in the conductive paste are usually provided with an organic dispersant in order to ensure the dispersion stability of the metal nanoparticles. This dispersant makes it possible to maintain the dispersion stability of the metal nanoparticles in a solution without causing particle growth or sintering over a long period of time even at a high concentration.

しかしながら、この安定性を確保する分散剤は低温加熱においては金属ナノ粒子表面や金属中に残留して、焼結を妨げたり抵抗値を上げる要因となってしまう。金属ナノ粒子が分散した状態で、この分散剤を化学的処理や加熱などの物理的処理により取り除こうとすると、金属ナノ粒子は速やかに粒子成長や他の粒子と焼結をおこし、低温焼結性などの金属ナノ粒子の特徴を失ってしまう。そのため、金属ナノ粒子、特に、銀ナノ粒子を使った導電性ペーストでは、ナノメートルサイズによる融点降下現象というナノ粒子の特徴を十分に生かしつつ、分散剤が低温焼成時にすみやかに飛散・分解することで、銀中で残留して抵抗値を上げたり、焼結を妨げることのない銀ナノ粒子が要求されている。   However, the dispersant that ensures the stability remains on the surface of the metal nanoparticles or in the metal during low-temperature heating, which hinders sintering or increases the resistance value. If the metal nanoparticles are dispersed and this dispersant is removed by chemical treatment or physical treatment such as heating, the metal nanoparticles will rapidly grow and sinter with other particles, resulting in low-temperature sinterability. The characteristics of metal nanoparticles such as are lost. Therefore, in conductive pastes using metal nanoparticles, especially silver nanoparticles, the dispersion of the dispersing agent quickly disperses and decomposes during low-temperature firing, while taking full advantage of the nanometer feature of melting point depression due to nanometer size. Thus, there is a demand for silver nanoparticles that remain in silver and do not increase resistance or prevent sintering.

特開2002−299833号公報JP 2002-299833 A 特開2002−334618号公報JP 2002-334618 A 特開2004−273205号公報JP 2004-273205 A 特開2005−146408号公報JP-A-2005-146408

低温加熱において低抵抗値が得られる金属ナノ粒子、特に銀ナノ粒子を用いた導電性ペーストが要求されている。しかし、上述した分散安定性に寄与する分散剤が低温加熱時に銀中に残留して焼結を妨げたり抵抗値をあげる要因となってしまう。   There is a demand for conductive pastes using metal nanoparticles, particularly silver nanoparticles, which have a low resistance value at low temperature heating. However, the dispersant that contributes to the dispersion stability described above remains in the silver at the time of low-temperature heating and prevents sintering or increases the resistance value.

そこで、加熱時に分散剤と化学反応を起こして分散剤を除去する作用のある補足物質を導電性ペースト中に含有する方法が開示されている(特許文献1:特開2002−299833号公報、特許文献2:特開2002−334618号公報)。この手法では低温加熱において金属ナノ粒子表面から分散剤を取り除くという点では優れているが、反応後の物質や未分解の補足物質が残存し抵抗値を挙げる要因になってしまう。
導電性ペースト中に補足物資を加えず、分散剤の脱離を促す高沸点の有機溶媒を加えることで低温焼結性を向上する方法も開示されている(特許文献3:特開2004−273205号公報)。この場合、低温で分散剤を除去・飛散させる点で優れてはいるが、高沸点溶媒が含まれているため、加熱硬化タイプの導電性ペーストとして用いた場合には、加熱後、ペースト中に高沸点溶剤が残存してしまうことが懸念される。
Therefore, a method is disclosed in which a supplementary substance having a function of causing a chemical reaction with the dispersant during heating to remove the dispersant is contained in the conductive paste (Patent Document 1: Japanese Patent Laid-Open No. 2002-299833, Patent Document 2: JP-A-2002-334618). This method is excellent in that the dispersant is removed from the surface of the metal nanoparticles by low-temperature heating, but a substance after reaction or an undecomposed supplementary substance remains and becomes a factor for increasing the resistance value.
There is also disclosed a method for improving low-temperature sinterability by adding a high-boiling organic solvent that promotes the detachment of the dispersant without adding a supplementary material to the conductive paste (Patent Document 3: JP-A-2004-273205). Issue gazette). In this case, although it is excellent in terms of removing and scattering the dispersant at a low temperature, since it contains a high boiling point solvent, when used as a heat-curing type conductive paste, after heating, in the paste There is a concern that the high boiling point solvent may remain.

