JPH0468138B2 - - Google Patents

Info

Publication number
JPH0468138B2
JPH0468138B2 JP62088538A JP8853887A JPH0468138B2 JP H0468138 B2 JPH0468138 B2 JP H0468138B2 JP 62088538 A JP62088538 A JP 62088538A JP 8853887 A JP8853887 A JP 8853887A JP H0468138 B2 JPH0468138 B2 JP H0468138B2
Authority
JP
Japan
Prior art keywords
adhesive
powder
ceramic substrate
bonding
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62088538A
Other languages
Japanese (ja)
Other versions
JPS63254031A (en
Inventor
Takashi Shoji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP62088538A priority Critical patent/JPS63254031A/en
Publication of JPS63254031A publication Critical patent/JPS63254031A/en
Publication of JPH0468138B2 publication Critical patent/JPH0468138B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は回路基板の製造に係り、より詳細に
は、セラミツク基板に導電性金属を接合して回路
基板を製造する方法に関する。 (従来の技術及び解決しようとする問題点) 従来、いわゆるハイブリツト基板と称される混
成集積回路基板等々の回路基板の製造には、一般
に、アルミナなどのセラミツク基板にメタライズ
化処理を施して表面に金属層を形成する方法が採
用されている。例えば、セラミツク基板の両面に
Mo等の金属ペーストを印刷し、乾燥後、焼成し
てメタライズ層を形成し、その上にNiメツキ層
を形成し脱水素処理した後、ヒートシンクとして
銅板又はNiメツキ処理銅板を半田にて接合する
という多段工程による方法がある。 一方、半導体モジユール用基板等の製造とし
て、セラミツク基板の両面に基板厚さよりも薄い
銅板等の金属板を酸化により接合する方法(特開
昭59−121890号)も研究されており、この方法
は、片面にのみ金属板を接合する方法に比べて反
りや基板割れなどを防止できる利点がある。 しかし、上記いずれの方法においても、その後
の熱処理等における熱サイクル過程で、セラミツ
ク基板と導電性金属板との接合部が剥離し、耐熱
衝撃性が劣るという問題がある。 本発明は、上記従来技術の欠点を解消し、セラ
ミツク基板と導電性金属板の接合部の耐熱衝撃性
を向上し得る回路基板を製造する方法を提供する
ことを目的とするものである。 (問題点を解決するための手段) 上記目的を達成するため、本発明者は、従来の
方法が半田又は酸化等の手段を採用していた点に
鑑みて、新たな接合手段を見い出すべく鋭意研究
を重ねた結果、特定の物理的構造を有する接着材
を使用することにより、可能であることを見い出
したものである。 すなわち、本発明に係る回路基板の製造方法
は、セラミツク基板上に回路を形成する回路基板
の製造に際し、該セラミツク基板上に、メカニカ
ルアロイ法によつて機械的に噛合結合した複合粉
末からなる接着剤を用いて導電性金属板を貼着し
た後、該金属板表面をピーニング処理することを
特徴とするものである。 以下に本発明を実施例に基づいて詳細に説明す
る。 まず、セラミツク基板としては、従来と同様の
材質のものでよく、アルミナ(Al2O3)、窒化ア
ルミニウム(AlN)、炭化珪素(SiO)等々のセ
ラミツク材料を用いる。 このセラミツク基板の両面又は片面に導電性金
属板を接合するに際しては、後述の接着剤を使用
して加熱接合するものである。接合すべき導電性
金属板は、銅板乃至銅箔、ステンレス板、アルミ
ニウム板など、目的に応じて適宜材質のものを使
用することができる。例えば、銅板をヒートシン
クとして接合する場合には、ヒートシンクとして
並びに熱膨張の変化に追随し得るためにある程度
の厚みを必要とし、セラミツク基板の厚さ(通
常、0.1〜1mm)よりも大きい板厚(例、2mm)
とする。また、銅箔の場合には、熱膨張の変化に
追随できるが、逆に厚くなると銅箔側へ接着材成
分が拡散して表面層に変質を来すので、拡散が生
じない範囲で任意の厚みのものとするのがよい。 接着材としては、メカニカルアロイ法によつて
機械的に噛合結合した複合粉末からなるものを使
用する必要があり、例えば、成分系としては複合
金属粉末系のもの、金属粉末と非金属粉末を含む
複合粉末系のもの等があり、使用態様としてはペ
ースト状にしたものが望ましい。 接着材の具体例を以下に示す。 (1) Cu及びNiのうちの少なくとも1種を10〜60
%(重量%、以下同じ。)、Ti、Nb及びZrのう
ちの少なくとも1種を10〜80%含み、残部が実
質的にAgからなる組成を有する複合粉末を有
機溶媒中に分散させたペースト状のもの。接合
温度は600〜900℃が好ましい。 (2) Cu及びNiのうちの少なくとも1種を10〜60
%、Ti、Nb及びZrのうちの少なくとも1種を
7〜90%、希土類元素(Yを含む)のうちの少
なくとも1種を5ppm〜3%を含み、残部が実
質的にAgからなる組成を有する複合粉末を有
機溶媒中に分散させたペースト状のもの。この
接着材は特にSiCを基板材料とする場合に適す
る。接合温度は600〜900℃が好ましい。 (3) 上記(1)又は(2)の接着材において、5μm以下
のAl2O3、Mo及びSiO2のうちのいずれか1種
を1〜10%含む接着材。この接着材はアルミ
ナ、窒化アルミニウム、SiC等の各種セラミツ
ク材料を基板とする場合でも適する。接合温度
は830〜900℃が好ましい。 (4) Ti、Zr及びNbのうちの少なくとも1種:15
〜25%、Ni:5〜15%、Ag:35〜45%、Cu:
25〜35%及びSi:1〜7%からなる組成を有す
る複合粉末を有機溶媒中に分散させてペースト
状にしたもの。この接着材はSiCを基板材料と
する場合に好適である。接合温度は750〜950℃
が好ましい。 (5) Ti、Zr及びNbのうちの少なくとも1種:10
〜20%、Ni:5〜10%、Cu:18〜28%、Si:
2〜10%、SiC:10〜30%及び残部がAgからな
る組成を有する複合粉末を有機溶媒中に分散さ
せたペースト状のもの。この接着材は特にSiC
をセラミツク基板材料とする場合に好適であ
る。接合温度は750〜950℃が好ましい。 上記いずれの接着材も、セラミツク基板表面と
導電性金属板表面に印刷し、乾燥、脱脂処理した
後、適宜接合条件で、例えば、1〜10Kg/cm2の荷
重をかけながら10-3Torr以下の減圧下又は不活
性雰囲気中で上記加熱温度にて加熱接合すること
により、貼着すればよい。 なお、上記接着材は、粉末状、シート状等の態
様で使用することも可能である。 接合後、或いは回路を形成した後、導電性金属
板の表面にピーニング処理を施す。ピーニング処
理は通常行われる条件でよく、エアーブラスト処
理等を挙げることができる。この処理により、金
属板に圧縮応力が与えられるので、熱サイクル過
程で金属板に収縮方向の引張応力が働いても、圧
縮応力と打消し合い、残留応力が緩和乃至均等分
散化されるため、接合部が剥離したり、基板が割
れるようなことがなくなる。 次に本発明の実施例を示す。 (実施例) 原料粉末として、第1表に示す成分の粉末を準
備し配合(重量部)した。 なお、同表中、Ti−Cu−Ag系の接着材の場合
には、 スポンジチタン(−20μmに分級)粉末 20部 銀粉末(平均粒径1.6μm) 40部 銅粉末(平均粒径1.5μm) 40部 を準備した。 また、Ti−Ag−Cu−Ni−Si−SiC系の接着材
の場合には、 スポンジチタン(−20μmに分級)粉末 16部 銀粉末(平均粒径1.6μm) 32部 カーボニルニツケル粉末 8部 シリコン粉末 6部 SiC微粉末 14部 を準備した。 前処理として、これらを擂潰機を用いて5時間
混合粉砕し複合粉末とした。混合粉砕後、フイツ
シヤー・サブ・シーブ・サイザーで平均粒径を測
