JPS63254031A - Manufacture of circuit substrate - Google Patents

Manufacture of circuit substrate

Info

Publication number
JPS63254031A
JPS63254031A JP62088538A JP8853887A JPS63254031A JP S63254031 A JPS63254031 A JP S63254031A JP 62088538 A JP62088538 A JP 62088538A JP 8853887 A JP8853887 A JP 8853887A JP S63254031 A JPS63254031 A JP S63254031A
Authority
JP
Japan
Prior art keywords
adhesive
powder
ceramic substrate
bonding
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62088538A
Other languages
Japanese (ja)
Other versions
JPH0468138B2 (en
Inventor
孝志 荘司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP62088538A priority Critical patent/JPS63254031A/en
Publication of JPS63254031A publication Critical patent/JPS63254031A/en
Publication of JPH0468138B2 publication Critical patent/JPH0468138B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は回路基板の製造に係り、より詳細には、セラミ
ック基板に導電性金属板を接合して回路基板を製造する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the manufacture of circuit boards, and more particularly to a method of manufacturing a circuit board by bonding a conductive metal plate to a ceramic substrate.

(従来の技術及び解決しようとする問題点)従来、いわ
ゆるハイブリット基板と称される混成集積回路基板等々
の回路基板の製造には、一般に、アルミナなどのセラミ
ック基板にメタライズ化処理を施して表面に金属層を形
成する方法が採用されている。例えば、セラミック基板
の両面にMo等の金属ペーストを印刷し、乾燥後、焼成
してメタライズ層を形成し、その上にNiメッキ層を形
成し脱水素処理した後、ヒートシンクとして銅板又はN
iメッキ処理銅板を半田にて接合するという多段工程に
よる方法がある。
(Prior art and problems to be solved) Conventionally, in the production of circuit boards such as hybrid integrated circuit boards called so-called hybrid boards, the surface is generally made by metallizing a ceramic board such as alumina. A method of forming a metal layer has been adopted. For example, a metal paste such as Mo is printed on both sides of a ceramic substrate, dried and fired to form a metallized layer, a Ni plating layer is formed on top of that, and after dehydrogenation treatment, a copper plate or N
There is a method that involves a multi-step process of joining i-plated copper plates with solder.

一方、半導体モジュール用基板等の製造として、セラミ
ック基板の両面に基板厚さよりも薄い銅板等の金属板を
酸化により接合する方法(特開昭59−121890号
)も研究されており、この方法は、片面にのみ金属板を
接合する方法に比べて反りや基板割れなどを防止できる
利点がある。
On the other hand, a method of bonding metal plates such as copper plates thinner than the substrate thickness to both sides of a ceramic substrate by oxidation (Japanese Unexamined Patent Publication No. 121890/1989) is also being researched to manufacture substrates for semiconductor modules. This method has the advantage of preventing warping and board cracking compared to methods that bond metal plates only on one side.

しかし、上記いずれの方法においても、その後の熱処理
等における熱サイクル過程で、セラミック基板と導電性
金属板との接合部が剥離し、耐熱衝撃性が劣るという問
題がある。
However, in any of the above methods, there is a problem in that the joint between the ceramic substrate and the conductive metal plate peels off during a thermal cycle process such as subsequent heat treatment, resulting in poor thermal shock resistance.

本発明は、上記従来技術の欠点を解消し、セラミック基
板と導電性金属板の接合部の耐熱i撃性を向上し得る回
路基板を製造する方法を提供することを目的とするもの
である。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a circuit board that can eliminate the drawbacks of the prior art described above and improve the heat shock resistance of the joint between a ceramic substrate and a conductive metal plate.

(問題点を解決するための手段) 上記目的を達成するため1本発明者は、従来の方法が半
田又は酸化等の手段を採用していた点に鑑みて、新たな
接合手段を見い出すべく鋭意研究を重ねた結果、特定の
物理的構造を有する接着材を使用することにより、可能
であることを見い出したものである。
(Means for Solving the Problems) In order to achieve the above object, 1. In view of the fact that conventional methods employ means such as soldering or oxidation, the inventors have worked diligently to find a new joining method. As a result of repeated research, it was discovered that this is possible by using an adhesive with a specific physical structure.

