JPS60208402A - Production of dispersion-strengthened copper alloy powder - Google Patents

Production of dispersion-strengthened copper alloy powder

Info

Publication number
JPS60208402A
JPS60208402A JP59067280A JP6728084A JPS60208402A JP S60208402 A JPS60208402 A JP S60208402A JP 59067280 A JP59067280 A JP 59067280A JP 6728084 A JP6728084 A JP 6728084A JP S60208402 A JPS60208402 A JP S60208402A
Authority
JP
Japan
Prior art keywords
powder
copper
copper alloy
dispersion
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59067280A
Other languages
Japanese (ja)
Inventor
Hideo Kayano
茅野 秀夫
Yoshiro Niimi
新見 義朗
Yoshihiko Shinguu
新宮 良彦
Kazuo Kato
和夫 加藤
Hideya Imamura
秀哉 今村
Tomiharu Matsushita
富春 松下
Masataka Noguchi
昌孝 野口
Kenichiro Ouchi
大内 権一郎
Yoshio Asano
浅野 吉男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Kinzoku Hakufun Kogyo Kk
Fukuda Metal Foil and Powder Co Ltd
Kobe Steel Ltd
Original Assignee
Fukuda Kinzoku Hakufun Kogyo Kk
Fukuda Metal Foil and Powder Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Kinzoku Hakufun Kogyo Kk, Fukuda Metal Foil and Powder Co Ltd, Kobe Steel Ltd filed Critical Fukuda Kinzoku Hakufun Kogyo Kk
Priority to JP59067280A priority Critical patent/JPS60208402A/en
Publication of JPS60208402A publication Critical patent/JPS60208402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To obtain copper alloy powder which is uniformly dispersed with hard particles in copper and has high heat-resisting strength by coating the surface of copper with an org. metallic compd. and subjecting the compd. to a heat treatment to form hard particles then grinding and alloying the powder by a mechanical alloying method. CONSTITUTION:The surface of copper (alloy) powder is coated with an org. metallic compd. such as Al-propoxide or the like. Such powder is heat-treated to form hard particles (e.g.; Al2O3) consisting of the oxide, carbide, nitride, carbonitride, etc. of the metal in the compd. on the surface of the copper (alloy) powder. The powder is ground and alloyed by a mechanical alloying method to disperse uniformly the hard particles as dispersion particles into the copper alloy powder. The powder is further subjected, if necessary, to an annealing treatment at the temp. from >=60% the m.p. of the copper (alloy) to the m.p. or below. The dispersion-strengthened copper alloy combined with solid soln. hardening and precipitatioi hardening is obtd. if such dispersion-strengthened copper alloy powder is used.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、分散強化型銅合金粉末の製造方法に関するも
のであり、詳しくは硬rfliM子が表面に付着した1
1→又は銅合金粉末を、メカニカルアロイング法を適用
することにより前記硬質粒子を分散粒子として内部に均
一に分散含有させた分散強化型鋼合金粉末の製造方法に
関するものである。 分1134強化型銅合金は、適当な金属の酸化物、炭化
物、窒化物又は炭窒化物等の徽細な硬質粒子を分散粒子
として内部に分散させることにより、その耐熱強度を改
良することを目的とした銅又は銅合金である。通常この
分散強化型銅合金は、予め分散強化型1114合金粉末
を製造し、ごの粉末を用いて粉末冶金法により得る場合
が多い。 従来から知られているこの粉末冶金法を適用した分散強
化型銅合金の製造方法とし”ζは、例えば混合法、共沈
法、溶融塩法、内部酸化法等があるが、これらのうら内
部酸化法を除いては分11に粒−rの分散性が悪く、分
散強化型銅合金としての充分な特性が得られなかった。 内部酸化法による場合には、分散強化型鋼合金としての
充分な特性を得ることはできるが、基地金属としての銅
合金と硬質粒子との組合せに制約がある為実用化されて
いるのは一部の銅合金(Cu−Al□03)に限られて
いるという問題があった。また、内部酸化法では、基地
金属としてのS−1合金中に他の合金元素を添加できな
いので、この方法によって得られた分散強化型銅合金は
中・低温度域での強度が不足するという問題もあった。 最近、基地金属粉末と硬質粒子とを混合し、これをメカ
ニカルアロイング法により粉砕合金化して分散強化型合
金粉末を製造し、これを用いて分散強化型合金を得るこ
とが行われ、既に一部にソケル合金等)で実用化されて
いる。しかし、この方法においては、基地金属に硬質粒
子を均一に分散させるには長時間の粉砕を必要とする。 また、この方法による場合、硬質粒子そのものは粉砕工
程で粉砕されることが少ないので、最初から微細な硬質
粒子を使用する必要があるが、このような漱細な硬質粒
子は大量生産が困難なため非常に高価なものになるとい
う問題もある。それ故、この方法は、前記内部酸化法の
通用が可能な分散強化型銅合金の製造方法としては用い