また、大きな銀粉の表面に銀ナノ粒子を析出した構造が開示されている(特許文献4:特開2005−146408号公報)。この手法では有機物量を大幅に減量することが可能である。しかし、この銀粉を導電性ペーストとして用いた場合、加熱時に銀粉同士が接近し、析出した銀ナノ粒子が他の銀粉表面により広い面積で接触する必要があるが、同手法に開示されている模式断面図では銀ナノ粒子は芯材となる銀粉の表面に点在しており、接触面積を広げ通電性を向上させるには十分とは言い難い構造をしている。
本発明は上記の課題を解決する、銀ナノ粒子の特性を生かしながら分散剤などの有機物を大幅に減量した導電性ペーストの材料として好適な導電性材料である銀粉を提供することにある。
Further, a structure in which silver nanoparticles are deposited on the surface of a large silver powder is disclosed (Patent Document 4: JP-A-2005-146408). This method can greatly reduce the amount of organic matter. However, when this silver powder is used as a conductive paste, the silver powders approach each other during heating, and the deposited silver nanoparticles need to come into contact with other silver powder surfaces over a larger area. In the cross-sectional view, the silver nanoparticles are scattered on the surface of the silver powder serving as the core material, and it has a structure that is not sufficient to expand the contact area and improve the electrical conductivity.
An object of the present invention is to provide a silver powder which is a conductive material suitable as a material for a conductive paste that significantly reduces the amount of organic substances such as a dispersant while taking advantage of the characteristics of silver nanoparticles.

本発明者らは銀ナノ粒子の分散剤を除去する過程を誠心誠意検討した結果、銀ナノ粒子を無機物の担体表面で自己組織化させた状態で、熱処理の過程で分散剤を徐々に取り除くことにより、従来の分散剤の除去法のように粒子同士が塊状に凝集することなく、結晶成長しつつも一次粒子の形骸を残しつつ、分散剤が除去され、最後に無機物の担体を化学的処理により取り除くことで、銀ナノ粒子が一次粒子の形骸を残したシート状構造の銀粉が得られることを見出した。
より詳しくは、粒度の良くそろった銀ナノ粒子の分散溶液と炭酸塩とを混合・粉砕した後焼成し、酸により炭酸塩を除去することで、従来の銀粉製造技術では得ることができない、銀ナノ粒子の一次粒子の形骸を残したシート状構造の銀粉を得ることが出来、上記の目的が達成されることを見出し、本発明を完成した。
As a result of sincerely examining the process of removing the dispersant for the silver nanoparticles, the present inventors gradually removed the dispersant during the heat treatment in a state where the silver nanoparticles were self-assembled on the surface of the inorganic carrier. Thus, the particles are not agglomerated as in the conventional dispersing agent removal method, but the dispersing agent is removed while leaving the primary particles in the form of crystal growth, and finally the inorganic carrier is chemically treated. It was found that a silver powder having a sheet-like structure in which silver nanoparticles remained in the form of primary particles was obtained by removing the above.
More specifically, a silver nanoparticle dispersion solution having a uniform particle size and a carbonate are mixed, pulverized and then baked, and the carbonate is removed with an acid, which cannot be obtained by conventional silver powder manufacturing technology. The present invention has been completed by finding that a silver powder having a sheet-like structure in which the shape of the primary particles of the nanoparticles is left can be obtained, and that the above object is achieved.

即ち、本発明は、銀ナノ粒子から構成される銀粉であって、銀ナノ粒子の一次粒子の平均粒径が200nm以下であり、銀粉が銀ナノ粒子の1次粒子の形骸を有したシート状の構造体であることを特徴とする銀粉である(本発明1)。   That is, the present invention is a silver powder composed of silver nanoparticles, wherein the average particle size of primary particles of the silver nanoparticles is 200 nm or less, and the silver powder has a form of primary particles of silver nanoparticles. It is a silver powder characterized by being a structure of the present invention (Invention 1).

また、本発明は、銀ナノ粒子が金、白金、パラジウム貴金属との合金構造を有している前記銀粉である(本発明2)。   Moreover, this invention is the said silver powder in which a silver nanoparticle has an alloy structure with gold | metal | money, platinum, and a palladium noble metal (invention 2).

また、本発明は、前記銀粉を含有した導電性ペーストである(本発明3)。   Moreover, this invention is the electrically conductive paste containing the said silver powder (this invention 3).

また、本発明は、粒子径の良くそろった銀ナノ粒子と炭酸塩結晶粒子とを混合・粉砕した後焼成し、酸により炭酸塩結晶粒子を除去し、銀ナノ粒子の一次粒子の形骸を残したシート状構造の銀粉を得ることを特徴とする前記銀粉の製造方法である(本発明4)。   In addition, the present invention is to mix and pulverize silver nanoparticles having a uniform particle size and carbonate crystal particles, calcinate, remove the carbonate crystal particles with an acid, and leave a primary particle form of silver nanoparticles. A silver powder having a sheet-like structure is obtained (Invention 4).

