JP4197151B2 - Two-layer coated copper powder, method for producing the two-layer coated copper powder, and conductive paste using the two-layer coated copper powder - Google Patents
Two-layer coated copper powder, method for producing the two-layer coated copper powder, and conductive paste using the two-layer coated copper powder Download PDFInfo
- Publication number
- JP4197151B2 JP4197151B2 JP2003397185A JP2003397185A JP4197151B2 JP 4197151 B2 JP4197151 B2 JP 4197151B2 JP 2003397185 A JP2003397185 A JP 2003397185A JP 2003397185 A JP2003397185 A JP 2003397185A JP 4197151 B2 JP4197151 B2 JP 4197151B2
- Authority
- JP
- Japan
- Prior art keywords
- copper powder
- inorganic
- layer
- oxide
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 228
- 238000004519 manufacturing process Methods 0.000 title claims description 45
- 239000010410 layer Substances 0.000 claims description 177
- 239000002245 particle Substances 0.000 claims description 88
- 239000011247 coating layer Substances 0.000 claims description 61
- 238000010438 heat treatment Methods 0.000 claims description 57
- 239000000843 powder Substances 0.000 claims description 53
- 238000000034 method Methods 0.000 claims description 51
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 32
- 239000011162 core material Substances 0.000 claims description 29
- 230000015572 biosynthetic process Effects 0.000 claims description 24
- 239000000126 substance Substances 0.000 claims description 22
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 claims description 16
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 claims description 16
- 229940112669 cuprous oxide Drugs 0.000 claims description 16
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 14
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 13
- 239000005751 Copper oxide Substances 0.000 claims description 10
- 229910000431 copper oxide Inorganic materials 0.000 claims description 10
- 238000011282 treatment Methods 0.000 claims description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 5
- 239000000395 magnesium oxide Substances 0.000 claims description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 5
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 5
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 3
- 239000011787 zinc oxide Substances 0.000 claims description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 2
- 238000009826 distribution Methods 0.000 description 24
- 230000003647 oxidation Effects 0.000 description 21
- 238000007254 oxidation reaction Methods 0.000 description 21
- 238000000576 coating method Methods 0.000 description 19
- 230000001186 cumulative effect Effects 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 15
- 238000000691 measurement method Methods 0.000 description 15
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 13
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 13
- 229940116411 terpineol Drugs 0.000 description 13
- 239000004020 conductor Substances 0.000 description 12
- 239000000919 ceramic Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 229960004643 cupric oxide Drugs 0.000 description 9
- 230000002776 aggregation Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000005245 sintering Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000008602 contraction Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 238000004220 aggregation Methods 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 238000012369 In process control Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229960002449 glycine Drugs 0.000 description 1
- 235000013905 glycine and its sodium salt Nutrition 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010965 in-process control Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Description
本件出願に係る発明は、芯材である銅粉の粉粒表面に第1無機物コート層と第2無機物コート層とを備える二層コート銅粉及びその二層コート銅粉の製造方法並びにその二層コート銅粉を用いた導電性ペーストに関する。なお、特に低温焼成セラミック材料用途に好適な銅粉の提供を目的とする。 The invention according to the present application is a two-layer coated copper powder having a first inorganic coat layer and a second inorganic coat layer on the surface of a copper powder particle as a core, a method for producing the two-layer coated copper powder, and two The present invention relates to a conductive paste using layer-coated copper powder. It is an object of the present invention to provide copper powder that is particularly suitable for low-temperature fired ceramic materials.
従来から銅粉は、導電性ペーストの原料、低温焼成セラミック基板の導体形成原料として広く用いられてきた。導電性ペーストは、実験目的の使用、電子産業用途に到るまで広範な領域において、簡便に導体を形成するために使用されてきた。例えば、電子顕微鏡の試料調整用、プリント配線板の導体回路形成、多層プリント配線板の層間導通を得るためのスルーホールの代替えとしての層間導通導体の形成、セラミックコンデンサの電極形成、低温焼成セラミック基板等に用いられてきた。そして、これらに用いられる銅粉には、導電性ペーストに加工し、上述した製品等の導体を形成したときの、導体の低電気抵抗化を可能とする良好な耐酸化性能、及び、焼結したときの寸法変化を最小限にとどめる良好な耐熱収縮性能が求められてきた。 Conventionally, copper powder has been widely used as a raw material for conductive pastes and a conductor for forming low-temperature fired ceramic substrates. Conductive pastes have been used to easily form conductors in a wide range of areas, from experimental use to electronic industry applications. For example, for sample preparation of electron microscopes, formation of conductor circuits for printed wiring boards, formation of interlayer conductive conductors as an alternative to through holes for obtaining interlayer conduction of multilayer printed wiring boards, formation of electrodes for ceramic capacitors, low-temperature fired ceramic substrates Etc. have been used. The copper powder used in these products is processed into a conductive paste, and when a conductor such as the above-mentioned product is formed, it has good oxidation resistance that enables a low electrical resistance of the conductor, and sintering. Therefore, there has been a demand for good heat shrinkage performance that minimizes the dimensional change.
耐酸化性能に関する従来技術: 銅粉の耐酸化性能を改善するためには、従来から銅粉の粉粒表面に有機被膜(有機コート層)を形成した表面処理銅粉が多く用いられてきた。その代表的なものが、特許文献1に示す銅粉であり、粉粒表面の酸化を防止するため、表面処理剤として各種脂肪酸を用いた表面処理が行われてきた。この表面処理銅粉は、表面処理していない銅粉と比較したときに、表面処理銅粉は表面酸化を起こしにくく、焼結して導体形成したときの金属酸化物含有量が少なくなり、電気的伝導性に優れた低抵抗の導体を得ることが可能となるとして知られてきた。 Conventional technology regarding oxidation resistance: In order to improve the oxidation resistance of copper powder, surface-treated copper powder in which an organic coating (organic coating layer) is formed on the surface of the copper powder has been used. A typical example is the copper powder shown in Patent Document 1, and surface treatments using various fatty acids as surface treating agents have been performed in order to prevent oxidation of the particle surface. When this surface-treated copper powder is compared with copper powder that has not been surface-treated, the surface-treated copper powder is less prone to surface oxidation, and the metal oxide content when the conductor is formed by sintering is reduced. It has been known that it is possible to obtain a low-resistance conductor having excellent electrical conductivity.
耐熱収縮性能に関する従来技術: 従来から銅粉の耐熱収縮性能を改善するためには、大きく見て2つの手法が有効とされてきた。一つは、本件発明以前に出願済みの特許文献2に開示したような銅粉の結晶子径の制御であり、もう一つは特許文献3に開示の銅粉の粉粒表面の無機物コートである。耐熱収縮性能が、特に問題となるのは、導電性ペーストを用いてグリーンシート上に導体形状を引き回して、900℃以上の温度で同時焼成する低温焼成セラミック用途においてである。 Conventional technology related to heat-shrinkage performance: Conventionally, in order to improve the heat-shrinkage performance of copper powder, two methods have been considered effective. One is the control of the crystallite diameter of the copper powder as disclosed in Patent Document 2 filed before the present invention, and the other is the inorganic coating on the surface of the copper powder powder disclosed in Patent Document 3. is there. The thermal shrinkage performance is particularly problematic in low-temperature fired ceramic applications in which a conductive shape is used to draw a conductor shape on a green sheet and fired simultaneously at a temperature of 900 ° C. or higher.
最初に結晶子径の制御に関して述べることとする。一般的に銅粉の製造は、大別して乾式製造法と湿式製造法とに分類して捉えることができる。後者の湿式製造法とは、目的とする金属元素を含む溶液中から銅粉を直接析出させることにより製造する方法であると言える。これに対し、前者の乾式製造法には、完全にメカニカルな手法のみを用いる粉砕法はもちろん、溶融金属を用いるアトマイズ法を含むものと言える。 First, the control of the crystallite size will be described. In general, the production of copper powder can be broadly classified and classified into a dry production method and a wet production method. The latter wet manufacturing method can be said to be a method of manufacturing by directly depositing copper powder from a solution containing a target metal element. On the other hand, it can be said that the former dry production method includes not only a pulverization method using a completely mechanical method but also an atomization method using a molten metal.
これらの手法で得られる銅粉の特徴としては、前者の乾式製造法で得られる銅粉は、その結晶子径が40〜50nmの範囲にあり比較的大きく、当該銅粉は焼成を行う場合の耐酸化性及び耐熱収縮性に優れるという長所を有している。これに対し、湿式製造法で製造した銅粉は、その結晶子径が一般的に35nm以下であり乾式製造法で得られる銅粉と比較して小さく、焼成時の耐酸化性及び耐熱収縮性に劣るという短所を有している。耐熱収縮性は、一般的に結晶子の大きさによる影響が大きいと言われ、結晶子径が大きいほど、高温加熱されたときの収縮性が小さく、耐熱収縮性に優れるものとなる。これらのことを考える限り、乾式製造法で製造した銅粉を用いることで全ての問題を解決できるように考えられる。ところが、現実の乾式製造法で得られた粉体と湿式製造法で得られた粉体との耐熱収縮性の差も極めて大きなものではなく、しかも、いずれの製造方法で得られた粉体も低温での焼結が早く起きるという焼結特性を有するものである。 As a feature of the copper powder obtained by these methods, the copper powder obtained by the former dry production method has a crystallite diameter in the range of 40 to 50 nm, which is relatively large. It has the advantage of being excellent in oxidation resistance and heat shrinkage resistance. On the other hand, the copper powder produced by the wet production method generally has a crystallite diameter of 35 nm or less and is smaller than the copper powder obtained by the dry production method, and has oxidation resistance and heat shrinkage resistance during firing. It has the disadvantage of being inferior. The heat shrinkability is generally said to be greatly influenced by the size of the crystallite. The larger the crystallite diameter, the smaller the shrinkage when heated at a high temperature, and the better the heat shrinkability. As long as these things are considered, it is considered that all problems can be solved by using copper powder produced by a dry production method. However, the difference in heat shrinkage between the powder obtained by the actual dry manufacturing method and the powder obtained by the wet manufacturing method is not very large, and the powder obtained by any of the manufacturing methods is It has a sintering characteristic that sintering at a low temperature occurs quickly.
一方、銅粉の粉粒表面の無機物コートとは、銅粉の粉粒表面に耐熱特性に優れる金属酸化物の厚いコート層を形成することで、外殻にあるコート層に高温耐熱性を付与し、外殻形状の加熱変形を防止することで、耐熱収縮性を確保するのである。 On the other hand, the inorganic coating on the surface of the copper powder grain means that a high-temperature heat resistance is imparted to the coating layer in the outer shell by forming a thick metal oxide layer with excellent heat resistance on the surface of the copper powder grain. In addition, heat shrinkage is ensured by preventing heat deformation of the outer shell shape.
しかしながら、銅粉が、耐酸化性と耐熱収縮性とを兼ね備えるものとすることは非常に困難であり、上述した各種銅粉には以下の欠点が存在するのである。 However, it is very difficult for copper powder to have both oxidation resistance and heat shrinkage resistance, and the following disadvantages exist in the various copper powders described above.
