JP2002334618A - Forming method of plating-substitute conductive metal film using metal fine particle dispersed liquid - Google Patents

Forming method of plating-substitute conductive metal film using metal fine particle dispersed liquid

Info

Publication number
JP2002334618A
JP2002334618A JP2001136077A JP2001136077A JP2002334618A JP 2002334618 A JP2002334618 A JP 2002334618A JP 2001136077 A JP2001136077 A JP 2001136077A JP 2001136077 A JP2001136077 A JP 2001136077A JP 2002334618 A JP2002334618 A JP 2002334618A
Authority
JP
Japan
Prior art keywords
metal
film
plating
particles
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001136077A
Other languages
Japanese (ja)
Other versions
JP3764349B2 (en
Inventor
Noriaki Hata
憲明 畑
Masayuki Ueda
雅行 上田
Hideyuki Goto
英之 後藤
Yorishige Matsuba
頼重 松葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Chemical Inc
Original Assignee
Harima Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Chemical Inc filed Critical Harima Chemical Inc
Priority to JP2001136077A priority Critical patent/JP3764349B2/en
Publication of JP2002334618A publication Critical patent/JP2002334618A/en
Application granted granted Critical
Publication of JP3764349B2 publication Critical patent/JP3764349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Paints Or Removers (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of forming simply and in high reproducibility a conductive metal film which can be substituted for various plating films for various uses in an electronic component material field having process accuracy and reliability comparable to a plating film. SOLUTION: Extra-fine metal particles with average particle diameter of 100 nm or less are dispersed in an organic solvent with coating layer of an amine compound or the like capable of coordinate bonding with metal element, a coating film is formed with the use of paste-like dispersion liquid with the addition of organic acid anhydride or its derivative or organic acid or the like showing reactivity with the amine compound or the like of the coating layer, and then, is put under heat treatment at 250 deg.C or less, to manufacture a metal film with metal extra-fine particles densely sintered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、メッキ代替用の導
電性金属皮膜の形成方法に関し、より具体的には、金属
微粒子分散液を利用して、形成された金属微粒子分散液
の塗布膜を加熱処理して、含有される金属微粒子相互を
焼結して、メッキ代替用の導電性金属皮膜を形成する方
法と、それに利用する金属微粒子分散液に関する。さら
には、本発明は、従来のメッキ法により形成される種々
の導電性部材に代えて、前記の方法により形成される、
メッキ代替用の導電性金属皮膜を用いて、電子部品を基
板上に搭載する方法にも関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a conductive metal film as a substitute for plating, and more specifically, to a method for forming a coating film of a metal fine particle dispersion using a metal fine particle dispersion. The present invention relates to a method for forming a conductive metal film as a substitute for plating by sintering contained metal fine particles by heat treatment, and a metal fine particle dispersion used for the method. Furthermore, the present invention is formed by the above-mentioned method instead of various conductive members formed by a conventional plating method,
The present invention also relates to a method for mounting an electronic component on a substrate using a conductive metal film for plating.

【0002】[0002]

【従来の技術】電子材料分野においては、種々な用途で
メッキ膜が利用されており、その用途に応じて、電気メ
ッキ法、あるいは、無電解メッキ法の使い分けがなされ
ている。電子材料分野におけるメッキの用途には、例え
ば、スルーホール用メッキ、エッチングレジスト用メッ
キ、端子用メッキ、ボンディング用メッキ、電気接点用
メッキ、ハンダ付け用メッキ、接着用メッキなどがあ
る。これらの用途に応じて、それぞれ下記するような金
属皮膜がメッキ法で形成されているスルーホール用メッ
キは、多層配線基板において、層間の電気的導通を図る
ため、基板を貫通して設けるスルーホールに対するメッ
キである。一般にこのスルーホールを介して導通が図ら
れる表面と裏面側の配線回路に銅の薄膜が用いられ、対
応して、スルーホール用メッキには、無電解銅メッキが
利用される。多層配線基板を製造する際、スルーホール
内壁の導通、ならびに、基板上の配線との導通をも図る
必要があり、予め、厚さが1μm以下の薄付け無電解銅
メッキ処理を行ない、続いて、10〜50μmの厚さの
無電解銅メッキを施す手法が一般的に利用されている。
2. Description of the Related Art In the field of electronic materials, plating films are used for various purposes, and an electroplating method or an electroless plating method is used depending on the purpose. Plating applications in the field of electronic materials include, for example, plating for through holes, plating for etching resist, plating for terminals, plating for bonding, plating for electrical contacts, plating for soldering, and plating for adhesion. In accordance with these applications, the through-hole plating in which a metal film as described below is formed by a plating method is used in a multilayer wiring board, in order to achieve electrical conduction between the layers, a through-hole provided through the board. Plating. In general, a copper thin film is used for a wiring circuit on the front and back sides through which conduction is achieved via the through-hole, and correspondingly, electroless copper plating is used for plating for the through-hole. When manufacturing a multilayer wiring board, it is necessary to establish conduction between the inner wall of the through hole and the wiring on the board, and a thin electroless copper plating process with a thickness of 1 μm or less is performed in advance, The method of applying electroless copper plating with a thickness of 10 to 50 μm is generally used.

【0003】ハンダ付け用メッキは、銅スルーホール配
線基板などにおいて、銅配線表面の酸化防止と、ハンダ
付け性向上のため、予め、溶融したハンダ中に配線基板
を浸漬し、余分なハンダを吹き飛ばし、銅配線表面にの
み薄いハンダ層を被覆し、このハンダ層保護のため、被
覆剤皮膜として形成されるものである。一般には、無電
解スズメッキ膜が用いられる。近年、薄いハンダ層とそ
の表面の被覆剤皮膜を同時に形成する手法として、有機
酸鉛液とスズ粉を塗布後、加熱により銅配線表面ににハ
ンダをプリコートするスーパーソルダー法などの技術が
開発されている。
In plating for soldering, in a copper through-hole wiring board or the like, in order to prevent oxidation of the copper wiring surface and improve solderability, the wiring board is immersed in molten solder in advance to blow off excess solder. Only a copper wiring surface is coated with a thin solder layer, and is formed as a coating film for protecting the solder layer. Generally, an electroless tin plating film is used. In recent years, techniques have been developed to simultaneously form a thin solder layer and a coating film on its surface, such as the super solder method that applies a lead organic acid solution and tin powder and then pre-coats the solder on the copper wiring surface by heating. ing.

【0004】エッチングレジスト用メッキとは、ドライ
フィルム、液状レジストなどのエッチングレジストに対
して用いられるもので、過去には、一般に金メッキが用
いられていた。近年、ハンダメッキが主流になり、その
他、スズメッキも用いられている。
[0004] Plating for an etching resist is used for an etching resist such as a dry film or a liquid resist, and in the past, gold plating was generally used. In recent years, solder plating has become mainstream, and tin plating has also been used.

【0005】端子用メッキは、コネクターと電気的接続
を行う端子表面に対するメッキであり、低抵抗で、良好
な耐食性、耐磨耗性を示す金メッキ、パラジウムメッ
キ、ロジウムメッキなどを、下地メッキの上に形成して
用いられる。一方、この下地メッキは、ニッケルメッ
キ、パラジウム・ニッケルメッキ、ニッケル・ホウ素無
電解ニッケルメッキなどが用いられる。
[0005] Terminal plating is plating on the surface of a terminal for making an electrical connection with a connector. Gold plating, palladium plating, rhodium plating or the like, which has low resistance and good corrosion resistance and abrasion resistance, is formed by plating on a base plating. It is formed and used. On the other hand, as the base plating, nickel plating, palladium / nickel plating, nickel / boron electroless nickel plating, or the like is used.

【0006】電気接点用メッキは、キーボードなどの電
気接点を回路内に有する配線基板において、その電気接
点に対して施されるメッキであり、やはり、ニッケルメ
ッキを下地メッキとし、その上に形成される金メッキが
利用されている。
[0006] Plating for electrical contacts is plating that is applied to electrical contacts on a wiring board such as a keyboard that has electrical contacts in a circuit. Nickel plating is also used as a base plating and is formed thereon. Gold plating is used.

【0007】ボンディング用メッキは、ボンディングを
行う際、配線の素地に用いる銅が拡散により、表出する
ことを防止するため、配線の銅表面に施されるメッキで
あり、ボンディング性に優れた高純度の金メッキが用い
られる。
[0007] The bonding plating is plating applied to the copper surface of the wiring in order to prevent the copper used for the base material of the wiring from being exposed due to diffusion during bonding. Pure gold plating is used.

【0008】接着用メッキは、多層積層の形成の際、内
装銅箔とプリプレグとの接着性向上のために用いられ
る。通常、プリプレグとの接着性向上のため、銅表面の
酸化処理が行われるが、生成する酸化銅が侵されること
を防ぐため、表面に無電解銅メッキ、無電解スズメッキ
が施される。
[0008] Adhesive plating is used to improve the adhesion between the interior copper foil and the prepreg when forming a multilayer laminate. Usually, the copper surface is oxidized to improve the adhesion to the prepreg, but the surface is subjected to electroless copper plating and electroless tin plating to prevent the generated copper oxide from being attacked.

【0009】上述するように、電子材料分野では、様々
な用途を有する金属皮膜を形成する際、安定な接合が可
能で、良好な作業性、高い量産性を有するため、従来よ
り、メッキ処理による金属皮膜の形成方法が一般に利用
されてきた。ただし、上記する用途では、目的とする領
域に選択的に金、銀、銅、パラジウム、ニッケルなどの
メッキ処理を行う場合、そのメッキを行う前に、下地に
対する前処理を施す工程を必要とする。さらに、実際の
メッキ工程においては、メッキ浴にはシアン系の溶液を
使用することに伴い、メッキ処理に用いた後、これらシ
アン系溶液の廃液処理が必要となる。また、万全を期し
て、廃液処理において、酸化などによりシアン化物イオ
ンの無毒化を行うものの、周辺環境に対する配慮から、
シアン系化合物など、毒性の強い薬品の使用は次第に敬
遠されている。
As described above, in the field of electronic materials, when forming a metal film having various uses, stable bonding is possible, good workability, and high mass productivity. Methods for forming metal films have been commonly used. However, in the above-mentioned applications, when selectively plating a target region with gold, silver, copper, palladium, nickel, or the like, a step of performing a pretreatment for the base before plating is required. . Further, in the actual plating step, a cyanide-based solution is used for the plating bath, and after the plating solution is used, waste treatment of the cyanide-based solution is required. In addition, in order to ensure the detoxification of cyanide ions by oxidation etc. in waste liquid treatment, due to consideration for the surrounding environment,
The use of highly toxic chemicals, such as cyanide compounds, is increasingly being avoided.

【0010】[0010]

【発明が解決しようとする課題】上述するように、電子
材料分野において、メッキ法は、湿式で種々の金属皮膜
を高い再現性で作製可能な手段として、広い範囲で利用
されているものの、前記するシアン系溶液の使用、その
後の洗浄工程に伴い、処理すべき廃液が相当量発生する
という本質的な課題を有している。かかる課題を回避し
つつ、種々の金属皮膜を高い再現性で作製可能な手段を
用いて、従来、メッキ法が利用されていた工程の一部を
置き換えることが模索されている。
As described above, in the field of electronic materials, the plating method is widely used as a means capable of producing various metal films with high reproducibility by a wet method. However, there is an essential problem that a considerable amount of waste liquid to be treated is generated with the use of the cyan solution and the subsequent washing step. It has been sought to replace some of the steps where the plating method has been conventionally used, using a means capable of producing various metal films with high reproducibility while avoiding such problems.

