JP4001438B2 - Method for producing composite copper fine powder - Google Patents

Method for producing composite copper fine powder Download PDF

Info

Publication number
JP4001438B2
JP4001438B2 JP15275599A JP15275599A JP4001438B2 JP 4001438 B2 JP4001438 B2 JP 4001438B2 JP 15275599 A JP15275599 A JP 15275599A JP 15275599 A JP15275599 A JP 15275599A JP 4001438 B2 JP4001438 B2 JP 4001438B2
Authority
JP
Japan
Prior art keywords
copper fine
fine particles
metal
composite
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15275599A
Other languages
Japanese (ja)
Other versions
JP2000345201A (en
Inventor
貴彦 坂上
卓也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP15275599A priority Critical patent/JP4001438B2/en
Publication of JP2000345201A publication Critical patent/JP2000345201A/en
Application granted granted Critical
Publication of JP4001438B2 publication Critical patent/JP4001438B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、積層セラミックコンデンサの内部電極材料及び外部電極材料として用いるのに適した特性を有しており、特に熱収縮特性に優れており、従って大型の積層セラミックコンデンサの製造においてデラミネーション、クラックの発生を防止でき、また厚みの薄いセラミック誘電体と内部電極とからなる小型多層の積層セラミックコンデンサを誘電特性、電気特性を損なうこと無しで製造することを可能とする複合銅微粉末の製造方法に関する。
【0002】
【従来の技術】
積層セラミックコンデンサは、セラミック誘電体と内部電極とを交互に層状に重ねて圧着し、焼成して一体化させたものであり、このような積層セラミックコンデンサの内部電極を形成する際には、内部電極材料である金属微粉末をペースト化し、該ペーストを用いてセラミック基材上に印刷し、該印刷した基材を複数枚重ねて加熱圧着して一体化した後、還元性雰囲気中で加熱焼成を行うのが一般的である。この内部電極材料として、従来は白金、パラジウムが使用されていたが、近時にはこれら白金、パラジウム等の貴金属の代わりにニッケル、銅等の卑金属を用いる技術が開発され、進歩してきている。
【0003】
しかしながら、金属銅微粉末を用いた場合には、その粒径にもよるが600℃近傍より急激な熱収縮を引き起す傾向がある。
積層セラミックコンデンサを作製する際の焼成温度は、セラミック誘電体の構成成分に依存して変化し、BaTiO3 やSrTiO3 等のベロブスカイト型複合酸化物をベースとし、これにガラス材料を添加したり、鉛、ストロンチウム、カルシウム等の酸化物粉添加したりして焼成温度を下げて1000℃程度で焼結できるような材料も開発されている。
【0004】
セラミックコンデンサを製造する際の焼結温度を下げることができれば、これまでセラミックコンデンサの内部電極材料として用いていたニッケルよりも安価で導電性の高い銅を用いることができるようになる。また、銅電極材料を用いることにより、近年要求が高まっている高周波用途で低インダクタンスが実現できる。
【0005】
【発明が解決しようとする課題】
上記のような理由により、積層セラミックコンデンサの製造に用いるペースト用の銅微粉末については、焼成の際のデラミネーションやクラックを抑制するためには、銅微粒子の急激な熱収縮開始温度をより高温側へシフトさせてセラミック基材の熱収縮曲線に近づけることが重要視される。
【0006】
本発明は、積層セラミックコンデンサの内部電極材料として用いるのに適した特性を有しており、特に、セラミック基材の熱収縮曲線に近い熱収縮特性を有しており、従って大型の積層セラミックコンデンサの製造においてデラミネーション、クラックの発生を防止でき、また厚みの薄いセラミック誘電体と内部電極とからなる小型多層の積層セラミックコンデンサを誘電特性、電気特性を損なうこと無しで製造することを可能とする複合銅微粉末の製造方法を提供することを課題としている。
【0007】
【課題を解決するための手段】
本発明者らは上記の課題を達成するために鋭意研究を重ねた結果、金属銅微粒子表面に金属元素の酸化物及び/又は複合酸化物を固着させることにより上記の特性を有する複合銅微粉末が得られること、並びにそのような複合銅微粉末が湿式担持法、乾式担持法及び半乾式担持法の何れによっても製造できることを見いだし、本発明を完成した。
【0009】
即ち、本発明のセラミックコンデンサ用電極材料複合銅微粉末の製造方法は、平均粒径が3μm以下の金属銅微粒子又は表面を酸化処理した金属銅微粒子が液中に分散しているスラリーに、金属元素、好ましくは原子番号が12〜42、56〜75及び82の範囲内で周期表の2〜14族に属する金属元素の水溶性塩からなる群より選ばれる少なくとも1種を含む水溶液を添加し、次いで酸もしくはアルカリでpHを調整して、該水溶性塩から誘導される金属酸化物及び/又は複合酸化物を該銅微粒子表面に固着させ、洗浄し、乾燥させ、得られた金属酸化物及び/又は複合酸化物が固着している該銅微粒子を相互に又は他物体と衝突させて該銅微粒子の表面と該金属酸化物及び/又は複合酸化物との固着を増強させることを特徴とする。
【0010】
更に、本発明のセラミックコンデンサ用電極材料複合銅微粉末の製造方法は、平均粒径が3μm以下の金属銅微粒子又は表面を酸化処理した金属銅微粒子の表面に、金属元素、好ましくは原子番号が12〜42、56〜75及び82の範囲内で周期表の2〜14族に属する金属元素の少なくとも1種を含む酸化物及び複合酸化物からなる平均粒径が0.5μm以下の超微粒子からなる群より選ばれる少なくとも1種を付着させ、該超微粒子の付着している銅微粒子を相互に又は他物体と衝突させて該銅微粒子の表面に該超微粒子を固着させることを特徴とする。
【0011】
また、本発明のセラミックコンデンサ用電極材料複合銅微粉末の製造方法は、金属元素、好ましくは原子番号が12〜42、56〜75及び82の範囲内で周期表の2〜14族に属する金属元素の少なくとも1種を含む酸化物及び複合酸化物からなる平均粒径が0.5μm以下の超微粒子からなる群より選ばれる少なくとも1種を懸濁させた懸濁液と、平均粒径が3μm以下の金属銅微粒子又は表面を酸化処理した金属銅微粒子とを混合しながら加熱し、該懸濁液の媒体を除去して、該銅微粒子の表面に該超微粒子を付着させ、該超微粒子の付着している銅微粒子を相互に又は他物体と衝突させて該銅微粒子の表面に該超微粒子を固着させることを特徴とする。
【0012】
【発明の実施の形態】
本発明の製造方法で得られるセラミックコンデンサ用電極材料複合銅微粉末(以下、本発明の複合銅微粉末という)においては、金属銅微粒子表面に、金属元素、好ましくは原子番号が12〜42、56〜75及び82の範囲内で周期表の2〜14族に属する金属元素の少なくとも1種を含む酸化物及び複合酸化物からなる群より選ばれる少なくとも1種が固着しているので、本発明の複合銅微粉末はセラミック基材の熱収縮曲線に近い熱収縮特性を有しており、従って大型の積層セラミックコンデンサの製造においてデラミネーション、クラックの発生を防止することができる。また、厚みの薄いセラミック誘電体と内部電極とからなる小型多層の積層セラミックコンデンサを誘電特性、電気特性を損なうこと無しで製造することが可能である。
【0013】
本発明の複合銅微粉末を含有するペーストを内部電極の形成に用いて、小型多層の積層セラミックコンデンサを誘電特性、電気特性を損うこと無しで製造するためには、好ましくは原子番号が12〜42、56〜75及び82の範囲内で周期表の2〜14族に属する金属元素の少なくとも1種を含む酸化物及び複合酸化物からなる群より選ばれる少なくとも1種が固着している複合銅微粉末を用い、より好ましくは原子番号が12〜42、56〜75及び82の範囲内で周期表の2〜4族、7族、13族及び14族に属する金属元素の少なくとも1種を含む酸化物及び複合酸化物からなる群より選ばれる少なくとも1種が固着している複合銅微粉末を用いる。
【0014】
更に、周期表の2族に属する金属元素、Y、Zr、Mn、Al、Si又はランタノイド元素の酸化物からなる群より選ばれる少なくとも1種が固着している複合銅微粉末及を用いることが好ましい。
また、上記の複合酸化物として後記の複合酸化物を含めて種々のものが使用可能である。
本発明の複合銅微粉末は、積層セラミックコンデンサの内部電極材料として用いる場合には、積層セラミックコンデンサの誘電体の組成と同一の組成を持つ複合酸化物が銅微粒子表面に固着しているものであることが好ましい。
【0015】
本発明の複合銅微粉末においては、積層セラミックコンデンサの内部電極材料として用いる場合には、金属銅微粒子表面に、一般式
Bam 1-m Tin 1-n 3
(式中、XはSr、Ca、Mg又はPbであり、ZはZr、Y、Sn又はGeであり、mは0〜1の範囲内の値であり、nは0〜1の範囲内の値である。)
で示される複合酸化物からなる群より選ばれる少なくとも1種が固着していることが好ましく、それらの複合酸化物は1種単独で固着させても、2種以上を併用して固着させてもよく、あるいはそれらの複合酸化物を主成分とし、添加成分として上記の種々の酸化物の少なくとも1種を用いて固着させてもよい。
【0016】