耐酸化性を持つ表面処理銅粉の問題点: 表面処理銅粉を用いて導電性ペーストを製造する当業者からは、脂肪酸で表面処理した表面処理銅粉を、導電性ペーストに加工したときのペースト粘度は、未だ工程管理に支障がないほど、品質が安定しているものではないとの意見が出されていた。即ち、脂肪酸で処理した表面処理銅粉を用いて製造した導電性ペーストは、初期のペースト粘度が高く、そのペースト粘度が経時変化を起こして増粘することもあり、ペーストに加工して以降の長期保管が困難であり、電子部品の製造等に用いる銅ペースト等の品質管理、品質維持に費やす管理が煩雑であり、その使用が拡大していくための障害ともなっていた。 Problems of oxidation-treated surface-treated copper powder: From those skilled in the art of producing a conductive paste using surface-treated copper powder, the surface-treated copper powder surface-treated with fatty acids is processed into a conductive paste. There was an opinion that the paste viscosity was not so stable that there was no problem in process control. That is, the conductive paste manufactured using the surface-treated copper powder treated with fatty acid has a high initial paste viscosity, and the paste viscosity may change over time and thicken. Long-term storage is difficult, and quality control of copper paste and the like used for manufacturing electronic parts and the management spent on quality maintenance are complicated, which has been an obstacle to the expansion of their use.
耐熱収縮性を備える銅粉の問題点: 耐熱収縮性に優れると言われる乾式製造法で得られる粉体の特性として、粒度分布がブロードであり、精度の高い微粉の製造が困難という欠点が存在する。近年の、低温焼成セラミックの表面の仕上げ精度に対する要求は益々厳しくなっており、レーザー回折散乱式粒度分布測定法による体積累積粒径D50の値が10μm以下で、シャープな粒度分布を持つ銅粉で、分散性に優れた銅粉に対する要求が顕著になり、乾式製造法で得られる粉体は、この要求には合致しないものである。 Problems with copper powder with heat shrinkability : As a characteristic of the powder obtained by the dry production method, which is said to be excellent in heat shrinkability, there is a defect that the particle size distribution is broad and it is difficult to produce fine powder with high accuracy. To do. In recent years, the requirements for the finishing accuracy of the surface of low-temperature fired ceramics have become more and more severe, and copper powder having a sharp particle size distribution with a volume cumulative particle size D 50 value of 10 μm or less by laser diffraction scattering type particle size distribution measurement method. Thus, the demand for copper powder having excellent dispersibility becomes remarkable, and the powder obtained by the dry production method does not meet this requirement.
従って、微粒にするという観点から、湿式製造法で得られた微細な粒径とシャープな粒度分布を持つ銅粉を用いて、これらの要求を満たすことが望ましいと考えられる。ところが、湿式法で得られた銅粉は結晶子径が小さく、耐熱収縮性を改善することのできるレベルに結晶子径を大きくしようとする場合には、当該銅粉を加熱して、粉粒の内部のグレインサイズを成長させることが必要となる。そこで、湿式法で得られた銅粉を、加熱すればよいと考えられる。よって、湿式法で得られた銅粉の加熱を行うと考えると、通常の銅粉の状態で加熱を行うと、当該銅粉の表面は酸化してしまい、表面に酸化物被膜を形成し著しく凝集状態が進行することになり、粉体の分散性が著しく損なわれるものとなる。このような粉体を低温焼成セラミックの製造に用いると、得られる低温焼成セラミックの表面状態が荒れる結果となるのである。従って、通常の銅粉を単に加熱するのみでは、粉粒の分散性の確保と同時に、優れた耐酸化性及び耐熱収縮性を兼ね備え、粒度分布がシャープで粒径の小さな銅粉の提供を行うことも困難となるのである。 Therefore, from the viewpoint of making fine particles, it is considered desirable to satisfy these requirements by using copper powder having a fine particle size and a sharp particle size distribution obtained by a wet manufacturing method. However, the copper powder obtained by the wet method has a small crystallite diameter, and when trying to increase the crystallite diameter to a level that can improve the heat shrinkage resistance, the copper powder is heated to form a granule. It is necessary to grow the grain size inside. Therefore, it is considered that the copper powder obtained by the wet method may be heated. Therefore, considering that the copper powder obtained by the wet method is heated, when heating is performed in a normal copper powder state, the surface of the copper powder is oxidized, and an oxide film is formed on the surface. The agglomerated state will proceed, and the dispersibility of the powder will be significantly impaired. If such a powder is used for the production of a low-temperature fired ceramic, the resulting low-temperature fired ceramic has a rough surface. Therefore, by simply heating ordinary copper powder, it is possible to provide copper powder having a sharp particle size distribution and a small particle size, as well as ensuring the dispersibility of the particles and at the same time having excellent oxidation resistance and heat shrinkage resistance. It becomes difficult.
以上に述べてきたことから明らかなように、市場においては、2点を満たす銅粉が要求されてきたのである。i)導電性ペーストに加工したときのペースト粘度を低くでき、しかも、ペースト粘度の経時変化を有効に抑制できる微粒粉であること。ii)微細な銅粉であっても、焼結可能な温度範囲での良好な耐酸化性、焼結時の収縮開始を遅らせる耐熱収縮性に優れた粉体であること。 As is clear from what has been described above, in the market, copper powder satisfying two points has been required. i) It is a fine powder that can lower the paste viscosity when processed into a conductive paste and that can effectively suppress the change in paste viscosity over time. ii) Even if it is a fine copper powder, it is a powder excellent in the oxidation resistance in the temperature range which can be sintered, and the heat shrinkable property which delays the shrinkage start at the time of sintering.
そこで、鋭意研究の結果、本件発明者等は、銅粉の粉粒表面を有機コート層と薄い無機酸化物コート層とで被覆した二層コート銅粉とすることで、導電性ペーストの粘度上昇及び経時変化を抑え、良好な耐酸化性、焼結時の収縮の小さな耐熱収縮性に優れた粉体を得ることが可能であることに想到したのである。以下に、本件発明を説明する。 Therefore, as a result of earnest research, the inventors of the present invention have increased the viscosity of the conductive paste by forming a two-layer coated copper powder in which the surface of the copper powder is coated with an organic coat layer and a thin inorganic oxide coat layer. It was conceived that it was possible to obtain a powder excellent in heat resistance shrinkage with good oxidation resistance and small shrinkage during sintering by suppressing the change with time. The present invention will be described below.
A.二層コート銅粉:本件発明に係る二層コート銅粉の基本的構成は、「導電ペーストの製造に用いる、芯材である銅粉の粉粒表面に二層の無機物コート層を備える二層コート銅粉であって、芯材である銅粉の粉粒表面に酸化銅、亜酸化銅のいずれか一種若しくはこれらの二種からなり、換算質量厚さが、二層コート銅粉質量の3質量%〜20質量%である第1無機物コート層を備え、当該第1無機物コート層の外殻に、酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化亜鉛のいずれか一種又は二種以上で構成した、無機酸化物からなる第2無機物コート層を備えたことを特徴とする二層コート銅粉。」となる。
A. Two-layer coated copper powder: The basic configuration of the two-layer coated copper powder according to the present invention is “two layers comprising a two-layer inorganic coating layer on the surface of copper powder particles used as a core material used in the production of a conductive paste. It is a coated copper powder, and the powder particle surface of the copper powder that is the core material is composed of either one of copper oxide or cuprous oxide or two of them, and the converted mass thickness is 3 of the double-layer coated copper powder mass. A first inorganic coat layer having a mass% to 20 mass% is provided, and any one or two of silicon oxide, aluminum oxide, magnesium oxide, zirconium oxide, titanium oxide, and zinc oxide are provided on the outer shell of the first inorganic coat layer. “A two-layer coated copper powder comprising a second inorganic coating layer composed of an inorganic oxide and composed of seeds or more”.
ここで言う第2無機物コート層の厚さは、特許文献3に開示された無機酸化物層と比べると、その厚さが極めて薄いものであるという点が第1の特徴である。そして、この薄い第2無機物コート層を形成するためには、最初に第1無機物コート層が存在し、その外殻に第2無機物コート層を形成することが必要となる。このように第1無機物コート層が存在し、さらに第2無機物コート層を形成することで、第2無機物コート層が薄く均一に粉粒表面に付まわり、初めて耐酸化性及び耐熱収縮性を同時に向上させることが出来るのである。 The thickness of the second inorganic coat layer referred to here is the first feature in that the thickness is extremely thinner than that of the inorganic oxide layer disclosed in Patent Document 3. In order to form this thin second inorganic coat layer, the first inorganic coat layer is first present, and it is necessary to form the second inorganic coat layer on the outer shell. In this way, the first inorganic coat layer is present, and further, the second inorganic coat layer is formed, so that the second inorganic coat layer is thinly and uniformly attached to the surface of the particle, and for the first time, the oxidation resistance and the heat shrink resistance are simultaneously improved. It can be improved.
(第1無機物コート層)
最初に芯材である銅粉の粉粒表面に位置する第1無機物コート層に関して説明する。この第1無機物コート層は、第2無機物コート層を薄く形成するための補助層としての機能を果たすものであるが、この第1無機物コート層単独で耐熱収縮性に直接的に寄与する層ではないのである。但し、第1無機物コート層は加熱による大気酸化や化学的処理により形成される層であるため、第2無機物コート層よりも芯材である銅粉の粉粒表面へ均一に形成されると考えられる。従って、銅粉が加熱を受けたとき、第2無機物コート層が酸素の芯材内部への拡散を防止しきれない場合、第1無機物コート層が余分な酸化被膜の成長を防止するバリアとしての役割を果たすものである。このように余分な酸化被膜を形成しないと言うことは、焼結加工により得られた導体の電気的抵抗上昇を有効に防止できることを意味しており、形成した導体の良好な導通性確保のためには必要不可欠な要素である。
(First inorganic coating layer)
First, the first inorganic coat layer located on the surface of the copper powder powder as the core material will be described. The first inorganic coat layer serves as an auxiliary layer for forming the second inorganic coat layer thinly, but the first inorganic coat layer alone is a layer that directly contributes to heat shrinkage resistance. There is no. However, since the first inorganic coating layer is a layer formed by atmospheric oxidation or chemical treatment by heating, it is considered that the first inorganic coating layer is more uniformly formed on the surface of the copper powder particles that are the core material than the second inorganic coating layer. It is done. Therefore, when the copper powder is heated, if the second inorganic coating layer cannot prevent the diffusion of oxygen into the core material, the first inorganic coating layer serves as a barrier that prevents the growth of an excess oxide film. It plays a role. The fact that no excess oxide film is formed in this way means that it is possible to effectively prevent an increase in electrical resistance of the conductor obtained by sintering, and to ensure good electrical conductivity of the formed conductor. Is an indispensable element.
この第1無機物コート層には、酸化銅、亜酸化銅のいずれか一種若しくはこれらの二種からなる複合化合物を用いることが好ましい。第1無機物コート層の外殻に形成する第2無機物コート層との密着性に優れ、電気的導電性の著しい阻害成分とならないからである。ここで「二種」としているのは、第1無機物コート層の形成方法如何によっては、上記成分の内複数の成分を含む場合があり、本件発明者等の確認する限り、上記成分の一種を用いた場合と何ら変わらない効果を発揮するからである。 In the first inorganic coating layer, it is preferable to use a composite compound composed of any one of copper oxide and cuprous oxide, or two of these. It is because it is excellent in adhesiveness with the second inorganic coat layer formed on the outer shell of the first inorganic coat layer and does not become a significant inhibiting component of electrical conductivity. Here, “two types” may include a plurality of components among the above components depending on the method of forming the first inorganic coating layer, and as long as the inventors confirm, This is because the same effect as when used is exhibited.