られていない。 また、最近、分散強化型合金を製造する画期的な方法と
して、酸化物、炭化物、窒化物又は炭窒化物を形成する
ことができる金属錯化合物又はアルコキシドと金属粉末
又は合金粉末との混合物を成形焼成処理又は溶融凝固処
理することにより、前記処理時の熱を利用して前記金属
錯化合物又はアルコキシド中の金属の酸化物、炭化物、
窒化物又は炭窒化物を分散強化型銅合金中に均一に分散
含存させる方法が発明されている(特公昭58−366
60号公報参照)。 本発明者等は上記従来法の問題点に鑑み、種々研究した
結果、前記特公昭58−36660号公報に記載の発明
とメカニカルアロイング法とを組合せれば、前記内部酸
化法におけるが如き問題もなく且つn:」配向部酸化法
によって得られる分散強化型鋼合金と同等の特性を持つ
分散強化型銅合金を得ることができるとの考えに至り、
かかる考えの下に本発明を完成したのである。即ち、本
願の第1番目の発明に係る分散強化型銅合金粉末の製造
方法は、酸化物。 炭化物、窒化物又は炭窒化物を形成することができる金
属を含む有機金属化合物を銅又は銅合金粉末表面に被覆
し、これを熱処理することにより有機金属化合物中の金
属の酸化物、炭化物、窒化物又は炭窒化物の一種以上か
らなる硬質粒子を前記銅又は銅合金粉末表面に生成さセ
、次いでこれをメカニカルアロイング法により粉砕合金
化して前記硬質粒子を分散粒子として銅合金粉末の内部
に均−分nIl!さセるごとを特徴とするものである。 また、本願の第2番目の発明に係る分散強化型銅合金粉
末の製造方法は、前記第1番目の発明によって得た銅合
金粉末を、更に消又は銅合金の融点(℃)の60%以上
から融点以下の温度で焼鈍処理を行うことを特徴とする
ものである。 本発明に使用する銅又は銅合金粉末の粒度は、細かい方
が良く、最大でも50μm以下の15〕末を用いること
が好ましい。50IJmよりも大きな粉末を用いると、
後述する如く粉砕工程に長時間を要したり、硬質粒子の
分11kを悪くするためである。 銅又は銅合金粉末に被覆する有機金属化合物は、金属の
錯化合物、例えばアセチルアセトナトキレート、トリメ
チレンジアミンキレート プロピレンジアミンキレ−1
・等のキレート化合物、またはメトキシド、エトキシド
、プロポキシド、ブトキシド、フtツキシト等のアルコ
キシド、ナフテン酸金属塩、オクチル酸金属塩、カプリ
ル酸金属塩、カルボン酸金属塩、有機金属脂肪酸等であ
る。尚、この有機金属化合物に含む金属はチタニウム、
ジルコニウム。 アルミニウム、カドミウム、シリコン、バナジウム。 タンタル2 クロム5モリブデン、タングステン、マン
ガン、ホウ素、希土類元素等の少なくとも一部を、#H
又は銅合金粉末との組合せで選択して適用すれば良い。 銅又は銅合金粉末に前記有機金属化合物を被覆するに際
しては、を機金属化合物が常温で液状の場合はそのまま
適用し、固体状若しくは粉末状の場合は加熱溶融するか
適当な溶媒に熔解して通用し、均一な被IWを行った後
、乾燥または燃焼させて溶媒を除去すれば良い。有機金
属化合物の添加量はその化合物中に含まれる金属の量、
目的とする合金組成により決定されるが、有機金属化合
物とし′C銅又は)1M合金粉末の50−1%以上添加
することは好ましくない。50−1%以上添加した場合
には、熱処理により硬質粒子となった時、これが粗大化
して分散強化への寄与を低ドさせ、且つ機械的特性、物
理的特性を劣化させることになるからである。この原因
は定かではないが、被1m層か厚くなり分解時に硬質粒
子同士が結合するものと考えらねる。 本発明においては、前記イj機金属化合物により被IW
された1ト4又は1ト1合金粉末を十へ処理することに
より、(i機金属化合物中に含まわる金属の酸化物、炭
化物、窒化物、炭窒化物の硬質υ子を銅又は銅合金粉末
表面に生成さ一1!るが、この時の雰囲気は目的の硬質
粒子が生成される雰囲気を選択すれば良い。例えば、酸
化物を生成する場合には空気中若しくは水分を若干含む
水素中で、膨化物の場合には有機金属化合物中に含まれ
る炭素を利用して水素中で、窒化物の場合には一旦有機
金属化合物を分解した後窒素中で、熱処理を行えばよい
。この熱処理は、約300℃から銅又は銅合金の融点近
傍までの温度で行われる。その理由は、前記有機金属化
合物が分解を始めるには約300℃が必要であり、一方
、銅又は銅合金の融点を越えると硬質粒子が凝集して均
一分散が出来なくなるからである。従って、通常この熱
処理温度は500〜700℃で適用される。 前記熱処理を施した状態では、硬質粒子が銅又は銅合金
粉末表面に付着しているだけであり、これを用いて銅合
金を製造したとしζも、分散強化型銅合金としては硬質
粒子の分散が不充分であり、また焼結性を阻害すること
になる。そごで、本発明においては、これを更にメカニ
カルアロイング法により粉砕合金化する9この粉砕合金
化には、振動ミルや)−一カー型ボールミル等の粉砕エ
ネルギーの大きい粉砕機を用いる。硬質粒子が被覆され
た銅又は銅合金粉末は、1ドS記粉砕機にかけられるこ
とにより、互いの接合や破砕を繰り返し、この過程で硬
質粒子は分Is! 杓子としζ銅又は銅合金粉末の内部
に均一分散することになる。硬質粒子が被覆された銅又
は銅合金粉末を前記粉砕機にかける時間は、銅又は#1
→合金粉末の種類や粒度によっ°(異なるが、一般的に
云っ′ζ約20時間を越えると、硬質粒子が均一分散す
る効果の増進は期待できない。粉砕機の粉砕エネルギー
が小さいと、硬?f粒子が被覆された銅又は1H合金粉
末同士の接合のみが進行し、著しく粗大な粒子が形成さ
れることがある。このようなIII大粒子は、本質的に
硬T1粒子の分散が不均一であり、分散強化型銅合金用
粉末としては使用できない。このような場合には、ステ
アリン酸などの潤滑剤を約0.1−1wt%の範囲で添
加することにより、硬質粒子が被覆された銅又は銅合金
粉末同士の過度の接合を防止できる。 しかし、前記潤滑剤は焼結の阻害要因となることがある
ので、粉砕合金化が終了した後、充分に除去する必要が
ある。 本発明で得られる分散強化型銅合金粉末は、粉砕合金化
工程で著しい加工硬化を受けることによって成形性が低
下する場合がある。成形性が要求される場合には、焼鈍
することにより成形性を改善することができる。この焼
鈍を行う場合、本発明で得られる分散強化型銅合金粉末
は銅又は銅合金粉末中に分散粒子が極めて均一微細に分
散しているために焼鈍に対する軟化抵抗が大きいので、
焼鈍温度は銅又は銅合金の再結晶温度よりかなり高く、
銅又は銅合金の融点(’C)の60%以上とする必要が
ある。しかし、融点以上の温度では、マトリックス相が
溶融して硬質粒子が凝集するため好ましくない。 以上の構成よりなるので、本発明の方法で得られた分1
1に強化型銅合金粉末は、次のような効果を奏すること
ができる。即ち、硬質粒子を分散粒子として銅合金粉末
の内部に均一微細に分散させることができるので、この
分散強化型銅合金粉末を用いれば、前記内部酸化法と同
等の特性を有する分散強化型銅合金を得ることができる
。また、前記内部酸化法におけるが如き基地金属として
の銅合金iと硬質杓子との組合せに制約がないので、本
発明に係る分散強化型銅合金粉末を用いれば、種々の組
成の分散強化型1M金合金得ることができる。さらに、
内部酸化法では添加できない合金元素を分散強化型銅合
金粉末中に含有せしめておくこともできるので、この分
散強化型銅合金粉末を用いれば、固溶強化や析出強化を
接合させた分散強化型銅合金を得ることができ、その結
果、従来の分散強化型銅合金の持つ中・低温域での強瓜
不足やその他の欠点を改善することが01能である。従
っ°(、本発明の方法により得られた分散強化型鋼合金
わ〕未は高硬度、良導電性、耐熱性等が要求される部材
、特にスボノH8接用チップ、Ic用リート等の製造用
原料粉末として有用なものである。 以下、本発明の実施例を示す。 実施例1 平均粒径3μmの電解銅粉に対して^l−プロポキシド