定したところ、いずれも1.3μmであつた。 次いで、この混合粉砕物に次の割合でビヒクル
を配合し、擂潰機を使用して5時間、予備混練し
た。予備混練の目的は、粉末表面を活性にし、ビ
ヒクルと接触させることにより、分散性をよくす
るためである。 上記混合粉砕物 80重量部 エチルセルロース 1.5 〃 テキサノール 16.7 〃 界面活性剤 1.8 〃 予備混練が終了した後、3本ロール・ミルを用
いて本混練を行い、ペースト状の接着用材料とし
た。 次に、約2.5mm□×0.635mmtの寸法の96%
Al2O3基板、AlN基板及びSiC基板と、25mm□で
同表に示す板厚(mm)の銅板及びSUS304板のそ
れぞれの片側全面に、200メツシユ、バイアス張
り、エマルジヨン厚さ45μmのスクリーンを使用
して、スクリーン印刷機により上記ペーストを印
刷した。 印刷後、120℃で30分間乾燥し、600℃で窒素気
流中にて20分間脱脂処理した。 次いで、第1表に示す組合せで、850℃、窒素
気流中で基板を中心にサンドイツチ構造となるよ
うに基板両面に金属板を重ね、貼り合せて加熱接
合した。 接合後、切り出したサンプルについて、冷熱サ
イクル試験を実施した。この試験では、接合した
サンプルをそのまま冷熱サイクル試験装置に装着
し、−55℃×30分間、+150℃×30分間を1サイク
ルとして、基板が破壊するまでのサイクル数にて
チエツクした。 また、接合後、金属板表面にピーニング処理を
施したサンプルについても、上記冷熱サイクル試
験を実施した。なお、ピーニング処理としては、
アルミナ(商品名A−40モランダム)#80を使用
し、圧力3Kg/cm2でエアーブラスト処理を行つ
た。 以上の試験結果を第1表に併記する。 同表により明らかなとおり、ピーニング処理を
行わない回路基板は殆ど5サイクルで回路基板が
剥離したのに対し、ピーニング処理を行つた本発
明例による回路基板はいずれも50サイクル以上ま
で剥離せず、顕著な耐熱衝撃性を示した。また、
本発明例ではいずれの材質のセラミツク基板や導
電性金属板の接合にも適用できることがわかる。 なお、剥離モードはいずれも基板の中央で割れ
るものであつた。
(Industrial Application Field) The present invention relates to the manufacture of circuit boards, and more particularly to a method of manufacturing a circuit board by bonding a conductive metal to a ceramic substrate. (Prior Art and Problems to be Solved) Conventionally, in the production of circuit boards such as hybrid integrated circuit boards called so-called hybrid boards, the surface of a ceramic board such as alumina is generally subjected to metallization treatment. A method of forming a metal layer has been adopted. For example, on both sides of a ceramic substrate.
A metal paste such as Mo is printed, dried, and fired to form a metallized layer. A Ni plating layer is formed on top of that and dehydrogenated. A copper plate or Ni-plated copper plate is bonded with solder as a heat sink. There is a multi-step method called. On the other hand, a method of bonding metal plates such as copper plates thinner than the substrate thickness to both sides of a ceramic substrate by oxidation (Japanese Patent Application Laid-open No. 121890/1989) has also been studied for manufacturing substrates for semiconductor modules. This method has the advantage of preventing warping and board cracking compared to methods that bond metal plates only on one side. However, in any of the above-mentioned methods, there is a problem that the joint between the ceramic substrate and the conductive metal plate peels off during a thermal cycle process such as subsequent heat treatment, resulting in poor thermal shock resistance. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a circuit board that eliminates the drawbacks of the prior art described above and can improve the thermal shock resistance of the joint between a ceramic substrate and a conductive metal plate. (Means for Solving the Problems) In order to achieve the above object, the inventor of the present invention has made efforts to find a new bonding method in view of the fact that conventional methods employ means such as soldering or oxidation. As a result of repeated research, it was discovered that this is possible by using an adhesive with a specific physical structure. That is, the method for manufacturing a circuit board according to the present invention includes, in manufacturing a circuit board in which a circuit is formed on a ceramic substrate, an adhesive made of a composite powder mechanically interlocked and bonded to the ceramic substrate by a mechanical alloying method. This method is characterized in that after a conductive metal plate is attached using an agent, the surface of the metal plate is subjected to a peening treatment. The present invention will be explained in detail below based on examples. First, the ceramic substrate may be made of the same material as in the past, and ceramic materials such as alumina (Al 2 O 3 ), aluminum