この第1無機物コート層の厚さを物理的にゲージ厚さとして示すことは、微細な粉粒の集合体である銅粉という性格上困難である。従って、本件発明者等は、第1無機物コート層の厚さを、換算質量厚さとして表すこととした。換算質量厚さとは、二層コート銅粉質量の中の第1無機物コート層の占める割合を、第1無機物コート層を形成した直後の銅粉の酸素含有量を測定し、亜酸化銅に換算したときの質量%で捉えることとする。そして、厳密に考えれば、換算質量厚さを適用して考える場合には、銅粉の持つ粒径を考慮することが必要になる。銅粉の質量が一定として、粒径が小さい銅粉と粒径が大きな銅粉とが存在していれば、前者の比表面積の方が大きく、同量の無機物で粉粒の表面コートを行えば、前者の銅粉の無機物コート層の方が薄くなるからである。 It is difficult to physically indicate the thickness of the first inorganic coat layer as a gauge thickness as a copper powder that is an aggregate of fine powder particles. Accordingly, the inventors of the present invention decided to express the thickness of the first inorganic coat layer as a converted mass thickness. The reduced mass thickness, the proportion of first inorganic coating layer in a two layer coating copper powder mass, the oxygen content of the copper powder immediately after formation of a first inorganic coating layer was measured, the cuprous oxide It is assumed that it is captured by mass% when converted. Strictly speaking, when considering the converted mass thickness, it is necessary to consider the particle size of the copper powder. As the quality of the copper powder is constant, if present copper powder and the particle size diameter is small and a large copper powder, larger in specific surface area of the former, the surface coating of the particulate with the same amount of inorganic This is because the inorganic coating layer of the former copper powder becomes thinner if performed.
そこで、本件発明者等は、二層コート銅粉が導体形成に用いられることを想定して、粒径を考えると、レーザー回折散乱式粒度分布測定法による体積累計粒径D50の値が0.1μm〜10μmである場合を基準とする。かかる場合、第1無機物コート層の換算質量厚さは、二層コート銅粉の3質量%〜20質量%の範囲にあることが好ましいのである。
Therefore, the present inventors consider that the two-layer coated copper powder is used for conductor formation, and considering the particle size, the value of the cumulative volume particle size D 50 by the laser diffraction scattering particle size distribution measurement method is 0. Based on the case of 1 μm to 10 μm. In such a case, the converted mass thickness of the first inorganic coat layer is preferably in the range of 3% by mass to 20% by mass of the two-layer coated copper powder.
コート量が3質量%未満の場合には、第2無機物コート層のバインダー層としての機能を果たさなくなり、第2無機物コート層がメカノケミカルな方法によって均一に形成できなくなるのである。更に、第2無機物コート層の形成状態を、より安定化させるためには5質量%以上であることが好ましい。一方、20質量%を超える厚さとしても、第2無機物コート層の均一な付まわり性を、より向上させる効果は得られないのである。しかし、15質量%が現実的な上限と捉えることも可能である。15質量%〜20質量%の間における第2無機物コート層の均一な付まわり性を向上させる効果は僅かに増加するのみであるからである。 When the coating amount is less than 3% by mass, the function of the second inorganic coating layer as a binder layer is not achieved, and the second inorganic coating layer cannot be formed uniformly by a mechanochemical method. Furthermore, in order to further stabilize the formation state of the second inorganic coat layer, it is preferably 5% by mass or more. On the other hand, even if the thickness exceeds 20% by mass, the effect of further improving the uniform throwing power of the second inorganic coating layer cannot be obtained. However, 15% by mass can be regarded as a realistic upper limit. This is because the effect of improving the uniform throwing power of the second inorganic coating layer between 15% by mass and 20% by mass is only slightly increased.
(第2無機物コート層)
次に、第1無機物コート層の上に設ける第2無機物コート層に関して説明する。無機酸化物コート層を特許文献3に開示の方法で形成すると厚くなり、粉粒を完全にコートした状態とならざるを得なかった。これに対し、本件発明の二層コート銅粉は、粉粒の表面に予め第1無機物コート層を設け、その上に密着性に優れた薄い第2無機物コート層を形成するものである。この第2無機物コート層は、後述するメカノケミカルな製造方法を採用して形成することが好ましいのである。また、この第2無機物コート層は、粉粒表面を完全にコートしていても構わないが、部分的に第1無機物コート層が露出した不連続な付着状態であることが好ましいのである。
(Second inorganic coating layer)
Next, the second inorganic coat layer provided on the first inorganic coat layer will be described. When the inorganic oxide coating layer was formed by the method disclosed in Patent Document 3, it became thick and had to be completely coated with powder particles. On the other hand, the two-layer coated copper powder of the present invention provides a first inorganic coat layer in advance on the surface of the powder and forms a thin second inorganic coat layer with excellent adhesion on the first inorganic coat layer. The second inorganic coat layer is preferably formed by employing a mechanochemical manufacturing method described later. The second inorganic coat layer may be completely coated on the surface of the powder particles, but it is preferable that the second inorganic coat layer is in a discontinuous adhesion state in which the first inorganic coat layer is partially exposed.
この第2無機物コート層には、酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化亜鉛のいずれか一種又は二種以上を用いるものである。中でも酸化ケイ素、酸化アルミニウム、酸化マグネシウムのいずれかを用いることが好ましいのである。酸化ケイ素並びに酸化アルミニウム並びに酸化マグネシウムは、銅粉の粉粒の表面に均一に固着させやすいのである。しかも同時に、低温焼成セラミックの焼成温度が、一般的に900℃以上であることを考えれば、最も有効に芯材である銅粉の凝集を防止するものとして機能するからである。 In the second inorganic coating layer, one or more of silicon oxide, aluminum oxide, magnesium oxide, zirconium oxide, and zinc oxide are used. Among these, it is preferable to use any one of silicon oxide, aluminum oxide, and magnesium oxide. Silicon oxide, aluminum oxide, and magnesium oxide are easily fixed uniformly on the surface of the copper powder particles. At the same time, considering that the firing temperature of the low-temperature fired ceramic is generally 900 ° C. or higher, it functions as one that most effectively prevents aggregation of the copper powder as the core material.
この第2無機物コート層の厚さを、第1無機物コート層の場合と同様に、換算質量厚さとして表すと、第2無機物コート層の換算質量厚さは、二層コート銅粉の0.1質量%〜10質量%の範囲にあることが好ましいのである。
The thickness of the second inorganic material coating layer, as in the first inorganic material coating layer, expressed as reduced mass thickness, reduced mass thickness of the second inorganic material coating layer, 0 bilayer coated copper powder. It is preferable that it exists in the range of 1 mass%-10 mass%.
換算質量厚さが0.1質量%未満の場合には、低温焼成セラミックの焼成時レベルの加熱による粉粒の凝集進行の防止の役割を果たさなくなる。これに対して、10質量%を超える換算質量厚さの場合には、以下に述べる製造方法に起因することであると考えられるが、得られる二層コート銅粉の分散性が悪くなるのである。この様に均一で薄い第2無機物コート層を作り込むことによって、本件発明に係る二層コート銅粉は、その粉体自体の電気的導電性の劣化を最小限にとどめることができるようになるのである。更に、以下に述べる製造上のバラツキを無くし、得られる耐熱収縮性を更に安定化させるためには、第2無機物コート層の換算質量厚さを、0.2質量%〜5質量%の範囲とすることが、より好ましいのである。
When the converted mass thickness is less than 0.1% by mass, it does not play the role of preventing the progress of aggregation of the powder particles by heating at the firing level of the low-temperature fired ceramic. On the other hand, in the case of the converted mass thickness exceeding 10% by mass , it is considered that it is caused by the production method described below, but the dispersibility of the obtained two-layer coated copper powder is deteriorated. . By forming the uniform and thin second inorganic coating layer in this way, the two-layer coated copper powder according to the present invention can minimize the deterioration of the electrical conductivity of the powder itself. It is. Furthermore, in order to eliminate the manufacturing variation described below and further stabilize the heat-resistant shrinkage obtained, the converted mass thickness of the second inorganic coating layer is in the range of 0.2% by mass to 5% by mass. It is more preferable to do this.
以上に述べたような構成の二層コート銅粉を採用することで、事後的に行う熱処理が容易に行えるものとなり、結晶子径の調整が可能となるのである。即ち、加熱して結晶子径の調整を行おうとしても、第2無機物コート層が外殻に存在することで粉粒形状の変化を最小限に止め、しかも、第1無機物コート層が、加熱時に拡散して粉粒内に侵入する酸素を遮断し、芯材である銅粉の表面の酸化層の無用な成長を防止するのである。その結果、結晶子径を調整するための加熱を行っても、粉粒の凝集を有効に防止して、粉体特性としての分散性を顕著に劣化させることがないため、初めて十分な熱処理が行えるのである。 By adopting the two-layer coated copper powder having the structure as described above, the heat treatment performed later can be easily performed, and the crystallite diameter can be adjusted. That is, even if the crystallite diameter is adjusted by heating, the change in the particle shape is minimized by the presence of the second inorganic coat layer in the outer shell, and the first inorganic coat layer is heated. Oxygen that sometimes diffuses and penetrates into the powder grains is blocked, and unnecessary growth of the oxide layer on the surface of the copper powder as the core material is prevented. As a result, even if heating to adjust the crystallite size is performed, the aggregation of powder particles is effectively prevented and the dispersibility as a powder property is not significantly deteriorated. It can be done.
このときに、芯材である銅粉の粉粒の持つ結晶子径は、50nm以上とすることが好ましいのである。この結晶子径50nm以上という値は、乾式製造方法で得られた銅粉の持つ結晶子径と同等若しくはそれ以上の大きさであり、湿式法で得られる銅粉が熱処理なしでは備えることが出来ない結晶子径の値である。また、この結晶子径の値が50nm以上になると、耐熱収縮性が急激に改善し出すのである。 At this time, the crystallite diameter of the copper powder particles as the core material is preferably 50 nm or more. This crystallite diameter of 50 nm or more is equal to or larger than the crystallite diameter of the copper powder obtained by the dry manufacturing method, and the copper powder obtained by the wet method can be provided without heat treatment. There is no crystallite size value. Further, when the value of the crystallite diameter is 50 nm or more, the heat shrinkage resistance is suddenly improved.
B.二層コート銅粉の製造方法: 本件発明に係る二層コート銅粉の製造は、銅粉の粉粒表面への第1無機物コート層形成を行い、その後第1無機物コート層の表面に第2無機物コート層の形成を順次行うことによる。また、必要に応じて結晶子径の調整工程を付加するのである。以下、各工程ごとに詳細に説明する。 B. Production method of two-layer coated copper powder: The production of the two-layer coated copper powder according to the present invention involves forming a first inorganic coat layer on the surface of the copper powder particles, and then forming a second on the surface of the first inorganic coat layer. By sequentially forming the inorganic coating layer. Moreover, the adjustment process of a crystallite diameter is added as needed. Hereinafter, each process will be described in detail.