すなわち、本発明に係る回路基板の製造方法は、セラミ
ック基板上に回路を形成する回路基板の製造に際し、該
セラミック基板上に、メカニカルアロイ法によって機械
的に噛合結合した複合粉末からなる接着材を用いて導電
性金属板を貼着した後、該金属板表面をピーニング処理
することを特徴とするものである。
That is, in manufacturing a circuit board in which a circuit is formed on a ceramic substrate, the method for manufacturing a circuit board according to the present invention includes applying an adhesive material made of a composite powder mechanically interlocked and bonded by a mechanical alloying method onto the ceramic substrate. This method is characterized in that after a conductive metal plate is attached using the metal plate, the surface of the metal plate is subjected to a peening treatment.

以下に本発明を実施例に基づいて詳細に説明する。The present invention will be explained in detail below based on examples.

まず、セラミック基板としては、従来と同様の材質のも
のでよく、アルミナ(A(1203)、窒化アルミニウ
ム(AμN)、炭化珪素(SiC)等々のセラミック材
料を用いる。
First, the ceramic substrate may be made of the same material as in the past, and ceramic materials such as alumina (A (1203)), aluminum nitride (AμN), silicon carbide (SiC), etc. are used.

このセラミック基板の湖面又は片面に導電性金属板を接
合するに際しては、後述の接着材を使用して加熱接合す
るものである。接合すべき導電性金属板は、銅板乃至銅
箔、ステンレス板、アルミニウム板など、目的に応じて
適宜材質のものを使用することができる。例えば、銅板
をヒートシンクとして接合する場合には、ヒートシンク
として並びに熱膨張の変化1巳追随し得るためにある程
度の厚みを必要とし、セラミック基板の厚さく通常、0
.1〜1 mm)よりも大きい板厚(例、2 mm)と
する。
When bonding a conductive metal plate to the surface or one surface of this ceramic substrate, heat bonding is performed using an adhesive described below. The conductive metal plates to be joined may be made of an appropriate material depending on the purpose, such as a copper plate or copper foil, a stainless steel plate, or an aluminum plate. For example, when bonding a copper plate as a heat sink, a certain amount of thickness is required to function as a heat sink and to be able to follow changes in thermal expansion, and the thickness of a ceramic substrate is usually 0.
.. The plate thickness (e.g., 2 mm) is greater than the thickness of the plate (1 mm to 1 mm).

また、銅箔の場合には、熱膨張の変化に追随できるが、
逆に厚くなると銅箔側へ接着材成分が拡散して表面層に
変質を来すので、拡散が生じない範囲で任意の厚みのも
のとするのがよい。
In addition, in the case of copper foil, it is possible to follow changes in thermal expansion, but
On the other hand, if the thickness becomes too thick, the adhesive components will diffuse toward the copper foil side and cause deterioration of the surface layer, so it is preferable to use an arbitrary thickness within a range that does not cause diffusion.

接着材としては、メカニカルアロイ法によって機械的に
噛合結合した複合粉末からなるものを使用する必要があ
り、例えば、成分系としては複合金属粉末系のもの、金
属粉末と非金属粉末を含む複合粉末系のもの等があり、
使用態様としてはペースト状にしたものが望ましい。
As an adhesive, it is necessary to use a composite powder that is mechanically interlocked and bonded using a mechanical alloying method.For example, the component system may be a composite metal powder, or a composite powder containing metal powder and non-metal powder. There are things like
It is preferable to use it in the form of a paste.

接着材の具体例を以下に示す。Specific examples of the adhesive are shown below.

(1)  Cu及びNiのうちの少なくとも1種を10
〜60%(重量%、以下同じ。)、T1、Nb及びZr
のうちの少なくとも1種を10〜80%含み、残部が実
質的にAgからなる組成を有する複合粉末を有機溶媒中
に分散させたペースト状のもの。
(1) 10% of at least one of Cu and Ni
~60% (weight%, the same applies hereinafter), T1, Nb and Zr
A paste-like product in which a composite powder containing 10 to 80% of at least one of the above and the remainder substantially consisting of Ag is dispersed in an organic solvent.

接合温度は600〜900℃が好ましい。The bonding temperature is preferably 600 to 900°C.

