JP3482580B2 - High heat dissipation metal composite plate and high heat dissipation metal substrate using the same - Google Patents

High heat dissipation metal composite plate and high heat dissipation metal substrate using the same

Info

Publication number
JP3482580B2
JP3482580B2 JP30888595A JP30888595A JP3482580B2 JP 3482580 B2 JP3482580 B2 JP 3482580B2 JP 30888595 A JP30888595 A JP 30888595A JP 30888595 A JP30888595 A JP 30888595A JP 3482580 B2 JP3482580 B2 JP 3482580B2
Authority
JP
Japan
Prior art keywords
high heat
heat dissipation
plate material
composite plate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30888595A
Other languages
Japanese (ja)
Other versions
JPH09143649A (en
Inventor
正 有川
晃 市田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALMT Corp
Original Assignee
ALMT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALMT Corp filed Critical ALMT Corp
Priority to JP30888595A priority Critical patent/JP3482580B2/en
Publication of JPH09143649A publication Critical patent/JPH09143649A/en
Application granted granted Critical
Publication of JP3482580B2 publication Critical patent/JP3482580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックパッケ
ージ等への組み込みが好適な高放熱性金属複合板材及び
それを用いた高放熱性金属基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly heat-dissipating metal composite plate material suitable for incorporation in a ceramic package or the like, and a highly heat-dissipating metal substrate using the same.

【0002】[0002]

【従来の技術】従来、半導体素子の支持用電極や搭載用
基板は、チップの高密度化,データ伝送の高速化等に伴
って使用時の発熱量が増大している。このような発熱量
の増大化は、半導体素子の誤動作や劣化,破損等を招く
原因となっている。
2. Description of the Related Art Conventionally, a supporting electrode of a semiconductor element and a mounting substrate have increased the amount of heat generated during use as the density of chips increases and the speed of data transmission increases. Such an increase in the amount of heat generation causes malfunction, deterioration, damage, etc. of the semiconductor element.

【0003】このため、基板材料には基本的な特性とし
て、放熱効果が高く、しかも半導体素子自体やその周辺
材料に対して熱膨張係数が近似したできるだけ軽量なも
のを用いることが望まれている。又、基板材料には半導
体素子自体以外にもこれを搭載した状態の基板を組み込
むためのパッケージの材料に対して熱膨張係数が近似し
ているものを用いることが所望されたり、或いは組立後
のマッチングを考慮して半導体素子自体やその周辺材料
に対して若干熱膨張係数が異なるものを用いることが所
望される場合もある。更に、基板材料には基板をパッケ
ージへ組み込むための準備工程として、臘付けやメッキ
を施し易いこと等も要求されている。加えて、基板には
平板のみならず、凹型や凸型等の段付きタイプのものも
あるため、基板材料にはこのような段付け加工が容易で
あることも要求されている。
Therefore, it is desired to use, as a basic characteristic, a substrate material that has a high heat dissipation effect and that is as light as possible and that has a thermal expansion coefficient similar to that of the semiconductor element itself and its peripheral materials. . In addition to the semiconductor element itself, it is desirable to use a substrate material having a thermal expansion coefficient similar to that of the package material for incorporating the substrate in which the semiconductor element is mounted, or after assembly. In some cases, it may be desired to use a semiconductor element having a slightly different coefficient of thermal expansion with respect to the semiconductor element itself or its peripheral material in consideration of matching. Further, the substrate material is required to be easily attached and plated as a preparatory step for incorporating the substrate into a package. In addition, not only flat plates but also stepped types such as concave type and convex type are used for the substrates, so that it is required that the substrate material be easy to perform such step processing.

【0004】このような要求を満たし得る高放熱性の基
板材料(板材)として、近年ではCu−Mo系複合材料
(TT−RCM)が開発され、既に実用化されている。
As a substrate material (plate material) having high heat dissipation capable of satisfying such requirements, a Cu-Mo composite material (TT-RCM) has been developed in recent years and has already been put into practical use.