上記の酸化物及び複合酸化物としては、例えば、MgO、CaO、SrO、BaO、ZnO、Al2 3 、Ga2 3 、Y2 3 、SiO2 、TiO2 、ZrO2 、Cr2 3 、MnO2 、Mn3 4 、Nb2 5 、BaTiO3 、CaTiO3 、SrTiO3 、BaZrO3 、CaZrO3 、SrZrO3 、(Mg,Ca)TiO3 、(Ba,Ca)(Ti,Zr)O3 、PbTiO3 、Pb(Zr,Ti)O3 、(Pb,Ca)TiO3 、MgAl2 4 、BaTi4 9 、Nd2 3 、Sm2 3 、Dy2 3 、Er2 3 、Ho2 3 等を挙げることができ、それらは混合物として用いることも出来る。更にこれらの酸化物及び/又は複合酸化物はNb、W、La、Y、Mo等の金属の酸化物でドープされていてもよい。
【0017】
本発明の複合銅微粉末においては、該複合銅微粉末を積層セラミックコンデンサの内部電極を形成するペーストに用いる場合には微細である方が微細な電極を形成できるので望ましく、具体的にはSEM観察による銅微粉末の平均粒径が3μm以下であることが好ましく、1μm以下であることがより好ましい。金属微粉末は、一般的には、微細になればなるほど熱収縮を起こし易いが、本発明の複合銅微粉末においては、微細になっても熱収縮防止効果が発揮されるので、その効果はますます顕著となる。
【0018】
また、これらの酸化物及び複合酸化物からなる群より選ばれる少なくとも1種の合計固着量は銅微粉末の重量に対して好ましくは0.05〜15重量%、より好ましくは0.5〜13重量%、更に好ましくは1〜10重量%である。合計固着量が0.05重量%未満の場合には、酸化物及び/又は複合酸化物の固着によって達成される効果が不十分となる傾向があり、逆に15重量%を越える場合には、そのような複合銅微粉末を積層セラミックコンデンサの内部電極材料として使用したときに、コンデンサの誘電特性に悪影響を及ぼす傾向がある。
【0019】
本発明の複合銅微粉末の製造方法で用いる銅微粒子又は表面を酸化処理した銅微粒子は、機械的粉砕法、アトマイズ法、電解析出法、蒸発法、湿式還元法等の何れの方法によって得られたものであってもよい。本発明の複合銅微粉末を積層セラミックコンデンサの内部電極を形成するペーストに用いる場合には、その製造に用いる銅微粒子の平均粒径が3μm以下であることが好ましく、1μm以下であることがより好ましい。
【0020】
本発明の複合銅微粉末は湿式担持法又は乾式担持法によって、或いは金属酸化物又は複合酸化物の超微粒子の水性懸濁液を金属銅微粒子に担持させて乾燥する半乾式担持法によって製造することができる。
湿式担持法に従って実施する場合の本発明の複合銅微粉末の製造方法においては、金属銅微粒子又は表面を酸化処理した金属銅微粒子が液中に分散しているスラリーに、金属元素、好ましくは原子番号が12〜42、56〜75及び82の範囲内で周期表の2〜14族に属する金属元素の水溶性塩からなる群より選ばれる少なくとも1種を含む水溶液を添加し、次いで酸もしくはアルカリでpHを調整して、該水溶性塩から誘導される金属酸化物及び/又は複合酸化物を該銅微粒子表面に固着させ、洗浄し、乾燥させ、得られた金属酸化物及び/又は複合酸化物が固着している該銅微粒子を相互に又は他物体と衝突させて該銅微粒子の表面と該金属酸化物及び/又は複合酸化物との固着を増強させる。
【0021】
湿式担持法に従って実施する場合の本発明の複合銅微粉末の製造方法で用いる上記の水溶性塩は水溶性であるが、水不溶性の酸化物又は複合酸化物に転化できるものであれば特には制限されない。例えば、これらの金属元素のハロゲン化物、硝酸塩、硫酸塩、蓚酸塩、酸化物や、アルミン酸、ケイ酸等のアルカリ金属塩等を用いることができる。
【0022】
湿式担持法に従って実施する場合の本発明の複合銅微粉末の製造方法においては、pHを調整するために酸を用いるかアルカリを用いるかは上記の水溶性塩の種類に応じて変化するが、用いる酸又はアルカリの種類については特には限定されない。例えば、下記の水溶性塩を用いて括弧内の酸化物を生成させる場合には水酸化ナトリウム水溶液を使用することができる。
硫酸チタン(TiO2 )、硫酸マンガン(MnO2 )、
塩化クロム(Cr2 3 )、塩化イットリウム(Y2 3 )、
塩化酸化ジルコニウム(ZrO2 )。
また、下記の水溶性塩を用いて括弧内の酸化物を生成させる場合には希硫酸を使用することができる。
アルミン酸ナトリウム(Al2 3 )、ケイ酸ナトリウム(SiO2 )。
上記のようにpHを調整することにより、上記の水溶性塩が酸化物や複合酸化物に転化して銅微粒子表面に析出し、固着して本発明の複合銅微粉末となる。
【0023】
湿式担持法に従って実施する場合の本発明の複合銅微粉末の製造方法においては、金属酸化物及び/又は複合酸化物が固着している該銅微粒子を相互に又は他物体と衝突させて該銅微粒子の表面と該金属酸化物及び/又は複合酸化物との固着を増強させる工程を、例えば、オングミル、ハイブリタイザー、メカノフュージョン、コートマイザー、ディスパーコート、ジェットマイザーのいずれかの装置で処理することにより実施できる
【0024】
乾式担持法に従って実施する場合の本発明の複合銅微粉末の製造方法においては、金属銅微粒子又は表面を酸化処理した金属銅微粒子の表面に、金属元素、好ましくは原子番号が12〜42、56〜75及び82の範囲内で周期表の2〜14族に属する金属元素の少なくとも1種を含む酸化物及び複合酸化物の超微粒子からなる群より選ばれる少なくとも1種を付着させ、該超微粒子の付着している銅微粒子を相互に又は他物体と衝突させて該銅微粒子の表面に該超微粒子を固着させることができる。
【0025】
乾式担持法に従って実施する場合の本発明の複合銅微粉末の製造方法で用いる金属銅微粒子又は表面を酸化処理した金属銅微粒子は、本発明の複合銅微粉末を積層セラミックコンデンサの内部電極を形成するためのペーストとして用いる場合には、平均粒径が3μm以下であることが好ましく、1μm以下であることがより好ましい。また、酸化物、複合酸化物の超微粒子は、粒径が小さいほど少量で均一に固着させることができるので、平均粒径が0.5μm以下であることが好ましく、0.1μm以下であることがより好ましく、0.05μm以下であることが最も好ましい。
【0026】
金属銅微粒子又は表面を酸化処理した金属銅微粒子の表面に酸化物、複合酸化物の超微粒子を固着させる方法としては、該金属銅微粒子と該酸化物、複合酸化物の超微粒子とを混合し、その後、該超微粒子の付着している銅微粒子を相互に又は他物体と衝突させて該銅微粒子の表面に該超微粒子を固着させることもできる。その他の方法としては、オングミル、ハイブリタイザー、メカノフュージョン、コートマイザー、ディスパーコート、ジェットマイザー等の装置中に該銅微粒子と該酸化物や複合酸化物の超微粒子とを装入し、混合と固着とを同時に実施することもできる。
【0027】
半乾式担持法に従って実施する場合の本発明の複合銅微粉末の製造方法においては、金属元素、好ましくは原子番号が12〜42、56〜75及び82の範囲内で周期表の2〜14族に属する金属元素の少なくとも1種を含む酸化物及び複合酸化物の超微粒子からなる群より選ばれる少なくとも1種を懸濁させた懸濁液と、金属銅微粒子又は表面を酸化処理した金属銅微粒子とを混合しながら加熱し、該懸濁液の媒体を除去して、該銅微粒子の表面に該超微粒子を付着させ、該超微粒子の付着している銅微粒子を相互に又は他物体と衝突させて該銅微粒子の表面に該超微粒子を固着させることができる。
【0028】
上記の半乾式担持法で用いる金属銅微粒子又は表面を酸化処理した金属銅微粒子、並びに酸化物及び複合酸化物の超微粒子は上記の乾式担持法で用いるものと同一でよい。また、超微粒子を懸濁させる媒体は特には限定されず、一般的には水、酸性水溶液、塩基性水溶液、アルコール、有機溶媒等を用いることができる。この製造方法においては所定固形分濃度の懸濁液を調製して用いても、或いは、市販品のシリカゾル、アルミナゾル、チタニアゾル、チタン酸バリウムゾル等を用い、必要に応じて希釈などを行って濃度を調整して用いてもよい。
【0029】
以下に、実施例、比較例及び製造例によって本発明を具体的に説明するが、本発明はかかる事例に限定されるものではない。
実施例1〜8
銅微粉末(三井金属鉱業株式会社製1050Y、平均1次粒径約0.5μm)500gと、超微粒のアルミナ(日本アエロジル社製酸化アルミニウムC、平均1次粒径13nm)、酸化珪素(日本アエロジル社製300CF、平均1次粒径7nm)、酸化イットリウム(シーアイ化成社製、平均1次粒径10nm)、酸化マグネシウム(宇部マテリアル社製100A、平均1次粒径10nm)、チタン酸バリウム(チタニウムプロポキシドとバリウムプロポキシドを用いてゾルゲル法により調製、平均1次粒径30nm)、又は酸化チタン(日本アエロジル社製P25、平均1次粒径13nm)のうちのいずれか25g(銅微粉末に対する混合率5重量%)又は5g(銅微粉末に対する混合率1重量%)とを15分間攪拌混合した。これにより表面に上記の各超微粒子の何れかが付着している銅微粒子を得た。更にこれをハイブリタイザー(奈良機械製作所製)に投入し、8000rpmで5分間循環させて、銅微粒子表面に上記の各超微粒子の何れかが固着された複合銅微粉末を得た。
【0030】
得られた各々の複合銅微粉末においては、金属銅微粒子表面に各超微粒子が固着されているので、水中に投入して攪拌しても各超微粒子が剥離・浮遊することはなかった(単に攪拌しただけのものでは各超微粒子が浮遊して水が白濁した)。また各超微粒子が固着された該複合銅微粉末は、SEM観察の結果、表面に各超微粒子が均一に固着されていること、及び粒径はほとんど変化していないことが確認された。
【0031】
上記の実施例1〜8で得られた複合銅微粉末を熱機械分析装置(セイコー電子工業製TMA/SS6000)を用いて窒素ガス雰囲気中、昇温速度10℃/分で熱収縮率を測定した。それらの結果は第1表に示す通りであった。
なお、比較例1として未処理銅微粉末(三井金属鉱業株式会社製1050Y、平均1次粒径約0.5μm)についても同様にして熱収縮率を測定した。その結果も第1表に示す。なお、比較例1では900℃を超えた時点より銅微粉末の溶融が始まったためその時点で昇温を中断し、熱収縮率を測定したところ、−15%であった。
【0032】