3wt%を石油エーテルに溶解して混合し、乾燥により
AI−プロポキシドを電解銅粉の表面に被覆せしめた後
、H2気流中で600℃、30分熱処理し、AI、0.
を電解銅粉の表面に生成させた。得られた粉末を、振動
ミルで12時間メカニカルアロイング法により粉砕合金
化した。この粉末を分析したとごろ分散粒子として0.
75wt%の^120.が含まれていた。 このようにして得られた粉末を、金型にて11.3φX
 11.5艶蒙、密度約7.85g/cm’に成形し、
The present invention relates to a method for producing dispersion-strengthened copper alloy powder.
The present invention relates to a method for manufacturing a dispersion-strengthened steel alloy powder in which the hard particles are uniformly dispersed and contained in the copper alloy powder as dispersed particles by applying a mechanical alloying method. The purpose of the 1134 strengthened copper alloy is to improve its heat resistance strength by dispersing fine hard particles such as oxides, carbides, nitrides, or carbonitrides of appropriate metals inside as dispersed particles. copper or copper alloy. Usually, this dispersion-strengthened copper alloy is often obtained by preparing dispersion-strengthening 1114 alloy powder in advance and using the powder metallurgy method. Methods for manufacturing dispersion-strengthened copper alloys using this conventionally known powder metallurgy method include, for example, the mixing method, coprecipitation method, molten salt method, internal oxidation method, etc. With the exception of the oxidation method, the dispersibility of the grains was poor and sufficient properties as a dispersion-strengthened copper alloy could not be obtained.In the case of the internal oxidation method, sufficient properties as a dispersion-strengthened steel alloy were not obtained. Although it is possible to obtain properties, practical use is limited to some copper alloys (Cu-Al□03) because there are restrictions on the combination of the copper alloy as the base metal and hard particles. In addition, with the internal oxidation method, it is not possible to add other alloying elements to the S-1 alloy as the base metal, so the dispersion-strengthened copper alloy obtained by this method has difficulty in medium and low temperature ranges. There was also the problem of insufficient strength.Recently, a dispersion-strengthened alloy powder was produced by mixing base metal powder and hard particles and pulverizing this into a pulverized alloy using a mechanical alloying method. This method is used to obtain alloys, and has already been put into practical use in some cases (such as Sokel alloys).However, this method requires long grinding to uniformly disperse hard particles in the base metal. In addition, when using this method, the hard particles themselves are rarely crushed during the crushing process, so it is necessary to use fine hard particles from the beginning, but such fine hard particles are difficult to mass produce. Therefore, this method has not been used as a method for manufacturing dispersion-strengthened copper alloys that can be applied to the internal oxidation method. As an innovative method for producing reinforced alloys, a mixture of metal complexes or alkoxides capable of forming oxides, carbides, nitrides, or carbonitrides and metal powders or alloy powders is shaped, fired, or melted. By solidifying the metal oxide, carbide, etc. in the metal complex compound or alkoxide by using the heat during the treatment,
A method for uniformly dispersing and containing nitrides or carbonitrides in a dispersion-strengthened copper alloy has been invented (Japanese Patent Publication No. 58-366).