【0005】[0005]

【発明が解決しようとする課題】上述したCu−Mo系
複合材料(TT−RCM)の場合、最近の半導体素子用
基板材料に対する要求,即ち、低熱膨張率で放熱性が高
く、しかも軽量であるという要求を充分に満たし得ない
という問題がある。
In the case of the Cu-Mo composite material (TT-RCM) described above, the recent demand for a substrate material for a semiconductor element, that is, a low thermal expansion coefficient, a high heat dissipation property, and a light weight. There is a problem that the requirement cannot be sufficiently satisfied.

【0006】具体的に云えば、下記の表1に示されるよ
うに、粉末混合法で作製した幾つかの異なるCu−Mo
混合比のCu−Mo系複合材料(TT−RCM)特性に
おいて、熱膨張率が低ければ放熱性が劣る等,何れのも
のに関しても上述した最近の基板材料への要求を満たし
得ないことが判る。
[0006] Specifically, as shown in Table 1 below, several different Cu-Mo prepared by the powder mixing method are used.
Regarding the Cu-Mo based composite material (TT-RCM) characteristics of the mixing ratio, it can be understood that any of the above cannot satisfy the recent requirements for the substrate material such as poor heat dissipation if the coefficient of thermal expansion is low. .

【0007】[0007]

【表1】 [Table 1]

【0008】 この表1からは、例えば銅(Cu)の含
有量が40質量%以上のものに関しては、熱伝導率が高
いものの、熱膨張係数がやや大きくなっていることが判
る。このため、このようなCu−Mo混合比のものをセ
ラミックパッケージ組み込み用の基板材料として用いる
と、セラミックパッケージとのミスマッチングのために
亀裂等が発生してしまう危険がある。
From Table 1, it can be seen that, for example, when the content of copper (Cu) is 40 mass % or more, the thermal conductivity is high, but the thermal expansion coefficient is slightly large. Therefore, if such a Cu-Mo mixture ratio is used as the substrate material for incorporating the ceramic package, there is a risk that cracks or the like may occur due to mismatching with the ceramic package.

【0009】 これに対し、銅(Cu)の含有量が40
質量%未満のものについては、熱膨張係数が小さいこと
により、セラミックパッケージ組み込み用の基板材料と
して用いればセラミックパッケージとのマッチング性が
良好となるという利点があるが、この反面,熱伝導率が
小さいことにより、チップで発生する熱を逃がし難くな
って誤動作等を招く危険性があり、信頼性が損われてし
まう。
On the other hand, the content of copper (Cu) is 40
If the content is less than 10% by mass , the coefficient of thermal expansion is small, so that it has the advantage of good matching with a ceramic package when used as a substrate material for incorporating a ceramic package, but on the other hand, it has a low thermal conductivity. As a result, it is difficult to release the heat generated by the chip, and there is a risk of causing malfunctions, etc., and reliability is impaired.

【0010】即ち、従来のCu−Mo系複合材料(TT
−RCM)の場合、最近の半導体素子用基板材料に対す
る要求を満たし得ず、セラミックパッケージへの組み込
み用の基板材料として用いる場合にも機械加工性が悪
く、適用し難いという問題がある。
That is, the conventional Cu-Mo composite material (TT
In the case of -RCM), recent requirements for a substrate material for a semiconductor element cannot be satisfied, and even when it is used as a substrate material for incorporation into a ceramic package, it has poor machinability and is difficult to apply.

【0011】ところで、Cu−Mo系複合材料(TT−
RCM)以外の基板材料,即ち、熱膨張係数が8.5×
10-6/℃以下で熱伝導率が200W/m・K以上の基
板材料として、銅−タングステン(CMSH)が知られ
ているが、この銅−タングステン(CMSH)は密度が
15.6〜17[g/cm3 ]と大きく、軽量化の具現
に難がある上、機械加工性が悪いこと等により、上述し
たCu−Mo系複合材料(TT−RCM)の場合と同様
に、最近の半導体素子用基板材料としては実用に適さな
い。
By the way, a Cu-Mo composite material (TT-
Substrate materials other than RCM), that is, a thermal expansion coefficient of 8.5 ×
Copper-tungsten (CMSH) is known as a substrate material having a thermal conductivity of 200 W / m · K or more at 10 −6 / ° C. or less, and this copper-tungsten (CMSH) has a density of 15.6 to 17. [G / cm 3 ] is large, it is difficult to realize weight reduction, and the machinability is poor. Therefore, as in the case of the Cu-Mo composite material (TT-RCM) described above, a recent semiconductor is used. It is not suitable for practical use as a device substrate material.