Figure 0004001438
【0033】
第1表のデータから明らかなように、実施例1〜8の本発明の複合銅微粉末は、比較例1の未処理の銅微粉末と比較して、高温での熱収縮率が極めて小さくなっている。
【0034】
実施例9
実施例1で用いたハイブリタイザー(奈良機械製作所製)の代わりにメカノフュージョン(ホソカワミクロン製)を用い、3000rpmで30分間循環させた以外は実施例1と同様にして、銅微粒子表面にアルミナ超微粒子が固着された複合銅微粉末を得た。
【0035】
得られた該複合銅微粉末においてはアルミナ超微粒子が固着されているので、水中に投入して攪拌してもアルミナ超微粒子が剥離・浮遊することはなかった。またアルミナ超微粒子が固着された該複合銅微粉末は、SEM観察の結果、表面にアルミナ超微粒子が均一に固着されていること、及び粒径はほとんど変化していないことが確認された。
【0036】
実施例10〜12
銅微粉末(三井金属鉱業株式会社製1050Y、平均1次粒径約0.5μm)500gと、超微粒のチタン酸ストロンチウム(ゾルゲル法によって調製、平均1次粒径10nm)、チタン酸バリウムストロンチウム(Ba0.9Sr0.1)TiO3 (ゾルゲル法によって調製、平均1次粒径10nm)、又はジルコニア酸カルシウム(ジルコニウムプロポキシド及びジプロポキシカルシウムを用いてゾルゲル法によって調製、平均1次粒径30nm)のうちのいずれか5g(銅微粉末に対する混合率1重量%)とを15分間攪拌混合した。これにより表面に上記の各超微粒子の何れかが付着している銅微粒子を得た。更にこれをハイブリタイザー(奈良機械製作所製)に投入し、8000rpmで5分間循環させて、銅微粒子表面に上記の各超微粒子の何れかが固着された複合銅微粉末を得た。
【0037】
得られた各々の複合銅微粉末においては、金属銅微粒子表面に各超微粒子が固着されているので、水中に投入して攪拌しても各超微粒子が剥離・浮遊することはなかった。また、各超微粒子が固着された該複合銅微粉末は、SEM観察の結果、表面に各超微粒子が均一に固着されていること、及び粒径はほとんど変化していないことが確認された。更に、実施例10〜12の本発明の複合銅微粉末は実施例7とほぼ同じような熱収縮率を示した。
【0038】
製造例1
銅微粉末(三井金属鉱業株式会社製1050Y、平均1次粒径約1μm)100gを純水1リットル中に加え、攪拌してスラリー化した。30分間攪拌した後、過酸化水素水100gを一括添加した。反応が終了して泡が出なくなった時点で攪拌を停止し、濾過し、乾燥して、表面を酸化処理した銅微粉末を得た。得られた銅微粒子のSEM観察による平均粒径(フェレ径)は1μmであった。
【0045】
実施例13
シリカゾル(日産化学社製、スノーテックスO、平均1次粒径約10nm)を水で1/20に希釈した溶液(シリカ含有量10g/l)2.5リットルに、銅微粉末(三井金属鉱業株式会社製1050Y、平均1次粒径約0.5μm)500gを入れ、加熱しながら良く攪拌した。水分は徐々に気化し、最後に乾燥粉体が得られた。これをハイブリタイザー(奈良機械製作所製)に投入し、8000rpmで5分間循環させて、銅微粒子表面にシリカ超微粒子が固着された複合銅微粉末を得た。
【0046】
実施例13で得られた本発明の複合銅微粉末においては、SEM観察の結果、表面にシリカ超微粒子が均一に固着されていること、及び粒径はほとんど変化していないことが確認された。得られた各複合銅微粉末においては超微粒子が固着されているので、水中に投入して攪拌しても超微粒子が剥離・浮遊することはなかった。また、各複合銅微粉末は、固着している金属酸化物の種類に応じて実施例1〜6、8と類似の熱収縮率を示した。
【0047】
【発明の効果】
上記のように本発明による複合銅微粉末は、急激な熱収縮開始温度が1000℃付近にシフトしており、積層コンデンサの内部電極形成用途に極めて好適である。即ち、セラミック基材の熱収縮曲線に近い熱収縮特性を有しており、従って大型の積層セラミックコンデンサの製造においてデラミネーション、クラックの発生を防止でき、また厚みの薄いセラミック誘電体と内部電極とからなる小型多層の積層セラミックコンデンサを誘電特性、電気特性を損なうこと無しで製造することがを可能となる。また、銅電極材料を用いることにより、近年要求が高まっている高周波用途で低インダクタンスが実現できる。[0001]
BACKGROUND OF THE INVENTION
The present invention has characteristics suitable for use as an internal electrode material and an external electrode material of a multilayer ceramic capacitor, and is particularly excellent in heat shrinkage characteristics. Therefore, in the production of a large multilayer ceramic capacitor, delamination and cracks are produced. the method of generating can be prevented, also dielectric properties of the multilayer ceramic capacitor of small multi-layer consisting of a thin ceramic dielectric and internal electrode thicknesses, possible to produce in without impairing the electrical characteristics to the powder composite copper fine manufacturing About.
[0002]
[Prior art]
Multilayer ceramic capacitors are ceramic dielectrics and internal electrodes that are alternately layered and pressure-bonded and then fired and integrated. When forming such multi-layer ceramic capacitors, Metal fine powder, which is an electrode material, is made into a paste, printed on the ceramic substrate using the paste, and a plurality of the printed substrates are stacked and integrated by thermocompression bonding, and then heated and fired in a reducing atmosphere. It is common to do. Conventionally, platinum and palladium have been used as the internal electrode material. Recently, techniques using base metals such as nickel and copper instead of noble metals such as platinum and palladium have been developed and advanced.
[0003]
However, when metal copper fine powder is used, it tends to cause rapid thermal shrinkage from around 600 ° C., although it depends on the particle size.
The firing temperature at the time of manufacturing the multilayer ceramic capacitor varies depending on the components of the ceramic dielectric, and is based on a velovskite complex oxide such as BaTiO 3 or SrTiO 3 , and a glass material is added to this. Materials that can be sintered at about 1000 ° C. by adding oxide powder such as lead, strontium, calcium, etc. to lower the firing temperature have been developed.
[0004]
If the sintering temperature at the time of manufacturing the ceramic capacitor can be lowered, copper that is cheaper and has higher conductivity than nickel that has been used as the internal electrode material of the ceramic capacitor can be used. Further, by using a copper electrode material, a low inductance can be realized in high frequency applications that have been increasingly demanded in recent years.
[0005]
[Problems to be solved by the invention]
For the above reasons, the copper fine powder for paste used in the production of multilayer ceramic capacitors has a higher heat shrinkage start temperature of copper fine particles in order to suppress delamination and cracks during firing. It is important to make the shift closer to the heat shrinkage curve of the ceramic substrate.
[0006]
The present invention has characteristics suitable for use as an internal electrode material of a multilayer ceramic capacitor, and in particular, has a heat shrinkage characteristic close to the heat shrinkage curve of a ceramic substrate, and therefore, a large multilayer ceramic capacitor. Can prevent the occurrence of delamination and cracks, and enables the production of small multilayer multilayer ceramic capacitors consisting of thin ceramic dielectrics and internal electrodes without impairing dielectric and electrical characteristics. It aims at providing the manufacturing method of composite copper fine powder.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have obtained a composite copper fine powder having the above-mentioned characteristics by fixing the metal element oxide and / or composite oxide on the surface of the metal copper fine particles. And that the composite copper fine powder can be produced by any one of the wet loading method, the dry loading method and the semi-dry loading method, thereby completing the present invention.
[0009]
That is, the method for producing a composite copper fine powder for an electrode material for a ceramic capacitor according to the present invention is a slurry in which metal copper fine particles having an average particle size of 3 μm or less or metal copper fine particles whose surface is oxidized are dispersed in a liquid. Addition of an aqueous solution containing a metal element, preferably at least one selected from the group consisting of water-soluble salts of metal elements belonging to groups 2-14 of the periodic table within the range of atomic numbers 12-42, 56-75 and 82 Then, the pH is adjusted with acid or alkali to fix the metal oxide and / or composite oxide derived from the water-soluble salt to the surface of the copper fine particles, washed and dried, and the obtained metal oxide The copper fine particles to which the object and / or the composite oxide are fixed collide with each other or other objects to enhance the adhesion between the surface of the copper fine particles and the metal oxide and / or the composite oxide. And
[0010]
Furthermore, the method for producing a composite copper fine powder for an electrode material for a ceramic capacitor according to the present invention comprises a metal element, preferably an atomic number, on the surface of metal copper fine particles having an average particle diameter of 3 μm or less or metal copper fine particles obtained by oxidizing the surface. Is an ultrafine particle having an average particle size of 0.5 μm or less, comprising an oxide containing at least one metal element belonging to Group 2-14 of the periodic table in the range of 12 to 42, 56 to 75 and 82 and a composite oxide At least one selected from the group consisting of: and attaching the ultrafine particles to the surface of the copper fine particles by causing the ultrafine particles to collide with each other or with other objects. .