(See Publication No. 60). In view of the problems of the above-mentioned conventional method, the present inventors have conducted various studies and found that if the invention described in the above-mentioned Japanese Patent Publication No. 58-36660 is combined with the mechanical alloying method, problems like those of the above-mentioned internal oxidation method can be solved. We came up with the idea that it is possible to obtain a dispersion-strengthened copper alloy that has the same properties as the dispersion-strengthened steel alloy obtained by the oriented region oxidation method.
The present invention was completed based on this idea. That is, the method for producing a dispersion-strengthened copper alloy powder according to the first invention of the present application uses an oxide. By coating the surface of copper or copper alloy powder with an organometallic compound containing a metal that can form carbides, nitrides, or carbonitrides, and heat-treating this, metal oxides, carbides, and nitrides in the organometallic compound can be formed. Hard particles made of one or more of carbonitrides or carbonitrides are generated on the surface of the copper or copper alloy powder, and then pulverized and alloyed by a mechanical alloying method so that the hard particles are dispersed inside the copper alloy powder. Average minute nIl! It is characterized by every step. Further, the method for producing a dispersion-strengthened copper alloy powder according to the second invention of the present application further includes the method of manufacturing a dispersion-strengthened copper alloy powder obtained by the first invention. It is characterized by performing the annealing treatment at a temperature below the melting point. The finer the particle size of the copper or copper alloy powder used in the present invention, the better, and it is preferable to use 15] powder with a maximum particle size of 50 μm or less. When using powder larger than 50 IJm,
This is because, as will be described later, the grinding process requires a long time and the hard particles make the 11k worse. The organometallic compound coated on the copper or copper alloy powder is a metal complex compound such as acetylacetonatochelate, trimethylenediamine chelate, propylenediamine chelate-1
, etc., or alkoxides such as methoxide, ethoxide, propoxide, butoxide, and phtoxylate, metal salts of naphthenate, metal salts of octylate, metal salts of caprylate, metal salts of carboxylate, organometallic fatty acids, and the like. The metals contained in this organometallic compound include titanium,
zirconium. Aluminum, cadmium, silicon, vanadium. #H
Alternatively, it may be selected and applied in combination with copper alloy powder. When coating copper or copper alloy powder with the organometallic compound, if the organometallic compound is liquid at room temperature, apply it as is, or if it is solid or powder, melt it by heating or dissolve it in an appropriate solvent. After applying common and uniform IW, the solvent may be removed by drying or burning. The amount of an organometallic compound added is determined by the amount of metal contained in the compound,
Although it is determined by the intended alloy composition, it is not preferable to add more than 50-1% of the organic metal compound (copper or 1M alloy powder). If it is added in an amount of 50-1% or more, when hard particles are formed by heat treatment, they will become coarse, reducing their contribution to dispersion strengthening, and deteriorating mechanical and physical properties. be. The reason for this is not clear, but it is thought that the 1 m thick layer causes hard particles to bond with each other during decomposition. In the present invention, the IW metal compound
By processing the 1-4 or 1-1 alloy powder, the hard particles of metal oxides, carbides, nitrides, and carbonitrides contained in the metal compound are removed from copper or copper alloy. However, the atmosphere at this time should be one that will generate the desired hard particles.For example, when generating oxides, use air or hydrogen containing some moisture. In the case of expanded products, heat treatment can be performed in hydrogen using the carbon contained in the organometallic compound, and in the case of nitrides, heat treatment can be performed in nitrogen after the organometallic compound has been decomposed. is carried out at a temperature from about 300°C to around the melting point of the copper or copper alloy, because about 300°C is required for the organometallic compound to start decomposing; This is because if the temperature exceeds the temperature, the hard particles will agglomerate and uniform dispersion will not be possible. Therefore, this heat treatment temperature is usually applied at 500 to 700°C. They only adhere to the surface, and even if a copper alloy was manufactured using this, the dispersion of hard particles would be insufficient for a dispersion-strengthened copper alloy, and it would also impede sinterability. Therefore, in the present invention, this is further pulverized and alloyed by a mechanical alloying method.9 For this pulverized alloying, a pulverizer with high crushing energy, such as a vibration mill or a one-car type ball mill, is used. Copper or copper alloy powder coated with hard particles is passed through a pulverizer to repeatedly join and crush each other, and in this process, the hard particles are crushed into pieces. It will be dispersed uniformly inside the ζ copper or copper alloy powder by ladle. The time for which the copper or copper alloy powder coated with hard particles is subjected to the grinding machine is as follows:
→Depending on the type and particle size of the alloy powder, it is generally said that if the time exceeds about 20 hours, the effect of uniformly dispersing hard particles cannot be expected to improve.If the crushing energy of the crusher is small, Only bonding between copper or 1H alloy powders coated with ?f particles may occur, forming extremely coarse particles.Such III large particles are essentially due to poor dispersion of hard T1 particles. It is homogeneous and cannot be used as a powder for dispersion-strengthened copper alloys.In such cases, the hard particles can be coated by adding a lubricant such as stearic acid in a range of about 0.1-1 wt%. Excessive bonding of copper or copper alloy powders can be prevented. However, since the lubricant may inhibit sintering, it is necessary to thoroughly remove it after grinding and alloying is completed. The dispersion-strengthened copper alloy powder obtained by the invention may have reduced formability due to significant work hardening during the pulverized alloying process.If formability is required, the formability may be improved by annealing. When this annealing is performed, the dispersion-strengthened copper alloy powder obtained by the present invention has high softening resistance to annealing because the dispersed particles are extremely uniformly and finely dispersed in the copper or copper alloy powder. So,
The annealing temperature is significantly higher than the recrystallization temperature of copper or copper alloys;
It needs to be 60% or more of the melting point ('C) of copper or copper alloy. However, temperatures above the melting point are not preferred because the matrix phase melts and the hard particles aggregate. With the above configuration, the amount obtained by the method of the present invention is 1
1. The reinforced copper alloy powder can have the following effects. That is, since the hard particles can be uniformly and finely dispersed inside the copper alloy powder as dispersed particles, if this dispersion-strengthened copper alloy powder is used, a dispersion-strengthened copper alloy having the same characteristics as the internal oxidation method can be produced. can be obtained. Furthermore, since there are no restrictions on the combination of copper alloy i as a base metal and a hard ladle as in the internal oxidation method, if the dispersion-strengthened copper alloy powder according to the present invention is used, dispersion-strengthened 1M Gold alloy can be obtained. moreover,
Since alloying elements that cannot be added using the internal oxidation method can be contained in the dispersion-strengthened copper alloy powder, if this dispersion-strengthened copper alloy powder is used, dispersion-strengthened copper alloy powder that combines solid solution strengthening and precipitation strengthening can be achieved. A copper alloy can be obtained, and as a result, it is possible to improve the lack of strength and other drawbacks of conventional dispersion-strengthened copper alloys in medium and low temperature ranges. Therefore, the dispersion-strengthened steel alloy obtained by the method of the present invention has not yet been used for the production of parts that require high hardness, good conductivity, heat resistance, etc., especially Subono H8 contact tips, IC leads, etc. It is useful as a raw material powder. Examples of the present invention are shown below. Example 1 3 wt % of ^l-propoxide was dissolved in petroleum ether and mixed with electrolytic copper powder having an average particle size of 3 μm, After coating the surface of the electrolytic copper powder with AI-propoxide by drying, it was heat-treated at 600°C for 30 minutes in an H2 stream to obtain AI, 0.
was generated on the surface of electrolytic copper powder. The obtained powder was pulverized into an alloy by a mechanical alloying method in a vibration mill for 12 hours. When this powder was analyzed, the dispersed particles were found to be 0.
75wt%^120. was included. The powder thus obtained was put into a mold with a diameter of 11.3φ
Molded to a gloss of 11.5 mm and a density of approximately 7.85 g/cm',

【12気流中で1000℃、90分焼結した。これを1
6φ×約511III+の形状に冷間鍛造後、再びH2
気流中で1000℃、90分焼結し、更に20φ×約3
IIl1mの形状に冷間鍛造して最終試験片とした。 上記試験片の焼鈍軟化特性を第1表に示す。尚、比較の
為、実施例1と同組成の分散強化型合金粉末を、従来の
内部酸化法と従来のメカニカルアロイング法(平均粒径
0.05μ鍋のA1□03と平均粒径3μmの電解銅粉
を使用し振動ミルで12時間粉砕合金化)で製造し、実
施例1と同じ条件で最終試験片を作成し、この最終試験
片の焼鈍軟化特性も併せて第1表に示す。 焼鈍軟化特性の測定はH7気流中で所定の温度に加熱し