【0012】本発明は、このような問題点を解決すべく
なされたもので、その技術的課題は、低熱膨張率で放熱
性が高く、しかも軽量で機械加工性の優れた高放熱性金
属複合板材及びそれを用いた高放熱性金属基板を提供す
ることにある。
The present invention has been made to solve the above problems, and its technical problem is a high heat dissipation metal composite having a low coefficient of thermal expansion, high heat dissipation, light weight and excellent machinability. It is to provide a plate material and a highly heat-dissipating metal substrate using the same.

【0013】[0013]

【課題を解決するための手段】本発明によれば、金属成
分が40質量%未満の銅(Cu)及び残部モリブデン
(Mo)から成り、更に炭化珪素(SiC)を該金属成
分に対して総質量で0.5〜5.3[質量%]加えて成
混合粉末を成形,焼結した後、圧延することで作製さ
れると共に、平均熱膨張係数が6.0〜8.5[×10
−6/℃]の範囲にある高放熱性金属複合板材が得られ
る。
According to the present invention, a metal alloy is formed.
Min is less than 40 wt% of copper (Cu) and the balance molybdenum
(Mo) and silicon carbide (SiC)
Add 0.5 to 5.3 [mass%] of the total mass to the
After the mixed powder molding, by sintering that, while being manufactured by rolling, the average thermal expansion coefficient of 6.0 to 8.5 [× 10
A high heat dissipation metal composite plate material in the range of −6 / ° C. can be obtained.

【0014】 又、本発明によれば、上記高放熱性金属
複合板材において、熱伝導率が200W/m・K以上
る高放熱性金属複合板材が得られる。
Further, according to the present invention, in the above high heat dissipation metal composite plate material, the thermal conductivity is 200 W / m · K or more .
High heat radiation metal composite plate material Ru Ah is obtained.

【0015】更に、本発明によれば、上記何れかの高放
熱性金属複合板材に段付けを施して得た基板上にシリコ
ン半導体素子を設けて成る高放熱性金属基板が得られ
る。
Furthermore, according to the present invention, there is obtained a highly heat-dissipating metal substrate in which a silicon semiconductor element is provided on a substrate obtained by stepping any of the above highly heat-dissipating metal composite plate materials.

【0016】[0016]

【発明の実施の形態】以下に実施例を挙げ、本発明の高
放熱性金属複合板材及びそれを用いた高放熱性金属基板
について、図面を参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The high heat radiating metal composite plate material of the present invention and the high heat radiating metal substrate using the same will be described in detail below with reference to the drawings.

【0017】 最初に、本発明の高放熱性金属複合板材
の概要を簡単に説明する。この高放熱性金属複合板材
は、金属成分が40質量%未満の銅(Cu)及び残部モ
リブデン(Mo)から成り、更に炭化珪素(SiC)を
該金属成分に対して総質量で0.5〜5.3[質量%]
加えて成る混合粉末を成形,焼結した後、圧延すること
で作製される。この高放熱性金属複合板材の諸特性は、
平均熱膨張係数が6.0〜8.5[×10−6/℃]の
範囲にあり、密度が10g/cm以下であると共
に、熱伝導率が200W/m・K以上となっている。
First, the outline of the high heat radiation metal composite plate material of the present invention will be briefly described. This highly heat-dissipative metal composite plate material contains copper (Cu) with a metal component of less than 40% by mass and the balance of the balance.
Made of ribden (Mo) and silicon carbide (SiC)
0.5 to 5.3 [mass%] in total mass with respect to the metal component
It is produced by molding the mixed powder obtained by adding , sintering, and rolling. The characteristics of this high heat dissipation metal composite plate material are
The average thermal expansion coefficient is in the range of 6.0 to 8.5 [× 10 −6 / ° C.], the density is about 10 g / cm 3 or less, and the thermal conductivity is 200 W / m · K or more. There is.