【0011】本発明は前記の課題を解決するもので、本
発明の目的は、例えば、電子材料分野において、電子部
品との接合、配線基板上の回路描画、スルーホールなど
における導通形成などの各用途に利用される各種メッキ
に代えて、これらメッキによる金属皮膜と代替可能な、
メッキ膜に匹敵する加工精度と信頼性を有し、また、簡
便な工程で、高い再現性で導電性金属皮膜を形成する方
法を提供することにある。より具体的には、本発明の目
的は、目的とする金属からなる金属微粒子分散液を利用
して、所望の領域にこの金属微粒子分散液塗布膜を形成
し、この塗布膜を加熱処理して、含有される金属微粒子
相互を焼結して、メッキ代替用の導電性金属皮膜を形成
する方法と、それに利用する金属微粒子分散液を提供す
ることにある。
The present invention solves the above-mentioned problems. An object of the present invention is, for example, in the field of electronic materials, such as bonding with electronic components, drawing a circuit on a wiring board, and forming continuity in a through hole. Instead of various platings used for applications, these platings can be substituted for metal films.
It is an object of the present invention to provide a method for forming a conductive metal film having high processing accuracy and reliability comparable to a plating film and high reproducibility in a simple process. More specifically, an object of the present invention is to form a metal fine particle dispersion coating film in a desired region by using a metal fine particle dispersion liquid of a target metal, and heat-treat the coating film. It is another object of the present invention to provide a method for forming a conductive metal film as a substitute for plating by sintering metal fine particles contained in each other and a metal fine particle dispersion used for the method.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく、鋭意研究・検討を進めたところ、金属
微粒子の塗布膜を作製し、その後、この金属微粒子の塗
布膜に含有される微粒子相互を焼結させると、メッキ膜
と同程度の均一性と導電性を有する金属皮膜を形成する
ことが可能であることに想到した。また、メッキ膜と同
程度の加工精度を達成する上では、利用する金属微粒子
の平均粒子径を、メッキにより作製される金属皮膜を構
成する微細な金属粒子サイズと遜色のない極めて細かな
ものとすることが必要となり、加えて、そのように極め
て微細な金属微粒子が緻密な充填状態とする塗布膜を作
製し、更に、その状態で比較的に低温で焼結を達成する
ことが必要となることを見出した。この三つの要件の
内、最初の要件は、加工精度に応じて、利用する金属微
粒子として、平均粒子径が1〜100nmの範囲に選択
される金属超微粒子を用いることで満たされ、また、最
後の要件についても、この金属超微粒子を、その表面に
酸化被膜がなく、金属原子が露呈した状態で互いに接触
させると、例えば、250℃以下の温度で加熱処理を施
すことで、容易に焼結させることが可能であることを見
出した。しかしながら、第二の要件に関しては、前記金
属超微粒子は、その表面に金属原子が露呈した状態で互
いに接触させると、室温付近の温度でも、相互に接着
(融着)が生じ、比較的に疎な凝集体形成を起こす結
果、全体として、メッキ膜と遜色のない緻密な充填状態
を高い再現性で達成することが困難であることをも見出
した。この課題の解決手段を見出すべく、さらに、検討
を進めたところ、金属超微粒子の金属原子表面に、かか
る金属超微粒子に含まれる金属元素と配位的な結合が可
能な基として、窒素、酸素、イオウ原子を含む基を有す
る化合物1種以上により被覆された状態とすると凝集体
形成を回避でき、有機溶剤中に均一に分散させることが
可能であり、また、この分散液の塗布膜を形成し、含ま
れる有機溶剤を蒸散させると、金属超微粒子が緻密に充
填された状態とすることが可能であることを見出した。
さらに、有機溶剤中に、加熱処理を施す温度において、
金属元素と配位的な結合が可能な基として、窒素、酸
素、イオウ原子を含む基を有する前記化合物に対して、
その窒素、酸素、イオウ原子を含む基と反応性を有する
化合物を溶解されておくと、加熱の際、熱的にも徐々に
解離する窒素、酸素、イオウ原子を含む基を有する前記
化合物とそれに対する反応性を有する化合物との反応が
進行し、結果的に、金属超微粒子の表面には金属原子自
体が表出し、かかる金属表面相互が直接接触することが
可能となり、比較的な低温での処理によっても焼結が起
こり、緻密な焼結成形体の金属皮膜が形成可能であるこ
とを見出した。本発明者らは、これら一連の知見に基づ
き、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies and studies in order to solve the above-mentioned problems. As a result, a coating film of fine metal particles was formed, and thereafter, a coating film of the fine metal particles was formed. By sintering the contained fine particles, it has been conceived that it is possible to form a metal film having the same uniformity and conductivity as the plating film. Also, in order to achieve the same processing accuracy as the plating film, the average particle diameter of the metal fine particles to be used should be extremely fine, comparable to the fine metal particle size constituting the metal film produced by plating. In addition, it is necessary to produce a coating film in which such extremely fine metal fine particles are densely packed, and to achieve sintering at a relatively low temperature in that state. I found that. Of the three requirements, the first requirement is satisfied by using metal ultrafine particles whose average particle diameter is selected in a range of 1 to 100 nm as metal fine particles to be used, according to processing accuracy, and Also, when the metal ultrafine particles are brought into contact with each other in a state where there is no oxide film on the surface and metal atoms are exposed, for example, the metal ultrafine particles can be easily sintered by performing a heat treatment at a temperature of 250 ° C. or less. It was found that it was possible to do. However, with respect to the second requirement, when the metal ultrafine particles are brought into contact with each other in a state where metal atoms are exposed on the surface, they adhere to each other (fusion) even at a temperature near room temperature, and are relatively sparse. As a result of the formation of agglomerates, it has also been found that it is difficult to achieve a densely packed state comparable to a plated film with high reproducibility as a whole. In order to find a solution to this problem, further studies were carried out. As a group capable of coordinative bonding with the metal element contained in the ultrafine metal particles, nitrogen, oxygen When it is coated with at least one compound having a group containing a sulfur atom, it is possible to avoid the formation of aggregates, to be able to disperse uniformly in an organic solvent, and to form a coating film of this dispersion. However, it has been found that when the organic solvent contained therein is evaporated, the ultrafine metal particles can be densely filled.
Further, in an organic solvent, at a temperature for performing a heat treatment,
As a group capable of coordinative bonding with a metal element, nitrogen, oxygen, the compound having a group containing a sulfur atom,
When the compound having reactivity with the group containing nitrogen, oxygen, and sulfur atoms is dissolved, the compound having a group containing nitrogen, oxygen, and sulfur atoms, which gradually dissociates thermally when heated, and The reaction with a compound having reactivity with respect to the metal proceeds, as a result, the metal atoms themselves appear on the surface of the metal ultrafine particles, and the metal surfaces can directly contact each other. It has been found that sintering also occurs by the treatment, and that a metal film of a dense sintered compact can be formed. The present inventors have completed the present invention based on these series of findings.

【0013】すなわち、本発明のメッキ代替導電性金属
膜の形成方法は、金属微粒子分散液を用いて、メッキ代
替導電性金属皮膜を形成する方法であって、メッキ代替
導電膜を形成する領域に、前記金属微粒子分散液の塗布
層を形成する工程と、形成された前記金属微粒子分散液
の塗布層を250℃を超えない温度にて加熱処理し、含
有される金属微粒子相互を焼結する工程とを有し、利用
する前記金属微粒子分散液は、分散媒体となる有機溶剤
中に平均粒子径が1〜100nmの範囲に選択される金
属超微粒子が分散されており、金属超微粒子表面は、か
かる金属超微粒子に含まれる金属元素と配位的な結合が
可能な基として、窒素、酸素、イオウ原子を含む基を有
する化合物1種以上により被覆されており、前記加熱処
理を施す際、金属元素と配位的な結合が可能な基とし
て、窒素、酸素、イオウ原子を含む基を有する前記化合
物の金属超微粒子表面からの解離がなされることを特徴
とするメッキ代替導電性金属膜の形成方法である。
That is, the method of forming a plating-substituted conductive metal film of the present invention is a method of forming a plating-substituted conductive metal film using a metal fine particle dispersion, wherein a plating-substituted conductive film is formed in a region where a plating-substituted conductive film is to be formed. Forming a coating layer of the metal fine particle dispersion, and heat-treating the formed coating layer of the metal fine particle dispersion at a temperature not exceeding 250 ° C., and sintering the contained metal fine particles. The metal fine particle dispersion to be used, the metal ultrafine particles having an average particle diameter selected in the range of 1 to 100 nm are dispersed in an organic solvent serving as a dispersion medium, and the surface of the metal ultrafine particles is As a group capable of coordinating with a metal element contained in such ultrafine metal particles, the metal particle is coated with at least one compound having a group containing a nitrogen, oxygen, or sulfur atom. Forming a conductive metal film as a substitute for plating, wherein the compound having a group containing nitrogen, oxygen, and sulfur atoms as a group capable of coordinating with silicon is dissociated from the surface of the ultrafine metal particles. Is the way.

【0014】かかる本発明のメッキ代替導電性金属膜の
形成方法においては、利用する金属微粒子分散液中に
は、金属超微粒子表面を被覆している、金属元素と配位
的な結合が可能な基として、窒素、酸素、イオウ原子を
含む基を有する前記化合物に対して、前記加熱処理を施
す温度において、その窒素、酸素、イオウ原子を含む基
と反応性を有する化合物が溶解されており、金属超微粒
子表面からの窒素、酸素、イオウ原子を含む基を有する
前記化合物の解離は、かかる窒素、酸素、イオウ原子を
含む基を有する前記化合物に対する、その窒素、酸素、
イオウ原子を含む基と反応性を有する前記化合物との反
応により促進されることを特徴とする方法とすることが
好ましい。その際、金属微粒子分散液中に含有される、
前記窒素、酸素、イオウ原子を含む基と反応性を有する
化合物として、有機の酸無水物またはその誘導体あるい
は有機酸を用いることが好ましい。
In the method of forming a conductive metal film alternative to plating according to the present invention, the metal fine particle dispersion to be used is capable of coordinatively bonding with the metal element covering the metal ultrafine particle surface. As a group, nitrogen, oxygen, the compound having a group containing a sulfur atom, at a temperature at which the heat treatment is performed, the compound having reactivity with the group containing a nitrogen atom, oxygen, and a sulfur atom is dissolved, Dissociation of the compound having a group containing a sulfur atom from nitrogen, oxygen, and sulfur from the surface of the metal ultrafine particles is performed on the compound having a group containing a nitrogen atom.
It is preferable to adopt a method characterized by being promoted by a reaction between the group having a sulfur atom and the reactive compound. At that time, contained in the metal fine particle dispersion,
It is preferable to use an organic acid anhydride or a derivative thereof or an organic acid as the compound having a reactivity with the group containing nitrogen, oxygen and sulfur atoms.

【0015】一方、本発明のメッキ代替導電性金属膜の
形成方法は、その代替を図るべきメッキ膜の材質に応じ
て、金属微粒子分散液中に含有される前記金属超微粒子
は、金、銀、銅、白金、パラジウム、タングステン、ニ
ッケル、タンタル、ビスマス、鉛、インジウム、錫、亜
鉛、チタン、アルミニウムからなる群より選択される、
一種類の金属からなる微粒子、または、2種類以上の金
属からなる合金の微粒子であることを特徴とする方法と
することができる。
On the other hand, in the method of forming a conductive metal film alternative to plating according to the present invention, the metal ultrafine particles contained in the metal fine particle dispersion may be gold, silver, or the like, depending on the material of the plating film to be replaced. Selected from the group consisting of copper, platinum, palladium, tungsten, nickel, tantalum, bismuth, lead, indium, tin, zinc, titanium, aluminum,
The method may be characterized in that the particles are particles of one kind of metal or alloy particles of two or more kinds of metals.

【0016】また、本発明は、上述の構成を有するメッ
キ代替導電性金属膜の形成方法に利用される金属微粒子
分散液の発明をも併せて提供するものであり、すなわ
ち、本発明の金属微粒子分散液は、メッキ代替導電膜の
形成に利用される金属微粒子分散液であって、前記金属
微粒子分散液は、分散媒体となる有機溶剤中に平均粒子
径が1〜100nmの範囲に選択される金属超微粒子が
分散されており、金属超微粒子表面は、かかる金属超微
粒子に含まれる金属元素と配位的な結合が可能な基とし
て、窒素、酸素、イオウ原子を含む基を有する化合物1
種以上により被覆されており、金属元素と配位的な結合
が可能な基として、窒素、酸素、イオウ原子を含む基を
有する前記化合物は、250℃を超えない温度にて加熱
処理により、金属超微粒子表面からの解離が可能である
ことを特徴とする金属微粒子分散液である。
The present invention also provides an invention of a metal fine particle dispersion used in the method for forming a plating-substituted conductive metal film having the above-described structure, that is, the metal fine particles of the present invention. The dispersion is a metal fine particle dispersion used for forming a plating alternative conductive film, and the metal fine particle dispersion is selected in an organic solvent serving as a dispersion medium to have an average particle diameter of 1 to 100 nm. The ultrafine metal particles are dispersed, and the surface of the ultrafine metal particles has a compound 1 having a group containing nitrogen, oxygen, and sulfur atoms as a group capable of coordinating with a metal element contained in the ultrafine metal particles.
The compound having a group containing nitrogen, oxygen, and a sulfur atom as a group which is coated with a species or more and is capable of forming a coordinate bond with a metal element can be obtained by heat treatment at a temperature not exceeding 250 ° C. A metal fine particle dispersion liquid capable of being dissociated from the ultrafine particle surface.

【0017】本発明の金属微粒子分散液においては、そ
の金属微粒子分散液中には、金属超微粒子表面を被覆し
ている、金属元素と配位的な結合が可能な基として、窒
素、酸素、イオウ原子を含む基を有する前記化合物に対
して、前記加熱処理を施す温度において、その窒素、酸
素、イオウ原子を含む基と反応性を有する化合物が溶解
されていることを特徴とする金属微粒子分散液とするこ
とが好ましい。その際、金属微粒子分散液中に含有され
る、前記窒素、酸素、イオウ原子を含む基と反応性を有
する化合物は、有機の酸無水物またはその誘導体あるい
は有機酸であることが好ましい。
In the metal fine particle dispersion of the present invention, the metal fine particle dispersion contains nitrogen, oxygen, Dispersing the compound having a group containing a sulfur atom at a temperature at which the heat treatment is performed on the compound having a group containing a sulfur atom, wherein the compound having reactivity with the group containing a sulfur atom is dissolved. Preferably, it is a liquid. At this time, the compound having a reactivity with the group containing nitrogen, oxygen and sulfur atoms contained in the metal fine particle dispersion is preferably an organic acid anhydride or a derivative thereof or an organic acid.

【0018】一方、本発明の金属微粒子分散液では、そ
の代替を図るべきメッキ膜の材質に応じて、金属微粒子
分散液中に含有される前記金属超微粒子は、金、銀、
銅、白金、パラジウム、タングステン、ニッケル、タン
タル、ビスマス、鉛、インジウム、錫、亜鉛、チタン、
アルミニウムからなる群より選択される、一種類の金属
からなる微粒子、または、2種類以上の金属からなる合
金の微粒子であることを特徴とする金属微粒子分散液と
することができる。
On the other hand, according to the metal fine particle dispersion of the present invention, the metal ultrafine particles contained in the metal fine particle dispersion include gold, silver,
Copper, platinum, palladium, tungsten, nickel, tantalum, bismuth, lead, indium, tin, zinc, titanium,
A metal fine particle dispersion liquid characterized by being fine particles of one kind of metal selected from the group consisting of aluminum, or fine particles of an alloy of two or more kinds of metals.