て60分間保持した後、常温まで冷却して硬さを測定し
た。 第1表 焼鈍軟化後の硬さくHV5)>*従来法人−内
部酸化法 *従来法B:メカニカルアロイング法 実施例2 平均粒径20μ儂のCu−0,7Crアトマイス合金粉
に対し゛C^1−プロポキシ1′3し%を石油エーテル
に溶解し7て混合し実施例1と同じ処理を施してCu−
0,7Cr−0,75AI 203分散強化型合金粉末
を製造した。次いで、この分tls!強化型合金粉末を
11.中で700℃60分焼鈍し、た。 このようにし7てiQられた粉末を、金型にて11.3
φXI2.5mm、密瓜約7.20g/cm1に成形し
、H,気流中でl000゛c、90分焼結した。これを
16φ×約5+IIII+の形状に冷間鍛造後、再びH
,気流中で1000℃、90分焼結し7、その後水焼入
れを行った。水焼入れ後史に20φ×約311II11
の形状に冷間鍛造後、H2中で500℃、(50分処理
し7て最終試験片とした。 上記試験片の焼鈍軟化特性を第2表に示す。焼鈍軟化特
性の測定条件は実施例1と同しである。尚、比較の為、
実施例1の測定結果を再出し、またCu−0、ICr合
金及び純銅の測定結果につい°Cも併せて第2表に示す
。 第2表 焼鈍軟化後の硬さくHV5)>実施例3 平均粒径3μmの電解銅粉に対して5賀【%のY−アセ
チル−1七ト不一トを約200℃に加熱しながら混合し
、これを11□気流中600°C30分熱処理した。 得られた151末を振動ミルで12時間メカニカルアロ
イング法により粉砕合金化した後、H2中、700°C
60分焼鈍した。このようにして得られた粉末を分析し
た結果、分散粒子としてt、2tvt%のY、O,が含
まれ°ζいることが確認できた。 この粉末を実施例2と同し方法で成形、焼結し7た。 得られた最終試験片の常温での硬さはHv(5) : 
150であり、H2中、800℃60分焼鈍後の硬さは
Hv(5):141であった。 実施例4 平均粒径3μ川の電解銅粉に対して3訂%のオフナル酸
A1を約250℃に加熱しながら混合し、これを11、
気流中1itlt) ℃、30分クり処理した。得られ
た粉末を振動ミルご12時間メカニカルアロイング法に
より151砕合金化し7た後、 ■1□中、700℃6
0分焼鈍した。 、二のようにしC得られた粉末を分析した結果分散粒子
とし2て0.75wt%の八1□03が含まれているこ
とが確認できた。 この粉末を実施例2と同し7方υ(で成形、焼結した。 得られた最終試、験片の常温での硬さは11ν(5) 
: 148であり、[12中、800°C60分焼鈍後
の硬さは1lv(5):140であった。 実施例5 平均粒径3μ輛の電解銅粉に対してSwt%のf:r 
−7セチルアセトネートを約190°Cに加熱しながら
混合し、これを■2気流中600℃60分熱処理した。 得られた粉末を振動ミルで12時間メカニカルアロイン
グ法により粉砕合金化した後、H2中、700℃60分
焼鈍した。このようにして得られた粉末を分析した結果
、分li&粒子として約1.OWL%のCry C3若
しくはf:r3 C:zが含まれていることが確認でき
た。 この粉末を実施例2と同じ方法で成形、焼結した。 得られた最終試験片の常温での硬さはt(v(5) :
 150であり、+12中、800℃60分焼鈍後の硬
さはHv(5)=137であった。 特許出願人 福田金属箔粉工業株式会社 株式会社 神戸製M所 代理人 (6420)弁理士 井l■1 完二 第1頁の続き @発明者野口 昌孝 @発明者 大向 権一部 @発明者 浅舒 吉男 西宮市甲子園網引町8−21−305 神戸市西区伊川谷町有瀬131−1−122神戸市西区
伊川谷町有瀬131−1−603J″:fご、1.L計
重 +lニー、’!(1范)開用51)年 6月26日 lh’! fll 、’i ’l ζL’H’+:’I
 1IIll’111i 7 2 10) 5シン +
j明の+;f!I、 分11(強化型S1・4合金樹上の製造)J法:(抽1
1を4る者 中外との関係 特詐出110人 4、代理人 記入致しま4゛。 [(特相法第38条ただし書 の規)rによる特許出願) ] (2)第】!゛嶌第bB目と同第7行l二1との間に次
の)liJpを記入致しまず。 12、竹、i′1請求の範囲に記載された発明の故 2
1(3)第1ロ第7行目に12」とあるのを13」と訂
+1:1夕L5ま′4゜ (4)第1. p第12行目に13」とあるのを[4」
と6111代しまず。 (5)第1頁第19行目に14」とあるのを15」と8
1市敗しまず。 (())第20第1行目に「5」とあるのをIO」とf
iljl′敗しま4゛。 (7)第2頁第5行目に「6」とあるのを171と51
正欣しまず。 以I−
[12 Sintering was carried out at 1000° C. for 90 minutes in an air flow. This is 1
After cold forging into the shape of 6φ x approx. 511III+, H2 again.
Sintered at 1000℃ for 90 minutes in an air stream, and then 20φ x approx.
A final test piece was obtained by cold forging into a shape of IIl1m. Table 1 shows the annealing softening properties of the above test pieces. For comparison, dispersion-strengthened alloy powder with the same composition as in Example 1 was prepared using the conventional internal oxidation method and the conventional mechanical alloying method (A1□03 with an average particle size of 0.05 μm and A1 A final test piece was prepared under the same conditions as in Example 1, and the annealing softening characteristics of this final test piece are also shown in Table 1. The annealing softening characteristics were measured by heating to a predetermined temperature in H7 air flow, holding it for 60 minutes, cooling to room temperature, and measuring the hardness. Table 1 Hardness after annealing and softening HV5) > * Conventional corporation - Internal oxidation method * Conventional method B: Mechanical alloying method Example 2 ゛C^ Dissolve 1'3% of 1-propoxy in petroleum ether, mix and process in the same manner as in Example 1 to obtain Cu-
A 0,7Cr-0,75AI 203 dispersion strengthened alloy powder was manufactured. Next, this minute tls! 11. Reinforced alloy powder. It was annealed at 700°C for 60 minutes. The powder that has been iQed in this way is put into a mold for 11.3
It was molded to a size of φXI 2.5 mm and about 7.20 g/cm1, and sintered at 1000°C for 90 minutes in an H, air flow. After cold forging this into a shape of 16φ x approximately 5+III+, H
, sintered at 1000° C. for 90 minutes in an air stream7, and then water quenched. 20φ x approx. 311II11 after water quenching
After cold forging into the shape of It is the same as 1.For comparison,
The measurement results of Example 1 are reproduced, and the measurement results of Cu-0, ICr alloy, and pure copper are also shown in Table 2 along with the °C. Table 2 Hardness after annealing and softening HV5)>Example 3 5% Y-acetyl-17% was mixed with electrolytic copper powder having an average particle size of 3 μm while heating to approximately 200°C. This was then heat treated at 600°C for 30 minutes in an 11□ air stream. The obtained 151 powder was pulverized into an alloy by a mechanical alloying method in a vibration mill for 12 hours, and then heated at 700°C in H2.
Annealed for 60 minutes. As a result of analyzing the powder thus obtained, it was confirmed that the dispersed particles contained t, 2tvt% of Y, O, and so on. This powder was molded and sintered in the same manner as in Example 2. The hardness of the obtained final test piece at room temperature is Hv (5):
150, and the hardness after annealing at 800° C. for 60 minutes in H2 was Hv(5):141. Example 4 Electrolytic copper powder with an average particle size of 3 μm was mixed with 3% offnaric acid A1 while heating to about 250°C.