本発明で得られた銀ナノ粒子の一次粒子の形骸を残したシート状構造の銀粉は、銀ナノ粒子の低温焼結性という特徴を維持したまま、従来の銀ナノ粒子に比べて残存有機物が少ないので、導電性ペーストの導電性材料として好適である。   The silver powder having a sheet-like structure in which the shape of the primary particles of the silver nanoparticles obtained in the present invention is retained, while maintaining the characteristics of low-temperature sinterability of the silver nanoparticles, the remaining organic matter is less than the conventional silver nanoparticles. Since there are few, it is suitable as an electroconductive material of an electroconductive paste.

本発明の構成をより詳しく説明すれば次のとおりである。   The configuration of the present invention will be described in more detail as follows.

本発明に係る銀粉は、粒子径が200nm以下の銀ナノ粒子の一次粒子の形骸を維持したシート状の銀粉である。シート状の銀粉が積層構造を有していても良い。焼結が進行し、一次粒子の形骸がない構造体の場合には、銀ナノ粒子の低温焼結性が失われてしまうので、本発明の目的とする効果が得られない。しかし、一次粒子径の形骸の見られない構造体は通常のフレーク状の銀粉と変わりないため、本発明の目的とする効果を極端に阻害する量なければ同時に存在していても問題はない。   The silver powder according to the present invention is a sheet-like silver powder that maintains the shape of primary particles of silver nanoparticles having a particle diameter of 200 nm or less. Sheet-like silver powder may have a laminated structure. In the case of a structure in which sintering proceeds and there is no primary particle shape, the low-temperature sinterability of the silver nanoparticles is lost, so the intended effect of the present invention cannot be obtained. However, since the structure in which the structure of the primary particle size is not seen is the same as ordinary flaky silver powder, there is no problem even if it exists at the same time unless it is an amount that significantly inhibits the intended effect of the present invention.

本発明に係る銀粉は、銀ナノ粒子の一次粒子の形骸を有するものであるが、銀ナノ粒子が焼結して200nm以下の一次粒子を形成して、シート状に形成されたものである。   The silver powder according to the present invention has a shape of primary particles of silver nanoparticles, but the silver nanoparticles are formed into a sheet by sintering to form primary particles of 200 nm or less.

本発明の銀粉の調製時にシート状の構造体が崩れた構造体も得られるが、銀ナノ粒子の一次粒子の形骸を有した物であれば、本質的に銀ナノ粒子の特徴を有しているので、目的の特性を得ることが出来る。   Although a structure in which the sheet-like structure collapses during the preparation of the silver powder of the present invention is obtained, it is essentially a silver nanoparticle as long as it has a primary particle form of silver nanoparticles. Therefore, the desired characteristics can be obtained.

残存する有機物量(分散剤)は銀粉に対して3%以下である。このましくは2%以下である。より好ましくは1%以下である。   The amount of remaining organic matter (dispersant) is 3% or less with respect to the silver powder. This is preferably 2% or less. More preferably, it is 1% or less.

次に、本発明に係る銀粉の製造方法について述べる。   Next, a method for producing silver powder according to the present invention will be described.

粒度の良くそろった銀ナノ粒子の分散溶液と炭酸塩の結晶粒子とを溶剤を徐々に気化させながら混合すると、銀ナノ粒子は炭酸塩の結晶粒子表面で自己組織化膜を形成しながら付着していく。このようにして出来た銀ナノ粒子被覆炭酸塩粒子を加熱焼成していくと、自己組織化膜構造を維持しながら焼結が進んだ銀の膜が形成される。その後、塩酸などの無機酸、またはギ酸、酢酸などの有機酸により炭酸塩を炭酸ガスの発泡を伴いながら溶解させていくと、炭酸塩粒子表面に形成された銀の膜が剥離し、得られた銀の膜は銀ナノ粒子の一次粒子の形骸を残したシート状構造をしている。   When a dispersion solution of silver nanoparticles having a uniform particle size and carbonate crystal particles are mixed while gradually evaporating the solvent, the silver nanoparticles adhere while forming a self-assembled film on the surface of the carbonate crystal particles. To go. When the silver nanoparticle-coated carbonate particles thus produced are heated and fired, a silver film that has been sintered is formed while maintaining the self-assembled film structure. Then, when the carbonate is dissolved with foaming of carbon dioxide gas with inorganic acid such as hydrochloric acid or organic acid such as formic acid and acetic acid, the silver film formed on the surface of the carbonate particles is peeled off and obtained. The silver film has a sheet-like structure that leaves the primary particles of silver nanoparticles.