【0019】加えて、本発明は、上述する本発明のメッ
キ代替導電性金属膜の形成方法の実際の利用形態とし
て、このメッキ代替導電性金属膜を活用して、基板上に
電子部品を搭載する方法の発明を提供し、すなわち、本
発明の電子部品の搭載方法は、基板上に電子部品を搭載
する方法であって、前記電子部品は、導電性金属皮膜を
介して導通が図られる、基板上に形成されている配線回
路に対して、電気的な接続をとるように搭載する工程を
有し、基板上に形成されている前記導電性金属皮膜は、
上述するいずれかの構成を有する本発明のメッキ代替導
電性金属膜の形成方法により形成されていることを特徴
とする電子部品の搭載方法である。
In addition, according to the present invention, as an actual mode of use of the above-described method for forming a plating-substituted conductive metal film of the present invention, an electronic component is mounted on a substrate by utilizing the plating-substituted conductive metal film. The invention provides a method of performing, that is, a method of mounting an electronic component of the present invention is a method of mounting an electronic component on a substrate, wherein the electronic component is achieved through a conductive metal film, For a wiring circuit formed on the substrate, a step of mounting so as to make electrical connection, the conductive metal film formed on the substrate,
An electronic component mounting method characterized by being formed by the method for forming a plating-substituted conductive metal film of the present invention having any one of the above-described configurations.

【0020】本発明の電子部品の搭載方法は、例えば、
導通を図る導電性金属皮膜は、基板の表面と裏面間のス
ルーホール用メッキ膜の代替導電性金属膜であることを
特徴とする方法とすることができる。また、導通を図る
導電性金属皮膜は、基板上に形成されている配線回路の
少なくとも一部を構成するメッキ膜の代替導電性金属膜
であることを特徴とする方法とすることができる。さら
には、導通を図る導電性金属皮膜は、基板上に形成され
ている配線回路と電子部品の配線との接続がなされるボ
ンディング用メッキ膜の代替導電性金属膜であることを
特徴とする方法とすることもできる。
The method of mounting an electronic component according to the present invention is, for example, as follows.
The conductive metal film for achieving conduction may be a method characterized by being a conductive metal film alternative to a plated film for a through hole between the front surface and the back surface of the substrate. Further, the conductive metal film for achieving conduction may be a method characterized by being a conductive metal film alternative to a plating film constituting at least a part of a wiring circuit formed on the substrate. Further, the conductive metal film for achieving conduction is a conductive metal film alternative to a plating film for bonding for connecting a wiring circuit formed on a substrate and a wiring of an electronic component. It can also be.

【0021】[0021]

【発明の実施の形態】以下に、本発明のメッキ代替導電
性金属膜の形成方法と、その際に利用するペースト状の
金属微粒子分散液をより詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for forming a conductive metal film in place of plating and a paste-like fine metal particle dispersion used in the present invention will be described in more detail.

【0022】本発明のメッキ代替導電性金属膜の形成方
法は、その主な用途は、電子材料分野において、従来の
メッキ法で形成される金属皮膜が利用されている部材に
おいて、その金属皮膜として、比較的低温で焼結して作
製される金属微粒子の焼結体皮膜による代替である。従
って、利用される金属微粒子の焼結体皮膜自体は、その
代替すべきメッキ膜中の析出金属粒子サイズと同程度の
平均粒子径を有する金属微粒子の焼結体皮膜であること
が望ましい。従って、利用するペースト状の金属微粒子
分散液中に含有する金属超微粒子は、代替すべきメッキ
膜における目標膜厚に応じて、その平均粒子径は1〜1
00nmの範囲に選択する。好ましくは、平均粒子径を
2〜10nmの範囲に選択する。
The method of forming a conductive metal film in place of plating according to the present invention is mainly used in the field of electronic materials in which a metal film formed by a conventional plating method is used. It is an alternative to a sintered body film of metal fine particles produced by sintering at a relatively low temperature. Therefore, it is preferable that the sintered body coating of the metal fine particles to be used is a sintered body coating of the metal fine particles having an average particle diameter substantially equal to the size of the precipitated metal particles in the plating film to be replaced. Therefore, the ultrafine metal particles contained in the paste-like fine metal particle dispersion used have an average particle diameter of 1 to 1 depending on the target film thickness of the plating film to be replaced.
Select in the range of 00 nm. Preferably, the average particle size is selected in the range of 2 to 10 nm.

【0023】一般に平均粒子径数nm〜数10nm程度
の金属超微粒子はその融点よりも格段に低い温度(例え
ば、銀であれば200℃)で焼結することが知られてい
る。この低温焼結は、金属の超微粒子においては、十分
にその粒子径を小さくすると、粒子表面に存在するエネ
ルギー状態の高い原子の全体に占める割合いが大きくな
り、金属原子の表面拡散が無視し得ないほど大きくなる
結果、この表面拡散に起因して、粒子相互の界面の延伸
がなされ焼結が行われるためである。一方、この性質
は、室温近傍においても、金属超微粒子の表面相互が直
接接触すると、凝集体を形成するという現象を生じさせ
る。前記の凝集体形成は、極めて微細な金属微粒子が密
な充填状態を形成する結果達成される、厚さの均一性向
上効果を損なう要因となる。さらに、密な充填状態を形
成することで、全体として、所望の導電性を達成してい
る効果を、予め部分的に凝集体を形成した構造が混入す
ると、密な充填状態を高い再現性で達成できなくなる一
因となる。
It is generally known that ultrafine metal particles having an average particle size of several nm to several tens nm are sintered at a temperature much lower than the melting point (for example, 200 ° C. for silver). In this low-temperature sintering, if the particle diameter of the ultrafine metal particles is sufficiently reduced, the proportion of the high-energy atoms existing on the particle surface to the whole becomes large, and the surface diffusion of metal atoms is ignored. This is because, as a result, the interface between particles is elongated and sintering is performed due to the surface diffusion. On the other hand, this property causes a phenomenon that an aggregate is formed when the surfaces of the ultrafine metal particles come into direct contact with each other even near room temperature. The formation of the above-mentioned aggregates is a factor that impairs the effect of improving the uniformity of the thickness, which is achieved as a result of the formation of a densely packed state of extremely fine metal particles. Furthermore, by forming a densely packed state, the effect of achieving the desired conductivity as a whole can be obtained. This is one of the reasons why it cannot be achieved.

【0024】それ故、本発明のメッキ代替導電性金属膜
の形成方法に利用する金属微粒子分散液は、プリント配
線基板などの対象物の表面上にペースト状の金属微粒子
分散液の塗布膜を形成する際には、分散液に含まれる金
属微粒子の凝集体形成を防止し、均一な分散状態を維持
するため、金属超微粒子の表面は、かかる金属超微粒子
に含まれる金属元素と配位的な結合が可能な基として、
窒素、酸素、イオウ原子を含む基を有する化合物1種以
上により被覆された状態とする。すなわち、かかる金属
超微粒子に含まれる金属元素と配位的な結合が可能な基
として、窒素、酸素、イオウ原子を含む基を有する化合
物1種以上により、金属超微粒子の金属表面を密に被覆
した状態とすることで、塗布膜を形成した後、加熱処理
を施すまでは、金属超微粒子が互いにその金属表面が直
接接触しない状態とする。なお、この被覆層を設けるこ
とにより、仮に塗布を行う際など酸素と接しても、金属
超微粒子の表面には、酸化膜が実質的に形成されない状
態ともなっている。
Therefore, the metal fine particle dispersion used in the method of forming a conductive metal film in place of plating according to the present invention forms a coating film of a paste-like metal fine particle dispersion on the surface of an object such as a printed wiring board. In order to prevent the formation of aggregates of the metal fine particles contained in the dispersion liquid and maintain a uniform dispersion state, the surface of the metal ultrafine particles is coordinated with the metal element contained in the metal ultrafine particles. As a bondable group,
The substrate is covered with at least one compound having a group containing nitrogen, oxygen, and sulfur atoms. That is, the metal surface of the ultrafine metal particles is densely coated with at least one compound having a group containing nitrogen, oxygen, and sulfur atoms as a group capable of coordinating with the metal element contained in the ultrafine metal particles. In this state, after the coating film is formed, the metal surfaces of the ultrafine metal particles do not directly contact each other until the heat treatment is performed. By providing this coating layer, an oxide film is not substantially formed on the surface of the ultrafine metal particles even if it comes into contact with oxygen, for example, when coating is performed.

【0025】この表面の被覆に利用される化合物は、金
属元素と配位的な結合を形成する際、窒素、酸素、イオ
ウ原子上に孤立電子対を有する基を利用するもので、例
えば、窒素原子を含む基として、アミノ基が挙げられ
る。また、イオウ原子を含む基としては、スルファニル
基(−SH)、スルフィド型のスルファンジイル基(−
S−)が挙げられる。また、酸素原子を含む基として
は、ヒドロキシ基、エーテル型のオキシ基(−O−)が
挙げられる。
The compound used for coating the surface utilizes a group having a lone pair of electrons on nitrogen, oxygen and sulfur atoms when forming a coordinate bond with a metal element. Examples of the group containing an atom include an amino group. Examples of the group containing a sulfur atom include a sulfanyl group (-SH) and a sulfide-type sulfandiyl group (-
S-). Examples of the group containing an oxygen atom include a hydroxy group and an ether-type oxy group (—O—).

【0026】利用可能なアミノ基を有する化合物の代表
として、アルキルアミンを挙げることができる。なお、
かかるアルキルアミンは、金属元素と配位的な結合を形
成した状態で、通常の保管環境、具体的には、40℃に
達しない範囲では、脱離しないものが好適であり、沸点
が60℃以上の範囲、好ましくは100℃以上となるも
のが好ましい。ただし、焼結・合金化を行う際には、速
やかに、表面から離脱することが可能であることが必要
であり、少なくとも、沸点が300℃を超えない範囲、
通常、250℃以下の範囲となるものが好ましい。例え
ば、アルキルアミンとして、そのアルキル基は、C4〜
C20が用いられ、さらに好ましくはC8〜C18の範
囲に選択され、アルキル鎖の末端にアミノ基を有するも
のが用いられる。例えば、前記C8〜C18の範囲のア
ルキルアミンは、熱的な安定性もあり、また、その蒸気
圧もさほど高くなく、室温等で保管する際、含有率を所
望の範囲に維持・制御することが容易であるなど、ハン
ドリング性の面から好適に用いられる。一般に、かかる
配位的な結合を形成する上では、第一級アミン型のもの
がより高い結合能を示し好ましいが、第二級アミン型、
ならびに、第三級アミン型の化合物も利用可能である。
また、1,2−ジアミン型、1,3−ジアミン型など、
近接する二以上のアミノ基が結合に関与する化合物も利
用可能である。
Alkylamines can be mentioned as representatives of the compounds having an available amino group. In addition,
Such an alkylamine, which forms a coordination bond with a metal element, is preferably not desorbed in a normal storage environment, specifically, in a range not reaching 40 ° C., and has a boiling point of 60 ° C. Those having a temperature in the above range, preferably 100 ° C. or higher, are preferable. However, when performing sintering and alloying, it is necessary to be able to quickly separate from the surface, at least the boiling point does not exceed 300 ° C.,
Usually, those having a range of 250 ° C. or less are preferable. For example, as an alkylamine, the alkyl group may be C4-
C20 is used, and more preferably one selected from the range of C8 to C18 and having an amino group at the terminal of the alkyl chain is used. For example, the alkylamine in the range of C8 to C18 also has thermal stability, and its vapor pressure is not so high. When storing at room temperature or the like, the content should be maintained and controlled in a desired range. It is preferably used from the viewpoint of handling properties, such as ease of handling. Generally, in forming such a coordination bond, a primary amine type is preferable because it exhibits higher binding ability, but a secondary amine type is preferred.
In addition, tertiary amine type compounds are also available.
Also, 1,2-diamine type, 1,3-diamine type, etc.
Compounds in which two or more adjacent amino groups participate in binding are also available.