(2)  Cu及びNiのうちの少なくとも1種を10
〜60%、Ti、Nb及びZrのうちの少なくとも1種
を7〜90%、希土類元素(Yを含む)のうちの少なく
とも1種を5 ppm−3%を含み、残部が実質的にA
gからなる組成を有する複合粉末を有機溶媒中に分散さ
せたペースト状のもの。この接着材は特にSiCを基板
材料とする場合に適する。接合温度は600〜900℃
が好ましい。
(2) 10% of at least one of Cu and Ni
-60%, at least one of Ti, Nb, and Zr at 7-90%, at least one of rare earth elements (including Y) at 5 ppm-3%, and the remainder is substantially A.
A paste-like product in which a composite powder having a composition of g is dispersed in an organic solvent. This adhesive is particularly suitable when using SiC as the substrate material. Bonding temperature is 600-900℃
is preferred.

(3)上記(1)又は(2)の接着材において、5μm
以下のAQ、03、Mo及びSio2のうちのいずれか
1種を1〜10%含む接着材。この接着材はアルミナ、
窒化アルミニウム、SiC等の各種セラミック材料を基
板とする場合でも適する。接合温度は830〜900℃
が好ましい。
(3) In the adhesive material of (1) or (2) above, 5 μm
An adhesive containing 1 to 10% of any one of the following AQ, 03, Mo, and Sio2. This adhesive is alumina,
It is also suitable for substrates made of various ceramic materials such as aluminum nitride and SiC. Bonding temperature is 830-900℃
is preferred.

(4)  Ti、Zr及びNbのうちの少なくとも1種
:15〜25%、Ni:5〜15%、Ag:35〜45
%、Cu:25〜35%及びSi:1〜7%からなる組
成を有する複合粉末を有機溶媒中に分散させてペースト
状にしたもの。この接着材はSiCを基板材料とする場
合に好適である。接合温度は750〜950℃が好ま′
しい。
(4) At least one of Ti, Zr and Nb: 15-25%, Ni: 5-15%, Ag: 35-45
%, Cu: 25-35%, and Si: 1-7%, which is made into a paste by dispersing it in an organic solvent. This adhesive is suitable when using SiC as the substrate material. The bonding temperature is preferably 750 to 950°C.
Yes.

(5)  Ti、Zr及びNbのうちの少なくとも1種
:10〜20%、Ni:5〜10%、Cu:18〜28
%、Si:2〜10%、SiC:10〜30%及び残部
がAgからなる組成を有する複合粉末を有機溶媒中に分
散させたペースト状のもの。この接着材は特にSiCを
セラミック基板材料とする場合に好適である。接合温度
は750〜950℃が好ましい。
(5) At least one of Ti, Zr and Nb: 10-20%, Ni: 5-10%, Cu: 18-28
%, Si: 2 to 10%, SiC: 10 to 30%, and the balance is Ag. This adhesive is particularly suitable when using SiC as the ceramic substrate material. The bonding temperature is preferably 750 to 950°C.

上記いずれの接着材も、セラミック基板表面と導電性金
属板表面に印刷し、乾燥、脱脂処理した後、適宜接合条
件で、例えば、1〜10kg/cm2の荷重をかけなが
ら1O−3Torr以下の減圧下又は不活性雰囲気中で
上記加熱温度にて加熱接合することにより、貼着すれば
よい。
All of the above adhesives are printed on the surface of the ceramic substrate and the surface of the conductive metal plate, dried and degreased, and then under appropriate bonding conditions, such as applying a load of 1 to 10 kg/cm2 and reducing the pressure to 1 O-3 Torr or less. The bonding may be carried out by heating and bonding at the above-mentioned heating temperature under or in an inert atmosphere.

なお、上記接着材は、粉末状、シート状等の態様で使用
することも可能である。
Note that the above adhesive can also be used in the form of powder, sheet, or the like.