本発明における銀ナノ粒子は炭酸塩の結晶粒子表面で自己組織化膜を形成する銀ナノ粒子とその分散溶液であれば、特にその銀ナノ粒子の構造や分散剤、製造方法は限定されない。好ましくは400℃以下で溶剤および分散剤などの有機物が蒸発、分解・飛散する銀ナノ粒子の分散溶液を用いるのが良い。例えば、特開2005−36309号公報に記載の方法に従って調製された銀ナノ粒子の50%トルエン溶液を用いることが出来る。本銀ナノ粒子は公報の図にあるように自己組織化するほど粒子径が揃っている。   As long as the silver nanoparticles in the present invention are silver nanoparticles that form a self-assembled film on the surface of the carbonate crystal particles and a dispersion thereof, the structure, the dispersant, and the production method of the silver nanoparticles are not particularly limited. It is preferable to use a dispersion solution of silver nanoparticles in which organic substances such as a solvent and a dispersant are evaporated, decomposed and scattered at 400 ° C. or lower. For example, a 50% toluene solution of silver nanoparticles prepared according to the method described in JP-A-2005-36309 can be used. As the silver nanoparticles are self-assembled as shown in the figure of the publication, the particle diameters are aligned.

本発明の銀粉の製造に用いる銀ナノ粒子の一次粒子は、平均粒子径が3nm〜50nmが好ましい。一次粒子の平均粒子径が50nmを超える場合、銀ナノ粒子が自己組織化後の加熱過程において互いに低温焼結し、シート状の構造を取ることが難しい。好ましくは3nm〜30nmである。   The primary particles of the silver nanoparticles used for the production of the silver powder of the present invention preferably have an average particle size of 3 nm to 50 nm. When the average particle diameter of the primary particles exceeds 50 nm, it is difficult for the silver nanoparticles to sinter at a low temperature in the heating process after self-organization and take a sheet-like structure. Preferably, it is 3 nm to 30 nm.

また、銀ナノ粒子は合金構造をとっていても良い。特に耐マイグレーション特性をかね揃えたパラジウムや白金との銀合金ナノ粒子も用いることが出来る。   Further, the silver nanoparticles may have an alloy structure. In particular, silver alloy nanoparticles with palladium or platinum having migration resistance characteristics can also be used.

本発明の炭酸塩は酸により容易に溶解するものであれば特に限定されない。例えば、炭酸カルシウム、炭酸マグネシウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸アンモニウムなどである。   The carbonate of the present invention is not particularly limited as long as it is easily dissolved by an acid. For example, calcium carbonate, magnesium carbonate, sodium carbonate, sodium bicarbonate, ammonium carbonate and the like.

炭酸塩粒子は、銀ナノ粒子が炭酸塩粒子の粒子表面に被覆し自己組織化する比表面積を有するものであれば特に限定されるものではないが、炭酸塩粒子の平均粒子径は10μm以上が好ましく、より好ましくは100μm以上である。   The carbonate particles are not particularly limited as long as the silver nanoparticles have a specific surface area that is self-assembled by covering the surface of the carbonate particles, but the average particle size of the carbonate particles is 10 μm or more. Preferably, it is 100 μm or more.

銀ナノ粒子と炭酸塩の結晶粒子との混合方法は特に限定されず、炭酸塩の結晶粒子表面に自己組織膜を形成するような条件で混合されることが好ましい。溶剤としては例えば、トルエン、ベンゼン、ヘキサンなどが適当である。   The mixing method of the silver nanoparticles and the carbonate crystal particles is not particularly limited, and it is preferable that the silver nanoparticles and the carbonate crystal particles are mixed under conditions that form a self-organized film on the surface of the carbonate crystal particles. As the solvent, for example, toluene, benzene, hexane and the like are suitable.

また、銀ナノ粒子分散溶液と炭酸塩結晶粒子を混合した後、噴霧しながら溶剤の乾燥と銀ナノ粒子の炭酸塩結晶粒子表面への被着を行っても良い。   Further, after mixing the silver nanoparticle dispersion solution and the carbonate crystal particles, the solvent may be dried and the silver nanoparticles may be deposited on the surface of the carbonate crystal particles while spraying.

銀ナノ粒子と炭酸塩の結晶粒子との重量混合比率は1:1〜1:1000である。好ましくは1:10〜1:1000であり、更に好ましくは1:10〜1:100である。   The weight mixing ratio of the silver nanoparticles to the carbonate crystal particles is 1: 1 to 1: 1000. Preferably it is 1:10 to 1: 1000, More preferably, it is 1:10 to 1: 100.