【0027】また、利用可能なスルファニル基(−S
H)を有する化合物の代表として、アルカンチオールを
挙げることができる。なお、かかるアルカンチオール
も、金属元素と配位的な結合を形成した状態で、通常の
保管環境、具体的には、40℃に達しない範囲では、脱
離しないものが好適であり、沸点が60℃以上の範囲、
好ましくは100℃以上となるものが好ましい。ただ
し、焼結・合金化を行う際には、速やかに、表面から離
脱することが可能であることが必要であり、少なくと
も、沸点が300℃を超えない範囲、通常、250℃以
下の範囲となるものが好ましい。例えば、アルカンチオ
ールとして、そのアルキル基は、C4〜C20が用いら
れ、さらに好ましくはC8〜C18の範囲に選択され、
アルキル鎖の末端にスルファニル基(−SH)を有する
ものが用いられる。例えば、前記C8〜C18の範囲の
アルカンチオールは、熱的な安定性もあり、また、その
蒸気圧もさほど高くなく、室温等で保管する際、含有率
を所望の範囲に維持・制御することが容易であるなど、
ハンドリング性の面から好適に用いられる。一般に、第
一級チオール型のものがより高い結合能を示し好ましい
が、第二級チオール型、ならびに、第三級チオール型の
化合物も利用可能である。また、1,2−ジチオール型
などの、二以上のスルファニル基(−SH)が結合に関
与するものも、利用可能である。
Further, an available sulfanyl group (—S
Alkanethiol can be mentioned as a representative of the compound having H). In addition, such an alkane thiol is also preferably in a state of forming a coordination bond with the metal element, in a normal storage environment, specifically, in a range not reaching 40 ° C., one that does not desorb, and has a boiling point of Over 60 ° C,
Preferably, the temperature is 100 ° C. or higher. However, when performing sintering and alloying, it is necessary to be able to be quickly separated from the surface, and at least the boiling point does not exceed 300 ° C., usually 250 ° C. or less. Are preferred. For example, as the alkanethiol, the alkyl group is selected from C4 to C20, and more preferably selected from the range of C8 to C18.
Those having a sulfanyl group (-SH) at the terminal of the alkyl chain are used. For example, the alkanethiol in the range of C8 to C18 also has thermal stability, and its vapor pressure is not so high. When storing at room temperature or the like, the content should be maintained and controlled in a desired range. Is easy,
It is preferably used from the viewpoint of handling properties. Generally, primary thiol-type compounds exhibit higher binding ability and are preferred, but secondary thiol-type and tertiary thiol-type compounds can also be used. Further, a compound in which two or more sulfanyl groups (-SH) participate in the bond, such as a 1,2-dithiol type, can also be used.

【0028】また、利用可能なヒドロキシ基を有する化
合物の代表として、アルカンジオールを挙げることがで
きる。なお、かかるアルカンジオールも、金属元素と配
位的な結合を形成した状態で、通常の保管環境、具体的
には、40℃に達しない範囲では、脱離しないものが好
適であり、沸点が60℃以上の範囲、通常、100℃以
下の範囲となるものが好ましい。ただし、焼結・合金化
を行う際には、速やかに、表面から離脱することが可能
であることが必要であり、少なくとも、沸点が300℃
を超えない範囲、通常、250℃以下の範囲となるもの
が好ましい。例えば、1,2−ジオール型などの、二以
上のヒドロキシ基が結合に関与するものなどが、より好
適に利用可能である。
Alkanediol can be mentioned as a typical example of a compound having a hydroxy group that can be used. In addition, such an alkanediol is preferably in a state of forming a coordination bond with the metal element, and is not desorbed in a normal storage environment, specifically, in a range not reaching 40 ° C., and has a boiling point of Those having a range of 60 ° C. or higher, usually 100 ° C. or lower are preferable. However, when performing sintering and alloying, it is necessary to be able to quickly separate from the surface, and at least the boiling point is 300 ° C.
Is preferably not more than 250 ° C. or less. For example, a compound in which two or more hydroxy groups participate in bonding, such as a 1,2-diol type, can be more preferably used.

【0029】加えて、上述する金属超微粒子の表面を被
覆している金属元素と配位的な結合が可能な基として、
窒素、酸素、イオウ原子を含む基を有する化合物に対し
て、加熱した際、その窒素、酸素、イオウ原子を含む基
との反応性を有する化合物成分、例えば、有機の酸無水
物または酸無水物誘導体あるいは有機酸を、金属超微粒
子分散液中に添加することができる。この窒素、酸素、
イオウ原子を含む基との反応性を有する化合物は、加熱
した際、上述する金属超微粒子の表面を被覆する、金属
元素と配位的な結合が可能な基として、窒素、酸素、イ
オウ原子を含む基を有する化合物による付着層を除去す
るために利用される。すなわち、加熱に伴い、室温付近
では付着層を形成している被覆化合物中の、窒素、酸
素、イオウ原子を含む基と反応する結果、その反応後、
前記窒素、酸素、イオウ原子を含む基は、金属超微粒子
表面において、表面の金属原子と配位的な結合を形成す
ることが困難となり、結果的に除去がなされる。この除
去機能は、ペースト状の金属微粒子分散液の塗布膜形成
がなされる、室温近傍では発揮されず、その後、塗布膜
に対する加熱処理の過程において、初めて発揮されるも
のとなる。
In addition, as a group capable of coordinating with a metal element coating the surface of the above-mentioned ultrafine metal particles,
Compound components having reactivity with nitrogen, oxygen, and sulfur-containing groups when heated to compounds having nitrogen, oxygen, and sulfur-containing groups, such as organic acid anhydrides or acid anhydrides A derivative or an organic acid can be added to the dispersion of ultrafine metal particles. This nitrogen, oxygen,
When heated, the compound having reactivity with a group containing a sulfur atom covers nitrogen, oxygen, and a sulfur atom as a group capable of forming a coordinate bond with a metal element, which coats the surface of the above-described ultrafine metal particles. It is used to remove an adhesion layer due to a compound having a group containing. That is, with heating, as a result of reacting with a group containing nitrogen, oxygen, and sulfur atoms in the coating compound forming an adhesion layer around room temperature after the reaction,
The group containing nitrogen, oxygen, and sulfur atoms becomes difficult to form a coordinate bond with the metal atoms on the surface of the metal ultrafine particles, and as a result, it is removed. This removal function is not exhibited near room temperature where the coating film of the paste-like metal fine particle dispersion is formed, and is first exhibited during the subsequent heat treatment process for the coating film.

【0030】具体的には、添加されている酸無水物また
は酸無水物誘導体は、加熱に伴い、前記窒素、酸素、イ
オウ原子を含む基を有する化合物、例えば、アミン化合
物、チオール化合物、ジオール化合物などと反応し、ア
ミド、チオエステル、エステルを形成するために利用さ
れる。このアミド、チオエステル、エステルを形成する
と、金属原子と配位的な結合を形成することが困難とな
り、結果的に、金属超微粒子の表面被覆層の除去がなさ
れる。従って、極めて微細な金属超微粒子は、元々均一
に分散しており、塗布膜中に含まれる有機溶剤が蒸散す
るに伴い、緻密な充填状態を採りつつ、その金属表面を
直接接触させて加熱処理が進み、比較的に低温でも互い
に焼結する。最終的に、塗布膜中の金属超微粒子全体
は、緻密な焼結体皮膜となり、メッキ膜と比較しても、
その緻密度は遜色のないものとなる。従って、この酸無
水物または酸無水物誘導体の含有量は、上記アミン化合
物、チオール化合物、ジオール化合物などに含まれる末
端アミノ基、スルファニル基(−SH)、ヒドロキシ基
の総和に応じて、少なくとも、それと等量となる量を超
えて添加すると好ましい。なお、酸無水物または酸無水
物誘導体は、加熱した際、場合によっては、塩基性を有
する金属酸化物の皮膜とも反応して、カルボン酸の金属
塩を生成する機能も有するため、その反応性をも考慮に
入れ、若干過剰な量が適宜選択される。
More specifically, the added acid anhydride or acid anhydride derivative is heated to a compound having a group containing nitrogen, oxygen and sulfur atoms, such as an amine compound, a thiol compound and a diol compound. It is used to form amides, thioesters and esters by reacting with amides and the like. When this amide, thioester, or ester is formed, it becomes difficult to form a coordinate bond with a metal atom, and as a result, the surface coating layer of the ultrafine metal particles is removed. Therefore, the ultrafine metal ultrafine particles are originally uniformly dispersed, and as the organic solvent contained in the coating film evaporates, the metal surface is brought into direct contact with the metal surface while taking a densely packed state, thereby performing heat treatment. And sinter each other even at relatively low temperatures. Eventually, the entire metal ultrafine particles in the coating film become a dense sintered body film, and compared with the plating film,
Its compactness is comparable. Therefore, the content of the acid anhydride or acid anhydride derivative is at least depending on the total of the terminal amino group, sulfanyl group (—SH), and hydroxy group contained in the amine compound, thiol compound, diol compound, and the like. It is preferable to add more than the equivalent amount. Note that the acid anhydride or the acid anhydride derivative also has a function of generating a metal salt of a carboxylic acid when heated, in some cases, also reacting with a film of a basic metal oxide. In consideration of the above, a slightly excessive amount is appropriately selected.

【0031】前記の反応性を示す限り、利用される有機
の酸無水物またはその誘導体あるいは有機酸は特に限定
されるものではない。例えば、利用可能な有機酸として
は、ギ酸、酢酸、プロピオン酸、ブタン酸、ヘキサン
酸、オクチル酸などのC1〜C10の直鎖または分岐し
た飽和カルボン酸、ならびにアクリル酸、メタクリル
酸、クロトン酸、ケイ皮酸、安息香酸、ソルビン酸など
の不飽和カルボン酸、ならびに、シュウ酸、マロン酸、
セバシン酸、マレイン酸、フマル酸、イタコン酸などの
二塩基酸など、種々のカルボン酸に加えて、カルボキシ
ル基に代えて、リン酸基(−O-P(O)(OH)2)あるい
は、スルホ基(−SO3H)を有する、リン酸エステル、ス
ルホン酸などのその他の有機酸を挙げることができる。
The organic acid anhydride or its derivative or organic acid to be used is not particularly limited as long as it shows the above-mentioned reactivity. For example, available organic acids include C1-C10 linear or branched saturated carboxylic acids such as formic acid, acetic acid, propionic acid, butanoic acid, hexanoic acid, octylic acid, and acrylic acid, methacrylic acid, crotonic acid, Unsaturated carboxylic acids such as cinnamic acid, benzoic acid and sorbic acid, and oxalic acid, malonic acid,
In addition to various carboxylic acids such as dibasic acids such as sebacic acid, maleic acid, fumaric acid, and itaconic acid, a phosphoric acid group (—OP (O) (OH) 2 ) or a sulfo group is used instead of a carboxyl group. Other organic acids having (—SO 3 H), such as phosphoric acid esters and sulfonic acids, can be mentioned.

【0032】また、好適に利用できる有機の酸無水物も
しくは酸無水物の誘導体として、無水フタル酸、無水ト
リメリット酸、無水ピロメリット酸、無水ベンゾフェノ
ンテトラカルボン酸、エチレングリコールビス(アンヒ
ドロトリメリテート)、グリセロールトリス(アンヒド
ロトリメリテート)などの芳香族酸無水物、無水マレイ
ン酸、無水コハク酸、テトラヒドロ無水フタル酸、メチ
ルテトラヒドロ無水フタル酸、無水メチルナジック酸、
アルケニル無水コハク酸、ヘキサヒドロ無水フタル酸、
メチルヘキサヒドロ無水フタル酸、メチルシクロヘキセ
ンテトラカルボン酸無水物などの環状脂肪族酸無水物、
ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリ
セバシン酸無水物などの脂肪族酸無水物を挙げることが
できる。この中でも、メチルテトラヒドロ無水フタル
酸、メチルヘキサヒドロ無水フタル酸、およびこれらの
誘導体は、本発明が目的とする比較的に低い加熱処理
(焼結)温度においても、例えば、アミン化合物の末端
アミノ基などに対して適度な反応性を有することから好
適に用いられる。
As organic acid anhydrides or acid anhydride derivatives which can be suitably used, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, ethylene glycol bis (anhydrotrimellitic anhydride) can be used. Tetrate), aromatic anhydrides such as glycerol tris (anhydrotrimellitate), maleic anhydride, succinic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride,
Alkenyl succinic anhydride, hexahydrophthalic anhydride,
Cyclic aliphatic acid anhydrides such as methylhexahydrophthalic anhydride and methylcyclohexenetetracarboxylic anhydride;
Examples thereof include aliphatic acid anhydrides such as polyadipic anhydride, polyazelain anhydride, and polysebacic anhydride. Among them, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and derivatives thereof can be used, for example, at the relatively low heat treatment (sintering) temperature aimed at by the present invention, for example, when the terminal amino group of an amine compound is used. It is suitably used because it has an appropriate reactivity to the like.

【0033】本発明のメッキ代替導電性金属膜の形成方
法において、利用するペースト状の金属微粒子分散液
は、塗布後に加熱処理を行うものの、その塗布する際に
は、前記表面に分子の被覆層を設けた金属超微粒子を分
散する分散溶媒として、有機溶剤一種以上を含有したも
のとする。この有機溶剤中には、上記の窒素、酸素、イ
オウ原子を含む基との反応性を有する化合物成分、例え
ば、有機の酸無水物または酸無水物誘導体あるいは有機
酸が均一に溶解した状態とすることが好ましい。一方、
ペースト状の金属微粒子分散液を長期にわたり保管する
間も、表面に分子の被覆層を設けた金属超微粒子が均一
な分散状態を維持する上では、用いる金属超微粒子の表
面を被覆している、アミン化合物などの化合物の付着層
を溶出することのない有機溶剤が好適に利用される。
In the method of forming a conductive metal film alternative to plating according to the present invention, the paste-like fine metal particle dispersion to be used is subjected to a heat treatment after the application, but when the application is performed, a molecular coating layer is formed on the surface. Contains at least one organic solvent as a dispersion solvent for dispersing the ultrafine metal particles provided with In this organic solvent, a compound component having reactivity with the above-mentioned group containing nitrogen, oxygen and sulfur atoms, for example, an organic acid anhydride or an acid anhydride derivative or an organic acid is uniformly dissolved. Is preferred. on the other hand,
During storage of the paste-like metal fine particle dispersion for a long period of time, in order to maintain a uniform dispersion state of the metal ultrafine particles provided with a molecule coating layer on the surface, the metal ultrafine particles used are coated on the surface. An organic solvent that does not elute an adhesion layer of a compound such as an amine compound is preferably used.