nitride (AlN), silicon carbide (SiO), etc. are used. When bonding a conductive metal plate to both or one side of this ceramic substrate, heat bonding is performed using an adhesive described below. The conductive metal plates to be bonded may be made of an appropriate material depending on the purpose, such as a copper plate or copper foil, a stainless steel plate, or an aluminum plate. For example, when bonding a copper plate as a heat sink, a certain amount of thickness is required to function as a heat sink and to follow changes in thermal expansion, and the plate thickness (usually 0.1 to 1 mm) is larger than that of a ceramic substrate (usually 0.1 to 1 mm). Example, 2mm)
shall be. In addition, in the case of copper foil, it is possible to follow changes in thermal expansion, but if it becomes thicker, the adhesive components will diffuse toward the copper foil side, causing changes in the surface layer. It is best to use a thick one. As an adhesive, it is necessary to use a composite powder that is mechanically interlocked and bonded by a mechanical alloying method.For example, the component system must be a composite metal powder type, or a composite powder containing metal powder and non-metal powder. There are composite powder types, and it is preferable to use them in paste form. Specific examples of the adhesive are shown below. (1) 10 to 60% of at least one of Cu and Ni
% (weight %, the same applies hereinafter), a paste in which a composite powder containing 10 to 80% of at least one of Ti, Nb, and Zr, with the remainder substantially consisting of Ag, is dispersed in an organic solvent. something like that. The bonding temperature is preferably 600 to 900°C. (2) 10 to 60% of at least one of Cu and Ni
%, 7 to 90% of at least one of Ti, Nb, and Zr, 5 ppm to 3% of at least one of rare earth elements (including Y), and the remainder substantially consists of Ag. A paste-like product made by dispersing a composite powder containing This adhesive is particularly suitable when using SiC as the substrate material. The bonding temperature is preferably 600 to 900°C. (3) The adhesive described in (1) or (2) above, which contains 1 to 10% of any one of Al 2 O 3 , Mo, and SiO 2 with a diameter of 5 μm or less. This adhesive is also suitable for substrates made of various ceramic materials such as alumina, aluminum nitride, and SiC. The bonding temperature is preferably 830 to 900°C. (4) At least one of Ti, Zr and Nb: 15
~25%, Ni: 5~15%, Ag: 35~45%, Cu:
Composite powder having a composition of 25-35% and Si: 1-7% is dispersed in an organic solvent to form a paste. This adhesive is suitable when using SiC as the substrate material. Junction temperature is 750~950℃
is preferred. (5) At least one of Ti, Zr and Nb: 10
~20%, Ni: 5~10%, Cu: 18~28%, Si:
A paste-like product made by dispersing a composite powder in an organic solvent with a composition of 2% to 10% SiC, 10% to 30% SiC, and the balance Ag. This adhesive is especially suitable for SiC
This is suitable for use as a ceramic substrate material. The bonding temperature is preferably 750 to 950°C. All of the above adhesives are printed on the surface of a ceramic substrate and a conductive metal plate, dried and degreased, and then bonded under appropriate bonding conditions such as 10 -3 Torr or less while applying a load of 1 to 10 kg/cm 2 . The adhesive may be bonded by heating and bonding at the above heating temperature under reduced pressure or in an inert atmosphere. Note that the above adhesive can also be used in the form of powder, sheet, or the like. After joining or forming a circuit, the surface of the conductive metal plate is subjected to peening treatment. The peening treatment may be carried out under the conditions normally used, and examples include air