(第1無機物コート層の形成工程)
大気雰囲気における加熱処理若しくは湿式の化学処理を用いて、芯材の銅粉の粉粒表面を酸化銅、亜酸化銅のいずれか一種若しくはこれらの二種からなり、換算質量厚さが、二層コート銅粉質量の3質量%〜20質量%である第1無機物コート層を形成する。第1無機物コート層の形成は、芯材である銅粉の粉粒表面を改質することにより行われるものであり、大別して2つの方法を採用することが可能である。一つは、芯材である銅粉を大気雰囲気中で加熱酸化させ、銅粉の粉粒表面に酸化銅層を形成する方法である(以下、単に「加熱法」と称する。)。そして、もう一つは、湿式の化学処理を用いて芯材である銅粉の粉粒表面に酸化銅、亜酸化銅のいずれか一種若しくはこれらの二種の複合化合物からなる層を形成するのである(以下、単に「化学法」と称する。)。
(Formation process of 1st inorganic substance coating layer)
Using a heat treatment or a wet chemical treatment in the air atmosphere, the powder particle surface of the copper powder of the core material is composed of either one of copper oxide or cuprous oxide or two of these, and the converted mass thickness is two layers. A 1st inorganic substance coating layer which is 3 mass%-20 mass% of coat copper powder mass is formed. The formation of the first inorganic coat layer is performed by modifying the powder particle surface of the copper powder as the core material, and can be roughly divided into two methods. One is a method in which copper powder as a core material is heated and oxidized in an air atmosphere to form a copper oxide layer on the surface of the copper powder particles (hereinafter, simply referred to as “heating method”). And the other is that a layer made of any one of copper oxide and cuprous oxide or a composite compound of these two types is formed on the surface of copper powder particles as a core material using wet chemical treatment. (Hereinafter simply referred to as “chemical method”).
前者の加熱法は、大気雰囲気中で高温加熱を行うか、酸素をスローリークした不活性ガス置換雰囲気で高温加熱を行う等の方法が採用される。加熱法の条件等に関しては、特に制限はなく、上述の第1無機物コート層の厚さ制御のより簡便な方法を任意に採用すればよいのである。 As the former heating method, a method of heating at a high temperature in an air atmosphere or a method of heating at a high temperature in an inert gas replacement atmosphere in which oxygen is slowly leaked is employed. There are no particular restrictions on the conditions of the heating method and the like, and a simpler method for controlling the thickness of the first inorganic coat layer described above may be arbitrarily employed.
後者の化学法に関しても、銅粉の粉粒表面に均一に酸化銅、亜酸化銅若しくはこれらの複合化合物を形成する溶液であれば、その溶液中に銅粉を入れ、反応させる方法を採用すればよいのであり、特に手法に関する限定はない。但し、化学法に関しては、電気抵抗を上昇させる不純物となる余分な成分を含有する場合があり、薬液の選定に当たっては細心の注意を払うべきである。 As for the latter chemical method, if the solution is a solution that uniformly forms copper oxide, cuprous oxide, or a composite compound thereof on the surface of the copper powder particles, a method in which the copper powder is put into the solution and reacted is adopted. There is no limitation regarding the method. However, chemical methods may contain extra components that become impurities that increase electrical resistance, and extreme care should be taken when selecting chemicals.
(第2無機物コート層の形成工程)
第2無機物コート層の形成は、以下のような方法で行われる。即ち、上記第1無機物コート層の外殻に、無機酸化物を定着させることで無機酸化物層を形成するのである。この無機酸化物層の形成は、湿式コート法若しくは乾式コート法のいずれをも用いることが可能である。湿式コート法に関しては、特に手法を限定する必要はなく、定法に従い無機酸化物層を形成することが可能であり、無機酸化物コート層の粉粒表面への密着性が向上するのである。一方、無機酸化物層の成分バランスのコントロールという観点からすると、無機酸化物層の成分バランスのコントロールという観点からすると、乾式コート法であるメカノケミカルな手法で固着させるのが好ましいのである。
(Formation process of 2nd inorganic substance coating layer)
The second inorganic coat layer is formed by the following method. That is, the inorganic oxide layer is formed by fixing the inorganic oxide on the outer shell of the first inorganic coating layer. The inorganic oxide layer can be formed by either a wet coating method or a dry coating method. With respect to the wet coating method, there is no particular limitation on the method, and the inorganic oxide layer can be formed according to a conventional method, and the adhesion of the inorganic oxide coating layer to the powder particle surface is improved. On the other hand, from the viewpoint of control of the component balance of the inorganic oxide layer, from the viewpoint of control of the component balance of the inorganic oxide layer is the preferred to fixed by Mekanokemika Le technique is a dry coating method.
ここでは銅粉の粉粒の表面に、第2無機物コート層を構成する無機酸化物を、メカノケミカル的な手法で固着させる方法に関して説明する。メカノケミカルな手法とは、第1無機物コート層を形成した銅粉と、第2無機物コート層を構成する無機酸化物の粉体とを、攪拌混合したり、ボールミル方式のメディアを用いる等して、当該第1無機物コート層を形成した銅粉の粉粒表面に無機酸化物を固着させるのであり、第1無機物コート層を形成した銅粉の粉粒と無機酸化物粉体の粉粒とを混合衝突させることのできる装置であれば足りるのであり、特殊な設備を必要とするものではない。このときに用いる無機酸化物粉体としては、粉体の持つ比表面積が50m2/g以上のものを用いることが好ましい。この比表面積は、主に無機酸化物粉体の粉粒の径により左右されるものであり、比表面積が大きくなれば、粉粒の径も小さくなるものと言える。 Here, a method for fixing the inorganic oxide constituting the second inorganic coat layer to the surface of the copper powder particles by a mechanochemical method will be described. The mechanochemical method is to stir and mix the copper powder forming the first inorganic coat layer and the inorganic oxide powder constituting the second inorganic coat layer, using a ball mill type media, etc. The inorganic oxide is fixed to the surface of the copper powder particles on which the first inorganic coating layer is formed, and the copper powder particles and the inorganic oxide powder particles on which the first inorganic coating layer is formed. Any device capable of mixing and colliding is sufficient, and no special equipment is required. As the inorganic oxide powder used at this time, a powder having a specific surface area of 50 m 2 / g or more is preferably used. This specific surface area depends mainly on the particle diameter of the inorganic oxide powder, and it can be said that the particle diameter decreases as the specific surface area increases.
このように第1無機物コート層の外殻に、メカノケミカルな手法で無機酸化物コート層を形成することで、本来であれば硬く脆いはずの無機酸化物の密着性が向上し、薄く均一な厚さの無機酸化物からなる第2無機物コート層が形成できるのである。この第2無機物コート層の形成が終了すると、本件発明に係る二層コート銅粉の形態を一応備えるものとなるのである。 The shell of the thus first inorganic coating layer, by forming the inorganic oxide coating layer with Mekanokemika Le technique improves the adhesion of the hard, brittle supposed inorganic oxides would otherwise thin uniform A second inorganic coating layer made of an inorganic oxide having a thickness can be formed. When the formation of the second inorganic coat layer is completed, the form of the two-layer coated copper powder according to the present invention is temporarily provided.
(結晶子径の調整工程)
以上に述べた工程により得られた二層コート銅粉は、芯材として用いた銅粉の結晶子径が小さな場合には、結晶子径の調整を目的とした熱処理を施し、芯材の銅粉の結晶子径を50nm以上とすることが好ましいのである。この熱処理は、以下のようなコンディションの下で行われる。この熱処理は、いわゆる再結晶化を促し、結晶子径を大きくするためのものである。しかしながら、この熱処理は、第1無機物コート層及び第2無機物コート層の品質を変質させたり、二層コート銅粉の粉粒の凝集を促進するものであってはならない。
(Process for adjusting crystallite diameter)
When the copper powder used as the core material has a small crystallite diameter, the two-layer coated copper powder obtained by the above-described process is subjected to a heat treatment for the purpose of adjusting the crystallite diameter, The crystallite diameter of the powder is preferably 50 nm or more. This heat treatment is performed under the following conditions. This heat treatment is to promote so-called recrystallization and increase the crystallite diameter. However, this heat treatment should not change the quality of the first inorganic coat layer and the second inorganic coat layer or promote the aggregation of the powder particles of the two-layer coated copper powder.
これらのことを考慮して、熱処理は500℃〜1000℃の不活性ガス雰囲気中で行うことが望ましい。500℃未満の温度での加熱では、湿式製造法で得られた銅粉の結晶を再結晶化させることが困難となる。これに対して、1000℃を超える温度での加熱を行うと、第1無機物コート層及び第2無機物コート層が存在しても、二層コート銅粉の凝集が進行すると共に、粉粒自体が軟化して粉粒形状が悪化する事となるのである。また、芯材自体の意図せぬ酸化を防止するため、加熱雰囲気は不活性ガス雰囲気を採用することが好ましいのである。 Considering these, it is desirable to perform the heat treatment in an inert gas atmosphere at 500 ° C. to 1000 ° C. Heating at a temperature of less than 500 ° C. makes it difficult to recrystallize the copper powder crystals obtained by the wet manufacturing method. On the other hand, when heating at a temperature exceeding 1000 ° C., even if the first inorganic coat layer and the second inorganic coat layer are present, the aggregation of the two-layer coated copper powder proceeds, and the powder particles themselves It will soften and the shape of the powder will deteriorate. In order to prevent unintended oxidation of the core material itself, it is preferable to employ an inert gas atmosphere as the heating atmosphere.
以上に述べてきたような製造方法を採用することで、二層コート銅粉の凝集の進行を防止して、「レーザー回折散乱式粒度分布測定法による平均粒径D50と粒度分布の標準偏差SDとの関係式SD/D50で表される変動係数CV値」を悪化させないようにできるのである。なお、「標準偏差SD」とは、レーザー回折散乱式粒度分布測定法を用いて測定した結果として得られる粉体の粒度分布から得られる標準偏差のことであり、このCV値の値が小さいほど、粉粒の粒径が揃っており、分散性に優れ、大きなバラツキをもっていないことを意味している。 By adopting the production method as described above, it is possible to prevent the agglomeration of the two-layer coated copper powder, and “the average particle diameter D 50 by the laser diffraction scattering type particle size distribution measuring method and the standard deviation of the particle size distribution”. The variation coefficient CV value represented by the relational expression SD / D 50 with respect to SD can be prevented from deteriorating. The “standard deviation SD” is a standard deviation obtained from the particle size distribution of the powder obtained as a result of measurement using the laser diffraction / scattering particle size distribution measurement method. The smaller the value of this CV value, the smaller the CV value. This means that the particle diameters of the particles are uniform, the dispersibility is excellent, and there is no large variation.
本件発明に係る二層コート銅粉は、第1無機物コート層及び第2無機物コートとを備えるものであり、芯材となる銅粉の粉粒表面に第1無機物コート層が存在することにより、無機酸化物からなる第2無機物コート層の密着性が向上し、第2無機物コートを薄い無機物層として形成したものである。この二層コート銅粉は、良好な耐酸化性能及び良好な耐熱収縮性能とを同時に備えるものとなる。また、本件発明に係る二層コート銅粉を用いて製造した導電性ペーストの低粘度化も達成できるのである。また、本件発明で採用した二層コート銅粉の製造方法は、二層コート銅粉の製造安定性に優れ、製品品質のバラツキの少ない二層コート銅粉の供給には最適のものである。 The two-layer coated copper powder according to the present invention comprises a first inorganic coat layer and a second inorganic coat, and the presence of the first inorganic coat layer on the powder particle surface of the copper powder serving as the core material, The adhesion of the second inorganic coating layer made of an inorganic oxide is improved, and the second inorganic coating layer is formed as a thin inorganic layer. This two-layer coated copper powder simultaneously has good oxidation resistance and good heat shrinkage performance. Moreover, the viscosity reduction of the electrically conductive paste manufactured using the two-layer coat copper powder concerning this invention can also be achieved. Moreover, the manufacturing method of the two-layer coated copper powder adopted in the present invention is excellent in the production stability of the two-layer coated copper powder, and is optimal for supplying the two-layer coated copper powder with little variation in product quality.