【0034】この二種の用途・目的に用いられる有機溶
剤は、異なる種類のものを用いることもできるが、同じ
有機溶剤を用いることが好ましい。なお、前記の二種の
用途に利用できる限り、その種類は限定されるものでは
ないが、金属超微粒子の表面に付着層を形成している化
合物、例えば、アルキルアミンなどの溶解性が高すぎ、
金属超微粒子表面の付着層が消失するような高い極性を
有する溶剤ではなく、非極性溶剤あるいは低極性溶剤を
選択することが好ましい。
As the organic solvent used for these two uses and purposes, different types can be used, but it is preferable to use the same organic solvent. The type is not limited as long as it can be used for the above-mentioned two uses, but the compound forming the adhesion layer on the surface of the ultrafine metal particles, for example, the solubility of alkylamine or the like is too high. ,
It is preferable to select a non-polar solvent or a low-polar solvent instead of a solvent having a high polarity such that the adhesion layer on the surface of the ultrafine metal particles disappears.

【0035】加えて、本発明のメッキ代替導電性金属膜
の形成方法では、塗布後、焼結のため、加熱処理を行う
温度において、かかる有機溶剤は、比較的速やかに蒸散
でき、その間に熱分解などを起こすことがない程度には
熱的な安定性を有することが好ましい。また、微細なラ
インを形成する際、その塗布の工程において、金属微粒
子分散液を所望とする膜厚の塗布膜としてスクリーン印
刷法などで塗布するため、好適な液粘度範囲に維持する
ことも必要となる。そのハンドリング性の面を考慮する
と、室温付近では容易に蒸散することのない、比較的に
高沸点な非極性溶剤あるいは低極性溶剤、例えば、テル
ピネオール、ミネラルスピリット、キシレン、トルエ
ン、エチルベンゼン、メシチレンなどが好適に利用で
き、さらには、ヘキサン、ヘプタン、オクタン、デカ
ン、ドデカン、シクロヘキサン、シクロオクタンなども
用いることができる。
In addition, in the method of forming a conductive metal film in place of plating according to the present invention, such an organic solvent can evaporate relatively quickly at a temperature at which heat treatment is performed for sintering after coating, and during that time, heat It is preferable to have thermal stability to such an extent that decomposition does not occur. Also, when forming a fine line, in the application step, the metal fine particle dispersion is applied as a coating film having a desired film thickness by a screen printing method or the like, so that it is necessary to maintain the liquid viscosity in a suitable range. Becomes Considering its handleability, it does not easily evaporate around room temperature, and relatively high boiling non-polar or low-polar solvents such as terpineol, mineral spirit, xylene, toluene, ethylbenzene, mesitylene, etc. Preferably, hexane, heptane, octane, decane, dodecane, cyclohexane, cyclooctane and the like can be used.

【0036】かかる有機溶剤の含有量は、それが溶解す
べき、窒素、酸素、イオウ原子を含む基との反応性を有
する化合物、例えば、有機の酸無水物またはその誘導体
あるいは有機酸などの量に拠って選択される。また、分
散される金属超微粒子の量、その分散密度に応じて、含
有比率を選択する。その際、通常、ペースト状の金属微
粒子分散液中、分散媒質の金属超微粒子100質量部当
たり、前記有機溶剤の含有量を5〜100質量部の範囲
に選択することが好ましい。なお、適正な塗布性能、例
えば、線幅精度、膜厚の制御性に応じて、ペースト状の
金属微粒子分散液の液粘度を調製する必要があり、例え
ば、有機溶剤の添加量を調整して、最終液粘度を、1〜
500Pa・sの範囲、好ましくは、2〜200Pa・
sの範囲に選択することが望ましい。
The content of such an organic solvent is determined by the amount of a compound having a reactivity with a group containing nitrogen, oxygen and sulfur atoms, for example, an organic acid anhydride or a derivative thereof or an organic acid. Is selected based on The content ratio is selected according to the amount of the ultrafine metal particles to be dispersed and the dispersion density. At that time, it is usually preferable to select the content of the organic solvent in the range of 5 to 100 parts by mass per 100 parts by mass of the ultrafine metal particles in the dispersion medium in the paste-like metal fine particle dispersion. In addition, it is necessary to adjust the liquid viscosity of the paste-like metal fine particle dispersion in accordance with appropriate coating performance, for example, line width accuracy and controllability of the film thickness, for example, by adjusting the amount of the organic solvent added. , The final liquid viscosity is 1 to
500 Pa.s, preferably 2 to 200 Pa.s
It is desirable to select in the range of s.

【0037】一方、ペースト状の金属微粒子分散液中に
含有される、微細な平均粒子径の金属超微粒子は、形成
すべき導電性金属膜が代替するメッキ膜の用途、その材
質に応じて、例えば、銀、銅、白金、パラジウム、タン
グステン、ニッケル、タンタル、ビスマス、鉛、インジ
ウム、錫、亜鉛、チタン、アルミニウムからなる群より
選択される、一種類の金属からなる微粒子、または、2
種類以上の金属からなる合金の微粒子を、適宜選択する
ことができる。通常の目的では、金、銀、銅、白金な
ど、それ自体の電気伝導性に優れる金属からなる微粒子
を利用することが多い。なお、合金微粒子を用いる際に
は、通常、焼結のための加熱処理温度より、かかる合金
の融点が高いものを用いる際に、本発明の効果が発揮さ
れるものとなる。
On the other hand, the ultrafine metal particles having a fine average particle diameter contained in the paste-like metal fine particle dispersion can be used in accordance with the use of the plating film to replace the conductive metal film to be formed and the material thereof. For example, fine particles made of one kind of metal selected from the group consisting of silver, copper, platinum, palladium, tungsten, nickel, tantalum, bismuth, lead, indium, tin, zinc, titanium and aluminum, or 2
Fine particles of an alloy composed of more than two kinds of metals can be appropriately selected. For ordinary purposes, fine particles made of a metal having excellent electric conductivity itself, such as gold, silver, copper, and platinum, are often used. When the alloy fine particles are used, the effect of the present invention is exerted when the alloy having a melting point higher than the heat treatment temperature for sintering is used.

【0038】また、本発明の電子部品の搭載方法は、上
述するメッキ代替導電性金属膜の形成方法を採用して作
製される導電性金属膜を、従来はメッキ膜を利用してい
る電子材料部材に新たに利用することで、その実装基板
上への電子部品の実装・搭載を行う方法である。電子部
品の搭載用部材においては、種々のメッキ膜が利用され
ているが、その内、通常のメッキ法と異なり、本発明の
メッキ代替導電性金属膜の形成方法における特徴的で必
須な工程である、金属超微粒子の低温焼結工程の加熱処
理が何らかの不具合を生じることのない範囲で、メッキ
膜の代替が可能である。特に、本発明のメッキ代替導電
性金属膜の形成方法においては、メッキと異なり、水性
試薬を用いる湿式工程を必要としないことの利点が発揮
される形態がより好適である。
Further, the method for mounting an electronic component according to the present invention is a method of mounting a conductive metal film manufactured by employing the above-described method for forming a conductive metal film instead of a plating film, using an electronic material which conventionally uses a plated film. This is a method of mounting and mounting an electronic component on the mounting board by newly using the member. Various plating films are used in mounting members for electronic components, and among them, unlike the usual plating method, a characteristic and indispensable step in the method for forming a plating substitute conductive metal film of the present invention. As long as the heat treatment in the low-temperature sintering step of the ultrafine metal particles does not cause any trouble, a plating film can be substituted. In particular, in the method for forming a conductive metal film alternative to plating of the present invention, unlike plating, a mode in which the advantage of not requiring a wet process using an aqueous reagent is more preferable.

【0039】例えば、特定の領域にのみ、選択的な導電
性金属膜を形成することを要する場合により適するもの
となる。従って、基板上に電子部品を搭載する一連の工
程は、電子部品を、導電性金属皮膜を介して導通が図ら
れる、基板上に形成されている配線回路に対して、電気
的な接続をとるように搭載する工程を含むが、その際、
基板上に形成されている導電性金属皮膜は、本発明のメ
ッキ代替導電性金属膜の形成方法を用いることで、必要
部分のみに選択的に形成される場合が好ましいものとな
る。
For example, it is more suitable when a selective conductive metal film needs to be formed only in a specific region. Therefore, in a series of steps of mounting the electronic component on the substrate, the electronic component is electrically connected to a wiring circuit formed on the substrate, which is made conductive through the conductive metal film. Including the mounting process,
It is preferable that the conductive metal film formed on the substrate is selectively formed only on necessary portions by using the method for forming a conductive metal film instead of plating according to the present invention.

【0040】一例として、導通を図る導電性金属皮膜
が、基板の表面と裏面間のスルーホール用メッキ膜の代
替導電性金属膜として利用される場合、あるいは、基板
上に形成されている配線回路の少なくとも一部を構成す
るメッキ膜の代替導電性金属膜として利用される場合が
挙げられる。加えて、導通を図る導電性金属皮膜が、基
板上に形成されている配線回路と電子部品の配線との接
続がなされるボンディング用メッキ膜の代替導電性金属
膜として利用される場合をも一例として挙げられる。ま
た、本発明のペースト状の金属微粒子分散液を基板に塗
布後、その塗布膜部分にチップなどの電子部品を搭載
し、250℃以下のの低温にて加熱焼結することで、信
頼性の高い電子部品の接合を行うことも可能となる。
As an example, when a conductive metal film for achieving conduction is used as a substitute for a plated metal film for a through hole between a front surface and a back surface of a substrate, or when a wiring circuit formed on the substrate is used. May be used as an alternative conductive metal film for a plating film constituting at least a part of the above. In addition, an example is a case where a conductive metal film for conducting is used as an alternative conductive metal film for a plating film for bonding in which a wiring circuit formed on a substrate and a wiring of an electronic component are connected. It is listed as. In addition, after applying the paste-like fine metal particle dispersion of the present invention to a substrate, electronic components such as chips are mounted on the coated film portion, and heat sintering is performed at a low temperature of 250 ° C. or less, thereby improving reliability. It is also possible to join high electronic components.

【0041】加えて、本発明の電子部品の搭載方法にお
いては、利用するペースト状の金属微粒子分散液は、金
属微粒子相互の電気的な導通と、成形・固化には、有機
バインダーを利用しておらず、有機バインダーを利用し
ている導電性金属ペーストと異なり、かかる導電性金属
膜に対して、ハンダ剤を更に利用して、複数の電子部品
を実装する形態とすることも可能である。
In addition, in the electronic component mounting method of the present invention, the paste-like metal fine particle dispersion to be used uses an organic binder for electric conduction between the metal fine particles and for molding and solidification. Alternatively, unlike a conductive metal paste using an organic binder, a configuration in which a plurality of electronic components are mounted on such a conductive metal film by further using a soldering agent is also possible.

【0042】[0042]

【実施例】以下に、実施例を示し、本発明をより具体的
に説明する。この実施例は、本発明の最良の実施の形態
の一例ではあるものの、本発明はこの実施例により限定
を受けるものではない。
The present invention will be described in more detail with reference to the following examples. Although this embodiment is an example of the best mode of the present invention, the present invention is not limited by this embodiment.

【0043】(実施例1)市販されている銀の超微粒子
分散液(商品名:独立分散超微粒子パーフェクトシルバ
ー、真空冶金(株))、具体的には、銀微粒子100質
量部、アルキルアミンとして、ドデシルアミン15質量
部、有機溶剤として、ターピネオール75質量部を含む
平均粒径8nmの銀微粒子の分散液を利用して、ペース
ト状の銀超微粒子の分散液を調製した。
(Example 1) Commercially available ultrafine particle dispersion of silver (trade name: Independently dispersed ultrafine particle Perfect Silver, Vacuum Metallurgy Co., Ltd.), specifically, 100 parts by mass of silver fine particles, alkylamine Using a dispersion of silver fine particles having an average particle diameter of 8 nm containing 15 parts by weight of dodecylamine and 75 parts by weight of terpineol as an organic solvent, a dispersion of paste-like ultrafine silver particles was prepared.

【0044】ペースト状の銀超微粒子分散液は、前記銀
微粒子の分散液に、その分散液中の銀微粒子100質量
部当たり、加熱時にドデシルアミンと反応する成分とな
る、酸無水物として、メチルヘキサヒドロ無水フタル酸
(Me−HHPA)10質量部を添加し、攪拌脱泡機で
十分に攪拌して、均一化を図った。なお、調製されたペ
ースト状の銀超微粒子分散液の液粘度は、60Pa・s
である。
The paste-like silver ultrafine particle dispersion is prepared by adding methyl silver as an acid anhydride, which is a component which reacts with dodecylamine when heated per 100 parts by mass of silver fine particles in the silver fine particle dispersion. Hexahydrophthalic anhydride (Me-HHPA) (10 parts by mass) was added, and the mixture was sufficiently stirred with a stirring and defoaming machine to achieve uniformity. The liquid viscosity of the prepared paste ultrafine silver particle dispersion was 60 Pa · s.
It is.