[0011]
Moreover, the manufacturing method of the composite copper fine powder for electrode materials for ceramic capacitors of this invention belongs to the 2-14 group of a periodic table within the range of a metal element, Preferably atomic number is 12-42, 56-75, and 82. A suspension in which at least one selected from the group consisting of an ultrafine particle having an average particle size of 0.5 μm or less composed of an oxide containing at least one metal element and a composite oxide is suspended; Heating while mixing metal copper fine particles of 3 μm or less or metal copper fine particles whose surface is oxidized, removing the suspension medium, attaching the ultrafine particles to the surface of the copper fine particles, The ultrafine particles are fixed on the surface of the copper fine particles by colliding with each other or with other objects.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the composite copper fine powder for electrode materials for ceramic capacitors obtained by the production method of the present invention (hereinafter referred to as the composite copper fine powder of the present invention), a metal element, preferably an atomic number of 12 to 42, is formed on the surface of the metal copper fine particles. In the range of 56 to 75 and 82, at least one selected from the group consisting of oxides and composite oxides containing at least one metal element belonging to Group 2-14 of the periodic table is fixed. The composite copper fine powder of the invention has a heat shrinkage characteristic close to the heat shrinkage curve of the ceramic substrate, and therefore it is possible to prevent the occurrence of delamination and cracks in the production of a large multilayer ceramic capacitor. Further, it is possible to manufacture a small multilayer multilayer ceramic capacitor composed of a thin ceramic dielectric and an internal electrode without impairing dielectric characteristics and electrical characteristics.
[0013]
In order to produce a small-sized multilayer monolithic ceramic capacitor without deteriorating dielectric properties and electrical properties using the paste containing the composite copper fine powder of the present invention for the formation of internal electrodes, the atomic number is preferably 12 A composite in which at least one selected from the group consisting of oxides and composite oxides containing at least one metal element belonging to Group 2 to 14 of the periodic table in the range of ˜42, 56 to 75 and 82 is fixed. Using copper fine powder, more preferably at least one metal element belonging to groups 2-4, 7, 13, 13 and 14 of the periodic table in the range of atomic numbers 12-42, 56-75 and 82 The composite copper fine powder to which at least 1 sort (s) chosen from the group which consists of an oxide and complex oxide to contain is adhering is used.
[0014]
Furthermore, it is preferable to use a composite copper fine powder to which at least one selected from the group consisting of oxides of metal elements belonging to Group 2 of the periodic table, Y, Zr, Mn, Al, Si or lanthanoid elements is fixed. preferable.
Moreover, various things can be used as said complex oxide including the complex oxide of a postscript.
When the composite copper fine powder of the present invention is used as an internal electrode material of a multilayer ceramic capacitor, a composite oxide having the same composition as the dielectric composition of the multilayer ceramic capacitor is fixed to the surface of the copper fine particles. Preferably there is.
[0015]
In composite copper fine powder of the present invention, when used as an internal electrode material for multilayer ceramic capacitors, the metallic copper fine particle surface, the general formula Ba m X 1-m Ti n Z 1-n O 3
Wherein X is Sr, Ca, Mg or Pb, Z is Zr, Y, Sn or Ge, m is a value in the range of 0 to 1, and n is in the range of 0 to 1. Value.)
It is preferable that at least one selected from the group consisting of the complex oxides shown in the above is fixed, and these complex oxides may be fixed alone or in combination of two or more. Alternatively, the composite oxide may be used as a main component, and the additive may be fixed using at least one of the various oxides as an additive component.
[0016]
Examples of the oxide and composite oxide include MgO, CaO, SrO, BaO, ZnO, Al 2 O 3 , Ga 2 O 3 , Y 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , and Cr 2 O. 3 , MnO 2 , Mn 3 O 4 , Nb 2 O 5 , BaTiO 3 , CaTiO 3 , SrTiO 3 , BaZrO 3 , CaZrO 3 , SrZrO 3 , (Mg, Ca) TiO 3 , (Ba, Ca) (Ti, Zr) ) O 3 , PbTiO 3 , Pb (Zr, Ti) O 3 , (Pb, Ca) TiO 3 , MgAl 2 O 4 , BaTi 4 O 9 , Nd 2 O 3 , Sm 2 O 3 , Dy 2 O 3 , Er 2 O 3 , Ho 2 O 3 and the like can be mentioned, and they can also be used as a mixture. Further, these oxides and / or composite oxides may be doped with metal oxides such as Nb, W, La, Y, and Mo.
[0017]
In the composite copper fine powder of the present invention, when the composite copper fine powder is used in a paste for forming an internal electrode of a multilayer ceramic capacitor, it is desirable that the fine powder is fine, because a fine electrode can be formed. The average particle diameter of the copper fine powder as observed is preferably 3 μm or less, and more preferably 1 μm or less. In general, metal fine powders are more likely to undergo thermal shrinkage as they become finer. However, in the composite copper fine powder of the present invention, the effect of preventing thermal shrinkage is exhibited even if it becomes finer. Increasingly prominent.
[0018]
The total fixed amount of at least one selected from the group consisting of these oxides and composite oxides is preferably 0.05 to 15% by weight, more preferably 0.5 to 13%, based on the weight of the copper fine powder. % By weight, more preferably 1 to 10% by weight. When the total fixing amount is less than 0.05% by weight, the effect achieved by the fixing of the oxide and / or composite oxide tends to be insufficient, and conversely when it exceeds 15% by weight, When such a composite copper fine powder is used as an internal electrode material of a multilayer ceramic capacitor, it tends to adversely affect the dielectric characteristics of the capacitor.
[0019]
The copper fine particles used in the method for producing the composite copper fine powder of the present invention or the copper fine particles obtained by oxidizing the surface can be obtained by any method such as a mechanical pulverization method, an atomization method, an electrolytic deposition method, an evaporation method, and a wet reduction method. It may be what was made. When the composite copper fine powder of the present invention is used as a paste for forming an internal electrode of a multilayer ceramic capacitor, the average particle size of the copper fine particles used for the production is preferably 3 μm or less, more preferably 1 μm or less. preferable.
[0020]
The composite copper fine powder of the present invention is produced by a wet support method or a dry support method, or a semi-dry support method in which an aqueous suspension of metal oxide or composite oxide ultrafine particles is supported on metal copper fine particles and dried. be able to.