【0018】このような高放熱性金属複合板材に段付け
加工により段付けを施して基板を成し、その基板上にシ
リコン半導体素子を設ければ、セラミックパッケージへ
の組み込みが好適な高放熱性金属基板として構成され
る。
If such a high heat radiation metal composite plate material is stepped by a stepping process to form a substrate and a silicon semiconductor element is provided on the substrate, high heat radiation property suitable for incorporation in a ceramic package is provided. It is configured as a metal substrate.

【0019】そこで、以下は幾つかの実施例に基づいて
材料組成比(組成含有量)が異なる高放熱性金属複合板
材について、その製造方法を合わせて具体的に説明す
る。
Therefore, the high heat radiation metal composite plate material having different material composition ratios (composition contents) will be specifically described below with reference to some examples, together with the manufacturing method thereof.

【0020】<実施例1>実施例1では、先ず原料粉末
として、モリブデン(Mo)粉末,電解銅(Cu)粉
末,及び炭化珪素(SiC)粉末を70:30:3.1
の割合で混合し、プレス成形した後、水素雰囲気中で焼
結した。次に、この焼結体を水素雰囲気中にて900℃
で15分間加熱保持した後、熱間圧延加工してから冷間
圧延加工を施すことで厚さ1.0mmの板材に仕上げ
た。
Example 1 In Example 1, first, molybdenum (Mo) powder, electrolytic copper (Cu) powder, and silicon carbide (SiC) powder were used as raw material powders at 70: 30: 3.1.
After mixing in a ratio of, and press-molding, sintering was performed in a hydrogen atmosphere. Next, this sintered body is heated to 900 ° C. in a hydrogen atmosphere.
After heating and holding for 15 minutes, the plate material having a thickness of 1.0 mm was finished by hot rolling and then cold rolling.

【0021】そこで、この板材の諸特性を調べたとこ
ろ、熱膨張係数(α)は7.5×10-6/℃,熱伝導率
(κ)は220W/m・K,密度(ρ)は9.7g/c
3 であった。
Then, various characteristics of this plate material were examined, and the coefficient of thermal expansion (α) was 7.5 × 10 −6 / ° C., the thermal conductivity (κ) was 220 W / m · K, and the density (ρ) was 9.7 g / c
It was m 3 .

【0022】又、この板材に電解で膜厚が3μmとなる
ようにニッケル(Ni)メッキを成膜した後、水素雰囲
気中にて850℃×20分の条件下で熱処理して成膜加
工性を調べたところ、メッキに関して膨れ,変色,染み
等の変質は無く、不良は認められなかった。
Further, after nickel (Ni) plating is formed on this plate material by electrolysis to have a film thickness of 3 μm, it is heat-treated in a hydrogen atmosphere at 850 ° C. for 20 minutes to form a film. As a result, the plating did not show any change such as swelling, discoloration, and stain, and no defect was observed.

【0023】因みに、比較として炭化珪素(SiC)を
含まずにモリブデン(Mo)粉末:電解銅(Cu)粉末
を70:30として同様な手順で作製した板材に関して
諸特性を調べたところ、熱膨張係数(α)は7.7×1
-6/℃,熱伝導率(κ)は190W/m・K,密度
(ρ)は9.7g/cm3 であった。
By the way, as a comparison, various characteristics of a sheet material prepared by the same procedure with a molybdenum (Mo) powder: electrolytic copper (Cu) powder containing no silicon carbide (SiC): 70: 30 were examined. The coefficient (α) is 7.7 × 1
0 -6 / ° C., the thermal conductivity (kappa) is 190W / m · K, the density ([rho) was 9.7 g / cm 3.