【0045】調製したペースト状の銀超微粒子分散液
を、銅張り積層板の銅箔面上に塗布し、この80μm厚
さの塗布膜上に、半導体部品の金配線を置き、不活性雰
囲気下、150℃×30分、+210℃×60分の温度
条件で加熱処理を施した。この加熱処理により、塗布膜
に含まれる銀超微粒子の焼結がなされ、銅張り積層板の
銅箔面と半導体部品の金配線との間に、ボンディング用
メッキ膜の代替層として形成される銀超微粒子の焼結体
膜を介して、固定と、電気的な導通が形成された。その
際、ボンディングされた金配線と積層板(銅箔面)間の
接続抵抗値は、1.2×10-6Ωであった。
The prepared paste-like ultrafine silver particle dispersion is applied onto the copper foil surface of a copper-clad laminate, and gold wiring of a semiconductor component is placed on this 80 μm-thick coating film under an inert atmosphere. The heat treatment was performed under the temperature conditions of 150 ° C. × 30 minutes and + 210 ° C. × 60 minutes. By this heat treatment, the ultrafine silver particles contained in the coating film are sintered, and the silver formed as a substitute layer of the plating film for bonding is formed between the copper foil surface of the copper-clad laminate and the gold wiring of the semiconductor component. Fixation and electrical conduction were formed via the ultrafine particle sintered body film. At this time, the connection resistance value between the bonded gold wiring and the laminate (copper foil surface) was 1.2 × 10 −6 Ω.

【0046】(実施例2)実施例1と同様に、ペースト
状の銀超微粒子分散液を調製した。平均粒径8nmの銀
微粒子100質量部当たり、アルキルアミンとして、ド
デシルアミン15質量部、有機溶剤として、ターピネオ
ール75質量部を含む分散液を利用して、その分散液中
の銀微粒子100質量部当たり、含有されるドデシルア
ミンと加熱時に反応する成分となる、酸無水物として、
メチルヘキサヒドロ無水フタル酸(Me−HHPA)1
0質量部を添加し、攪拌脱泡機で十分に攪拌して、均一
化を図った。なお、調製されたペースト状の銀超微粒子
分散液の液粘度は、60Pa・sである。
Example 2 In the same manner as in Example 1, a paste-like ultrafine particle dispersion of silver was prepared. Using 100 parts by mass of silver fine particles having an average particle size of 8 nm, a dispersion containing 15 parts by mass of dodecylamine as an alkylamine and 75 parts by mass of terpineol as an organic solvent was used. As a component which reacts with the contained dodecylamine upon heating, as an acid anhydride,
Methyl hexahydrophthalic anhydride (Me-HHPA) 1
0 parts by mass was added, and the mixture was sufficiently stirred with a stirring and defoaming machine to achieve uniformity. The prepared paste-like ultrafine silver particle dispersion has a liquid viscosity of 60 Pa · s.

【0047】調製されたペースト状の銀超微粒子分散液
をプリント配線基板面上にスクリーン印刷により、回路
パターン状の印刷塗布した。この50μm厚さの塗布膜
に、不活性雰囲気下、150℃×30分、+210℃×
60分の温度条件で加熱処理を施した。この加熱処理に
より、塗布膜に含まれる銀超微粒子の焼結がなされ、プ
リント配線基板の表面に、メッキ膜の代替層として形成
される銀超微粒子の焼結体膜からなる回路配線が形成さ
れた。得られた回路の抵抗値(面抵抗率)は7.5×1
-6Ω・□であった。
The prepared paste-like ultrafine silver particle dispersion was applied by screen printing on a printed wiring board surface in the form of a circuit pattern. On this 50 μm thick coating film, 150 ° C. × 30 minutes, + 210 ° C. ×
Heat treatment was performed under a temperature condition of 60 minutes. By this heat treatment, the ultrafine silver particles contained in the coating film are sintered, and the circuit wiring composed of the sintered film of the ultrafine silver particles formed as a substitute layer for the plating film is formed on the surface of the printed wiring board. Was. The resistance value (area resistivity) of the obtained circuit is 7.5 × 1.
0 −6 Ω · □.

【0048】(実施例3)実施例1と同様に、ペースト
状の銀超微粒子分散液を調製した。平均粒径8nmの銀
微粒子100質量部当たり、アルキルアミンとして、ド
デシルアミン15質量部、有機溶剤として、ターピネオ
ール75質量部を含む分散液を利用して、その分散液中
の銀微粒子100質量部当たり、含有されるドデシルア
ミンと加熱時に反応する成分となる、酸無水物として、
メチルヘキサヒドロ無水フタル酸(Me−HHPA)1
0質量部を添加し、攪拌脱泡機で十分に攪拌して、均一
化を図った。なお、調製されたペースト状の銀超微粒子
分散液の液粘度は、60Pa・sである。
Example 3 In the same manner as in Example 1, a paste-like ultrafine silver particle dispersion was prepared. Using 100 parts by mass of silver fine particles having an average particle size of 8 nm, a dispersion containing 15 parts by mass of dodecylamine as an alkylamine and 75 parts by mass of terpineol as an organic solvent was used. As a component which reacts with the contained dodecylamine upon heating, as an acid anhydride,
Methyl hexahydrophthalic anhydride (Me-HHPA) 1
0 parts by mass was added, and the mixture was sufficiently stirred with a stirring and defoaming machine to achieve uniformity. The prepared paste-like ultrafine silver particle dispersion has a liquid viscosity of 60 Pa · s.

【0049】調製されたペースト状の銀超微粒子分散液
を、スクリーン印刷により、基板厚さ1.6mmの両面
配線基板の内径0.5mmのスルーホールを埋め込むよ
うに、印刷した。この平面部分での厚さ50μmの塗布
膜に、不活性雰囲気下、150℃×30分、+210℃
×60分の温度条件で加熱処理を施した。この加熱処理
により、塗布膜に含まれる銀超微粒子の焼結がなされ、
両面配線基板を貫通するスルーホールの内壁面に、スル
ーホール用メッキ膜の代替層として形成される銀超微粒
子の焼結体膜が形成された。得られたスルーホールを介
する導通路の抵抗値(層間の接続抵抗値)は、1つのス
ルーホール当たり、9.1×10-6Ωであった。
The prepared paste ultrafine silver particle dispersion was printed by screen printing so as to fill a through hole having an inner diameter of 0.5 mm of a double-sided wiring substrate having a substrate thickness of 1.6 mm. A coating film having a thickness of 50 μm on the flat surface portion is placed under an inert atmosphere at 150 ° C. for 30 minutes at + 210 ° C.
The heat treatment was performed under a temperature condition of × 60 minutes. By this heat treatment, the ultrafine silver particles contained in the coating film are sintered,
On the inner wall surface of the through hole penetrating the double-sided wiring board, a sintered film of ultrafine silver particles formed as a substitute layer for the plated film for the through hole was formed. The resistance value (connection resistance value between layers) of the conduction path via the obtained through-hole was 9.1 × 10 −6 Ω per through-hole.

【0050】[0050]

【発明の効果】本発明の金属微粒子分散液を用いたメッ
キ代替導電性金属皮膜の形成方法では、利用する金属微
粒子分散液中に分散させる金属微粒子として、平均粒子
径1〜100nmの金属超微粒子を利用し、その金属超
微粒子の表面には、その金属元素と配位的な結合が可能
な基として、窒素、酸素、イオウ原子を含む基を有する
化合物1種以上による緻密な分子被覆層を設けること
で、塗布・印刷までの間は、この金属超微粒子の凝集、
融着を抑制するものである。加えて、緻密な分子被覆層
は、金属超微粒子表面の自然酸化をも抑制して、この金
属微粒子分散液の長期にわたる保管と、品質維持、分散
特性の維持を可能ともする。一方、金属超微粒子を分散
している有機溶媒中には、加熱処理を施す温度におい
て、窒素、酸素、イオウ原子を含む基と反応性を有する
化合物を添加しておくことで、金属超微粒子表面を覆
う、窒素、酸素、イオウ原子を含む基を有する化合物の
被覆層の除去を可能としている。優れた圧縮性、成形性
を保持して、有機溶媒中に均一に分散している金属微粒
子は、塗布膜中において、最終的には、緻密な充填状態
をとり、その清浄な金属超微粒子表面を互いに接し、加
熱処理される間に低温焼結され、メッキ膜と比較しても
遜色のない緻密な金属皮膜が高い再現性で形成できる。
加えて、一般の導電性金属ペーストとは異なり、本発明
のペースト状の金属微粒子分散液は、本質的に有機バイ
ンダー成分を含まず、金属超微粒子相互の焼結により、
その形状、導電性を達成するものであるので、塗布され
る部分の表面形状、隙間間隔などに依らず、均質な導電
性皮膜を与えることを可能としている。
According to the method of the present invention for forming a conductive metal film in place of plating using a metal fine particle dispersion, ultrafine metal particles having an average particle diameter of 1 to 100 nm are used as the metal fine particles to be dispersed in the metal fine particle dispersion to be used. On the surface of the metal ultrafine particles, a dense molecular coating layer of at least one compound having a group containing nitrogen, oxygen, and sulfur atoms as a group capable of coordinating with the metal element. By providing, until the coating and printing, the aggregation of these ultra-fine metal particles,
This suppresses fusion. In addition, the dense molecular coating layer also suppresses spontaneous oxidation of the surface of the ultrafine metal particles, and enables the metal fine particle dispersion to be stored for a long time and to maintain the quality and the dispersion characteristics. On the other hand, in the organic solvent in which the metal ultrafine particles are dispersed, a compound having a reactivity with a group containing nitrogen, oxygen, and sulfur atoms is added at the temperature at which the heat treatment is performed, so that the surface of the metal ultrafine particles is Of a compound having a group containing a nitrogen, oxygen, and sulfur atom can be removed. The metal fine particles that are uniformly dispersed in the organic solvent while maintaining excellent compressibility and moldability, finally take a densely packed state in the coating film, and the surface of the clean metal ultrafine particles Are sintered at a low temperature during the heat treatment, so that a dense metal film comparable to a plated film can be formed with high reproducibility.
In addition, unlike a general conductive metal paste, the paste-like metal fine particle dispersion of the present invention essentially does not contain an organic binder component, and sintering of the metal ultrafine particles mutually,
Since the shape and conductivity are achieved, it is possible to provide a uniform conductive film regardless of the surface shape of the portion to be applied, the gap interval, and the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 1/00 H01B 1/00 E 1/22 1/22 A H05K 1/09 H05K 1/09 A (72)発明者 後藤 英之 茨城県つくば市東光台5丁目9番の3 ハ リマ化成株式会社筑波研究所内 (72)発明者 松葉 頼重 茨城県つくば市東光台5丁目9番の3 ハ リマ化成株式会社筑波研究所内 Fターム(参考) 4E351 AA00 BB01 BB31 BB49 CC11 CC22 CC31 DD04 DD05 DD06 DD08 DD10 DD12 DD13 DD17 DD19 DD20 DD21 DD52 DD56 GG20 4J038 AA01 FA08 HA061 HA22 JA02 JA03 JA20 JA37 JA39 JA42 JB03 JC02 JC13 JC22 KA06 KA15 KA20 LA04 NA20 PA19 PB09 PC02 4K018 AA02 AA03 AA06 AA07 AA14 AA19 AA40 AB10 AC01 BA01 BA02 BA03 BA04 BA08 BA09 BA20 BC29 BD04 BD10 DA21 KA33 4K044 AA06 AB02 BA02 BA06 BA08 BA10 BB01 BC08 BC14 CA24 CA27 CA29 CA53 5G301 DA03 DA04 DA05 DA06 DA10 DA11 DA12 DA13 DA14 DA42 DD01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01B 1/00 H01B 1/00 E 1/22 1/22 A H05K 1/09 H05K 1/09 A (72 ) Inventor Hideyuki Goto 5-9-3 Tokodai, Tsukuba, Ibaraki Pref. Inside Tsukuba Research Laboratories (72) Inventor Yorige Matsuba 5-9-3 Tokodai, Tokodai, Tsukuba, Ibaraki Pref. F term in Tsukuba Research Laboratories (reference) 4E351 AA00 BB01 BB31 BB49 CC11 CC22 CC31 DD04 DD05 DD06 DD08 DD10 DD12 DD13 DD17 DD19 DD20 DD21 DD52 DD56 GG20 4J038 AA01 FA08 HA061 HA22 JA02 JA03 JA20 JA37 JA39 JA42 JB03 JC20 KA20 LA14 PA19 PB09 PC02 4K018 AA02 AA03 AA06 AA07 AA14 AA19 AA40 AB10 AC01 BA01 BA02 BA03 BA04 BA08 BA09 BA20 BC29 BD04 BD10 DA21 KA33 4K044 AA06 AB02 BA02 BA06 BA08 BA1 0 BB01 BC08 BC14 CA24 CA27 CA29 CA53 5G301 DA03 DA04 DA05 DA06 DA10 DA11 DA12 DA13 DA14 DA42 DD01