blasting treatment and the like. Through this treatment, compressive stress is applied to the metal plate, so even if tensile stress in the contraction direction is applied to the metal plate during the thermal cycle process, the compressive stress is canceled out and the residual stress is relaxed or evenly distributed. This prevents the joint from peeling off or the board from cracking. Next, examples of the present invention will be shown. (Example) As a raw material powder, powders having the components shown in Table 1 were prepared and blended (parts by weight). In addition, in the case of Ti-Cu-Ag adhesive in the same table, sponge titanium powder (classified to -20 μm) 20 parts silver powder (average particle size 1.6 μm) 40 parts copper powder (average particle size 1.5 μm) ) 40 copies were prepared. In addition, in the case of Ti-Ag-Cu-Ni-Si-SiC adhesive material, sponge titanium powder (classified to -20μm) 16 parts silver powder (average particle size 1.6μm) 32 parts carbonyl nickel powder 8 parts silicon 6 parts of powder and 14 parts of SiC fine powder were prepared. As a pretreatment, these were mixed and pulverized for 5 hours using a crusher to obtain a composite powder. After mixing and pulverizing, the average particle size was measured using a Fissure sub-sieve sizer and found to be 1.3 μm. Next, a vehicle was added to this mixed and pulverized product in the following proportions, and the mixture was pre-kneaded for 5 hours using a crusher. The purpose of pre-kneading is to improve dispersibility by activating the powder surface and bringing it into contact with the vehicle. The above mixed and pulverized product 80 parts by weight Ethyl cellulose 1.5 Texanol 16.7 Surfactant 1.8 After the preliminary kneading was completed, main kneading was performed using a three-roll mill to obtain a paste-like adhesive material. Next, 96% of the dimensions of approximately 2.5mm□×0.635mmt
A 200 mesh, bias-strung, emulsion-thickness screen of 45 μm was placed on one side of each of the Al 2 O 3 substrate, AlN substrate, SiC substrate, copper plate and SUS304 plate with a thickness (mm) shown in the table of 25 mm square. The paste was printed using a screen printing machine. After printing, it was dried at 120°C for 30 minutes and degreased at 600°C in a nitrogen stream for 20 minutes. Next, using the combinations shown in Table 1, metal plates were stacked on both sides of the substrates in a nitrogen stream at 850° C. so as to form a sandwich structure with the substrates at the center, and they were bonded together by heating. After bonding, the cut samples were subjected to a thermal cycle test. In this test, the bonded sample was placed in a thermal cycle testing device as it was, and one cycle was -55°C for 30 minutes and +150°C for 30 minutes, and the number of cycles until the board broke was checked. In addition, the above-mentioned thermal cycle test was also conducted on samples whose metal plate surfaces were subjected to peening treatment after bonding. In addition, as for peening treatment,
Air blasting was performed using alumina (trade name: A-40 Morundum) #80 at a pressure of 3 kg/cm 2 . The above test results are also listed in Table 1. As is clear from the table, the circuit boards that were not subjected to peening treatment peeled off after almost 5 cycles, whereas the circuit boards according to the examples of the present invention that were subjected to peening treatment did not peel off until after 50 cycles. It showed remarkable thermal shock resistance. Also,
It can be seen that the present invention example can be applied to bonding ceramic substrates and conductive metal plates made of any material. Note that the peeling mode was such that the substrate cracked at the center in all cases.