In the method for producing a composite copper fine powder of the present invention when carried out according to the wet support method, metal elements, preferably atoms, are added to the slurry in which the metal copper fine particles or the metal copper fine particles whose surface is oxidized are dispersed in the liquid. An aqueous solution containing at least one selected from the group consisting of water-soluble salts of metal elements belonging to groups 2 to 14 of the periodic table within the range of numbers 12 to 42, 56 to 75 and 82, and then acid or alkali The metal oxide and / or composite oxide derived from the water-soluble salt is fixed to the surface of the copper fine particles , washed and dried, and the resulting metal oxide and / or composite oxidation is adjusted. things Ru enhanced the adhesion between the surface and the metal oxide and / or composite oxide of the copper fine particles with each other or other object and to collide with copper microparticles are fixed.
[0021]
The water-soluble salt used in the method for producing a composite copper fine powder according to the present invention when carried out according to the wet support method is water-soluble, but particularly if it can be converted into a water-insoluble oxide or composite oxide. Not limited. For example, halides of these metal elements, nitrates, sulfates, oxalates, oxides, alkali metal salts such as aluminate and silicic acid, and the like can be used.
[0022]
In the production method of the composite copper fine powder of the present invention when carried out according to the wet loading method, whether to use an acid or an alkali to adjust the pH varies depending on the type of the water-soluble salt, The type of acid or alkali used is not particularly limited. For example, an aqueous sodium hydroxide solution can be used when an oxide in parentheses is generated using the following water-soluble salt.
Titanium sulfate (TiO 2 ), manganese sulfate (MnO 2 ),
Chromium chloride (Cr 2 O 3 ), yttrium chloride (Y 2 O 3 ),
Zirconium chloride (ZrO 2 ).
In addition, dilute sulfuric acid can be used when an oxide in parentheses is generated using the following water-soluble salt.
Sodium aluminate (Al 2 O 3 ), sodium silicate (SiO 2 ).
By adjusting the pH as described above, the above-mentioned water-soluble salt is converted into an oxide or composite oxide, precipitated on the surface of the copper fine particles, and fixed to form the composite copper fine powder of the present invention.
[0023]
In the method for producing a composite copper fine powder according to the present invention when carried out according to the wet loading method, the copper fine particles to which the metal oxide and / or the composite oxide are fixed collide with each other or with other objects, and the copper The step of enhancing the adhesion between the surface of the fine particles and the metal oxide and / or the composite oxide is treated with , for example, any of an ongmill, a hybridizer, a mechanofusion, a coater, a dispercoat, and a jetmizer. Can be implemented .
[0024]
In the method for producing a composite copper fine powder of the present invention when carried out according to the dry support method, a metal element, preferably an atomic number of 12 to 42, 56 is formed on the surface of the metal copper fine particles or the metal copper fine particles obtained by oxidizing the surface. At least one selected from the group consisting of oxides containing at least one metal element belonging to Group 2-14 of the periodic table in the range of ~ 75 and 82 and ultrafine particles of complex oxides is adhered, and the ultrafine particles The ultrafine particles can be fixed to the surface of the copper fine particles by colliding with each other or with other objects.
[0025]
The metal copper fine particles used in the method for producing the composite copper fine powder of the present invention when carried out according to the dry support method or the metal copper fine particles whose surface is subjected to oxidation treatment form the internal electrode of the multilayer ceramic capacitor by using the composite copper fine powder of the present invention. When used as a paste for this purpose, the average particle size is preferably 3 μm or less, and more preferably 1 μm or less. In addition, since the ultrafine particles of oxide and composite oxide can be uniformly fixed in a smaller amount as the particle size is smaller, the average particle size is preferably 0.5 μm or less, preferably 0.1 μm or less. Is more preferable, and most preferably 0.05 μm or less.
[0026]
As a method of adhering the ultrafine particles of the oxide and composite oxide to the surface of the metal copper fine particles or the surface of the metal copper fine particles oxidized by oxidation, the metal copper fine particles and the oxide and ultrafine particles of the composite oxide are mixed. Thereafter, the ultrafine particles can also be fixed to the surface of the copper fine particles by colliding with each other or with other objects. As another method, the copper fine particles and ultrafine particles of the oxide or composite oxide are charged into an apparatus such as ong mill, hybridizer, mechano-fusion, coat mizer, disperse coat, jet mizer, and mixed and fixed. Can be performed simultaneously.
[0027]
In the method for producing the composite copper fine powder of the present invention when carried out according to the semi-dry support method, the metal elements, preferably the atomic numbers within the range of 12 to 42, 56 to 75 and 82, groups 2 to 14 of the periodic table Suspensions in which at least one selected from the group consisting of oxides containing at least one metal element belonging to the above and ultrafine particles of composite oxides are suspended, and metal copper fine particles or metal copper fine particles obtained by oxidizing the surface The mixture is heated while mixing, the medium of the suspension is removed, the ultrafine particles are adhered to the surface of the copper fine particles, and the copper fine particles adhering to the ultrafine particles collide with each other or with other objects. Thus, the ultrafine particles can be fixed to the surface of the copper fine particles.
[0028]
The metal copper fine particles used in the semi-dry support method or the metal copper fine particles obtained by oxidizing the surface, and the ultrafine particles of oxide and composite oxide may be the same as those used in the dry support method. The medium in which the ultrafine particles are suspended is not particularly limited, and generally water, acidic aqueous solution, basic aqueous solution, alcohol, organic solvent, or the like can be used. In this production method, a suspension having a predetermined solid content concentration may be prepared and used, or commercially available silica sol, alumina sol, titania sol, barium titanate sol, etc. may be used to dilute the concentration as necessary. You may adjust and use.
[0029]
Hereinafter, the present invention will be specifically described by way of examples, comparative examples, and production examples, but the present invention is not limited to such examples.
Examples 1-8
500 g of copper fine powder (Mitsui Mining & Smelting Co., Ltd. 1050Y, average primary particle size of about 0.5 μm), ultrafine alumina (Nippon Aerosil Co., Ltd., aluminum oxide C, average primary particle size 13 nm), silicon oxide (Japan) 300CF manufactured by Aerosil Co., Ltd., average primary particle size 7 nm), yttrium oxide (manufactured by CI Chemical Co., Ltd., average primary particle size 10 nm), magnesium oxide (100A manufactured by Ube Material Co., Ltd., average primary particle size 10 nm), barium titanate ( Prepared by sol-gel method using titanium propoxide and barium propoxide, average primary particle size 30 nm), or titanium oxide (P25 manufactured by Nippon Aerosil Co., Ltd., average primary particle size 13 nm), 25 g (copper fine powder) 5% by weight) or 5 g (1% by weight of the copper fine powder) was mixed with stirring for 15 minutes. As a result, copper fine particles having any of the above ultrafine particles adhered to the surface were obtained. Further, this was put into a hybridizer (manufactured by Nara Machinery Co., Ltd.) and circulated at 8000 rpm for 5 minutes to obtain a composite copper fine powder in which any one of the above ultrafine particles was fixed on the surface of the copper fine particles.