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 金属微粒子分散液を用いて、メッキ代替
導電性金属皮膜を形成する方法であって、 メッキ代替導電膜を形成する領域に、前記金属微粒子分
散液の塗布層を形成する工程と、 形成された前記金属微粒子分散液の塗布層を250℃を
超えない温度にて加熱処理し、含有される金属微粒子相
互を焼結する工程とを有し、 利用する前記金属微粒子分散液は、分散媒体となる有機
溶剤中に平均粒子径が1〜100nmの範囲に選択され
る金属超微粒子が分散されており、 金属超微粒子表面は、かかる金属超微粒子に含まれる金
属元素と配位的な結合が可能な基として、窒素、酸素、
イオウ原子を含む基を有する化合物1種以上により被覆
されており、 前記加熱処理を施す際、金属元素と配位的な結合が可能
な基として、窒素、酸素、イオウ原子を含む基を有する
前記化合物の金属超微粒子表面からの解離がなされるこ
とを特徴とするメッキ代替導電性金属膜の形成方法。
1. A method for forming a plating-substitute conductive metal film using a metal-particle dispersion liquid, comprising: forming a coating layer of the metal-particle dispersion liquid in a region where a plating-substitute conductive film is to be formed; Heating the formed coating layer of the fine metal particle dispersion at a temperature not exceeding 250 ° C. and sintering the fine metal particles contained therein. Ultrafine metal particles having an average particle diameter selected in the range of 1 to 100 nm are dispersed in an organic solvent serving as a dispersion medium, and the surface of the ultrafine metal particles is coordinated with a metal element contained in the ultrafine metal particles. Groups that can be bonded include nitrogen, oxygen,
When coated with at least one compound having a group containing a sulfur atom, the group having nitrogen, oxygen, and a group containing a sulfur atom as a group capable of coordinative bonding with a metal element when the heat treatment is performed. A method for forming a conductive metal film in place of plating, wherein the compound is dissociated from the surface of the ultrafine metal particles.
【請求項2】 金属微粒子分散液中には、 金属超微粒子表面を被覆している、金属元素と配位的な
結合が可能な基として、窒素、酸素、イオウ原子を含む
基を有する前記化合物に対して、前記加熱処理を施す温
度において、その窒素、酸素、イオウ原子を含む基と反
応性を有する化合物が溶解されており、 金属超微粒子表面からの窒素、酸素、イオウ原子を含む
基を有する前記化合物の解離は、かかる窒素、酸素、イ
オウ原子を含む基を有する前記化合物に対する、その窒
素、酸素、イオウ原子を含む基と反応性を有する前記化
合物との反応により促進されることを特徴とする請求項
1に記載の方法。
2. The compound containing a group containing nitrogen, oxygen, and sulfur atoms as a group capable of coordinatively bonding with a metal element, which covers the surface of the metal ultrafine particles in the metal fine particle dispersion. On the other hand, at the temperature at which the heat treatment is performed, a compound having reactivity with the group containing nitrogen, oxygen, and sulfur atoms is dissolved, and the group containing nitrogen, oxygen, and sulfur atoms from the surface of the metal ultrafine particles is dissolved. The dissociation of the compound having nitrogen, oxygen and sulfur atoms is promoted by the reaction of the compound having nitrogen, oxygen and sulfur atoms with the group having reactivity with the group having nitrogen, oxygen and sulfur atoms. The method according to claim 1, wherein
【請求項3】 金属微粒子分散液中に含有される、前記
窒素、酸素、イオウ原子を含む基と反応性を有する化合
物として、有機の酸無水物またはその誘導体あるいは有
機酸を用いることを特徴とする請求項2に記載の方法。
3. An organic acid anhydride or a derivative thereof or an organic acid is used as the compound having a reactivity with the group containing nitrogen, oxygen and sulfur atoms contained in the metal fine particle dispersion. 3. The method of claim 2, wherein the method comprises:
【請求項4】 金属微粒子分散液中に含有される前記金
属超微粒子は、金、銀、銅、白金、パラジウム、タング
ステン、ニッケル、タンタル、ビスマス、鉛、インジウ
ム、錫、亜鉛、チタン、アルミニウムからなる群より選
択される、一種類の金属からなる微粒子、または、2種
類以上の金属からなる合金の微粒子であることを特徴と
する請求項1または2に記載の方法。
4. The ultrafine metal particles contained in the metal fine particle dispersion liquid include gold, silver, copper, platinum, palladium, tungsten, nickel, tantalum, bismuth, lead, indium, tin, zinc, titanium, and aluminum. The method according to claim 1, wherein the fine particles are selected from the group consisting of fine particles of one kind of metal, or fine particles of an alloy consisting of two or more kinds of metals.
【請求項5】 メッキ代替導電膜の形成に利用される金
属微粒子分散液であって、 前記金属微粒子分散液は、分散媒体となる有機溶剤中に
平均粒子径が1〜100nmの範囲に選択される金属超
微粒子が分散されており、 金属超微粒子表面は、かかる金属超微粒子に含まれる金
属元素と配位的な結合が可能な基として、窒素、酸素、
イオウ原子を含む基を有する化合物1種以上により被覆
されており、 金属元素と配位的な結合が可能な基として、窒素、酸
素、イオウ原子を含む基を有する前記化合物は、250
℃を超えない温度にて加熱処理により、金属超微粒子表
面からの解離が可能であることを特徴とする金属微粒子
分散液。
5. A metal fine particle dispersion used for forming a plating alternative conductive film, wherein the metal fine particle dispersion is selected in an organic solvent serving as a dispersion medium to have an average particle diameter of 1 to 100 nm. Ultrafine metal particles are dispersed, and the surface of the ultrafine metal particles is formed of nitrogen, oxygen,
The compound which is coated with one or more compounds having a group containing a sulfur atom and has a group containing a nitrogen atom, oxygen, or a sulfur atom as a group capable of coordinating with a metal element is 250%
A metal fine particle dispersion liquid capable of being dissociated from the surface of ultrafine metal particles by heat treatment at a temperature not exceeding ℃.
【請求項6】 金属微粒子分散液中には、 金属超微粒子表面を被覆している、金属元素と配位的な
結合が可能な基として、窒素、酸素、イオウ原子を含む
基を有する前記化合物に対して、前記加熱処理を施す温
度において、その窒素、酸素、イオウ原子を含む基と反
応性を有する化合物が溶解されていることを特徴とする
請求項5に記載の金属微粒子分散液。
6. The compound having a group containing nitrogen, oxygen, and sulfur atoms as a group capable of coordinating with a metal element, which covers the surface of ultrafine metal particles, in the dispersion liquid of metal fine particles. The metal fine particle dispersion according to claim 5, wherein a compound having a reactivity with a group containing nitrogen, oxygen, and sulfur atoms is dissolved at a temperature at which the heat treatment is performed.
【請求項7】 金属微粒子分散液中に含有される、前記
窒素、酸素、イオウ原子を含む基と反応性を有する化合
物は、有機の酸無水物またはその誘導体あるいは有機酸
であることを特徴とする請求項6に記載の金属微粒子分
散液。
7. The compound having a reactivity with a group containing nitrogen, oxygen and sulfur atoms contained in a dispersion of fine metal particles is an organic acid anhydride or a derivative thereof or an organic acid. The metal fine particle dispersion according to claim 6, wherein
【請求項8】 金属微粒子分散液中に含有される前記金
属超微粒子は、金、銀、銅、白金、パラジウム、タング
ステン、ニッケル、タンタル、ビスマス、鉛、インジウ
ム、錫、亜鉛、チタン、アルミニウムからなる群より選
択される、一種類の金属からなる微粒子、または、2種
類以上の金属からなる合金の微粒子であることを特徴と
する請求項5または6に記載の金属微粒子分散液。
8. The ultrafine metal particles contained in the dispersion liquid of fine metal particles may include gold, silver, copper, platinum, palladium, tungsten, nickel, tantalum, bismuth, lead, indium, tin, zinc, titanium, and aluminum. 7. The metal particle dispersion according to claim 5, wherein the metal particle dispersion is selected from the group consisting of one kind of metal, and an alloy containing two or more kinds of metals.
【請求項9】 基板上に電子部品を搭載する方法であっ
て、 前記電子部品は、導電性金属皮膜を介して導通が図られ
る、基板上に形成されている配線回路に対して、電気的
な接続をとるように搭載する工程を有し、 基板上に形成されている前記導電性金属皮膜は、請求項
1〜4のいずれかに記載される方法により形成されてい
ることを特徴とする電子部品の搭載方法。
9. A method of mounting an electronic component on a substrate, wherein the electronic component is electrically connected to a wiring circuit formed on the substrate, the conduction being achieved via a conductive metal film. Wherein the conductive metal film formed on the substrate is formed by the method according to any one of claims 1 to 4. How to mount electronic components.
【請求項10】 導通を図る導電性金属皮膜は、基板の
表面と裏面間のスルーホール用メッキ膜の代替導電性金
属膜であることを特徴とする請求項9に記載の方法。
10. The method according to claim 9, wherein the conductive metal film for achieving conduction is a substitute conductive metal film for a plated film for through holes between the front surface and the back surface of the substrate.
【請求項11】 導通を図る導電性金属皮膜は、基板上
に形成されている配線回路の少なくとも一部を構成する
メッキ膜の代替導電性金属膜であることを特徴とする請
求項9に記載の方法。
11. The conductive metal film for establishing conduction is an alternative conductive metal film for a plating film constituting at least a part of a wiring circuit formed on a substrate. the method of.
【請求項12】 導通を図る導電性金属皮膜は、基板上
に形成されている配線回路と電子部品の配線との接続が
なされるボンディング用メッキ膜の代替導電性金属膜で
あることを特徴とする請求項9に記載の方法。
12. The conductive metal film for establishing conduction is a conductive metal film alternative to a plating film for bonding for connecting a wiring circuit formed on a substrate and a wiring of an electronic component. The method according to claim 9, wherein
JP2001136077A 2001-05-07 2001-05-07 Method of forming an alternative conductive metal film for plating using metal fine particle dispersion Expired - Lifetime JP3764349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001136077A JP3764349B2 (en) 2001-05-07 2001-05-07 Method of forming an alternative conductive metal film for plating using metal fine particle dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001136077A JP3764349B2 (en) 2001-05-07 2001-05-07 Method of forming an alternative conductive metal film for plating using metal fine particle dispersion

Publications (2)

Publication Number Publication Date
JP2002334618A true JP2002334618A (en) 2002-11-22
JP3764349B2 JP3764349B2 (en) 2006-04-05

Family

ID=18983437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001136077A Expired - Lifetime JP3764349B2 (en) 2001-05-07 2001-05-07 Method of forming an alternative conductive metal film for plating using metal fine particle dispersion

Country Status (1)

Country Link
JP (1) JP3764349B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004095476A1 (en) * 2003-04-23 2004-11-04 Toho Titanium Co. Ltd. Nickel powder dispersion, method for preparing same, and method for preparing conductive paste using such powder dispersion
WO2005037465A1 (en) * 2003-10-20 2005-04-28 Harima Chemicals, Inc. Fine metal particles and fine metal oxide particles in dry powder form, and use thereof
WO2005088652A1 (en) 2004-03-10 2005-09-22 Asahi Glass Company, Limited Metal-containing fine particle, liquid dispersion of metal-containing fine particle, and conductive metal-containing material
JP2006026602A (en) * 2004-07-21 2006-02-02 Harima Chem Inc Method for forming thin film conductor layer of metallic particulate sintered compact type, and methods for forming metallic wiring and metallic thin film by applying the method
JP2006128608A (en) * 2004-09-29 2006-05-18 Kyocera Corp Electronic part, method for manufacturing the same, chip resistor using the same, ferrite core and inductor
WO2006112129A1 (en) * 2005-04-06 2006-10-26 Murata Manufacturing Co., Ltd. Conductor powder and process for producing the same, and electrically conductive resin composition
JP2007042301A (en) * 2005-07-29 2007-02-15 Toda Kogyo Corp Conductive composition, conductive paste, and conductive film
JP2007083288A (en) * 2005-09-22 2007-04-05 Harima Chem Inc Forming method of conductive joint
WO2007043664A1 (en) 2005-10-14 2007-04-19 Toyo Ink Mfg. Co., Ltd. Method for producing metal particle dispersion, conductive ink using metal particle dispersion produced by such method, and conductive coating film
US20070098883A1 (en) * 2003-09-12 2007-05-03 Daisuke Itoh Metal nanoparticle dispersion usable for ejection in the form of fine droplets to be applied in the layered shape
WO2007052564A1 (en) * 2005-11-04 2007-05-10 Mitsui Mining & Smelting Co., Ltd. Nickel ink and electrically conductive film formed of said nickel ink
JP2007527102A (en) * 2004-02-18 2007-09-20 バージニア テック インテレクチュアル プロパティーズ インコーポレーテッド Nanoscale metal pastes for interconnection and methods of use
JP2007297671A (en) * 2006-04-28 2007-11-15 Toda Kogyo Corp Silver powder, its production method and electrically conductive paste containing the silver powder
JP2007324025A (en) * 2006-06-02 2007-12-13 Nippon Shokubai Co Ltd Metal coat
WO2008013002A1 (en) 2006-07-28 2008-01-31 Asahi Glass Company, Limited Dispersion conatining metal fine particles, process for production of the dispersion, and articles having metal films
JP2008091250A (en) * 2006-10-03 2008-04-17 Mitsuboshi Belting Ltd Low-temperature calcination type silver paste
WO2009016863A1 (en) 2007-07-31 2009-02-05 Bando Chemical Industries, Ltd. Conductive ink, conductive coating therefrom and method for producing the same
JP2009088340A (en) * 2007-10-01 2009-04-23 Harima Chem Inc Method of manufacturing metal nanoparticle sintered compact
US7550513B2 (en) 2003-06-10 2009-06-23 Asahi Glass Company, Limted Fine metal hydride particles, their production process, dispersion containing fine metal hydride particles and metallic material
US7560051B2 (en) 2005-03-18 2009-07-14 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus
JP2009299086A (en) * 2008-06-10 2009-12-24 Harima Chem Inc Method of forming thick film layer of metal nano particle sintered body
JP2010118168A (en) * 2008-11-11 2010-05-27 Dic Corp Manufacturing method of conductive mold product, conductive mold product, and silver paste used for the same
US7786178B2 (en) 2003-04-28 2010-08-31 Sumitomo Metal Mining Co., Ltd. Process for producing fine silver particle colloidal dispersion, fine silver particle colloidal dispersion, and conductive silver film
US7820232B2 (en) * 2003-05-16 2010-10-26 Harima Chemicals, Inc. Method for forming fine copper particle sintered product type of electric conductor having fine shape, and process for forming copper fine wiring and thin copper film by applying said method
US7922938B2 (en) 2005-12-08 2011-04-12 Sumitomo Metal Mining Co., Ltd. Fine silver particle colloidal dispersion, coating liquid for silver film formation, processes for producing these, and silver film
US7956103B2 (en) 2005-04-12 2011-06-07 Asahi Glass Company, Limited Ink composition and metallic material
JP2011119340A (en) * 2009-12-01 2011-06-16 Harima Chemicals Inc Conductive aluminum paste
US8012378B2 (en) 2006-04-10 2011-09-06 Mitsui Minning & Smelting Co., Ltd Nickel ink
US8043535B2 (en) 2004-12-27 2011-10-25 Mitsui Mining & Smelting Co., Ltd. Conductive ink
JP2012057217A (en) * 2010-09-09 2012-03-22 Honda Motor Co Ltd Method for manufacturing sliding member, and sliding member
WO2012070262A1 (en) * 2010-11-22 2012-05-31 Dowaエレクトロニクス株式会社 Binding material, binding body, and binding method
US8257795B2 (en) 2004-02-18 2012-09-04 Virginia Tech Intellectual Properties, Inc. Nanoscale metal paste for interconnect and method of use
JP5642312B1 (en) * 2014-05-13 2014-12-17 イサハヤ電子株式会社 Semiconductor device and manufacturing method thereof
JP2016135843A (en) * 2008-04-30 2016-07-28 日立化成株式会社 Connection material and semiconductor device
CN113893701A (en) * 2021-11-10 2022-01-07 贵州省材料产业技术研究院 Preparation method of conductive polyether sulfone separation membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120170241A1 (en) 2009-09-16 2012-07-05 Hideo Nakako Printing ink, metal nanoparticles used in the same, wiring, circuit board, and semiconductor package