【0024】<実施例2>実施例2では、原料粉末とし
て、モリブデン(Mo)粉末,電解銅(Cu)粉末,及
び炭化珪素(SiC)粉末を70:30:4.2の割合
で混合し、この後は実施例1と同様な手順を経て厚さ
1.0mmの板材を作製した。
Example 2 In Example 2, as raw material powder, molybdenum (Mo) powder, electrolytic copper (Cu) powder, and silicon carbide (SiC) powder were mixed in a ratio of 70: 30: 4.2. After that, a plate material having a thickness of 1.0 mm was manufactured through the same procedure as in Example 1.

【0025】そこで、この板材の諸特性を調べたとこ
ろ、熱膨張係数(α)は7.3×10-6/℃,熱伝導率
(κ)は230W/m・K,密度(ρ)は9.7g/c
3 であった。
Then, when various characteristics of this plate material were examined, the coefficient of thermal expansion (α) was 7.3 × 10 −6 / ° C., the thermal conductivity (κ) was 230 W / m · K, and the density (ρ) was 9.7 g / c
It was m 3 .

【0026】又、ここでは実施例1の場合と同様にNi
メッキを施し、熱処理した後、更にシリコンウエハーに
銀臘(BAg−8)付けを行ったところ、Niメッキ及
び銀臘の密着加工性は良好で、亀裂や剥離等の不良が認
められなかった。
Further, here, as in the case of the first embodiment, Ni is used.
After the plating and heat treatment, the silicon wafer was further attached with silver tin (BAg-8). The Ni plating and silver tin adhesion workability was good, and defects such as cracks and peeling were not observed.

【0027】因みに、ここでも比較として炭化珪素(S
iC)を含まずにモリブデン(Mo)粉末:電解銅(C
u)粉末を70:30として作製した板材に関して同様
に臘付けまでの工程を行ったところ、臘付け部に亀裂が
認められ、密着加工性が劣ることが判った。
Incidentally, here as a comparison, silicon carbide (S
Molybdenum (Mo) powder without iC): electrolytic copper (C)
u) When the plate material produced with the powder of 70:30 was similarly subjected to the steps up to gluing, cracks were observed in the gluing portion, and it was found that the adhesion workability was poor.

【0028】<実施例3>実施例3では、原料粉末とし
て、モリブデン(Mo)粉末、電解銅(Cu)粉末,及
び炭化珪素(SiC)粉末を80:20:4.2の割合
で混合し、実施例1と同様な手順を経て厚さ1mmの板
材を作製した。
<Example 3> In Example 3, molybdenum (Mo) powder, electrolytic copper (Cu) powder, and silicon carbide (SiC) powder were mixed at a ratio of 80: 20: 4.2 as raw material powder. A plate material having a thickness of 1 mm was manufactured through the same procedure as in Example 1.

【0029】そこで、この板材の諸特性を調べたとこ
ろ、熱膨張係数(α)は6.7×10-6/℃,熱伝導率
(κ)は210W/m・K,密度(ρ)は9.8g/c
3 であった。
Then, when various characteristics of this plate material were investigated, the thermal expansion coefficient (α) was 6.7 × 10 −6 / ° C., the thermal conductivity (κ) was 210 W / m · K, and the density (ρ) was 9.8g / c
It was m 3 .

【0030】又、ここでも実施例2の場合と同様にNi
メッキや銀臘付けを施して密着加工性を調べたところ、
良好であった。
Also here, as in the second embodiment, Ni is used.
When we examined the adhesion processability by applying plating and silver sticking,
It was good.

【0031】因みに、ここでも比較として炭化珪素(S
iC)を含まずにモリブデン(Mo)粉末:電解銅(C
u)粉末を80:20として同様な手順で作製した板材
に関して諸特性を調べたところ、熱膨張係数(α)は
6.9×10-6/℃,熱伝導率(κ)は175W/m・
K,密度(ρ)は9.9g/cm3 であった。
Incidentally, here as a comparison, silicon carbide (S
Molybdenum (Mo) powder without iC): electrolytic copper (C)
u) Various properties of a plate material produced by the same procedure with the powder being 80:20 were examined, and the thermal expansion coefficient (α) was 6.9 × 10 −6 / ° C. and the thermal conductivity (κ) was 175 W / m.・
The K and the density (ρ) were 9.9 g / cm 3 .