The sample was incubated for 30 minutes at 1 itlt)°C in an air flow. The obtained powder was crushed into 151 alloy by mechanical alloying method in a vibrating mill for 12 hours, and then heated at 700°C in 1□.
Annealed for 0 minutes. As a result of analyzing the powder obtained as described above, it was confirmed that 0.75 wt % of 81□03 was contained as dispersed particles. This powder was molded and sintered in the same manner as in Example 2 with a 7-way υ. The final test piece obtained had a hardness of 11ν (5) at room temperature.
: 148, and the hardness after annealing at 800°C for 60 minutes in [12] was 1lv(5):140. Example 5 Swt% f:r for electrolytic copper powder with an average particle size of 3μ
-7 cetyl acetonate was mixed while heating to about 190°C, and this was heat-treated at 600°C for 60 minutes in 2 air streams. The obtained powder was pulverized and alloyed using a mechanical alloying method in a vibration mill for 12 hours, and then annealed in H2 at 700°C for 60 minutes. As a result of analysis of the powder obtained in this way, it was found that the fraction of li&particles was approximately 1. It was confirmed that OWL% of Cry C3 or f:r3 C:z was contained. This powder was molded and sintered in the same manner as in Example 2. The hardness of the obtained final test piece at room temperature is t(v(5):
150, and the hardness after annealing at 800° C. for 60 minutes at +12 was Hv(5)=137. Patent Applicant: Fukuda Metal Foil & Powder Industry Co., Ltd. Kobe M Co., Ltd. Agent (6420) Patent Attorney Il■1 Kanji Continued from page 1 @ Inventor Masataka Noguchi @ Inventor Gonichi Omukai @ Inventor Assue Yoshio 8-21-305 Koshien Abiki-cho, Nishinomiya-shi 131-1-122 Arise, Ikawadani-cho, Nishi-ku, Kobe City 131-1-603 Arise, Ikawadani-cho, Nishi-ku, Kobe City J'': f, 1.L weight +l knee,' ! (1 fan) Opening June 26, 1951 lh'! fll, 'i 'l ζL'H'+:'I
1IIll'111i 7 2 10) 5thin +
j Ming +; f! I, minute 11 (manufacture on reinforced S1/4 alloy tree) J method: (drawing 1
1.Relationship with China and foreign countries: 110 special fraud applicants, 4 persons, and their representatives have been filled out.4゛. [(Patent application pursuant to Article 38 Proviso of the Special Phase Law) r] (2) No.]! Please enter the following) liJp between ゛Shim No.bB and 7th line 121. 12. Bamboo, i'1 The reason for the claimed invention 2
1 (3) In the 7th line of the 1st row, the 12" was corrected to 13". ``13'' on the 12th line of p is replaced with ``4''
and the 6111th generation Shimazu. (5) On the 19th line of the first page, replace 14” with 15” and 8
Only one city lost. (()) ``5'' in the 1st line of 20 is IO'' and f
iljl'defeated 4゛. (7) ``6'' in the 5th line of the 2nd page is 171 and 51
I'm sorry for the inconvenience. I-

Claims (2)

【特許請求の範囲】[Claims] (1)酸化物、炭化物、窒化物又は炭窒化物を形成する
ことができる金属を含む有機金属化合物を銅又は銅合金
粉末表面に被覆し、これを熱処理することにより有機金
属化合物中の金属の酸化物、炭化物。 窒化物又は炭窒化物の一種以上からなる硬質粒子を前記
鋼又は銅合金粉末表面に生成させ、次いでこれをメカニ
カルアロイング法により粉砕合金化して前記硬質粒子を
分11シ粒子として銅合金粉末の内部に均一分散させる
ことを特徴とする分散強化型銅合金粉末の製造方法。
(1) The surface of copper or copper alloy powder is coated with an organometallic compound containing a metal that can form oxides, carbides, nitrides, or carbonitrides, and the metal in the organometallic compound is heat-treated. oxides, carbides. Hard particles consisting of one or more types of nitrides or carbonitrides are generated on the surface of the steel or copper alloy powder, and then they are crushed and alloyed by a mechanical alloying method to make the hard particles into fine particles. A method for producing dispersion-strengthened copper alloy powder, which is characterized by uniformly dispersing the powder inside.
(2)酸化物、炭化物、窒化物又は炭窒化物を形成する
ことができる金属を含む有機金属化合物を銅又は銅合金
粉末表面に被覆し、これを熱処理することにより有機金
属化合物中の金属の酸化物、炭化物。 窒化物又は炭窒化物の一種以上からなる硬質粒子を前記
鋼又は銅合金粉末表面に生成させ、次いでこれをメカニ
カルアロイング法によりむ(砕合金化して前記硬質粒子
を分散粒子として銅合金粉末の内部に均一分散させ、更
に銅又は銅合金の融点(°C)の60%以上から融点以
下の温度で焼鈍処理を行う、〕とを特徴とする分散強化
型銅合金わ)末の製造方法。
(2) Coating the surface of copper or copper alloy powder with an organometallic compound containing a metal that can form oxides, carbides, nitrides, or carbonitrides, and heat-treating the powder to remove the metal in the organometallic compound. oxides, carbides. Hard particles consisting of one or more types of nitrides or carbonitrides are generated on the surface of the steel or copper alloy powder, and then mechanical alloying is performed (pulverization is performed to form the hard particles into dispersed particles of the copper alloy powder). A method for producing a dispersion-strengthened copper alloy powder, characterized by dispersing it uniformly inside the powder, and further annealing it at a temperature of 60% or more of the melting point (°C) of the copper or copper alloy to less than the melting point.
JP59067280A 1984-04-02 1984-04-02 Production of dispersion-strengthened copper alloy powder Pending JPS60208402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59067280A JPS60208402A (en) 1984-04-02 1984-04-02 Production of dispersion-strengthened copper alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59067280A JPS60208402A (en) 1984-04-02 1984-04-02 Production of dispersion-strengthened copper alloy powder

Publications (1)

Publication Number Publication Date
JPS60208402A true JPS60208402A (en) 1985-10-21

Family

ID=13340397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59067280A Pending JPS60208402A (en) 1984-04-02 1984-04-02 Production of dispersion-strengthened copper alloy powder

Country Status (1)

Country Link
JP (1) JPS60208402A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383240A (en) * 1986-09-29 1988-04-13 Sumitomo Electric Ind Ltd Electric contact material and its production
JPS6386837A (en) * 1986-09-30 1988-04-18 Sumitomo Electric Ind Ltd Electric contact material and its production
JPS63140051A (en) * 1986-11-29 1988-06-11 Sumitomo Electric Ind Ltd Electric contact material
JPS63254031A (en) * 1987-04-10 1988-10-20 昭和電工株式会社 Manufacture of circuit substrate
JPS6465859A (en) * 1987-09-05 1989-03-13 Showa Denko Kk Manufacture of circuit substrate
JP2000345201A (en) * 1999-05-31 2000-12-12 Mitsui Mining & Smelting Co Ltd Composite copper fine powder and its production
CN113751707A (en) * 2021-09-14 2021-12-07 郑州磨料磨具磨削研究所有限公司 Method for preparing nano carbide particle dispersion strengthening alloy powder
CN114082964A (en) * 2021-11-16 2022-02-25 安徽恒均粉末冶金科技股份有限公司 Production device and preparation method of movable electrode plate made of dispersion-strengthened copper alloy material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383240A (en) * 1986-09-29 1988-04-13 Sumitomo Electric Ind Ltd Electric contact material and its production
JPS6386837A (en) * 1986-09-30 1988-04-18 Sumitomo Electric Ind Ltd Electric contact material and its production
JPS63140051A (en) * 1986-11-29 1988-06-11 Sumitomo Electric Ind Ltd Electric contact material
JPS63254031A (en) * 1987-04-10 1988-10-20 昭和電工株式会社 Manufacture of circuit substrate
JPH0468138B2 (en) * 1987-04-10 1992-10-30 Showa Denko Kk
JPS6465859A (en) * 1987-09-05 1989-03-13 Showa Denko Kk Manufacture of circuit substrate
JP2000345201A (en) * 1999-05-31 2000-12-12 Mitsui Mining & Smelting Co Ltd Composite copper fine powder and its production
CN113751707A (en) * 2021-09-14 2021-12-07 郑州磨料磨具磨削研究所有限公司 Method for preparing nano carbide particle dispersion strengthening alloy powder
CN113751707B (en) * 2021-09-14 2023-08-22 郑州磨料磨具磨削研究所有限公司 Method for preparing nano carbide particle dispersion strengthening alloy powder
CN114082964A (en) * 2021-11-16 2022-02-25 安徽恒均粉末冶金科技股份有限公司 Production device and preparation method of movable electrode plate made of dispersion-strengthened copper alloy material
CN114082964B (en) * 2021-11-16 2023-12-12 安徽恒均粉末冶金科技股份有限公司 Production device and preparation method of dispersion-strengthened copper alloy material electrokinetic electrode plate

Similar Documents

Publication Publication Date Title
CN1084393C (en) Iron aluminide useful as electrical resistance heating element
JP2002503764A (en) Aluminide sheet manufacturing method by thermomechanical processing of aluminide powder
JPS62238344A (en) Mechanical alloying method
CN101121972A (en) Method for preparing Mo-Cu composite material
WO2019153953A1 (en) Copper material and preparation method therefor
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
CN114086078A (en) Fe-Mn-Al-C light steel, preparation method thereof, terminal, steel structural member and electronic equipment
TW200539972A (en) Method for making sintered body of metal powder and sintered body prepared therefrom
JPS60208402A (en) Production of dispersion-strengthened copper alloy powder
CN114703391A (en) Nano-oxide dispersion strengthened copper alloy and preparation method thereof
CN102373359A (en) Method for producing alloy steel powder special for automobile engines
JPH02153063A (en) Making of nitriding-alloy
CN111872414B (en) Preparation method of micro-nano pre-alloyed powder
JP3095026B2 (en) Manufacturing method of aluminum sintered alloy
JPH076026B2 (en) Manufacturing method of ferrous sintered alloy members with excellent wear resistance
JPH10219312A (en) Titanium carbide dispersion-strengthened aluminum-base powder, its production and titanium carbide dispersion-strengthened aluminum-base composite material
KR20140001530A (en) Producing method of fe-tic composite powder by mechanically activation process
JPS62185805A (en) Production of high-speed flying body made of tungsten alloy
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
JPH0751721B2 (en) Low alloy iron powder for sintering
CN106810236B (en) Preparation method of superfine (Ti, Mo, W) (C, N) composite solid solution powder
JPH0222121B2 (en)
JPS5983701A (en) Preparation of high carbon alloyed steel powder having excellent sintering property
JP2856251B2 (en) High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same
JP4140176B2 (en) Low thermal expansion heat resistant alloy and method for producing the same