銀ナノ粒子が被覆された炭酸塩の結晶粒子を焼成する条件は、銀ナノ粒子が自己組織化膜をある程度維持しながら粒子成長と粒子同士の焼結が生じる条件下で行う。この条件は用いる銀ナノ粒子によって温度と焼成時間の最適な条件が異なるため、その都度焼結状態を確認しながら適切な条件を用いれば良い。例えば、特開2005−36309号公報に記載の方法に従って調製された銀ナノ粒子の50%トルエン溶液と炭酸水素ナトリウムを用いた場合は、200℃〜300℃で大気中30分〜1時間の加熱により目的の銀ナノ粒子の1次粒子の形骸を残したシート状構造の銀粉を得ることが出来る。   The conditions for firing the carbonate crystal particles coated with the silver nanoparticles are such that the silver nanoparticles maintain a self-assembled film to some extent while causing particle growth and particle sintering. Since the optimum conditions for the temperature and firing time differ depending on the silver nanoparticles used, appropriate conditions may be used while confirming the sintered state each time. For example, when a 50% toluene solution of silver nanoparticles prepared according to the method described in JP-A-2005-36309 and sodium hydrogen carbonate are used, heating is performed at 200 ° C. to 300 ° C. in the atmosphere for 30 minutes to 1 hour. Thus, a silver powder having a sheet-like structure in which the shape of primary particles of the target silver nanoparticles is left can be obtained.

焼成後の炭酸塩の結晶粒子の除去には、塩酸などの無機酸またはギ酸、酢酸などの有機酸を加えることで除去できる。続いて銀粉を洗浄、濾過、乾燥などの常法に従って回収することで銀ナノ粒子の1次粒子の形骸を残したシート状構造の銀粉を得ることが出来る。   Removal of the carbonate crystal particles after firing can be removed by adding an inorganic acid such as hydrochloric acid or an organic acid such as formic acid or acetic acid. Subsequently, by collecting the silver powder according to a conventional method such as washing, filtration, and drying, it is possible to obtain a silver powder having a sheet-like structure in which the shape of the primary particles of the silver nanoparticles is left.

得られた銀ナノ粒子の一次粒子の形骸を残したシート状構造の銀粉は、通常用いられるポリマーバインダー、溶剤と混合してペースト化することで容易に導電性ペーストを調製することが出来る。
ポリマーバインダーとしては、エポキシアクリレート、アクリル樹脂、エポキシ樹脂、フェノール樹脂、ポリエステル樹脂、ポリイミド、ポリ酢酸ビニルなどを用いることが出来る。溶剤としてはビチルセロソルブアセテート、ベンジルアルコール、酢酸エチル、メチルエチルケトン、ブチルカルビトールなどを用いることが出来る。
また、得られた銀ナノ粒子の一次粒子の形骸を残したシート状の銀粉は通常の球形状の銀粉あるいはフレーク状の銀粉と混合して用いることが出来る。通常の球形状の銀粉あるいはフレーク状の銀粉と本発明で得られる銀ナノ粒子の一次粒子の形骸を残したシート状の銀粉との混合比は0.1〜1000:10である。好ましくは10〜100である。
本発明の銀粉を導電性ペーストにした場合、低温焼結性に優れるとともに銀粉同士の接触面積も増え、有機物成分の残存による抵抗値の上昇用因が少ないため、導電性ペーストの原料として好適である。
The silver powder having a sheet-like structure in which the resulting silver nanoparticle primary particle remains is mixed with a commonly used polymer binder and a solvent to form a paste, whereby a conductive paste can be easily prepared.
As the polymer binder, epoxy acrylate, acrylic resin, epoxy resin, phenol resin, polyester resin, polyimide, polyvinyl acetate, or the like can be used. As the solvent, bityl cellosolve acetate, benzyl alcohol, ethyl acetate, methyl ethyl ketone, butyl carbitol and the like can be used.
Further, the sheet-like silver powder that leaves the primary particle shape of the obtained silver nanoparticles can be used by mixing with ordinary spherical silver powder or flaky silver powder. The mixing ratio of the normal spherical silver powder or flaky silver powder and the sheet-like silver powder leaving the primary particles of the silver nanoparticles obtained in the present invention is 0.1 to 1000: 10. Preferably it is 10-100.
When the silver powder of the present invention is made into a conductive paste, it has excellent low-temperature sinterability and also increases the contact area between silver powders, and is less likely to increase the resistance value due to the remaining organic components. is there.

以下、実施例及び比較例によって本発明を具体的に説明するが、本発明はかかる事例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to this example.