[0030]
In each of the obtained composite copper fine powders, each ultrafine particle was fixed on the surface of the metal copper fine particle, and therefore, even if the ultrafine particle was put in water and stirred, each ultrafine particle was not peeled off or floated (simply In the case of just stirring, each ultrafine particle floated and the water became cloudy). Further, as a result of SEM observation, it was confirmed that the composite copper fine powder to which each ultrafine particle was fixed had the ultrafine particles fixed uniformly on the surface and that the particle size was hardly changed.
[0031]
Using the thermomechanical analyzer (TMA / SS6000 manufactured by Seiko Denshi Kogyo Co., Ltd.), the composite copper fine powder obtained in the above Examples 1 to 8 was measured for the thermal contraction rate at a heating rate of 10 ° C./min. did. The results were as shown in Table 1.
As Comparative Example 1, the heat shrinkage rate was also measured in the same manner for untreated copper fine powder (1050Y manufactured by Mitsui Mining & Smelting Co., Ltd., average primary particle size: about 0.5 μm). The results are also shown in Table 1. In Comparative Example 1, since the melting of the copper fine powder started from the time when the temperature exceeded 900 ° C., the temperature increase was interrupted at that time, and the heat shrinkage rate was measured to be −15%.
[0032]
Figure 0004001438
[0033]
As is clear from the data in Table 1, the composite copper fine powders of the present invention of Examples 1 to 8 have a very small heat shrinkage rate at a high temperature as compared with the untreated copper fine powder of Comparative Example 1. It has become.
[0034]
Example 9
In place of the hybridizer (manufactured by Nara Machinery Co., Ltd.) used in Example 1, mechanofusion (manufactured by Hosokawa Micron) was used and the mixture was circulated at 3000 rpm for 30 minutes in the same manner as in Example 1, and the ultrafine alumina particles on the surface of the copper fine particles A composite copper fine powder to which was fixed was obtained.
[0035]
In the obtained composite copper fine powder, since the alumina ultrafine particles were fixed, the alumina ultrafine particles were not peeled off or floated even when the mixture was put into water and stirred. Further, as a result of SEM observation, it was confirmed that the composite copper fine powder to which the alumina ultrafine particles were fixed had the alumina ultrafine particles fixed uniformly on the surface and that the particle size was hardly changed.
[0036]
Examples 10-12
500 g of fine copper powder (Mitsui Mining & Smelting Co., Ltd., 1050Y, average primary particle size of about 0.5 μm), ultrafine strontium titanate (prepared by sol-gel method, average primary particle size of 10 nm), barium strontium titanate ( Ba 0.9 Sr 0.1 ) TiO 3 (prepared by sol-gel method, average primary particle size 10 nm) or calcium zirconia (prepared by sol-gel method using zirconium propoxide and dipropoxy calcium, average primary particle size 30 nm) 5 g (mixing ratio of 1% by weight with respect to copper fine powder) was stirred and mixed for 15 minutes. As a result, copper fine particles having any of the above ultrafine particles adhered to the surface were obtained. Further, this was put into a hybridizer (manufactured by Nara Machinery Co., Ltd.) and circulated at 8000 rpm for 5 minutes to obtain a composite copper fine powder in which any one of the above ultrafine particles was fixed on the surface of the copper fine particles.
[0037]
In each of the obtained composite copper fine powders, the ultrafine particles were fixed on the surface of the metal copper fine particles. Therefore, even if the ultrafine particles were put in water and stirred, the ultrafine particles did not peel or float. In addition, as a result of SEM observation, it was confirmed that the composite copper fine powder to which each ultrafine particle was fixed had the ultrafine particles fixed uniformly on the surface and that the particle size was hardly changed. Further, the composite copper fine powders of Examples 10 to 12 of the present invention exhibited substantially the same heat shrinkage rate as Example 7.
[0038]
Production Example 1
100 g of copper fine powder (1050Y manufactured by Mitsui Mining & Smelting Co., Ltd., average primary particle size of about 1 μm) was added to 1 liter of pure water and stirred to form a slurry. After stirring for 30 minutes, 100 g of hydrogen peroxide solution was added all at once. When the reaction was completed and no bubbles were generated, stirring was stopped, filtered, and dried to obtain fine copper powder having an oxidized surface. The average particle diameter (Ferret diameter) of the obtained copper fine particles by SEM observation was 1 μm.
[0045]
Example 13
To 2.5 liters of a solution obtained by diluting silica sol (manufactured by Nissan Chemical Co., Snowtex O, average primary particle size of about 10 nm) to 1/20 with water (silica content 10 g / l), copper fine powder (Mitsui Metal Mining) 500 g (manufactured by 1050Y Co., Ltd., average primary particle size of about 0.5 μm) was added and stirred well while heating. Moisture gradually evaporated and finally a dry powder was obtained. This was put into a hybridizer (manufactured by Nara Machinery Co., Ltd.) and circulated at 8000 rpm for 5 minutes to obtain a composite copper fine powder having silica ultrafine particles fixed on the surface of the copper fine particles.
[0046]
In the composite copper fine powder of the present invention obtained in Example 13 , as a result of SEM observation, it was confirmed that the silica ultrafine particles were uniformly fixed on the surface and that the particle size was hardly changed. . In each of the obtained composite copper fine powders, the ultrafine particles were fixed, so that the ultrafine particles were not peeled off or floated even if they were put into water and stirred. Moreover, each composite copper fine powder showed the thermal contraction rate similar to Examples 1-6, 8 according to the kind of metal oxide which has adhered.
[0047]
【The invention's effect】
As described above, the composite copper fine powder according to the present invention has a rapid thermal shrinkage start temperature shifted to around 1000 ° C., which is very suitable for use in forming an internal electrode of a multilayer capacitor. That is, it has a heat shrinkage characteristic close to the heat shrinkage curve of the ceramic substrate, and therefore, it is possible to prevent the occurrence of delamination and cracks in the production of large multilayer ceramic capacitors, and the thin ceramic dielectric and internal electrodes It is possible to manufacture a small multilayer multilayer ceramic capacitor made of the above without impairing dielectric properties and electrical properties. Further, by using a copper electrode material, a low inductance can be realized in high frequency applications that have been increasingly demanded in recent years.