接合後、或いは回路を形成した後、導電性金属板の表面
にピーニング処理を施す。ピーニング処理は通常行われ
る条件でよく、エアーブラスト処理等を挙げることがで
きる。この処理により、金属板に圧縮応力が与えられる
ので、熱サイクル過程で金属板に収縮方向の引張応力が
働いても、圧縮応力と打消し合い、残留応力が緩和乃至
均等分散化されるため、接合部が剥離したり、基板が割
れるようなことがなくなる。
After joining or forming a circuit, the surface of the conductive metal plate is subjected to peening treatment. The peening treatment may be carried out under the conditions normally used, and examples include air blasting treatment and the like. Through this treatment, compressive stress is applied to the metal plate, so even if tensile stress in the contraction direction is applied to the metal plate during the thermal cycle process, the compressive stress is canceled out and the residual stress is relaxed or evenly distributed. This prevents the joint from peeling off or the board from cracking.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

(実施例) 原料粉末として、第1表に示す成分の粉末を準備し配合
(重量部)した。
(Example) As a raw material powder, powders having the components shown in Table 1 were prepared and blended (parts by weight).

なお、同表中、Ti−Cu−Ag系の接着材の場合には
、 スポンジチタン(−20μmに分級)粉末  20部銀
粉末(平均粒径1.6μm)40部 銅粉末(平均粒径1.5μm)        40部
を準備した。
In addition, in the case of Ti-Cu-Ag adhesive in the same table, sponge titanium powder (classified to -20 μm) 20 parts silver powder (average particle size 1.6 μm) 40 parts copper powder (average particle size 1 .5 μm) 40 copies were prepared.

また、Ti−Ag−Cu−Ni−8L−SiC系の接着
材の場合には、 スポンジチタン(−20μmに分級)粉末  16部銀
粉末(平均粒径1.6μm)32部 カーボニルニッケル粉末        8部シリコン
粉末             6部SiC微粉末  
          14部を準備した。
In addition, in the case of a Ti-Ag-Cu-Ni-8L-SiC adhesive, 16 parts of sponge titanium powder (classified to -20 μm), 32 parts of silver powder (average particle size of 1.6 μm), and 8 parts of carbonyl nickel powder are used. Silicon powder 6 parts SiC fine powder
I have prepared 14 copies.

前処理として、これらを摺潰機を用いて5時間混合粉砕
し複合粉末とした。混合粉砕後、フィッシャー・サブ・
シーブ・サイザーで平均粒径を測定したところ、いずれ
も1.3μmであった。
As a pretreatment, these were mixed and crushed for 5 hours using a crusher to obtain a composite powder. After mixing and grinding, Fisher sub-
The average particle size was measured with a sieve sizer and found to be 1.3 μm in all cases.

次いで、この混合粉砕物に次の割合でビヒクルを配合し
、摺潰機を使用して5時間、予備混練した。予備混練の
目的は、粉末表面を活性にし、ビヒクルと接触させるこ
とにより、分散性をよくするためである。
Next, a vehicle was added to this mixed and pulverized product in the following ratio, and the mixture was pre-kneaded for 5 hours using a grinder. The purpose of pre-kneading is to improve dispersibility by activating the powder surface and bringing it into contact with the vehicle.

上記混合粉砕物       80重量部エチルセルロ
ース      1.5Nテキサノール       
16.7  #界面活性剤         1.8 
〃予備混線が終了した後、3本ロール・ミルを用いて本
混練を行い、ペースト状の接着用材料とした。
The above mixed pulverized product 80 parts by weight Ethylcellulose 1.5N Texanol
16.7 #Surfactant 1.8
After the preliminary mixing was completed, main mixing was performed using a three-roll mill to obtain a paste-like adhesive material.

次に、約2.5mm口X0.635nv+tの寸法の9
6%An、○、基板、A12N基板及びSiC基板と、
25mm口で同表に示す板厚(111m)の銅板及び5
US304板のそれぞれの片側全面に、200メツシユ
、バイアス張り、エマルジョン厚さ45μmのスクリー
ンを使用して、スクリーン印刷機により上記ペーストを
印刷した。
Next, 9 with dimensions of approximately 2.5 mm opening x 0.635 nv + t.
6% An, ○, substrate, A12N substrate and SiC substrate,
A copper plate with a 25 mm opening and a thickness (111 m) shown in the same table and 5
The above paste was printed on one entire surface of each US304 board by a screen printer using a 200-mesh, bias tension, emulsion-thickness screen of 45 μm.