実施例1
銀ナノ粒子のトルエン分散溶液を特開2005−36309号公報に記載の方法を参考に調製した。
即ち、ビーカーに硝酸銀(4.0g)、トルエン(50mL)、オレイルアミン(9.4g)を取り、室温か攪拌した。続いて、アスコルビン酸(8.3g)を加えて2時間攪拌した。反応溶液の色は黒みがかった黄色を呈していた。続いて、アセトンとメタノール−水混合溶液を用いて、銀ナノ粒子を凝集沈殿させ、上澄み溶液をデカンテーションにより取り除くことで余分な塩やアミンを取り除いた。精製操作を3回繰り返した後、凝集物を減圧乾燥させた。続いてトルエン(1.96g)を加えて銀ナノ粒子の50%分散溶液を調製した。透過型電子顕微鏡(50万倍)で観察したところ、銀ナノ粒子は平均粒子径8nmであった。
Example 1
A toluene dispersion solution of silver nanoparticles was prepared with reference to the method described in JP-A-2005-36309.
That is, silver nitrate (4.0 g), toluene (50 mL) and oleylamine (9.4 g) were placed in a beaker and stirred at room temperature. Subsequently, ascorbic acid (8.3 g) was added and stirred for 2 hours. The reaction solution had a blackish yellow color. Subsequently, silver nanoparticles were agglomerated and precipitated using a mixed solution of acetone and methanol-water, and the supernatant solution was removed by decantation to remove excess salts and amines. After the purification operation was repeated three times, the aggregate was dried under reduced pressure. Subsequently, toluene (1.96 g) was added to prepare a 50% dispersion of silver nanoparticles. When observed with a transmission electron microscope (500,000 times), the silver nanoparticles had an average particle diameter of 8 nm.

上記の方法で得られた銀ナノ粒子の50%トルエン溶液(0.4g)と炭酸水素ナトリウム(2g)とを乳鉢を用いて混合した。溶剤のトルエンは混合時に揮発させた。続いて、混合物を大気中250℃に設定した電気炉の中に投入し、30分加熱焼成した。室温まで冷却後、30%酢酸水溶液の中に投入し、炭酸水素ナトリウムを中和溶解させた。得られた粉末を通常の水洗・濾過を行い余分な塩を取り除いた。
得られた粉末を走査型電子顕微鏡で観察したところ、粒子径が50〜200nmの銀ナノ粒子の一次粒子の形骸を残したシート状構造を持つ銀粉であることが分かった(図1、図2)。
A 50% toluene solution (0.4 g) of silver nanoparticles obtained by the above method and sodium hydrogen carbonate (2 g) were mixed using a mortar. The solvent toluene was volatilized during mixing. Subsequently, the mixture was put into an electric furnace set at 250 ° C. in the atmosphere, and baked for 30 minutes. After cooling to room temperature, it was poured into a 30% aqueous acetic acid solution to neutralize and dissolve sodium bicarbonate. The obtained powder was washed with normal water and filtered to remove excess salt.
When the obtained powder was observed with a scanning electron microscope, it was found to be a silver powder having a sheet-like structure in which primary particles of silver nanoparticles having a particle diameter of 50 to 200 nm were left (FIGS. 1 and 2). ).

熱分析の結果有機物量は1%以下であった。(図3)   As a result of thermal analysis, the amount of organic substances was 1% or less. (Figure 3)

実施例2
炭酸塩結晶粒子として炭酸ナトリウムを用い以外は実施例1と同様に銀粉を調製した。得られた粉末を走査型電子顕微鏡で観察したところ、粒子径が50〜200nmの銀ナノ粒子の一次粒子の形骸を残したシート状構造を持つ銀粉であることが分かった(図4)。
Example 2
Silver powder was prepared in the same manner as in Example 1 except that sodium carbonate was used as the carbonate crystal particles. When the obtained powder was observed with a scanning electron microscope, it was found to be a silver powder having a sheet-like structure in which primary particles of silver nanoparticles having a particle diameter of 50 to 200 nm were left (FIG. 4).

比較例1
炭酸塩結晶粒子を用いないで、銀ナノ粒子のみを大気中250℃に設定した電気炉の中に投入し、30分加熱焼成した。得られた粉末を走査型電子顕微鏡で観察したところ銀ナノ粒子の1次粒子の形骸を残したシート状構造を持つ銀粉は得られなかった(図5)。
Comparative Example 1
Without using the carbonate crystal particles, only the silver nanoparticles were put in an electric furnace set at 250 ° C. in the atmosphere and baked for 30 minutes. When the obtained powder was observed with a scanning electron microscope, silver powder having a sheet-like structure in which the shape of primary particles of silver nanoparticles was left was not obtained (FIG. 5).