以下、本発明を実施形態を通じて、比較例と対比しつつ、本件発明に関し、より詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to the present invention through an embodiment while comparing with a comparative example.
銅粉の製造: 最初に芯材として用いた銅粉の製造方法を説明する。硫酸銅(五水塩)4kg及びアミノ酢酸120gを水に溶解させて、液温60℃の8L(リットル)の銅塩水溶液を作製した。そして、この水溶液を撹拌しながら、5.75kg(1.15当量)の25wt%水酸化ナトリウム溶液を約30分間かけて定量的に添加し、液温60℃で60分間の撹拌を行い、液色が完全に黒色になるまで熟成させて酸化第二銅を生成した。その後30分間放置し、グルコース1.5kg添加して、1時間熟成することで酸化第二銅を酸化第一銅に還元した。さらに、水和ヒドラジン1kgを5分間かけて定量的に添加して酸化第一銅を還元することで金属銅にして、銅粉スラリーを生成した。 Production of copper powder: First, a method for producing copper powder used as a core material will be described. 4 kg of copper sulfate (pentahydrate) and 120 g of aminoacetic acid were dissolved in water to prepare an 8 L (liter) copper salt aqueous solution having a liquid temperature of 60 ° C. While stirring this aqueous solution, 5.75 kg (1.15 equivalents) of 25 wt% sodium hydroxide solution was quantitatively added over about 30 minutes, and stirring was performed at a liquid temperature of 60 ° C. for 60 minutes. The cupric oxide was produced by aging until the color was completely black. Thereafter, the mixture was allowed to stand for 30 minutes, 1.5 kg of glucose was added, and the cupric oxide was reduced to cuprous oxide by aging for 1 hour. Furthermore, 1 kg of hydrated hydrazine was quantitatively added over 5 minutes to reduce cuprous oxide to form metallic copper, thereby producing a copper powder slurry.
そして、得られた銅粉スラリーを濾過し、純水で十分に洗浄し、再度濾過した後、余分な酸化を防止するため不活性ガス中で乾燥して銅粉を得た。この銅粉のレーザー回折散乱式粒度分布測定法の体積累積粒径D50は0.93μmであり、変動係数CV値は0.22であり、結晶子径は32.2nm、亜酸化銅に換算した酸化物コート量は2質量%であった。そして、熱膨張係数の測定を行った結果、600℃付近から収縮が開始し、900℃での収縮率が13.0%であった。 Then, the obtained copper powder slurry was filtered, sufficiently washed with pure water, filtered again, and dried in an inert gas to prevent excessive oxidation, thereby obtaining copper powder. The cumulative volume particle diameter D 50 of the laser diffraction scattering particle size distribution measurement method of a copper powder is 0.93 .mu.m, coefficient of variation CV value was 0.22, and the crystallite diameter 32.2Nm, converted to cuprous oxide The oxide coating amount was 2% by mass. And as a result of measuring a thermal expansion coefficient, shrinkage | contraction started from 600 degreeC vicinity, and the shrinkage | contraction rate in 900 degreeC was 13.0%.
なお、本件明細書における結晶子径の測定は、RIGAKU社製 RINT200Vを用い結晶子解析ソフトを用いて平均結晶子径を求めたものであり、本件明細書における結晶子径とは、この平均結晶子径のことである。そして、収縮率の測定は、得られた粉体を熱機械分析装置(セイコー電子工業社製TMA/SS6000)を用いて所定の雰囲気中で、昇温速度10℃/分で加熱しつつ熱膨張率を連続して測定し、雰囲気温度が900℃のときの熱収縮率を測定したのである。 In addition, the measurement of the crystallite diameter in the present specification is obtained by calculating the average crystallite diameter using RINTKU V made by RIGaku and using the crystallite analysis software. The crystallite diameter in the present specification is the average crystal diameter. It is a child diameter. The shrinkage is measured by thermal expansion while heating the obtained powder in a predetermined atmosphere using a thermomechanical analyzer (TMA / SS6000 manufactured by Seiko Denshi Kogyo Co., Ltd.) at a heating rate of 10 ° C./min. The rate was continuously measured, and the thermal shrinkage rate when the ambient temperature was 900 ° C. was measured.
第1無機物コート層の形成: この実施例での第1無機物コート層の形成は、上述の方法で得られた銅粉を、ボールミル(径0.65mmのジルコニアビーズをメディアとして使用)を用いて粉粒の凝集を防止しながら、大気雰囲気中で150℃×1時間の酸化加熱処理により行った。この第1無機物コート層を形成した銅粉のレーザー回折散乱式粒度分布測定法の体積累積粒径D50は0.99μmであり、変動係数CV値は0.25であり、結晶子径は33.2nm、亜酸化銅に換算した酸化物コート量は4質量%であった。そして、熱膨張係数の測定を行った結果、550℃付近から収縮が開始し、900℃での収縮率が13.5%であった。 Formation of first inorganic coat layer: The formation of the first inorganic coat layer in this example is performed by using the copper powder obtained by the above-described method using a ball mill (using zirconia beads having a diameter of 0.65 mm as a medium). While preventing agglomeration of the powder particles, the heat treatment was performed in an air atmosphere by an oxidation heat treatment at 150 ° C. for 1 hour. Cumulative volume particle diameter D 50 of the laser diffraction scattering particle size distribution measurement method of a copper powder to form a first inorganic coating layer is 0.99 .mu.m, coefficient of variation CV value was 0.25, and the crystallite diameter 33 The amount of oxide coating converted to 0.2 nm and cuprous oxide was 4% by mass. And as a result of measuring a thermal expansion coefficient, shrinkage | contraction started from 550 degreeC vicinity, and the shrinkage rate in 900 degreeC was 13.5%.
第2無機物コート層の形成: そして、この第1無機物コート層を形成した銅粉3kgと無機酸化物である酸化アルミニウム粉(平均粒径10nm)30gとを、ハイブリタイザーを用いて、回転数6000rpmで、5分間のメカノケミカルな固着処理を行い、酸化アルミニウムで構成した第2無機物コート層を備える二層コート銅粉を製造した。この二層コート銅粉の表面にコートされた酸化アルミニウムのコート量は1質量%であった。このコート直後の二層コート銅粉のレーザー回折散乱式粒度分布測定法の体積累積粒径D50は0.98μmであり、変動係数CV値は0.23であり、結晶子径は27.5nmであった。そして、熱膨張係数の測定を行った結果、900℃での収縮率が3.6%であった。即ち、芯材である銅粉がメカノケミカルな加工を受けることで、本来の湿式製造法で得られた銅粉に比べ、結晶子径は小さくなるが、第2無機物コート層が酸化物コート層として存在している事から、熱膨張時の収縮率も小さくなり、市場で要求されている範囲内に収まる収縮率となった。 Formation of second inorganic coat layer: Then, 3 kg of copper powder on which this first inorganic coat layer was formed and 30 g of aluminum oxide powder (average particle size 10 nm) as an inorganic oxide were rotated at 6000 rpm using a hybridizer. Then, a mechanochemical fixing process for 5 minutes was performed to produce a two-layer coated copper powder having a second inorganic coating layer composed of aluminum oxide. The coating amount of aluminum oxide coated on the surface of the two-layer coated copper powder was 1% by mass. The cumulative volume particle diameter D 50 of the laser diffraction scattering particle size distribution measurement method of two-layer coated copper powder immediately after coating is 0.98 .mu.m, coefficient of variation CV value was 0.23, and the crystallite diameter 27.5nm Met. As a result of measuring the thermal expansion coefficient, the shrinkage rate at 900 ° C. was 3.6%. That is, when the core copper powder is subjected to mechanochemical processing, the crystallite diameter is smaller than that of the copper powder obtained by the original wet manufacturing method, but the second inorganic coat layer is the oxide coat layer. Therefore, the shrinkage rate at the time of thermal expansion was reduced, and the shrinkage rate was within the range required by the market.
結晶子径の調整: そこで、以上のようにして得られた二層コート銅粉を、窒素ガス雰囲気中で、500℃、700℃、900℃の各温度で1時間の加熱を行い結晶子径を調整した3種類の二層コート銅粉を得た。この結果、A)500℃の温度を採用した場合の、加熱後の二層コート銅粉のレーザー回折散乱式粒度分布測定法の体積累積粒径D50は0.98μmであり、結晶子径は50.6nm、変動係数CV値は、0.24であり、B)700℃の温度を採用した場合の、加熱後の二層コート銅粉のレーザー回折散乱式粒度分布測定法の体積累積粒径D50は0.99μmであり、結晶子径は58.4nm、変動係数CV値は、0.25であり、C)900℃の温度を採用した場合の、加熱後の二層コート銅粉のレーザー回折散乱式粒度分布測定法の体積累積粒径D50は1.00μmであり、結晶子径は66.8nm、変動係数CV値は、0.25であった。 Adjustment of crystallite diameter: Therefore, the two-layer coated copper powder obtained as described above is heated for 1 hour at each temperature of 500 ° C., 700 ° C., and 900 ° C. in a nitrogen gas atmosphere. Three types of two-layer coated copper powders were prepared. As a result, A) When the temperature of 500 ° C. is employed, the volume cumulative particle size D 50 of the laser diffraction scattering particle size distribution measurement method of the two-layer coated copper powder after heating is 0.98 μm, and the crystallite diameter is 50.6 nm, coefficient of variation CV value is 0.24, B) Volume cumulative particle size of laser diffraction scattering type particle size distribution measurement method of double layer coated copper powder after heating when temperature of 700 ° C. is adopted D 50 is 0.99 μm, the crystallite diameter is 58.4 nm, the coefficient of variation CV is 0.25, and C) of the two-layer coated copper powder after heating when a temperature of 900 ° C. is adopted cumulative volume particle diameter D 50 of the laser diffraction scattering particle size distribution measurement method is 1.00 .mu.m, crystallite size 66.8Nm, coefficient of variation CV value was 0.25.
この結果から、結晶子径は、500℃及び700℃の温度を採用した場合に乾式製造法で得られる銅粉と同等の結晶子径が得られ、900℃の温度で加熱した場合には乾式製造法で得られる銅粉以上の大きさの結晶子径が得られている事が分かるのである。また、いずれの温度で加熱しても、第2無機物コート層を形成する前の銅粉のCV値から見て大きく悪化していないことが分かる。 From this result, the crystallite diameter is the same as the copper powder obtained by the dry manufacturing method when temperatures of 500 ° C. and 700 ° C. are adopted, and when heated at a temperature of 900 ° C., the dry crystal type is obtained. It can be seen that a crystallite size larger than the copper powder obtained by the production method is obtained. Moreover, even if it heats at any temperature, it turns out that it has not deteriorated greatly seeing from the CV value of the copper powder before forming a 2nd inorganic substance coating layer.