印刷後、120℃で30分間乾燥し、600’Cで窒素
気流中にて20分間脱脂処理した。
After printing, it was dried at 120°C for 30 minutes and degreased at 600'C in a nitrogen stream for 20 minutes.

次いで、第1表に示す組合せで、850℃、窒素気流中
で基板を中心にサンドインチ構造となるように基板両面
に金属板を重ね、貼り合せて加熱接合した。
Next, using the combinations shown in Table 1, metal plates were stacked on both sides of the substrates in a nitrogen stream at 850° C. so as to form a sandwich structure with the substrates at the center, and they were bonded together by heating.

接合後、切り出したサンプルについて、冷熱サイクル試
験を実施した。この試験では、接合したサンプルをその
まま冷熱サイクル試験装置に装着し、−55℃X30分
間、+150’CX30分間を1サイクルとして、基板
が破壊するまでのサイクル数にてチェックした。
After bonding, the cut samples were subjected to a thermal cycle test. In this test, the bonded sample was mounted as it was on a thermal cycle testing device, and one cycle was -55°C for 30 minutes and +150'C for 30 minutes, and the number of cycles until the board was destroyed was checked.

また、接合後、金属板表面にピーニング処理を施したサ
ンプルについても、上記冷熱サンクル試験を実施した。
In addition, the above-mentioned thermal sancle test was also conducted on samples whose metal plate surfaces were subjected to peening treatment after bonding.

なお、ピーニング処理としては、アルミナ(商品名A−
40モランダム)#8oを使用し、圧力3 kg/cm
2でエアーブラスト処理を行った・ 以上の試験結果を第1表に併記する。
In addition, for the peening treatment, alumina (product name A-
40 morundum) #8o, pressure 3 kg/cm
Air blast treatment was performed in step 2. The above test results are also listed in Table 1.

同表より明らかなとおり、ピーニング処理を行わない回
路基板は殆ど5サイクルで回路基板が剥離したのに対し
、ピーニング処理を行った本発明例による回路基板はい
ずれも50サイクル以上まで剥離せず、顕著な耐熱衝撃
性を示した。また、本発明例ではいずれの材質のセラミ
ック基板や導電性金属板の接合にも適用できることがわ
かる。
As is clear from the table, the circuit boards that were not subjected to peening treatment peeled off after almost 5 cycles, whereas the circuit boards according to the examples of the present invention that were subjected to peening treatment did not peel off until after 50 cycles. It showed remarkable thermal shock resistance. Furthermore, it can be seen that the present invention example can be applied to bonding ceramic substrates and conductive metal plates made of any material.

なお、剥離モードはいずれも基板の中央で割れるもので
あった。
Note that the peeling mode was such that the substrate cracked at the center in all cases.

【以下余白1 (発明の効果) 以上詳述したように、本発明によれば、セラミック基板
上への導電性金属板の接合に際して、特定の物理的構造
を有する複合粉末からなる接着材を使用するので、厳し
い熱履歴を繰返し受けても回路基板の剥離乃至割れを効
果的に防止することができる。
[Blank 1 (Effects of the Invention) As detailed above, according to the present invention, an adhesive made of composite powder having a specific physical structure is used when bonding a conductive metal plate to a ceramic substrate. Therefore, peeling or cracking of the circuit board can be effectively prevented even if the circuit board is repeatedly subjected to severe thermal history.

Claims (1)

【特許請求の範囲】[Claims]  セラミック基板上に回路を形成する回路基板の製造に
際し、該セラミック基板上に、メカニカルアロイ法によ
って機械的に噛合結合した複合粉末からなる接着材を用
いて導電性金属板を貼着した後、該金属板表面をピーニ
ング処理することを特徴とする回路基板の製造方法。
When manufacturing a circuit board that forms a circuit on a ceramic substrate, a conductive metal plate is attached to the ceramic substrate using an adhesive made of a composite powder that is mechanically interlocked and bonded by a mechanical alloying method. A method for manufacturing a circuit board, characterized by subjecting the surface of a metal plate to peening treatment.
JP62088538A 1987-04-10 1987-04-10 Manufacture of circuit substrate Granted JPS63254031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62088538A JPS63254031A (en) 1987-04-10 1987-04-10 Manufacture of circuit substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62088538A JPS63254031A (en) 1987-04-10 1987-04-10 Manufacture of circuit substrate