比較例2
炭酸塩結晶粒子のかわりに塩化ナトリウムを用いて実施例1と同様に銀粉を調製した。得られた粉末を走査型電子顕微鏡で観察したところ銀ナノ粒子の一次粒子の形骸を残したシート状構造を持つ銀粉は得られなかった(図6、7)。
Comparative Example 2
Silver powder was prepared in the same manner as in Example 1 using sodium chloride instead of carbonate crystal particles. When the obtained powder was observed with a scanning electron microscope, silver powder having a sheet-like structure in which the shape of primary particles of silver nanoparticles was left was not obtained (FIGS. 6 and 7).

本発明で得られた銀ナノ粒子の1次粒子の形骸を残したシート状構造を持つ銀粉は、従来の銀ナノ粒子に比べて有機物量(分散剤)が少なく、大きな粒子と混合した場合も粒子間の導電パスの拡大に寄与し、導電性ペーストまたは導電性接着剤組成物の原料として好適である。   The silver powder having a sheet-like structure in which the primary particle shape of the silver nanoparticles obtained in the present invention is left has a smaller amount of organic matter (dispersing agent) than conventional silver nanoparticles, and may be mixed with large particles. It contributes to expansion of the conductive path between the particles, and is suitable as a raw material for the conductive paste or the conductive adhesive composition.

実施例1で得られた銀粉の電子顕微鏡写真(倍率5000倍)である。4 is an electron micrograph (5000 times magnification) of the silver powder obtained in Example 1. FIG. 実施例1で得られた銀粉の電子顕微鏡写真(倍率50000倍)である。2 is an electron micrograph (magnification 50000 times) of the silver powder obtained in Example 1. FIG. 実施例1で得られた銀粉の熱分析の結果を示すグラフである。2 is a graph showing the results of thermal analysis of the silver powder obtained in Example 1. 実施例2で得られた銀粉の電子顕微鏡写真(倍率20000倍)である。4 is an electron micrograph (magnification 20000 times) of the silver powder obtained in Example 2. FIG. 比較例1で得られた銀粉の電子顕微鏡写真(倍率1000倍)である。4 is an electron micrograph (magnification 1000 times) of the silver powder obtained in Comparative Example 1. 比較例1で得られた銀粉の電子顕微鏡写真(倍率10000倍)である。2 is an electron micrograph (magnification 10,000 times) of the silver powder obtained in Comparative Example 1. 比較例2で得られた銀粉の電子顕微鏡写真(倍率1000倍)である。2 is an electron micrograph (magnification 1000 times) of the silver powder obtained in Comparative Example 2.

Claims (4)

銀ナノ粒子から構成される銀粉であって、銀ナノ粒子の一次粒子の平均粒径が200nm以下であり、銀粉が銀ナノ粒子の1次粒子の形骸を有したシート状の構造体であることを特徴とする銀粉。 The silver powder is composed of silver nanoparticles, and the average particle diameter of primary particles of the silver nanoparticles is 200 nm or less, and the silver powder is a sheet-like structure having a primary particle form of silver nanoparticles. Silver powder characterized by 銀ナノ粒子が金、白金、パラジウム貴金属との合金構造を有している請求項1の銀粉。 The silver powder according to claim 1, wherein the silver nanoparticles have an alloy structure with gold, platinum, or palladium noble metal. 請求項1又は2記載の銀粉を含有した導電性ペースト。 The electroconductive paste containing the silver powder of Claim 1 or 2. 粒子径の良くそろった銀ナノ粒子と炭酸塩結晶粒子とを混合・粉砕した後焼成し、酸により炭酸塩結晶粒子を除去し、銀ナノ粒子の一次粒子の形骸を残したシート状構造の銀粉を得ることを特徴とする請求項1記載の銀粉の製造方法。

A silver powder with a sheet-like structure in which silver nanoparticles with a uniform particle size and carbonate crystal particles are mixed, pulverized and then baked, and the carbonate crystal particles are removed by acid to leave the primary particles of silver nanoparticles. The method for producing silver powder according to claim 1, wherein:

JP2006126243A 2006-04-28 2006-04-28 Silver powder, method for producing the same, and conductive paste containing the silver powder Active JP4614101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006126243A JP4614101B2 (en) 2006-04-28 2006-04-28 Silver powder, method for producing the same, and conductive paste containing the silver powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006126243A JP4614101B2 (en) 2006-04-28 2006-04-28 Silver powder, method for producing the same, and conductive paste containing the silver powder

Publications (2)