Claims (5)

平均粒径が3μm以下の金属銅微粒子又は表面を酸化処理した金属銅微粒子が液中に分散しているスラリーに、金属元素の水溶性塩からなる群より選ばれる少なくとも1種を含む水溶液を添加し、次いで酸もしくはアルカリでpHを調整して、該水溶性塩から誘導される金属酸化物及び/又は複合酸化物を該銅微粒子表面に固着させ、洗浄し、乾燥させ、得られた金属酸化物及び/又は複合酸化物が固着している該銅微粒子を相互に又は他物体と衝突させて該銅微粒子の表面と該金属酸化物及び/又は複合酸化物との固着を増強させることを特徴とするセラミックコンデンサ用電極材料複合銅微粉末の製造方法。An aqueous solution containing at least one selected from the group consisting of water-soluble salts of metal elements is added to a slurry in which metal copper fine particles having an average particle size of 3 μm or less or metal copper fine particles whose surface is oxidized are dispersed in the liquid Then, the pH is adjusted with acid or alkali to fix the metal oxide and / or composite oxide derived from the water-soluble salt to the surface of the copper fine particles, washed and dried, and the obtained metal oxide The copper fine particles to which the object and / or the composite oxide are fixed collide with each other or other objects to enhance the adhesion between the surface of the copper fine particles and the metal oxide and / or the composite oxide. A method for producing a composite copper fine powder for an electrode material for a ceramic capacitor. オングミル、ハイブリタイザー、メカノフュージョン、コートマイザー、ディスパーコート、ジェットマイザーのいずれかの装置を用いて、金属酸化物及び/又は複合酸化物が固着している銅微粒子を相互に又は他物体と衝突させて該銅微粒子の表面と該金属酸化物及び/又は複合酸化物との固着を増強させることを特徴とする請求項1記載の複合銅微粉末の製造方法  Using any of ongmill, hybridizer, mechanofusion, coatmizer, dispercoat, jetmizer, the copper fine particles with metal oxide and / or complex oxide fixed on each other or collide with other objects. 2. The method for producing a composite copper fine powder according to claim 1, wherein adhesion between the surface of the copper fine particles and the metal oxide and / or composite oxide is enhanced. 平均粒径が3μm以下の金属銅微粒子又は表面を酸化処理した金属銅微粒子の表面に、金属元素の少なくとも1種を含む酸化物及び複合酸化物からなる平均粒径が0.5μm以下の超微粒子からなる群より選ばれる少なくとも1種を付着させ、該超微粒子の付着している銅微粒子を相互に又は他物体と衝突させて該銅微粒子の表面に該超微粒子を固着させることを特徴とするセラミックコンデンサ用電極材料複合銅微粉末の製造方法。Ultrafine particles with an average particle size of 0.5 μm or less comprising an oxide containing at least one metal element and a composite oxide on the surface of metal copper fine particles having an average particle size of 3 μm or less or metal copper fine particles whose surface is oxidized. At least one selected from the group consisting of: and attaching the ultrafine particles to the surface of the copper fine particles by causing the ultrafine particles to collide with each other or with other objects. Manufacturing method of composite copper fine powder for electrode material for ceramic capacitor. 金属元素の少なくとも1種を含む酸化物及び複合酸化物からなる平均粒径が0.5μm以下の超微粒子からなる群より選ばれる少なくとも1種を懸濁させた懸濁液と、平均粒径が3μm以下の金属銅微粒子又は表面を酸化処理した金属銅微粒子とを混合しながら加熱し、該懸濁液の媒体を除去して、該銅微粒子の表面に該超微粒子を付着させ、該超微粒子の付着している銅微粒子を相互に又は他物体と衝突させて該銅微粒子の表面に該超微粒子を固着させることを特徴とするセラミックコンデンサ用電極材料複合銅微粉末の製造方法。A suspension in which at least one selected from the group consisting of an ultrafine particle having an average particle size of 0.5 μm or less composed of an oxide containing at least one metal element and a composite oxide is suspended; Heating while mixing metal copper fine particles of 3 μm or less or metal copper fine particles whose surface is oxidized, removing the suspension medium, attaching the ultrafine particles to the surface of the copper fine particles, A method for producing a composite copper fine powder for electrode materials for ceramic capacitors, wherein the ultrafine particles are fixed to the surface of the copper fine particles by causing the copper fine particles to adhere to each other or to collide with other objects. オングミル、ハイブリタイザー、メカノフュージョン、コートマイザー、ディスパーコート、ジェットマイザーのいずれかの装置を用いて、超微粒子の付着している銅微粒子を相互に又は他物体と衝突させて該銅微粒子の表面に該超微粒子を固着させることを特徴とする請求項3又は4記載の複合銅微粉末の製造方法 Using any of ongmill, hybridizer, mechano-fusion, coatmizer, dispercoat, and jetmizer, the copper fine particles adhering to the ultrafine particles collide with each other or with other objects on the surface of the copper fine particles. The method for producing a composite copper fine powder according to claim 3 or 4, wherein the ultrafine particles are fixed .
JP15275599A 1999-05-31 1999-05-31 Method for producing composite copper fine powder Expired - Lifetime JP4001438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15275599A JP4001438B2 (en) 1999-05-31 1999-05-31 Method for producing composite copper fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15275599A JP4001438B2 (en) 1999-05-31 1999-05-31 Method for producing composite copper fine powder