Publications (2)

Publication Number Publication Date
JPS63254031A true JPS63254031A (en) 1988-10-20
JPH0468138B2 JPH0468138B2 (en) 1992-10-30

Family

ID=13945619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62088538A Granted JPS63254031A (en) 1987-04-10 1987-04-10 Manufacture of circuit substrate

Country Status (1)

Country Link
JP (1) JPS63254031A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162919A (en) * 2015-03-03 2016-09-05 国立大学法人大阪大学 Bonding structure and manufacturing method of same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189307A (en) * 1982-03-04 1983-11-05 ハンチントン・アロイス・インコ−ポレ−テツド Manufacture of mechanical alloyed powder
JPS6063337A (en) * 1983-09-14 1985-04-11 Sumitomo Electric Ind Ltd Heat-resistant conductive material
JPS60208402A (en) * 1984-04-02 1985-10-21 Fukuda Kinzoku Hakufun Kogyo Kk Production of dispersion-strengthened copper alloy powder
JPS6132752A (en) * 1984-07-25 1986-02-15 松下電工株式会社 Manufacture of ceramics circuit board
JPS61125195A (en) * 1984-11-22 1986-06-12 松下電工株式会社 Making of ceramic circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189307A (en) * 1982-03-04 1983-11-05 ハンチントン・アロイス・インコ−ポレ−テツド Manufacture of mechanical alloyed powder
JPS6063337A (en) * 1983-09-14 1985-04-11 Sumitomo Electric Ind Ltd Heat-resistant conductive material
JPS60208402A (en) * 1984-04-02 1985-10-21 Fukuda Kinzoku Hakufun Kogyo Kk Production of dispersion-strengthened copper alloy powder
JPS6132752A (en) * 1984-07-25 1986-02-15 松下電工株式会社 Manufacture of ceramics circuit board
JPS61125195A (en) * 1984-11-22 1986-06-12 松下電工株式会社 Making of ceramic circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162919A (en) * 2015-03-03 2016-09-05 国立大学法人大阪大学 Bonding structure and manufacturing method of same

Also Published As

Publication number Publication date
JPH0468138B2 (en) 1992-10-30

Similar Documents

Publication Publication Date Title
US6309737B1 (en) Circuit substrate
EP2811513B1 (en) Method for producing substrate for power modules
US20090283309A1 (en) Ceramic-metal bonded body, method for manufacturing the bonded body and semi-conductor device using the bonded body
WO2021200242A1 (en) Brazing material, method for producing same, and method for producing metal-ceramics bonded substrate
JP4293406B2 (en) Circuit board
JP2501835B2 (en) Metallic adhesive material
JPH0624854A (en) Ceramics-metal joining body
JPH05148053A (en) Ceramics-metal joined material
JP2571233B2 (en) Circuit board manufacturing method
JPS63254031A (en) Manufacture of circuit substrate
JPS63256291A (en) Material for adhesion
US5613181A (en) Co-sintered surface metallization for pin-join, wire-bond and chip attach
JPH1067586A (en) Circuit base plate for power module and its production
JPH0347901A (en) Material for adhesion
JP3482580B2 (en) High heat dissipation metal composite plate and high heat dissipation metal substrate using the same
JPH0597533A (en) Composition for bonding ceramic-metal and bonded product of ceramic-metal
JP2000323619A (en) Semiconductor device material using ceramic, and manufacture thereof
JPH05201777A (en) Ceramic-metal joined body
JPH0378191B2 (en)
JPS6387790A (en) Manufacture of high heat radiation circuit board
JPH05246769A (en) Ceramic-metal joining composition and ceramic-metal joined body using the same
WO2023176046A1 (en) Copper/ceramic bonded substrate and production method therefor
JPS6387791A (en) Manufacture of high heat radiation circuit board
JPS6342153A (en) Hybrid integrated circuit board and manufacture thereof
JP3408598B2 (en) Metal powder composition for metallizing, metallized substrate and method for producing the same