Publication Number Publication Date
JP2007297671A JP2007297671A (en) 2007-11-15
JP4614101B2 true JP4614101B2 (en) 2011-01-19

Family

ID=38767408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006126243A Active JP4614101B2 (en) 2006-04-28 2006-04-28 Silver powder, method for producing the same, and conductive paste containing the silver powder

Country Status (1)

Country Link
JP (1) JP4614101B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4962364B2 (en) * 2008-03-14 2012-06-27 富士電機株式会社 Method for producing metal nanoparticles and metal nanoparticle fixed body
JP5396063B2 (en) * 2008-10-27 2014-01-22 独立行政法人物質・材料研究機構 Functional metal composite substrate and manufacturing method thereof
US8491998B2 (en) 2009-07-16 2013-07-23 Applied Nanoparticle Laboratory Corporation Composite nanometal paste of two-metallic-component type, bonding method, and electronic part
JP2011021255A (en) 2009-07-16 2011-02-03 Applied Nanoparticle Laboratory Corp Three-metallic-component type composite nanometallic paste, method of bonding, and electronic component
KR101143296B1 (en) * 2009-10-13 2012-05-08 (주) 파루 Conductivity paste composition of low temperature plasticity for gravure printing
JP5468885B2 (en) * 2009-12-01 2014-04-09 ハリマ化成株式会社 Conductive aluminum paste
NL2005112C2 (en) 2010-07-19 2012-01-23 Univ Leiden Process to prepare metal nanoparticles or metal oxide nanoparticles.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097591A (en) * 2000-09-20 2002-04-02 Sumitomo Electric Ind Ltd Method for manufacturing metal powder
JP2002334618A (en) * 2001-05-07 2002-11-22 Harima Chem Inc Forming method of plating-substitute conductive metal film using metal fine particle dispersed liquid
JP2006022367A (en) * 2004-07-07 2006-01-26 Kawamura Inst Of Chem Res Method for producing metallic porous body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293307A (en) * 1998-04-14 1999-10-26 Sumitomo Metal Mining Co Ltd Production of silver-tin series solder alloy powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097591A (en) * 2000-09-20 2002-04-02 Sumitomo Electric Ind Ltd Method for manufacturing metal powder
JP2002334618A (en) * 2001-05-07 2002-11-22 Harima Chem Inc Forming method of plating-substitute conductive metal film using metal fine particle dispersed liquid
JP2006022367A (en) * 2004-07-07 2006-01-26 Kawamura Inst Of Chem Res Method for producing metallic porous body

Also Published As

Publication number Publication date
JP2007297671A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JP4614101B2 (en) Silver powder, method for producing the same, and conductive paste containing the silver powder
JP4687599B2 (en) Copper fine powder, method for producing the same, and conductive paste
US8394465B2 (en) Preparation method of electroconductive copper patterning layer by laser irradiation
JP4661726B2 (en) Fine nickel powder and method for producing the same
JP2018523758A (en) Method for producing silver powder for high-temperature sintered conductive paste
KR100713241B1 (en) Method of manufacturing silver powder by chemical reduction
JP6536581B2 (en) Fine metal particle dispersion
WO2007040195A1 (en) Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
JP2009144197A (en) Silver fine particle, method for producing the same, and method for producing conductive film
JP2006199982A (en) Method for producing metallic fine powder
JP5525301B2 (en) Method for producing metal fine particles / metal oxide fine particles, metal fine particles / metal oxide fine particles, metal-containing paste, and metal film / metal oxide film
JP2006118010A (en) Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE
JP2008179851A (en) Method for manufacturing silver powder, and silver powder
JP5756694B2 (en) Flat metal particles
JP2009062611A (en) Metal fine particle material, dispersion liquid of metal fine particle material, conductive ink containing the dispersion liquid, and their manufacturing methods
JP6626572B2 (en) Metal bonding material, method of manufacturing the same, and method of manufacturing metal bonded body using the same
JP6968543B2 (en) Copper particle structure and copper ink
WO2009098985A1 (en) Copper hydride nanoparticle, process for producing the same, metallic paste, and article
JP2011111652A (en) Method for producing copper porous body, and coating film layer of copper porous body
JP5053902B2 (en) Method for producing silver ultrafine particles
JP2015096637A (en) Copper-containing fine-particle aggregate and production method thereof
KR100508693B1 (en) Synthetic method of nano-sized ni powder
JP5942791B2 (en) Method for producing nickel powder
JP2005068508A (en) Metal powder coated with inorganic superfine particle and its production method
JP2008031518A (en) Nanorod, and method for producing nanorod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100922

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101005

R150 Certificate of patent or registration of utility model

Ref document number: 4614101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250