【表】【table】

【表】 (発明の効果) 以上詳述したように、本発明によれば、セラミ
ツク基板上への導電性金属板の接合に際して、特
定の物理的構造を有する複合粉末からなる接着材
を使用するので、厳しい熱履歴を繰返し受けても
回路基板の剥離乃至割れを効果的に防止すること
ができる。
[Table] (Effects of the Invention) As detailed above, according to the present invention, an adhesive made of composite powder having a specific physical structure is used when bonding a conductive metal plate to a ceramic substrate. Therefore, peeling or cracking of the circuit board can be effectively prevented even if the circuit board is repeatedly subjected to severe thermal history.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミツク基板上に回路を形成する回路基板
の製造に際し、該セラミツク基板上に、メカニカ
ルアロイ法によつて機械的に噛合結合した複合粉
末からなる接着材を用いて導電性金属板を貼着し
た後、該金属板表面をピーニング処理することを
特徴とする回路基板の製造方法。
1. When manufacturing a circuit board on which a circuit is formed on a ceramic substrate, a conductive metal plate is pasted onto the ceramic substrate using an adhesive made of a composite powder that is mechanically interlocked and bonded by a mechanical alloying method. A method for manufacturing a circuit board, comprising: thereafter subjecting the surface of the metal plate to a peening treatment.
JP62088538A 1987-04-10 1987-04-10 Manufacture of circuit substrate Granted JPS63254031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62088538A JPS63254031A (en) 1987-04-10 1987-04-10 Manufacture of circuit substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62088538A JPS63254031A (en) 1987-04-10 1987-04-10 Manufacture of circuit substrate