【0032】<実施例4>実施例4では、原料粉末とし
て、モリブデン(Mo)粉末、電解銅(Cu)粉末,及
び炭化珪素(SiC)粉末を90:10:5.3の割合
で混合し、実施例1と同様な手順を経て厚さ1mmの板
材を作製した。
<Example 4> In Example 4, as raw material powders, molybdenum (Mo) powder, electrolytic copper (Cu) powder, and silicon carbide (SiC) powder were mixed at a ratio of 90: 10: 5.3. A plate material having a thickness of 1 mm was manufactured through the same procedure as in Example 1.

【0033】そこで、この板材の諸特性を調べたとこ
ろ、熱膨張係数(α)は6.0×10-6/℃,熱伝導率
(κ)は202W/m・K,密度(ρ)は10.0g/
cm3であった。
Then, various characteristics of this plate material were examined, and the coefficient of thermal expansion (α) was 6.0 × 10 −6 / ° C., the thermal conductivity (κ) was 202 W / m · K, and the density (ρ) was 10.0 g /
It was cm 3 .

【0034】因みに、ここでも比較として炭化珪素(S
iC)を含まずにモリブデン(Mo)粉末:電解銅(C
u)粉末を90:10として同様な手順で作製した板材
に関して諸特性を調べたところ、熱膨張係数(α)は
6.2×10-6/℃,熱伝導率(κ)は163W/m・
K,密度(ρ)は10.0g/cm3 であった。
Incidentally, here as a comparison, silicon carbide (S
Molybdenum (Mo) powder without iC): electrolytic copper (C)
u) Various properties of a plate material produced by the same procedure with 90:10 powder were examined, and the coefficient of thermal expansion (α) was 6.2 × 10 −6 / ° C. and the thermal conductivity (κ) was 163 W / m.・
The K and the density (ρ) were 10.0 g / cm 3 .

【0035】尚、以上の各実施例(1〜4)で用いられ
たSiC粉末に関し、その粒径は1〜3[μm]であ
り、諸特性は密度(ρ)が2.5g/cm3 ,熱膨張係
数(α)が3.1×10-6/℃,熱伝導率(κ)が28
0W/m・Kである。
With respect to the SiC powder used in each of the above Examples (1 to 4), the particle size is 1 to 3 [μm], and various characteristics have a density (ρ) of 2.5 g / cm 3 , Coefficient of thermal expansion (α) is 3.1 × 10 -6 / ° C, thermal conductivity (κ) is 28
It is 0 W / m · K.

【0036】 各実施例(1〜4)からは、既知の粉末
混合法によるCu−Mo系複合材料(TT−RCM)の
作製に際してCuの含有量を40質量%未満に規制した
上、0.5〜5.3質量%]のSiC粉末を添加して
高放熱性金属複合板材を得ると、軽量化及び低熱膨張化
が具現され、高放熱性が向上する上、機械加工性も良好
となることが判る。
From each of the examples (1 to 4), the Cu content was regulated to less than 40 mass % when the Cu-Mo composite material (TT-RCM) was produced by the known powder mixing method, and 5-5 . It can be seen that, when 3 [ mass %] of SiC powder is added to obtain a high heat dissipation metal composite plate material, weight reduction and low thermal expansion are realized, high heat dissipation is improved, and machinability is also improved. .