Publications (2)

Publication Number Publication Date
JP2000345201A JP2000345201A (en) 2000-12-12
JP4001438B2 true JP4001438B2 (en) 2007-10-31

Family

ID=15547464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15275599A Expired - Lifetime JP4001438B2 (en) 1999-05-31 1999-05-31 Method for producing composite copper fine powder

Country Status (1)

Country Link
JP (1) JP4001438B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022968A1 (en) 2013-08-13 2015-02-19 Jx日鉱日石金属株式会社 Surface-treated metal powder, and method for producing same
WO2015022970A1 (en) 2013-08-13 2015-02-19 Jx日鉱日石金属株式会社 Metal powder paste and method for producing same

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393586B2 (en) 2001-04-27 2008-07-01 Dowa Electronics Materials Co., Ltd. Highly oxidation-resistant copper powder for conductive paste and process for producing the powder
JP2003163427A (en) * 2001-11-29 2003-06-06 Kyocera Corp Ceramic wiring board
JP4150638B2 (en) * 2002-06-28 2008-09-17 三井金属鉱業株式会社 Inorganic oxide-coated metal powder and method for producing the inorganic oxide-coated metal powder
JP2004207206A (en) * 2002-10-29 2004-07-22 Kyocera Corp Copper metallized composition and glass ceramic wiring board using the same
JP3947118B2 (en) * 2003-03-03 2007-07-18 Jfeミネラル株式会社 Surface-treated metal ultrafine powder, method for producing the same, conductive metal paste, and multilayer ceramic capacitor
JP4059148B2 (en) 2003-06-02 2008-03-12 株式会社村田製作所 Conductive paste and ceramic multilayer substrate
JP4164010B2 (en) * 2003-08-26 2008-10-08 三井金属鉱業株式会社 Inorganic ultrafine particle coated metal powder and method for producing the same
JP4197151B2 (en) * 2003-11-27 2008-12-17 三井金属鉱業株式会社 Two-layer coated copper powder, method for producing the two-layer coated copper powder, and conductive paste using the two-layer coated copper powder
JP4149410B2 (en) * 2004-05-19 2008-09-10 三井金属鉱業株式会社 Silver compound-coated copper powder, method for producing the silver compound-coated copper powder, storage method for the silver compound-coated copper powder, and conductive paste using the silver compound-coated copper powder
JP2005344171A (en) * 2004-06-03 2005-12-15 Fuji Photo Film Co Ltd Raw material powder for film deposition, and film deposition method using the same
JP4466250B2 (en) * 2004-07-23 2010-05-26 株式会社村田製作所 Base metal powder, resin composition, method for producing base metal powder, method for producing resin composition, method for producing circuit board, and method for producing ceramic multilayer substrate
JP4362742B2 (en) * 2005-09-22 2009-11-11 ニホンハンダ株式会社 Method for solidifying paste-like metal particle composition, method for joining metal members, and method for producing printed wiring board
DE102005050638B4 (en) * 2005-10-20 2020-07-16 Tdk Electronics Ag Electrical component
JP5014756B2 (en) * 2006-12-04 2012-08-29 多津男 庄司 Fine particle coating method and fine particle coating system
JP4666663B2 (en) * 2007-11-30 2011-04-06 三井金属鉱業株式会社 Silver compound-coated copper powder, method for producing the silver compound-coated copper powder, storage method for the silver compound-coated copper powder, and conductive paste using the silver compound-coated copper powder
JP5519938B2 (en) * 2008-04-01 2014-06-11 Dowaエレクトロニクス株式会社 Method for producing copper powder for conductive paste
JP5439057B2 (en) * 2009-06-29 2014-03-12 三井金属鉱業株式会社 Composite copper particles
JP5832731B2 (en) * 2010-08-10 2015-12-16 株式会社東芝 Semiconductor element
JP5883433B2 (en) 2011-03-17 2016-03-15 新日鉄住金化学株式会社 Composite nickel nanoparticles and method for producing the same
JP2015034310A (en) * 2013-08-07 2015-02-19 三井金属鉱業株式会社 Composite copper particles and method for manufacturing the same
JP2015034309A (en) * 2013-08-07 2015-02-19 三井金属鉱業株式会社 Composite copper particles and method for manufacturing the same
JP5941588B2 (en) * 2014-09-01 2016-06-29 Dowaエレクトロニクス株式会社 Bonding material and bonding method using the same
JP6517012B2 (en) * 2014-12-18 2019-05-22 サムソン エレクトロ−メカニックス カンパニーリミテッド. Method of manufacturing dielectric ceramic particles and dielectric ceramic
JP6714840B2 (en) * 2015-07-17 2020-07-01 株式会社村田製作所 Multilayer ceramic electronic component and manufacturing method thereof
JP6762718B2 (en) * 2016-01-05 2020-09-30 Dowaエレクトロニクス株式会社 Surface-treated copper powder and its manufacturing method
JP7109222B2 (en) * 2018-03-27 2022-07-29 Jx金属株式会社 Coated metal powder, method for producing the same, and laminate-molded article using the metal powder
JP6773381B2 (en) * 2019-01-28 2020-10-21 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric Ceramic Particle Manufacturing Method and Dielectric Ceramic

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590560A (en) * 1978-12-29 1980-07-09 Toho Ganriyou Kogyo Kk Powder metal pigment composition and its manufacture
JPS60208402A (en) * 1984-04-02 1985-10-21 Fukuda Kinzoku Hakufun Kogyo Kk Production of dispersion-strengthened copper alloy powder
US4594181A (en) * 1984-09-17 1986-06-10 E. I. Du Pont De Nemours And Company Metal oxide-coated copper powder
JPH0760617B2 (en) * 1989-11-27 1995-06-28 住友金属工業株式会社 Low temperature firing conductive paste and firing method
JP2883665B2 (en) * 1990-02-26 1999-04-19 日清製粉株式会社 Method for coating the surface of particles with ultrafine particles
JP2890629B2 (en) * 1990-03-15 1999-05-17 いすゞ自動車株式会社 Manufacturing method of composite sintered body
JPH0598311A (en) * 1990-03-19 1993-04-20 Isuzu Motors Ltd Sintered composite and its production
JP3323561B2 (en) * 1992-11-20 2002-09-09 住友特殊金属株式会社 Manufacturing method of alloy powder for bonded magnet
JP2948050B2 (en) * 1993-04-27 1999-09-13 アルプス電気株式会社 Conductive powder and conductive paste using the conductive powder
JP3533459B2 (en) * 1993-08-12 2004-05-31 独立行政法人産業技術総合研究所 Manufacturing method of coated metal quasi-fine particles
JPH07242902A (en) * 1994-03-04 1995-09-19 Fujikura Ltd Composite powder and its production
JP3475749B2 (en) * 1997-10-17 2003-12-08 昭栄化学工業株式会社 Nickel powder and method for producing the same
JP4076107B2 (en) * 1999-03-31 2008-04-16 三井金属鉱業株式会社 Method for producing composite nickel fine powder
JP2992270B2 (en) * 1998-05-29 1999-12-20 三井金属鉱業株式会社 Composite nickel fine powder and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022968A1 (en) 2013-08-13 2015-02-19 Jx日鉱日石金属株式会社 Surface-treated metal powder, and method for producing same
WO2015022970A1 (en) 2013-08-13 2015-02-19 Jx日鉱日石金属株式会社 Metal powder paste and method for producing same

Also Published As

Publication number Publication date
JP2000345201A (en) 2000-12-12

Similar Documents

Publication Publication Date Title
JP4001438B2 (en) Method for producing composite copper fine powder
KR100251872B1 (en) Nickel powder and process for preparing the same
US6368378B2 (en) Paste to be fired for forming circuit board and method for preparing surface-modified silver powder
JP4076107B2 (en) Method for producing composite nickel fine powder
TW200920857A (en) Nickel powder or alloy powder comprising nickel as main component and manufacturing method thereof, conductive paste and multi-layer ceramic condenser
KR20020037284A (en) Spherical tetragonal barium titanate particles and process for producing the same
WO2000018701A1 (en) Unreduced dielectric ceramic material, process for producing the same, and layer-built ceramic capacitor
JP4522025B2 (en) Dielectric porcelain, multilayer electronic component, and manufacturing method of multilayer electronic component
KR100445100B1 (en) Composite Nickel Fine and method for preparing the same
JP3947118B2 (en) Surface-treated metal ultrafine powder, method for producing the same, conductive metal paste, and multilayer ceramic capacitor
JP4480884B2 (en) Method for producing surface-modified silver powder
US6312622B1 (en) Composite nickel fine powder
JP4519342B2 (en) Dielectric porcelain and multilayer electronic components
JP3473548B2 (en) Method for producing metal powder, metal powder, conductive paste using the same, and multilayer ceramic electronic component using the same
JP2992270B2 (en) Composite nickel fine powder and method for producing the same
JP2015036440A (en) Surface-treated metal powder and method for producing the same
JP2009079269A (en) Copper powder for electroconductive paste, production method therefor and electroconductive paste
JP3791264B2 (en) Method for producing reduction-resistant dielectric composition and method for producing multilayer ceramic capacitor
JP4568961B2 (en) Multilayer ceramic capacitor
JP2004247632A (en) Conductive paste and layered ceramic capacitor
JP4229566B2 (en) Surface coating nickel powder
JP2001335805A (en) Coated metal powder, its production method, coated metal powder paste and ceramic multilayer parts
JP2003129106A (en) Method for manufacturing nickel powder, nickel powder, nickel paste, and laminated ceramic electronic component
JP3772726B2 (en) Nickel powder manufacturing method, nickel powder, nickel paste, multilayer ceramic electronic parts
JP4780272B2 (en) Composite conductive particle powder, conductive paint containing the composite conductive particle powder, and multilayer ceramic capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4001438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140824

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term