耐熱特性の評価: 更に、3種類の二層コート銅粉を用いて、上述したと同様の方法で熱膨張係数の測定を行った結果、900℃での収縮率は、A)500℃の加熱温度を採用した場合の、加熱後の二層コート銅粉の収縮率が2.5%、B)700℃の加熱温度を採用した場合の、加熱後の二層コート銅粉の収縮率が2.0%、C)900℃の加熱温度を採用した場合の、加熱後の二層コート銅粉の収縮率が1.8%であり、全てが理想的と思われる5%以内の収縮率に収まっていた。 Evaluation of heat resistance characteristics: Further, the thermal expansion coefficient was measured by the same method as described above using three types of two-layer coated copper powder. As a result, the shrinkage rate at 900 ° C. was A) heating at 500 ° C. When the temperature is adopted, the shrinkage rate of the two-layer coated copper powder after heating is 2.5%. B) When the heating temperature of 700 ° C. is adopted, the shrinkage rate of the two-layer coated copper powder after heating is 2 0.0%, C) When the heating temperature of 900 ° C. is adopted, the shrinkage rate of the two-layer coated copper powder after heating is 1.8%, and the shrinkage rate within 5% seems to be all ideal. It was settled.
膜の比抵抗の評価: 膜の比抵抗は、測定に用いる20gの粉体を、95wt%のターピネオールCと、5wt%のエチルセルロースの組成の溶液20gに入れ、三本ロールで混練後、アルミナ基板にスクリーン印刷を行い、80℃の温度で1時間乾燥した。その後、水素を1wt%含有する窒素置換雰囲気において300℃で1時間保持後、950℃で1時間焼成した。その後、得られた焼成膜を、室温に戻してから膜抵抗を測定した。その結果、コート前の芯材の銅粉を用いた場合には1.9×10−6Ω・cm、熱処理前の本実施例で得られた二層コート銅粉を用いた場合には2.6×10−6Ω・cm、500℃での加熱後の二層コート銅粉を用いた場合には2.4×10−6Ω・cm、700℃での加熱後の二層コート銅粉を用いた場合には2.3×10−6Ω・cm、900℃での加熱後の二層コート銅粉を用いた場合には2.1×10−6Ω・cmであった。この結果から、明らかなように二層の無機物コート層を設けても、膜の比抵抗は大きく変化せず、二層コート銅粉に加熱を加えることで膜の比抵抗が小さくなることが分かるのである。 Evaluation of specific resistance of the film : The specific resistance of the film was measured by adding 20 g of powder used for measurement into 20 g of a solution of 95 wt% terpineol C and 5 wt% ethyl cellulose, kneading with a three roll, and then an alumina substrate. Was screen-printed and dried at a temperature of 80 ° C. for 1 hour. Then, after hold | maintaining at 300 degreeC for 1 hour in nitrogen substitution atmosphere containing 1 wt% of hydrogen, it baked at 950 degreeC for 1 hour. Thereafter, the obtained fired film was returned to room temperature, and the film resistance was measured. As a result, 1.9 × 10 −6 Ω · cm when the core copper powder before coating was used, and 2 when the two-layer coated copper powder obtained in this example before heat treatment was used. .6 × 10 −6 Ω · cm, when two-layer coated copper powder after heating at 500 ° C. is used 2.4 × 10 −6 Ω · cm, two-layer coated copper after heating at 700 ° C. When the powder was used, it was 2.3 × 10 −6 Ω · cm, and when the two-layer coated copper powder after heating at 900 ° C. was used, it was 2.1 × 10 −6 Ω · cm. From this result, it is clear that even when two inorganic coating layers are provided, the specific resistance of the film does not change greatly, and the specific resistance of the film is reduced by heating the two-layer coated copper powder. It is.
ペースト粘度評価:更に、本件発明者等は、以上のようにして得られた二層コート銅粉(第2無機物コート層形成直後)を用いてテルピネオール系導電ペーストを製造した。ここで製造したテルピネオール系導電ペーストは、当該二層コート銅粉を88質量部、バインダーを12質量部の組成として、これらの混錬を行って得たのである。このときのバインダーは、テルピネオール93質量部、エチルセルロース7質量部の組成を持つものを用いた。このテルピネオール系導電ペーストの粘度を測定すると450Pa・sである。 Paste viscosity evaluation: Further, the inventors of the present invention produced a terpineol-based conductive paste using the two-layer coated copper powder (immediately after the formation of the second inorganic coating layer) obtained as described above. The terpineol-based conductive paste produced here was obtained by kneading these two-layer coated copper powders with a composition of 88 parts by mass and binder of 12 parts by mass. As the binder at this time, a binder having a composition of 93 parts by mass of terpineol and 7 parts by mass of ethyl cellulose was used. When the viscosity of this terpineol-based conductive paste is measured, it is 450 Pa · s.
この実施例では、実施例1の第1無機物コート層の形成方法を化学法に変更して、その他実施例1と同様の手法で二層コート銅粉を製造したのである。従って、銅粉の製造に関する説明は省略し、第1無機物コート層の形成から説明する事とする。 In this example, the method for forming the first inorganic coating layer of Example 1 was changed to a chemical method, and other two-layer coated copper powder was produced in the same manner as in Example 1. Therefore, the description regarding the production of the copper powder is omitted, and the description will be made from the formation of the first inorganic coat layer.
第1無機物コート層の形成: この第1無機物コート層の形成には、実施例1で芯材に用いた銅粉1kgを、3リットルの純水に分散させ銅粉スラリーとし、攪拌しながら粉粒の凝集を防止しつつ、10g/l濃度の過酸化水素水を1時間かけて添加し、銅粉の粉粒を酸化銅と亜酸化銅とからなる第1無機物コート層に改質し、水洗、乾燥を行い第1無機物コート層を備える銅粉を得た。この第1有機物コート層を形成した銅粉のレーザー回折散乱式粒度分布測定法の体積累積粒径D50は0.99μmであり、変動係数CV値は0.26であり、結晶子径は33.2nm、亜酸化銅に換算した酸化物コート量は4.5質量%であった。そして、熱膨張係数の測定を行った結果、530℃付近から収縮が開始し、900℃での収縮率が13.9%であった。 Formation of the first inorganic coating layer: For the formation of the first inorganic coating layer, 1 kg of the copper powder used for the core material in Example 1 was dispersed in 3 liters of pure water to form a copper powder slurry, and the powder was stirred. While preventing agglomeration of particles, 10 g / l concentration of hydrogen peroxide solution is added over 1 hour, and the powder of copper powder is modified to a first inorganic coating layer composed of copper oxide and cuprous oxide, The copper powder provided with the 1st inorganic substance coating layer was obtained by washing with water and drying. Cumulative volume particle diameter D 50 of the laser diffraction scattering particle size distribution measurement method of a copper powder to form a first organic coating layer is 0.99 .mu.m, coefficient of variation CV value was 0.26, and the crystallite diameter 33 The amount of oxide coating converted to 0.2 nm and cuprous oxide was 4.5% by mass. And as a result of measuring a thermal expansion coefficient, shrinkage | contraction started from 530 degreeC vicinity, and the shrinkage rate in 900 degreeC was 13.9%.
第2無機物コート層の形成: そして、この第1無機物コート層を形成した銅粉3kgと無機酸化物である酸化アルミニウム粉(平均粒径10nm)30gとを、ハイブリタイザーを用いて、回転数6000rpmで、5分間のメカノケミカルな固着処理を行い、酸化アルミニウムで構成した第2無機物コート層を備える二層コート銅粉を製造した。この二層コート銅粉の表面にコートされた酸化アルミニウムのコート量は1質量%であった。このコート直後の二層コート銅粉のレーザー回折散乱式粒度分布測定法の体積累積粒径D50は0.98μmであり、変動係数CV値は0.24であり、結晶子径は27.8nmであった。そして、熱膨張係数の測定を行った結果、900℃での収縮率が3.8%であった。 Formation of second inorganic coat layer: Then, 3 kg of copper powder on which this first inorganic coat layer was formed and 30 g of aluminum oxide powder (average particle size 10 nm) as an inorganic oxide were rotated at 6000 rpm using a hybridizer. Then, a mechanochemical fixing process for 5 minutes was performed to produce a two-layer coated copper powder having a second inorganic coating layer composed of aluminum oxide. The coating amount of aluminum oxide coated on the surface of the two-layer coated copper powder was 1% by mass. The cumulative volume particle diameter D 50 of the laser diffraction scattering particle size distribution measurement method of two-layer coated copper powder immediately after coating is 0.98 .mu.m, coefficient of variation CV value was 0.24, and the crystallite diameter 27.8nm Met. As a result of measuring the thermal expansion coefficient, the shrinkage rate at 900 ° C. was 3.8%.
結晶子径の調整: そこで、以上のようにして得られた二層コート銅粉を、実施例1と同様にして結晶子径を調整した3種類の二層コート銅粉を得た。この結果、A)500℃の温度を採用した場合の、加熱後の二層コート銅粉のレーザー回折散乱式粒度分布測定法の体積累積粒径D50は0.99μmであり、結晶子径は50.5nm、変動係数CV値は、0.24であり、B)700℃の温度を採用した場合の、加熱後の二層コート銅粉のレーザー回折散乱式粒度分布測定法の体積累積粒径D50は1.00μmであり、結晶子径は57.6nm、変動係数CV値は、0.25であり、C)900℃の温度を採用した場合の、加熱後の二層コート銅粉のレーザー回折散乱式粒度分布測定法の体積累積粒径D50は1.01μmであり、結晶子径は63.4nm、変動係数CV値は、0.26であった。 Adjustment of crystallite diameter: Thus, three types of two-layer coated copper powders having the crystallite diameter adjusted in the same manner as in Example 1 were obtained from the two-layer coated copper powder obtained as described above. As a result, A) When adopting a temperature of 500 ° C., the volume cumulative particle diameter D 50 of the laser diffraction scattering type particle size distribution measurement method of the two-layer coated copper powder after heating is 0.99 μm, and the crystallite diameter is 50.5 nm, coefficient of variation CV value is 0.24, and B) Volume cumulative particle diameter of laser diffraction scattering type particle size distribution measurement method of double-layer coated copper powder after heating when temperature of 700 ° C. is adopted D 50 is 1.00 μm, the crystallite diameter is 57.6 nm, the coefficient of variation CV is 0.25, and C) of the two-layer coated copper powder after heating when a temperature of 900 ° C. is adopted. cumulative volume particle diameter D 50 of the laser diffraction scattering particle size distribution measurement method is 1.01Myuemu, crystallite size 63.4Nm, coefficient of variation CV value was 0.26.
この結果から、結晶子径は、500℃及び700℃の温度を採用した場合に乾式製造法で得られる銅粉と同等の結晶子径が得られ、900℃の温度で加熱した場合には乾式製造法で得られる銅粉以上の大きさの結晶子径が得られている事が分かるのである。また、いずれの温度で加熱しても、第2無機物コート層を形成する前の銅粉のCV値から見て大きく悪化していないことが分かる。 From this result, the crystallite diameter is the same as the copper powder obtained by the dry manufacturing method when temperatures of 500 ° C. and 700 ° C. are adopted, and when heated at a temperature of 900 ° C., the dry crystal type is obtained. It can be seen that a crystallite size larger than the copper powder obtained by the production method is obtained. Moreover, even if it heats at any temperature, it turns out that it has not deteriorated greatly seeing from the CV value of the copper powder before forming a 2nd inorganic substance coating layer.