【0037】ところで、以上の各実施例(1〜4)で得
られた各板材に対し、図1に示されるように、段付け加
工により凸型段付けを施して4種の別個な凸型段付基板
1を作製した後、これらの各凸型段付基板1上に半田3
によりそれぞれシリコンチップ2を設けて4種の高放熱
性金属基板を得た後、これらの各高放熱性金属基板をセ
ラミックパッケージに組み込んだ状態で熱サイクルテス
トを行ったところ、何れの場合に関しても亀裂等の発生
が無く、接合界面からの剥離も認められなかった。又、
実際の組み立て状態における放熱性は従来のものと比べ
て大幅に向上していることも判った。
By the way, as shown in FIG. 1, each plate material obtained in each of the above-mentioned embodiments (1 to 4) is subjected to a convex step by step processing to form four different convex shapes. After manufacturing the stepped substrate 1, solder 3 is applied onto each of these convex stepped substrates 1.
After the silicon chips 2 are respectively provided by the above method to obtain four kinds of high heat dissipation metal substrates, a heat cycle test is performed in a state in which these high heat dissipation metal substrates are assembled in a ceramic package. No cracks were generated and no peeling from the bonding interface was observed. or,
It was also found that the heat dissipation in the actual assembled state was significantly improved compared to the conventional one.

【0038】[0038]

【発明の効果】以上に述べた通り、本発明によれば、既
知の粉末混合法によるCu−Mo系複合材料(TT−R
CM)の作製に際してCuの含有量を40質量%未満に
規制した上、0.5〜5.3質量%]のSiC粉末を
添加することにより、低熱膨張率で放熱性が高く、しか
も軽量で機械加工性の優れた高放熱性金属複合板材が得
られるようになる。又、この高放熱性金属複合板材を基
板材料として用いて段付けを施して基板を作製し、その
基板上にシリコン半導体素子を設ければ、特にセラミッ
クパッケージへの組み込みが好適で有効な高放熱性金属
基板が得られるようになる。
As described above, according to the present invention, the Cu-Mo composite material (TT-R) by the known powder mixing method is used.
In the production of CM), the Cu content is regulated to less than 40% by mass , and 0.5 to 5 . By adding 3 [ mass %] of SiC powder, a highly heat-dissipating metal composite plate material having a low coefficient of thermal expansion, high heat dissipation, light weight, and excellent machinability can be obtained. In addition, if this high heat-dissipating metal composite plate material is used as a substrate material to make a step and a substrate is manufactured and a silicon semiconductor element is provided on the substrate, it is particularly suitable for incorporation into a ceramic package and effective heat dissipation is high. A metal substrate can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高放熱性金属複合板材を用いて構成さ
れる一実施例に係る高放熱性金属基板の基本構成を示し
た側面図である。
FIG. 1 is a side view showing a basic configuration of a highly heat-dissipating metal substrate according to an embodiment configured by using the highly heat-dissipating metal composite plate material of the present invention.

【符号の説明】[Explanation of symbols]

1 凸型段付き基板 2 シリコンチップ 3 半田 1 Convex stepped substrate 2 silicon chips 3 solder

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 1/00 - 49/14 B22F 1/00 - 9/30 H01L 23/373 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C22C 1/00-49/14 B22F 1/00-9/30 H01L 23/373

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属成分が40質量%未満の銅(Cu)
及び残部モリブデン(Mo)から成り、更に炭化珪素
(SiC)を該金属成分に対して総質量で0.5〜5.
3[質量%]加えて成る混合粉末を成形,焼結した後、
圧延することで作製されると共に、平均熱膨張係数が
6.0〜8.5[×10−6/℃]の範囲にあることを
特徴とする高放熱性金属複合板材。
1. Copper (Cu) having a metal content of less than 40% by mass.
And the balance molybdenum (Mo), and silicon carbide
The total mass of (SiC) is 0.5 to 5.
After molding and sintering the mixed powder formed by adding 3 [mass%] ,
A highly heat-dissipating metal composite plate material, which is produced by rolling and has an average coefficient of thermal expansion of 6.0 to 8.5 [× 10 −6 / ° C.].
【請求項2】 請求項1記載の高放熱性金属複合板材に
おいて、熱伝導率が200W/m・K以上であることを
特徴とする高放熱性金属複合板材。
2. A method according to claim 1 in a high heat radiation metal composite plate material according, high heat radiation metal composite plate material thermal conductivity, characterized in der Rukoto least 200W / m · K.
【請求項3】 請求項1又は2記載の高放熱性金属複合
板材に段付けを施して得た基板上にシリコン半導体素子
を設けて成ることを特徴とする高放熱性金属基板。
3. A high heat radiation metal substrate, comprising a silicon semiconductor element provided on a substrate obtained by stepping the high heat radiation metal composite plate material according to claim 1 or 2.
JP30888595A 1995-11-28 1995-11-28 High heat dissipation metal composite plate and high heat dissipation metal substrate using the same Expired - Fee Related JP3482580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30888595A JP3482580B2 (en) 1995-11-28 1995-11-28 High heat dissipation metal composite plate and high heat dissipation metal substrate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30888595A JP3482580B2 (en) 1995-11-28 1995-11-28 High heat dissipation metal composite plate and high heat dissipation metal substrate using the same