Publications (2)

Publication Number Publication Date
JPS63254031A JPS63254031A (en) 1988-10-20
JPH0468138B2 true JPH0468138B2 (en) 1992-10-30

Family

ID=13945619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62088538A Granted JPS63254031A (en) 1987-04-10 1987-04-10 Manufacture of circuit substrate

Country Status (1)

Country Link
JP (1) JPS63254031A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6536991B2 (en) * 2015-03-03 2019-07-03 国立大学法人大阪大学 Bonding structure and method of manufacturing bonding structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189307A (en) * 1982-03-04 1983-11-05 ハンチントン・アロイス・インコ−ポレ−テツド Manufacture of mechanical alloyed powder
JPS6063337A (en) * 1983-09-14 1985-04-11 Sumitomo Electric Ind Ltd Heat-resistant conductive material
JPS60208402A (en) * 1984-04-02 1985-10-21 Fukuda Kinzoku Hakufun Kogyo Kk Production of dispersion-strengthened copper alloy powder
JPS6132752A (en) * 1984-07-25 1986-02-15 松下電工株式会社 Manufacture of ceramics circuit board
JPS61125195A (en) * 1984-11-22 1986-06-12 松下電工株式会社 Making of ceramic circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189307A (en) * 1982-03-04 1983-11-05 ハンチントン・アロイス・インコ−ポレ−テツド Manufacture of mechanical alloyed powder
JPS6063337A (en) * 1983-09-14 1985-04-11 Sumitomo Electric Ind Ltd Heat-resistant conductive material
JPS60208402A (en) * 1984-04-02 1985-10-21 Fukuda Kinzoku Hakufun Kogyo Kk Production of dispersion-strengthened copper alloy powder
JPS6132752A (en) * 1984-07-25 1986-02-15 松下電工株式会社 Manufacture of ceramics circuit board
JPS61125195A (en) * 1984-11-22 1986-06-12 松下電工株式会社 Making of ceramic circuit board

Also Published As

Publication number Publication date
JPS63254031A (en) 1988-10-20

Similar Documents

Publication Publication Date Title
EP2811513B1 (en) Method for producing substrate for power modules
US20020037435A1 (en) Circuit substrate
WO2021200242A1 (en) Brazing material, method for producing same, and method for producing metal-ceramics bonded substrate
JP4293406B2 (en) Circuit board
JP2501835B2 (en) Metallic adhesive material
JPH05148053A (en) Ceramics-metal joined material
JP2571233B2 (en) Circuit board manufacturing method
JPH0624854A (en) Ceramics-metal joining body
JPH0468138B2 (en)
JPS63256291A (en) Material for adhesion
JP3302714B2 (en) Ceramic-metal joint
JPH0597533A (en) Composition for bonding ceramic-metal and bonded product of ceramic-metal
JP3370060B2 (en) Ceramic-metal joint
JPH0347901A (en) Material for adhesion
JPH05246769A (en) Ceramic-metal joining composition and ceramic-metal joined body using the same
JPS635895A (en) Adhesive paste
JP2000228568A (en) Aluminum-aluminum nitride insulating circuit board
JPS6387790A (en) Manufacture of high heat radiation circuit board
JPH0361353B2 (en)
JPS6342153A (en) Hybrid integrated circuit board and manufacture thereof
JPH0570260A (en) Brazing filler metal paste for joining ceramic to metal
JP2000349098A (en) Bonded body of ceramic substrate and semiconductor device, and its manufacture
JPS6342152A (en) Hybrid integrated circuit board and manufacture thereof
JPS63212087A (en) Brazing filler metal for electrical parts
JPH04292476A (en) Production of aluminum nitride substrate cemented to copper