耐熱特性の評価: 更に、3種類の二層コート銅粉を用いて、上述したと同様の方法で熱膨張係数の測定を行った結果、900℃での収縮率は、A)500℃の加熱温度を採用した場合の、加熱後の二層コート銅粉の収縮率が2.6%、B)700℃の加熱温度を採用した場合の、加熱後の二層コート銅粉の収縮率が2.2%、C)900℃の加熱温度を採用した場合の、加熱後の二層コート銅粉の収縮率が1.9%であり、全てが理想的と思われる5%以内の収縮率に収まっていた。 Evaluation of heat resistance characteristics: Further, the thermal expansion coefficient was measured by the same method as described above using three types of two-layer coated copper powder. As a result, the shrinkage rate at 900 ° C. was A) heating at 500 ° C. When the temperature is adopted, the shrinkage rate of the two-layer coated copper powder after heating is 2.6%. B) When the heating temperature of 700 ° C. is adopted, the shrinkage rate of the two-layer coated copper powder after heating is 2 .2%, C) When the heating temperature of 900 ° C. is adopted, the shrinkage rate of the two-layer coated copper powder after heating is 1.9%, and the shrinkage rate within 5% seems to be all ideal. It was settled.
膜の比抵抗の評価: 膜の比抵抗は、実施例1と同様にして測定した。その結果、コート前の芯材の銅粉を用いた場合には1.9×10−6Ω・cm、熱処理前の本実施例で得られた二層コート銅粉を用いた場合には2.7×10−6Ω・cm、500℃での加熱後の二層コート銅粉を用いた場合には2.6×10−6Ω・cm、700℃での加熱後の二層コート銅粉を用いた場合には2.5×10−6Ω・cm、900℃での加熱後の二層コート銅粉を用いた場合には2.2×10−6Ω・cmであった。この結果から、明らかなように二層の無機物コート層を設けても、膜の比抵抗は大きく変化せず、二層コート銅粉に加熱を加えることで膜の比抵抗が小さくなることが分かるのである。 Evaluation of specific resistance of film : The specific resistance of the film was measured in the same manner as in Example 1. As a result, 1.9 × 10 −6 Ω · cm when the core copper powder before coating was used, and 2 when the two-layer coated copper powder obtained in this example before heat treatment was used. .7 × 10 −6 Ω · cm, when two-layer coated copper powder after heating at 500 ° C. is used 2.6 × 10 −6 Ω · cm, two-layer coated copper after heating at 700 ° C. When powder was used, it was 2.5 × 10 −6 Ω · cm, and when double-layer coated copper powder after heating at 900 ° C. was used, it was 2.2 × 10 −6 Ω · cm. From this result, it is clear that even when two inorganic coating layers are provided, the specific resistance of the film does not change greatly, and the specific resistance of the film is reduced by heating the two-layer coated copper powder. It is.
ペースト粘度評価: 更に、実施例1と同様に、以上のようにして得られた二層コート銅粉(第2無機物コート層形成直後)を用いてテルピネオール系導電ペーストを製造した。このテルピネオール系導電ペーストの粘度を測定すると460Pa・sである。 Paste viscosity evaluation: Further, similarly to Example 1, a terpineol-based conductive paste was produced using the two-layer coated copper powder (immediately after the formation of the second inorganic coating layer) obtained as described above. The viscosity of this terpineol-based conductive paste is measured to be 460 Pa · s.
この比較例では、実施例1で用いたと同様の銅粉500gを2リットルの純水に分散させ銅スラリーとし、浴温を60℃とした。ここに、0.4g/ml濃度のNaAl(OH)4水溶液40mlを1時間かけて攪拌しつつ添加した。この添加中には、20wt%塩酸水溶液を用いて、溶液pHが8となるように維持した。その後、30分間攪拌を続け、濾過、洗浄、乾燥し、表面処理銅粉を得た。 In this comparative example, 500 g of the same copper powder as used in Example 1 was dispersed in 2 liters of pure water to form a copper slurry, and the bath temperature was 60 ° C. To this, 40 ml of a 0.4 g / ml NaAl (OH) 4 aqueous solution was added over 1 hour with stirring. During this addition, a 20 wt% aqueous hydrochloric acid solution was used to maintain the solution pH at 8. Thereafter, stirring was continued for 30 minutes, followed by filtration, washing and drying to obtain a surface-treated copper powder.
この表面処理銅粉のレーザー回折散乱式粒度分布測定法の体積累積粒径D50は1.50μmであり、変動係数CV値は0.52であり、結晶子径は32.0nmであった。そして、熱膨張係数の測定を行った結果、900℃での収縮率が3.2%であった。 The surface treatment volume cumulative particle diameter D 50 of the laser diffraction scattering particle size distribution measurement method of a copper powder is 1.50 .mu.m, coefficient of variation CV value was 0.52, and the crystallite diameter was 32.0 nm. As a result of measuring the thermal expansion coefficient, the shrinkage rate at 900 ° C. was 3.2%.
また、膜の比抵抗は、実施例1と同様にして測定した。その結果、本実施例で得られた表面処理銅粉を用いた場合には3.5×10−5Ω・cmであり、上述の実施例とオーダーの異なる値が得られた。更に、実施例1と同様に、以上のようにして得られた表面処理銅粉を用いてテルピネオール系導電ペーストを製造した。このテルピネオール系導電ペーストの粘度を測定すると750Pa・sである。 The specific resistance of the film was measured in the same manner as in Example 1. As a result, when the surface-treated copper powder obtained in the present example was used, it was 3.5 × 10 −5 Ω · cm, and a value different in order from the above example was obtained. Furthermore, similarly to Example 1, a terpineol-based conductive paste was produced using the surface-treated copper powder obtained as described above. The viscosity of this terpineol-based conductive paste is 750 Pa · s.
この比較例では、実施例1で用いたと同様の銅粉を用いて、第1無機物コート層を形成することなく、銅粉の粉粒表面へ実施例1の第2無機物コート層の形成と同様の方法で、第2無機物コート層のみの形成を行い無機酸化物コート銅粉を得た。 In this comparative example, the same copper powder as used in Example 1 was used, and the first inorganic coat layer was not formed, and the same as the formation of the second inorganic coat layer of Example 1 on the powder particle surface of the copper powder. In this way, only the second inorganic coating layer was formed to obtain an inorganic oxide-coated copper powder.
この無機酸化物コート銅粉のレーザー回折散乱式粒度分布測定法の体積累積粒径D50は0.98μmであり、変動係数CV値は0.27であり、結晶子径は27.5nmであった。そして、熱膨張係数の測定を行った結果、900℃での収縮率が4.5%であった。 This inorganic oxide-coated copper powder had a volume cumulative particle size D 50 of 0.98 μm, a coefficient of variation CV of 0.27, and a crystallite size of 27.5 nm. It was. As a result of measuring the thermal expansion coefficient, the shrinkage rate at 900 ° C. was 4.5%.
また、膜の比抵抗は、実施例1と同様にして測定した。その結果、この比較例で得られた無機酸化物コート銅粉を用いた場合には6.6×10−6Ω・cmであり、上述の実施例より相対的に高い抵抗となっている。この結果から判断するに、無機酸化物コート層の密着性が悪いため、900℃での収縮率が大きくなっていると考えられる。更に、実施例1と同様に、以上のようにして得られた表面処理銅粉を用いてテルピネオール系導電ペーストを製造した。このテルピネオール系導電ペーストの粘度を測定すると780Pa・sである。 The specific resistance of the film was measured in the same manner as in Example 1. As a result, when the inorganic oxide-coated copper powder obtained in this comparative example is used, it is 6.6 × 10 −6 Ω · cm, which is a relatively higher resistance than the above-described example. Judging from this result, it is considered that the shrinkage rate at 900 ° C. is increased because the adhesion of the inorganic oxide coating layer is poor. Furthermore, similarly to Example 1, a terpineol-based conductive paste was produced using the surface-treated copper powder obtained as described above. The viscosity of this terpineol-based conductive paste is 780 Pa · s.
この比較例では、実施例1で用いたと同様の銅粉1kgを用いて、3リットルの純水に入れ銅粉スラリーとし、攪拌を行いながら、500g/l濃度の過酸化水素水を1時間かけ添加し、酸化処理銅粉を合成し、水洗、乾燥を行い、亜酸化銅に換算したときの酸化物コート量が25質量%の酸化処理銅粉を得た。この酸化処理銅粉のレーザー回折散乱式粒度分布測定法の体積累積粒径D50は1.95μmであり、変動係数CV値は0.45であり、結晶子径は31.1nmであった。そして、熱膨張係数の測定を行った結果、500℃から収縮が開始し、900℃での収縮率が15.9%であった。 In this comparative example, 1 kg of the copper powder similar to that used in Example 1 was used to make a copper powder slurry in 3 liters of pure water, and 500 g / l of hydrogen peroxide solution was added for 1 hour while stirring. It added, synthesize | combined oxidation treatment copper powder, washed with water, dried, and obtained the oxidation treatment copper powder whose oxide coat amount when converted into cuprous oxide was 25 mass%. Cumulative volume particle diameter D 50 of the laser diffraction scattering particle size distribution measuring method of the oxidation-treated copper powder is 1.95Myuemu, coefficient of variation CV value was 0.45, and the crystallite diameter was 31.1nm. And as a result of measuring a thermal expansion coefficient, shrinkage | contraction started from 500 degreeC, and the shrinkage | contraction rate in 900 degreeC was 15.9%.
そして、この酸化処理銅粉3kgと無機酸化物である酸化アルミニウム30gとを、ハイブリタイザーを用いて、回転数6000rpmでメカノケミカルな処理を行い、酸化アルミニウムコート銅粉を得た。そして、この酸化アルミニウムコート銅粉のレーザー回折散乱式粒度分布測定法の体積累積粒径D50は1.08μmであり、変動係数CV値は0.30であり、結晶子径は24.6nmであった。そして、熱膨張係数の測定を行った結果、900℃での収縮率が5.1%であった。 And 3 kg of this oxidized copper powder and 30 g of aluminum oxide, which is an inorganic oxide, were mechanochemically processed at a rotational speed of 6000 rpm using a hybridizer to obtain aluminum oxide-coated copper powder. Then, the cumulative volume particle diameter D 50 of the laser diffraction scattering particle size distribution measuring method of the aluminum oxide coated copper powder is 1.08 .mu.m, coefficient of variation CV value was 0.30, and the crystallite diameter in the 24.6nm there were. As a result of measuring the thermal expansion coefficient, the shrinkage rate at 900 ° C. was 5.1%.
また、膜の比抵抗は、実施例1と同様にして測定した。その結果、この比較例で得られた無機酸化物コート銅粉を用いた場合には7.5×10−6Ω・cmであり、上述の実施例より相対的に高い抵抗となっている。更に、実施例1と同様に、以上のようにして得られた表面処理銅粉を用いてテルピネオール系導電ペーストを製造した。このテルピネオール系導電ペーストの粘度を測定すると880Pa・sである。 The specific resistance of the film was measured in the same manner as in Example 1. As a result, when the inorganic oxide-coated copper powder obtained in this comparative example is used, it is 7.5 × 10 −6 Ω · cm, which is a relatively higher resistance than the above-described example. Furthermore, similarly to Example 1, a terpineol-based conductive paste was produced using the surface-treated copper powder obtained as described above. The viscosity of this terpineol-based conductive paste is measured to be 880 Pa · s.