Publications (2)

Publication Number Publication Date
JPH09143649A JPH09143649A (en) 1997-06-03
JP3482580B2 true JP3482580B2 (en) 2003-12-22

Family

ID=17986441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30888595A Expired - Fee Related JP3482580B2 (en) 1995-11-28 1995-11-28 High heat dissipation metal composite plate and high heat dissipation metal substrate using the same

Country Status (1)

Country Link
JP (1) JP3482580B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080313A1 (en) * 2000-04-14 2001-10-25 Allied Material Corporation Material of heat-dissipating plate on which semiconductor is mounted, method for fabricating the same, and ceramic package produced by using the same
US7083759B2 (en) 2000-01-26 2006-08-01 A.L.M.T. Corp. Method of producing a heat dissipation substrate of molybdenum powder impregnated with copper with rolling in primary and secondary directions
EP1557932A1 (en) 2002-10-28 2005-07-27 Toyota Jidosha Kabushiki Kaisha Generator-motor
EP1557931A4 (en) 2002-10-28 2010-11-17 Toyota Motor Co Ltd Generator-motor
CN102554229B (en) * 2010-12-21 2014-01-29 北京有色金属研究总院 Method for preparing copper radiating fins of gradient structures by means of injection forming

Also Published As

Publication number Publication date
JPH09143649A (en) 1997-06-03

Similar Documents

Publication Publication Date Title
JP3493844B2 (en) Semiconductor substrate material, method of manufacturing the same, and semiconductor device using the substrate
JP3575068B2 (en) Ceramic metallized substrate having smooth plating layer and method of manufacturing the same
TWI615929B (en) Power module substrate, power module substrate having heatsink, power module, method for producing power module substrate, paste for connecting copper plate, and method for producing laminated body
US20090283309A1 (en) Ceramic-metal bonded body, method for manufacturing the bonded body and semi-conductor device using the bonded body
JPH0261539B2 (en)
KR20010079642A (en) Composite Material and Semiconductor Device Using the Same
JP3482580B2 (en) High heat dissipation metal composite plate and high heat dissipation metal substrate using the same
JPH02275657A (en) Composite material, thermal diffusion member in circuit system employing the material, circuit system and their manufacture
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
JP2018116994A (en) Power module
US5370907A (en) Forming a metallized layer on an AlN substrate by applying and heating a paste of a metal composed of W and Mo
US5613181A (en) Co-sintered surface metallization for pin-join, wire-bond and chip attach
JP2003192462A (en) Silicon nitride circuit board and method of producing the same
JP2000323619A (en) Semiconductor device material using ceramic, and manufacture thereof
JPH09232485A (en) Compound material for electric part and its manufacturing method
JP3146428B2 (en) Metal composite material and manufacturing method thereof
JP3194118B2 (en) Semiconductor device and method of manufacturing semiconductor component used in the semiconductor device
JPS63242985A (en) Aluminum nitride substrate
JP4880830B2 (en) Aluminum nitride substrate with metallized layer
JPH04168792A (en) Manufacture of high heat radiating ceramic circuit board with excellent thermal shock resistance
JP2910414B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device
JP2842032B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device
JP2815656B2 (en) High-strength heat-radiating structural member for packaged semiconductor devices
JP2910415B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device
JPH0790413A (en) Composite material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030917

LAPS Cancellation because of no payment of annual fees