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035255A (en) * 1999-07-22 2001-02-09 Vacuum Metallurgical Co Ltd Silver superfine particle independently dispersed solution
JP2002121606A (en) * 2000-10-13 2002-04-26 Ulvac Corporate Center:Kk Metallic hyperfine grain dispersed solution and its production method
WO2002035554A1 (en) * 2000-10-25 2002-05-02 Harima Chemicals, Inc. Electroconductive metal paste and method for production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035255A (en) * 1999-07-22 2001-02-09 Vacuum Metallurgical Co Ltd Silver superfine particle independently dispersed solution
JP2002121606A (en) * 2000-10-13 2002-04-26 Ulvac Corporate Center:Kk Metallic hyperfine grain dispersed solution and its production method
WO2002035554A1 (en) * 2000-10-25 2002-05-02 Harima Chemicals, Inc. Electroconductive metal paste and method for production thereof

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004095476A1 (en) * 2003-04-23 2004-11-04 Toho Titanium Co. Ltd. Nickel powder dispersion, method for preparing same, and method for preparing conductive paste using such powder dispersion
US7786178B2 (en) 2003-04-28 2010-08-31 Sumitomo Metal Mining Co., Ltd. Process for producing fine silver particle colloidal dispersion, fine silver particle colloidal dispersion, and conductive silver film
US8524786B2 (en) 2003-04-28 2013-09-03 Sumitomo Metal Mining Co., Ltd. Process for producing fine silver particle colloidal dispersion, fine silver particle colloidal dispersion, and conductive silver film
US7820232B2 (en) * 2003-05-16 2010-10-26 Harima Chemicals, Inc. Method for forming fine copper particle sintered product type of electric conductor having fine shape, and process for forming copper fine wiring and thin copper film by applying said method
US7550513B2 (en) 2003-06-10 2009-06-23 Asahi Glass Company, Limted Fine metal hydride particles, their production process, dispersion containing fine metal hydride particles and metallic material
US9006296B2 (en) * 2003-09-12 2015-04-14 Harima Chemicals, Inc. Metal nanoparticle dispersion usable for ejection in the form of fine droplets to be applied in the layered shape
US20070098883A1 (en) * 2003-09-12 2007-05-03 Daisuke Itoh Metal nanoparticle dispersion usable for ejection in the form of fine droplets to be applied in the layered shape
KR100771393B1 (en) * 2003-10-20 2007-10-30 하리마 카세이 가부시키가이샤 Fine metal particles and fine metal oxide particles in dry powder form, and use thereof
US9233420B2 (en) 2003-10-20 2016-01-12 Harima Chemicals, Inc. Fine metal particles and fine metal oxide particles in dry powder form, and use thereof
US8758475B2 (en) 2003-10-20 2014-06-24 Harima Chemicals, Inc. Fine metal particles and fine metal oxide particles in dry powder form, and use thereof
WO2005037465A1 (en) * 2003-10-20 2005-04-28 Harima Chemicals, Inc. Fine metal particles and fine metal oxide particles in dry powder form, and use thereof
US8257795B2 (en) 2004-02-18 2012-09-04 Virginia Tech Intellectual Properties, Inc. Nanoscale metal paste for interconnect and method of use
JP2007527102A (en) * 2004-02-18 2007-09-20 バージニア テック インテレクチュアル プロパティーズ インコーポレーテッド Nanoscale metal pastes for interconnection and methods of use
US7390440B2 (en) 2004-03-10 2008-06-24 Asahi Glass Company, Limited Process for producing metal-containing particles having their surface coated with at least two dispersants different in vaporization temperature
WO2005088652A1 (en) 2004-03-10 2005-09-22 Asahi Glass Company, Limited Metal-containing fine particle, liquid dispersion of metal-containing fine particle, and conductive metal-containing material
JP4535797B2 (en) * 2004-07-21 2010-09-01 ハリマ化成株式会社 Method for forming metal fine-particle sintered body type thin film conductor layer, metal wiring using the method, and method for forming metal thin film
JP2006026602A (en) * 2004-07-21 2006-02-02 Harima Chem Inc Method for forming thin film conductor layer of metallic particulate sintered compact type, and methods for forming metallic wiring and metallic thin film by applying the method
JP2006128608A (en) * 2004-09-29 2006-05-18 Kyocera Corp Electronic part, method for manufacturing the same, chip resistor using the same, ferrite core and inductor
US8043535B2 (en) 2004-12-27 2011-10-25 Mitsui Mining & Smelting Co., Ltd. Conductive ink
US7560051B2 (en) 2005-03-18 2009-07-14 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus
US7767115B2 (en) 2005-03-18 2010-08-03 Seiko Epson Corporation Metal particle dispersion liquid, method for manufacturing metal particle dispersion liquid, method for manufacturing conductive-film-forming substrate, electronic device and electronic apparatus
WO2006112129A1 (en) * 2005-04-06 2006-10-26 Murata Manufacturing Co., Ltd. Conductor powder and process for producing the same, and electrically conductive resin composition
US7956103B2 (en) 2005-04-12 2011-06-07 Asahi Glass Company, Limited Ink composition and metallic material
JP2007042301A (en) * 2005-07-29 2007-02-15 Toda Kogyo Corp Conductive composition, conductive paste, and conductive film
JP2007083288A (en) * 2005-09-22 2007-04-05 Harima Chem Inc Forming method of conductive joint
US8440110B2 (en) 2005-10-14 2013-05-14 Toyo Ink Mfg Co., Ltd. Method for producing metal particle dispersion, conductive ink using metal particle dispersion produced by such method, and conductive coating film
WO2007043664A1 (en) 2005-10-14 2007-04-19 Toyo Ink Mfg. Co., Ltd. Method for producing metal particle dispersion, conductive ink using metal particle dispersion produced by such method, and conductive coating film
US7981327B2 (en) 2005-10-14 2011-07-19 Toyo Ink Mfg. Co. Ltd. Method for producing metal particle dispersion, conductive ink using metal particle dispersion produced by such method, and conductive coating film
US8486306B2 (en) 2005-11-04 2013-07-16 Mitsui Mining & Smelting Co., Ltd. Nickel ink and conductor film formed of nickel ink
WO2007052564A1 (en) * 2005-11-04 2007-05-10 Mitsui Mining & Smelting Co., Ltd. Nickel ink and electrically conductive film formed of said nickel ink
US7922938B2 (en) 2005-12-08 2011-04-12 Sumitomo Metal Mining Co., Ltd. Fine silver particle colloidal dispersion, coating liquid for silver film formation, processes for producing these, and silver film
US8012378B2 (en) 2006-04-10 2011-09-06 Mitsui Minning & Smelting Co., Ltd Nickel ink
JP4614101B2 (en) * 2006-04-28 2011-01-19 戸田工業株式会社 Silver powder, method for producing the same, and conductive paste containing the silver powder
JP2007297671A (en) * 2006-04-28 2007-11-15 Toda Kogyo Corp Silver powder, its production method and electrically conductive paste containing the silver powder
JP2007324025A (en) * 2006-06-02 2007-12-13 Nippon Shokubai Co Ltd Metal coat
JP5131191B2 (en) * 2006-07-28 2013-01-30 旭硝子株式会社 Method for producing dispersion containing metal fine particles
WO2008013002A1 (en) 2006-07-28 2008-01-31 Asahi Glass Company, Limited Dispersion conatining metal fine particles, process for production of the dispersion, and articles having metal films
JP2008091250A (en) * 2006-10-03 2008-04-17 Mitsuboshi Belting Ltd Low-temperature calcination type silver paste
WO2009016863A1 (en) 2007-07-31 2009-02-05 Bando Chemical Industries, Ltd. Conductive ink, conductive coating therefrom and method for producing the same
JP2009088340A (en) * 2007-10-01 2009-04-23 Harima Chem Inc Method of manufacturing metal nanoparticle sintered compact
JP2016135843A (en) * 2008-04-30 2016-07-28 日立化成株式会社 Connection material and semiconductor device
JP2009299086A (en) * 2008-06-10 2009-12-24 Harima Chem Inc Method of forming thick film layer of metal nano particle sintered body
JP2010118168A (en) * 2008-11-11 2010-05-27 Dic Corp Manufacturing method of conductive mold product, conductive mold product, and silver paste used for the same
JP2011119340A (en) * 2009-12-01 2011-06-16 Harima Chemicals Inc Conductive aluminum paste
JP2012057217A (en) * 2010-09-09 2012-03-22 Honda Motor Co Ltd Method for manufacturing sliding member, and sliding member
CN103250236A (en) * 2010-11-22 2013-08-14 同和电子科技有限公司 Binding material, binding body, and binding method
JPWO2012070262A1 (en) * 2010-11-22 2014-05-19 Dowaエレクトロニクス株式会社 Joining material, joined body, and joining method
WO2012070262A1 (en) * 2010-11-22 2012-05-31 Dowaエレクトロニクス株式会社 Binding material, binding body, and binding method
JP5986929B2 (en) * 2010-11-22 2016-09-06 Dowaエレクトロニクス株式会社 Joining method
US9486879B2 (en) 2010-11-22 2016-11-08 Dowa Electronics Materials Co., Ltd. Bonding material and bonding body, and bonding method
JP5642312B1 (en) * 2014-05-13 2014-12-17 イサハヤ電子株式会社 Semiconductor device and manufacturing method thereof
JP2015216314A (en) * 2014-05-13 2015-12-03 イサハヤ電子株式会社 Semiconductor device and method of manufacturing the same
CN113893701A (en) * 2021-11-10 2022-01-07 贵州省材料产业技术研究院 Preparation method of conductive polyether sulfone separation membrane

Also Published As

Publication number Publication date
JP3764349B2 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
JP2002334618A (en) Forming method of plating-substitute conductive metal film using metal fine particle dispersed liquid
JP4368946B2 (en) Printable composition and its application to dielectric surfaces used in the manufacture of printed circuit boards
JP4894266B2 (en) Conductive powder surface treatment method, conductive powder and conductive paste
JP4496216B2 (en) Conductive metal paste
JP4482930B2 (en) Conductive paste
WO1998039105A1 (en) Metal-plating of cured and sintered transient liquid phase sintering pastes
JP2013055193A (en) Formation method of conductive metal film
JP3233268B2 (en) Soldering method
JP2514516B2 (en) Solderable conductive paste
US20060011482A1 (en) Electrocodeposition of lead free tin alloys
JP2004063446A (en) Conductive paste
JPH0216172A (en) Solderable conductive paint
JP2004218055A (en) Method of depositing conductive gold film substituted for electroless gold plating film using conductive gold paste
JPS62230869A (en) Electrically conductive coating compound to be soldered
US6814276B2 (en) Process for soldering and connecting structure
JPH01206508A (en) Conductive paste for aluminum nitride substrate
JP2007009250A (en) Electronic component wiring method, and electronic component
JP4235885B2 (en) Conductive paste
JPH0714427A (en) Conductive paste
JP2005190907A (en) Surface treatment metal powder, conductive paste using same, and printed wiring board and chip components obtained by using conductive paste
JP2006028213A (en) Functional electroconductive coating, electronic circuit using the same and its formation method
JPH0619075B2 (en) Conductive paint that can be soldered
JP2815401B2 (en) Immersion solder plating bath
KR100784762B1 (en) Conductive metal paste
JPS60149670A (en) Electrically conductive paste

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3764349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term