本件発明に係る二層コート銅粉は、湿式製造法で得られた銅粉の長所である均一微細性、優れた分散性を維持したまま、高温加熱を受けたときの耐酸化性及び耐熱収縮性に優れた品質を同時に具備したものである。この二層コート銅粉を用いることで、低温焼成セラミック等の銅粉を含む焼結体の寸法安定性を向上させることが可能であり、製品歩留まりを飛躍的に向上させることが可能となる。また、二層コート銅粉は、芯材の銅粉の凝集を進行させることなく、高温加熱が可能であるため芯材の銅粉の結晶子径の調整を行いやすく、上述した独特の製造方法を採用することが可能となるのである。 The two-layer coated copper powder according to the present invention is an oxidation resistance and heat shrinkage when subjected to high temperature heating while maintaining uniform fineness and excellent dispersibility, which are advantages of the copper powder obtained by the wet manufacturing method. At the same time with excellent quality. By using this two-layer coated copper powder, it is possible to improve the dimensional stability of a sintered body containing copper powder such as a low-temperature fired ceramic, and it is possible to dramatically improve the product yield. In addition, the two-layer coated copper powder can be heated at high temperature without agglomerating the copper powder of the core material, so that it is easy to adjust the crystallite diameter of the copper powder of the core material. It becomes possible to adopt.
また、本件発明に係る二層コート銅粉は、芯材である銅粉の粉粒表面に第1無機物コート層を備えているため、その外殻に設ける第2無機物コート層を従来にないほど薄くできるため、電気的導電特性の低下を最小限に止めることが可能である。 Moreover, since the two-layer coated copper powder according to the present invention includes the first inorganic coating layer on the powder particle surface of the copper powder that is the core material, the second inorganic coating layer provided on the outer shell is unprecedented. Since the thickness can be reduced, it is possible to minimize the deterioration of the electrical conductive characteristics.
Claims (6)
芯材である銅粉の粉粒表面に酸化銅、亜酸化銅のいずれか一種若しくはこれらの二種からなり、換算質量厚さが、二層コート銅粉質量の3質量%〜20質量%である第1無機物コート層を備え、
当該第1無機物コート層の外殻に、酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化亜鉛のいずれか一種又は二種以上で構成した無機酸化物からなる第2無機物コート層を備えたことを特徴とする二層コート銅粉。 It is a two-layer coated copper powder comprising a two-layer inorganic coating layer on the surface of copper powder particles used as a core material for the production of a conductive paste ,
The powder particle surface of the copper powder, which is the core material, is composed of either one of copper oxide and cuprous oxide, or two of these, and the converted mass thickness is 3% to 20% by mass of the mass of the two-layer coated copper powder. A first inorganic coating layer,
On the outer shell of the first inorganic coat layer, a second inorganic coat layer made of an inorganic oxide composed of one or more of silicon oxide, aluminum oxide, magnesium oxide, zirconium oxide, titanium oxide, and zinc oxide is provided. A two-layer coated copper powder characterized by comprising.
A)大気雰囲気における加熱処理若しくは湿式の化学処理を用いて、芯材の銅粉の粒粉表面を酸化銅、亜酸化銅のいずれか一種若しくはこれらの二種からなり、換算質量厚さが、二層コート銅粉質量の3質量%〜20質量%である第1無機物コート層を形成する。
B)更に、第1無機物層を形成した外殻に、無機酸化物からなる第2無機物コート層を形成する。 It is a manufacturing method of the two-layer coat | court copper powder in any one of Claims 1-3, Comprising: The following A) 1st inorganic substance coat layer formation process and B) 2nd inorganic substance coat layer formation process are provided. A method for producing a two-layer coated copper powder, wherein
A) Using heat treatment or wet chemical treatment in an air atmosphere, the surface of the copper powder of the core material is composed of either one of copper oxide or cuprous oxide or two of them, and the equivalent mass thickness is A 1st inorganic substance coat layer which is 3 mass%-20 mass% of double layer coat copper powder mass is formed.
B) Further, a second inorganic coat layer made of an inorganic oxide is formed on the outer shell on which the first inorganic layer is formed.
A)大気雰囲気における加熱処理若しくは湿式の化学処理を用いて、芯材の銅粉の粒粉表面を酸化銅、亜酸化銅のいずれか一種若しくはこれらの二種からなり、換算質量厚さが、二層コート銅粉質量の3質量%〜20質量%である第1無機物コート層を形成する。
B)更に、第1無機物層を形成した外殻に、無機酸化物からなる第2無機物コート層を形成する。
C)以上のようにして第1無機物コート層及び第2無機物コート層を形成した銅粉を、500℃〜1000℃の不活性ガス雰囲気中で熱処理することで銅粉の結晶子径が50nm以上になるように調整する。 It is a manufacturing method of the two-layer coated copper powder of Claim 4, Comprising: A) 1st inorganic substance coat layer formation process shown below, B) 2nd inorganic substance coat layer formation process, C) Crystallite diameter adjustment process shown below A method for producing a two-layer coated copper powder, comprising:
A) Using heat treatment or wet chemical treatment in an air atmosphere, the surface of the copper powder of the core material is composed of either one of copper oxide or cuprous oxide or two of them, and the equivalent mass thickness is A 1st inorganic substance coat layer which is 3 mass%-20 mass% of double layer coat copper powder mass is formed.
B) Further, a second inorganic coat layer made of an inorganic oxide is formed on the outer shell on which the first inorganic layer is formed.
C) The copper powder having the first inorganic coat layer and the second inorganic coat layer formed as described above is heat-treated in an inert gas atmosphere at 500 ° C. to 1000 ° C. so that the crystallite diameter of the copper powder is 50 nm or more. Adjust so that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003397185A JP4197151B2 (en) | 2003-11-27 | 2003-11-27 | Two-layer coated copper powder, method for producing the two-layer coated copper powder, and conductive paste using the two-layer coated copper powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003397185A JP4197151B2 (en) | 2003-11-27 | 2003-11-27 | Two-layer coated copper powder, method for producing the two-layer coated copper powder, and conductive paste using the two-layer coated copper powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005154861A JP2005154861A (en) | 2005-06-16 |
JP4197151B2 true JP4197151B2 (en) | 2008-12-17 |
Family
ID=34722404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003397185A Expired - Lifetime JP4197151B2 (en) | 2003-11-27 | 2003-11-27 | Two-layer coated copper powder, method for producing the two-layer coated copper powder, and conductive paste using the two-layer coated copper powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4197151B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK178743B1 (en) * | 2010-05-20 | 2016-12-19 | Marealis As | Process for producing a shrimp hydrolysate using electrodialysis. |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5034206B2 (en) * | 2005-10-03 | 2012-09-26 | 株式会社デンソー | Conductive adhesive |
KR101353149B1 (en) * | 2011-12-27 | 2014-01-27 | 삼성전기주식회사 | Manufacturing mehtod for copper powder |
CN103421352B (en) * | 2012-05-21 | 2014-11-19 | 广东先导稀材股份有限公司 | Composite material with surfaces of cuprous oxide coated by copper oxide and preparation method |
KR101671324B1 (en) * | 2014-02-14 | 2016-11-02 | 미쓰이금속광업주식회사 | Copper powder |
JP6812615B2 (en) * | 2017-03-24 | 2021-01-13 | 大陽日酸株式会社 | Copper fine particles, method for producing copper fine particles, and method for producing sintered body |
CN113292837B (en) * | 2021-06-07 | 2023-03-10 | 广东顾纳凯材料科技有限公司 | Metal appearance imitation master batch, preparation method thereof and polyolefin composite material |
CN113549910B (en) * | 2021-06-25 | 2023-01-10 | 南通永余防锈材料有限公司 | Rust removal and prevention agent and preparation method thereof |
WO2024204211A1 (en) * | 2023-03-29 | 2024-10-03 | 昭栄化学工業株式会社 | Method for producing metal powder, and metal powder |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4001438B2 (en) * | 1999-05-31 | 2007-10-31 | 三井金属鉱業株式会社 | Method for producing composite copper fine powder |
JP4150802B2 (en) * | 1999-07-29 | 2008-09-17 | Dowaエレクトロニクス株式会社 | Metal powder processing method |
JP4480884B2 (en) * | 1999-12-22 | 2010-06-16 | 三井金属鉱業株式会社 | Method for producing surface-modified silver powder |
JP3945740B2 (en) * | 2000-11-09 | 2007-07-18 | 三井金属鉱業株式会社 | Nickel powder |
JP5044857B2 (en) * | 2001-05-30 | 2012-10-10 | Dowaエレクトロニクス株式会社 | Manufacturing method of copper powder with oxide film |
-
2003
- 2003-11-27 JP JP2003397185A patent/JP4197151B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK178743B1 (en) * | 2010-05-20 | 2016-12-19 | Marealis As | Process for producing a shrimp hydrolysate using electrodialysis. |
Also Published As
Publication number | Publication date |
---|---|
JP2005154861A (en) | 2005-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4957172B2 (en) | Nickel powder and method for producing the same | |
JP5898400B2 (en) | Copper fine particles, production method thereof, and copper fine particle dispersion | |
JP5439057B2 (en) | Composite copper particles | |
JPH10330801A (en) | Fine copper powder and its production | |
TW200920857A (en) | Nickel powder or alloy powder comprising nickel as main component and manufacturing method thereof, conductive paste and multi-layer ceramic condenser | |
JP4197151B2 (en) | Two-layer coated copper powder, method for producing the two-layer coated copper powder, and conductive paste using the two-layer coated copper powder | |
JP2010053409A (en) | Method for producing metal powder, metal powder, electrically conductive paste, and multilayer ceramic capacitor | |
JP4149353B2 (en) | Two-layer coated metal powder, method for producing the two-layer coated metal powder, and conductive paste using the two-layer coated metal powder | |
US8834957B2 (en) | Preparation method for an electroconductive patterned copper layer | |
TW201412435A (en) | Composite copper particles, and method for producing same | |
KR101236246B1 (en) | Copper powder | |
JP5327442B2 (en) | Nickel-rhenium alloy powder and conductor paste containing the same | |
JP4666663B2 (en) | Silver compound-coated copper powder, method for producing the silver compound-coated copper powder, storage method for the silver compound-coated copper powder, and conductive paste using the silver compound-coated copper powder | |
JP4150638B2 (en) | Inorganic oxide-coated metal powder and method for producing the inorganic oxide-coated metal powder | |
JPH07118868A (en) | Production of palladium-coated spherical silver powder | |
JP4111425B2 (en) | Copper powder for conductive paste, conductive paste using the copper powder, and chip component including a conductor using the conductive paste | |
JP2004084069A5 (en) | ||
Wu | Preparation of ultra-fine copper powder and its lead-free conductive thick film | |
JP3414502B2 (en) | Noble metal powder and conductor paste for high temperature firing | |
JP4164010B2 (en) | Inorganic ultrafine particle coated metal powder and method for producing the same | |
JP4957465B2 (en) | Oxide-coated copper fine particles and method for producing the same | |
JP2009079269A (en) | Copper powder for electroconductive paste, production method therefor and electroconductive paste | |
JP5003668B2 (en) | Method for producing oxide-coated copper fine particles | |
JP3299159B2 (en) | Nickel powder for internal electrode of multilayer ceramic capacitor and method for producing the same | |
JP4016232B2 (en) | Method for producing nickel powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060808 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070913 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080312 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080512 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080515 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080611 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080723 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080729 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080924 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4197151 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121010 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131010 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |