JPS63242985A - Aluminum nitride substrate - Google Patents

Aluminum nitride substrate

Info

Publication number
JPS63242985A
JPS63242985A JP62073989A JP7398987A JPS63242985A JP S63242985 A JPS63242985 A JP S63242985A JP 62073989 A JP62073989 A JP 62073989A JP 7398987 A JP7398987 A JP 7398987A JP S63242985 A JPS63242985 A JP S63242985A
Authority
JP
Japan
Prior art keywords
layer
substrate
metallized layer
sintered plate
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62073989A
Other languages
Japanese (ja)
Other versions
JPH0788266B2 (en
Inventor
英樹 佐藤
水野谷 信幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62073989A priority Critical patent/JPH0788266B2/en
Priority to US07/174,902 priority patent/US4883704A/en
Priority to EP93111133A priority patent/EP0574956B1/en
Priority to DE3855680T priority patent/DE3855680T2/en
Priority to KR888803597A priority patent/KR900006680B1/en
Priority to DE3855613T priority patent/DE3855613T2/en
Priority to EP88105174A priority patent/EP0285127B1/en
Publication of JPS63242985A publication Critical patent/JPS63242985A/en
Priority to US07/410,863 priority patent/US5063121A/en
Publication of JPH0788266B2 publication Critical patent/JPH0788266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は窒化アルミニウム(AfLN)基板に関し、更
に詳しくは、その表面に高い接合強度で導電性メタライ
ス層が形成されているAIN基板に間する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an aluminum nitride (AfLN) substrate, and more specifically, the present invention relates to an aluminum nitride (AfLN) substrate, and more specifically, a conductive metal lice layer is formed on the surface of the substrate with high bonding strength. Connect it to the AIN board.

(従来の技術) AfLN焼結体は熱伝導性が良好で放熱性に優れ、かつ
電気絶縁性を有するので半導体用の基板材料として注目
を集めている。
(Prior Art) AfLN sintered bodies are attracting attention as substrate materials for semiconductors because they have good thermal conductivity, excellent heat dissipation, and electrical insulation properties.

このAiN焼結体は概ね次のようにして製造される。す
なわち、AuN粉末にY 203  +3m203 、
CaOのような焼結助剤を所定量配合し、更に必要に応
じてアクリル系樹脂バインダーなどを添加して全体を充
分に混合し、得られた混合体を例えば加圧成形して所定
形状のAIN焼結前駆体(グリーン成形体)としたのち
、これを例えば窒素雰囲気中にて所定温度で焼結するの
である。
This AiN sintered body is generally manufactured as follows. That is, Y 203 +3m203 in AuN powder,
A predetermined amount of a sintering aid such as CaO is blended, an acrylic resin binder is added as necessary, the whole is thoroughly mixed, and the resulting mixture is, for example, pressure molded to form a predetermined shape. After forming an AIN sintered precursor (green molded body), this is sintered at a predetermined temperature in, for example, a nitrogen atmosphere.

ところで、半導体用の基板としてAIN焼結板を用いる
場合には、半導体を搭載する側の面に、導電性の薄層を
形成することが必要である。従来、この薄層はAiN焼
結板の表面にDBC法(Direct Bond Cu
pper法)や厚膜法を適用して形成された銅(Cu)
 、金(Au) 、銀−パラジウム(A g −P d
)の導電性メタライズ層である。
By the way, when using an AIN sintered board as a substrate for a semiconductor, it is necessary to form a conductive thin layer on the side on which the semiconductor is mounted. Conventionally, this thin layer was deposited on the surface of the AiN sintered plate using the DBC method (Direct Bond Cu).
Copper (Cu) formed by applying pper method) or thick film method
, gold (Au), silver-palladium (A g -P d
) conductive metallized layer.

しかしながら、従来のこの基板においては次のような問
題がある。
However, this conventional substrate has the following problems.

その第1は、形成された上記メタライズ層とAIN焼結
板表面との接合強度が低く往々にして両者間に剥離現象
が発生して基板の信頼性が低いということである。
The first problem is that the bonding strength between the formed metallized layer and the surface of the AIN sintered plate is low, and a peeling phenomenon often occurs between the two, resulting in low reliability of the substrate.

第2の問題は、形成したメタライズ層に所定の半導体素
子若しくはワイヤをろう付けしたり高温半田付けしたり
する際に生起する問題である。すなわち、例えばろう付
けの場合は水素−窒素混合ガス中において約800°C
近辺の温度で行われているが、しかしながら上記メタラ
イズ層焼付は処理時の温度は通常600〜1000℃程
度の低温であるため、このろう付は時にメタライズ層と
A4N焼結板表面との間の接合強度が著しく低下してし
まい事実上ろう付けが不可能になるということである。
The second problem is a problem that occurs when a predetermined semiconductor element or wire is brazed or high-temperature soldered to the formed metallized layer. That is, for example, in the case of brazing, the temperature is approximately 800°C in a hydrogen-nitrogen mixed gas.
However, since the metallized layer baking process is usually at a low temperature of about 600 to 1000°C, this brazing is sometimes performed at a temperature of about 600 to 1000°C. This means that the joint strength will drop significantly, making brazing virtually impossible.

また、高温半田付けの場合も同様の問題が発生する。A similar problem also occurs in the case of high-temperature soldering.

第3の問題は、A4N焼結板とメタライズ層との熱膨張
率の差異に基づく問題である。すなわち、ろう付け、高
温半田付けの場合もそうであるが、シリコンウェハーの
ような半導体素子をマウントせしめた基板はその使用時
に過酷な加熱−冷却の熱サイクルを経験する。その結果
、AfLN焼結体−メタライズ層−ろう付は層(又は半
田層)−半導体素子のそれぞれの接合面では、各層の熱
膨張率の差異に基づく熱応力が発生してそれぞれを剥離
せしめる作用が生ずる。
The third problem is a problem based on the difference in coefficient of thermal expansion between the A4N sintered plate and the metallized layer. That is, as in the case of brazing and high-temperature soldering, a substrate on which a semiconductor element is mounted, such as a silicon wafer, undergoes severe thermal cycles of heating and cooling during use. As a result, at the bonding surfaces of the AfLN sintered body, metallized layer, brazing layer (or solder layer), and semiconductor element, thermal stress is generated due to the difference in the coefficient of thermal expansion of each layer, causing each layer to peel off. occurs.

上記したメタライズ層の場合、A!;LN焼、給板(熱
膨張率は約4 、6 X 10−’/”0)の熱膨張率
よりもその値が約2−4倍大きく、またろう付層(又は
半田層)と同等の値から坏位の値であってAINとの差
が大きいので、熱サイクル時にメタライズ層又はろう付
は層(若しくは半田層)とAINの界面に微小クラック
が発生し易い。熱サイクルが加重されるにつれてこの微
小クラックは徐々に発達し、最終的にはマウントした半
導体素子の剥離を招くことがある。
In the case of the metallized layer described above, A! ;The coefficient of thermal expansion is about 2-4 times larger than that of the LN firing plate (the coefficient of thermal expansion is about 4.6 x 10-'/"0), and it is also equivalent to the brazing layer (or solder layer). Since the value is the value of the lying position and there is a large difference from AIN, micro-cracks are likely to occur at the interface between the metallized layer or brazing layer (or solder layer) and AIN during thermal cycling. These microcracks gradually develop over time, and may eventually lead to peeling of the mounted semiconductor element.

このような問題は半導体素子をマウントせしめた基板を
実装した装置の信頼性を低下せしめて極めて不都合であ
る。
Such a problem is extremely inconvenient because it reduces the reliability of a device mounted with a substrate on which a semiconductor element is mounted.

第4の問題は、上記メタライズ層とAfLN焼結板との
高温下における接合強度が小さく、第2の場合と同様に
高温使用時の信頼性は低いということである。
The fourth problem is that the bonding strength between the metallized layer and the AfLN sintered plate at high temperatures is low, and as in the second case, the reliability during high temperature use is low.

このようなことから、最近では、前記した薄層の代りに
メタライズ層としてタングステン(W)、モリブデン(
Mo)又は窒化チタン(T i N)の薄層が適用され
はじめている。
For this reason, recently, tungsten (W), molybdenum (
Thin layers of Mo) or titanium nitride (T i N) are beginning to be applied.

(発明が解決しようとする問題点) 導電性メタライズ層が上記したW層、 M 0層、Ti
N層の場合には、前記したCu層、Au層、Ag−Pd
層の場合よりも上記問題点は改善され、AIN焼結体と
の接合強度の向上、使用時における信頼性の向上が企ら
れるが、しかしいまだ充分ではなく、更なる改善が望ま
れている。
(Problem to be solved by the invention) The conductive metallized layer is the above-mentioned W layer, M0 layer, Ti
In the case of N layer, the above-mentioned Cu layer, Au layer, Ag-Pd
The above-mentioned problems have been improved compared to the case of layers, and attempts have been made to improve the bonding strength with the AIN sintered body and improve reliability during use, but this is still not sufficient and further improvements are desired.

本発明は、AuN焼結板とメタライズ層との接合強度が
高く、また使用時の信頼性も高いAIN基板の提供を目
的とする。
An object of the present invention is to provide an AIN substrate that has high bonding strength between an AuN sintered plate and a metallized layer, and also has high reliability during use.

[発明の構成] (問題点を解決するための手段・作用)本発明者らは、
メタライズ層がW層であるA4N基板につきAuN焼結
板とW層との界面状態と接合強度の関係を検討したとこ
ろ、接合強度が高い基板は、界面部分にイツトリウムア
ルミニウムガーネット(YAG)層が形成されており、
逆に接合強度が低い基板にはこの界面部分にYAGの集
中的な存在はなくAuN焼結板の全体に比較的均一に分
布しているという事実を見出した。そして、この現象は
、メタライズ層がMo層、TiN層である基板の場合も
同様に認められた。
[Structure of the invention] (Means/effects for solving the problem) The present inventors,
When we examined the relationship between the interface state and bonding strength between the AuN sintered plate and the W layer on an A4N substrate with a W metallized layer, we found that the substrate with high bonding strength has a yttrium aluminum garnet (YAG) layer at the interface. is formed,
On the contrary, we have found that in substrates with low bonding strength, YAG is not concentrated in this interface area and is relatively uniformly distributed throughout the AuN sintered plate. This phenomenon was similarly observed in the case of substrates in which the metallized layer was a Mo layer or a TiN layer.

これらの知見から、本発明者らは、A文N基板とメタラ
イズ層との界面にYAG層を集中的に存在せしめれば、
その基板の接合強度が向上し得るとの着想を抱き、実験
的にその着想の正しさを確認して、本発明のAIN基板
を開発するに至った。
Based on these findings, the present inventors believe that if the YAG layer is concentrated at the interface between the A-N substrate and the metallized layer,
Having the idea that the bonding strength of the substrate could be improved, we experimentally confirmed the validity of the idea and developed the AIN substrate of the present invention.

すなわち、本発明のA文N基板は、A4N焼結板と該A
uN焼結板の表面に形成された導電性メタライズ層の界
面近傍にYAG層が存在していることを特徴とする。
That is, the A-shaped N substrate of the present invention is composed of an A4N sintered plate and the A-shaped N substrate.
It is characterized in that a YAG layer exists near the interface of the conductive metallized layer formed on the surface of the uN sintered plate.

本発明の基板におけるA又N焼結板としては、その熱伝
導率が50W/mIIK以上でるようなものが好ましい
。このようなAIN焼結板は、例えば所定粒度(7)A
i N粉末ト、Y 203 ! Y F 3  rSm
203  、CacO3のような焼結助剤と、ワックス
系またはプラスチック系のようなバインダ成分とを所定
量比で混合し、この混合物を室温下において加圧成形ま
たはドクターブレードによりシート状に成形してグリー
ン成形体とし、しかるのちにこのグリーン成形体を焼結
して製造される。
The A or N sintered plate used in the substrate of the present invention is preferably one having a thermal conductivity of 50 W/mIIK or more. Such an AIN sintered plate has a predetermined grain size (7)A, for example.
i N powder, Y 203! Y F 3 rSm
203, a sintering aid such as CacO3 and a binder component such as a wax type or plastic type are mixed in a predetermined ratio, and this mixture is formed into a sheet shape by pressure molding or a doctor blade at room temperature. The green molded body is then produced by sintering the green molded body.

このとき、AIN粉末や焼結助剤粉末の粒度。At this time, the particle size of the AIN powder and sintering aid powder.

両者の混合比、成形圧、焼結温度、焼結時間等の各工程
における条件を適宜選定することにより、得られるAI
N焼結板の特性を決定することができる。
AI obtained by appropriately selecting the conditions in each process such as the mixing ratio of both, molding pressure, sintering temperature, and sintering time.
The properties of the N sintered plate can be determined.

また、このAMN焼結板の表面に形成される導電性メタ
ライズ層は、W 、 M o 、 T i Nの少なく
とも1種を含む導電層である。
Further, the conductive metallized layer formed on the surface of this AMN sintered plate is a conductive layer containing at least one of W, Mo, and TiN.

具体的には、W 、 M o 、 T i Nのそれぞ
れ単独の成分から構成される層;WとMo、WとTiN
、MoとTiNのような2成分から構成される層;更に
はWとMoとTiNの3成分から構成される層である。
Specifically, a layer composed of individual components of W, Mo, and TiN; W and Mo, and W and TiN.
, a layer composed of two components such as Mo and TiN; furthermore, a layer composed of three components such as W, Mo and TiN.

多成分から構成されるメタライズ層の場合、各成分の存
在割合は格別限定されるものではない。
In the case of a metallized layer composed of multiple components, the proportion of each component present is not particularly limited.

本発明の基板にあっては、上記したAfLN焼結板とメ
タライズ層との界面近傍にYAG層が存在することを最
大の特徴とする。
The main feature of the substrate of the present invention is that a YAG layer is present near the interface between the above-described AfLN sintered plate and the metallized layer.

YAGは、一般に焼結助剤として配合されるY2O3が
、焼結過程でAIN中の不純物であるA又203と反応
して生成するものである0本発明にあっては、このYA
GがAfLN焼結板とメタライズ層の界面近傍に集中し
て層状に存在しているものである。
YAG is produced when Y2O3, which is generally blended as a sintering aid, reacts with A or 203, which is an impurity in AIN, during the sintering process.
In this case, G is concentrated in the vicinity of the interface between the AfLN sintered plate and the metallized layer and exists in the form of a layer.

このYAG層が形成されると接合強度が向上するという
理由は、YAGが基板であるAINとメタライズ層との
双方に拡散番浸透しているためであると考えられる。
The reason why the bonding strength is improved when this YAG layer is formed is thought to be that YAG has diffused into both the AIN substrate and the metallized layer.

本発明のAIN基板は次のようにして製造することがで
きる。
The AIN substrate of the present invention can be manufactured as follows.

まず常法にしたがって所定特性、とりわけ熱伝導率が5
0W/m11に以上のA4N焼結板を製造する。ついで
このAIN焼結板の表面に、目的とするメタライズ層を
形成する成分を含むペーストを塗布する。塗布方法とし
ては、例えばスクリーン印刷、刷毛塗り、スピンローラ
ー塗りなど周知の方法を適用すればよい。
First, according to the usual method, the prescribed properties, especially the thermal conductivity, are 5.
An A4N sintered plate with a power output of 0 W/m11 or more is manufactured. Next, a paste containing components for forming the desired metallized layer is applied to the surface of this AIN sintered plate. As a coating method, well-known methods such as screen printing, brush coating, spin roller coating, etc. may be used.

ペーストは、メタライズ層を形成する成分とそれを分散
せしめる媒体とから構成される。すなわち、W、Mo 
、Ti 、TiN層7)1種または適宜に組合わせた2
種以上の粉末を媒体に分散せしめて構成される0例えば
メタライズ層をTiN層とする場合は、ペースト成分と
して、Ti粉末またはTiN粉末を用いればよい。
The paste is composed of components that form the metallized layer and a medium that disperses them. That is, W, Mo
, Ti, TiN layer 7) One type or an appropriate combination of two
For example, if the metallized layer is a TiN layer, which is formed by dispersing more than one type of powder in a medium, Ti powder or TiN powder may be used as the paste component.

用いる媒体としては、例えばエチルセルロース、ニトロ
セルロースとそれらの溶剤としてのテレピネオール、テ
トラリン、ブチルカルピトールとの混合物をあげること
ができる。
Examples of the medium used include mixtures of ethylcellulose and nitrocellulose with their solvents such as terpineol, tetralin, and butylcarpitol.

上記成分の媒体への分散量は、得られたペーストの粘稠
性との関係で適宜法められる。前者が過多量である場合
は、得られたペーストが高粘稠となりiN焼結板への均
一塗布が困難となる。また、その逆の場合は、ペースト
粘度が低くなり塗布したペーストはA!;LN焼結板の
表面から流下してしまう。通常、1.0X105〜2.
5×105ボイズとなるように前者を後者に分散せしめ
ればよい。
The amount of the above components to be dispersed in the medium is determined as appropriate in relation to the viscosity of the resulting paste. If the former is in an excessive amount, the resulting paste will become highly viscous, making it difficult to uniformly apply it to the iN sintered board. Also, in the opposite case, the paste viscosity will be low and the applied paste will be A! ; It flows down from the surface of the LN sintered plate. Usually 1.0X105~2.
The former may be dispersed into the latter so that the number of voices becomes 5×105.

ペースト塗布後に全体を加熱してメタライズ層を形成す
る。この加熱処理時にあって、雰囲気は窒素ガス雰囲気
、温度は1600〜1900℃でることが必要である。
After applying the paste, the entire structure is heated to form a metallized layer. During this heat treatment, it is necessary that the atmosphere be a nitrogen gas atmosphere and the temperature be 1600 to 1900°C.

温度が1600℃より低い場合は、良質なメタライズ層
の形成が不充分であると同時に界面近傍におけるYAG
層の拡散・浸透も少なく接合強度の向上が不充分である
。また、1900℃より高い場合は、メタライズ層中の
Mo、W等の溶融が始まるので不都合である。好ましく
は1700〜1800℃である。
If the temperature is lower than 1600°C, the formation of a high-quality metallized layer is insufficient, and at the same time the YAG layer near the interface
There is also little diffusion and permeation of the layer, and the improvement in bonding strength is insufficient. Further, if the temperature is higher than 1900° C., Mo, W, etc. in the metallized layer start to melt, which is disadvantageous. Preferably it is 1700-1800°C.

この加熱過程では、A文N結晶粒間に存在しA!;L’
N焼結板の中に均一分布していたYAG結晶が液相状態
となり、メタライズ層との界面に移動してくるものと考
えられる。
In this heating process, A!N exists between the grains of A! ;L'
It is thought that the YAG crystals uniformly distributed in the N sintered plate enter a liquid phase state and move to the interface with the metallized layer.

なお、今までの説明においては、本発明のA文N基板の
製造時にAIN焼結板を用いる場合ついて述べたが、本
発明のAfLN基板の製造はこの方法に限定されるもの
ではなく、例えば、グリーン成形体の表面に上記したペ
ーストを塗布し、これに全体として加熱処理を施しても
よい。
In addition, in the explanation so far, the case where an AIN sintered plate is used when manufacturing the A-N substrate of the present invention has been described, but the manufacture of the AfLN substrate of the present invention is not limited to this method, and for example, Alternatively, the above-described paste may be applied to the surface of the green molded body, and the entire green molded body may be subjected to a heat treatment.

この場合は、グリーン成形体の焼結と同時にペーストの
メタライズ層化が進行することになる。
In this case, the metallization layering of the paste progresses simultaneously with the sintering of the green molded body.

(発明の実施例) 実施例1 粒径1〜2戸のMO粉末50重量部と粒径1〜2−のT
 i N粉末50重量部とを混合し、得られた混合粉1
00重量部をエチルセルロース7重量部に分散せしめて
粘度1.5X10sボイズのペーストを調製した。
(Embodiments of the invention) Example 1 50 parts by weight of MO powder with a particle size of 1 to 2 and T with a particle size of 1 to 2-
Mixed powder 1 obtained by mixing with 50 parts by weight of N powder
A paste with a viscosity of 1.5×10s voids was prepared by dispersing 00 parts by weight in 7 parts by weight of ethyl cellulose.

このペーストを、焼結助剤としてY2O3を5重量%含
有するAJINの基板の片面に15μの厚みでローラ塗
布した。
This paste was applied with a roller to a thickness of 15 μm on one side of an AJIN substrate containing 5% by weight of Y2O3 as a sintering aid.

この基板を乾燥窒素気流中において、温度1700℃で
約1時間焼結した。
This substrate was sintered at a temperature of 1700° C. for about 1 hour in a dry nitrogen stream.

得られたAfLN焼結体シートの表面にはメタライズ層
が形成されていた。このメタライズ層の構成相はMOと
TiNであることがX線回折によって確認された。
A metallized layer was formed on the surface of the obtained AfLN sintered body sheet. It was confirmed by X-ray diffraction that the constituent phases of this metallized layer were MO and TiN.

ついで、得られたA!;LN基板のメタライズ層とAI
N焼結板との界面近傍におけるEPMA線分析を行ない
、その結果を第1図に示した。
Then, I got an A! ; LN substrate metallized layer and AI
EPMA line analysis was conducted near the interface with the N sintered plate, and the results are shown in FIG.

図から明らかなように、界面のAL;LN焼結板側には
Yの集中的な偏在が認められ、YAG層の存在が示唆さ
れている。
As is clear from the figure, concentrated uneven distribution of Y is observed on the AL;LN sintered plate side of the interface, suggesting the presence of a YAG layer.

また、この界面近傍の走査電子顕微鏡写真を第2図とし
て示す。第2図から明らかなようにYAG結晶(図中の
白い部分)はA文N焼結板(図中、右側の部分)内に均
一に分散することなく、界面部分に集中している。
A scanning electron micrograph of the vicinity of this interface is shown in FIG. 2. As is clear from FIG. 2, the YAG crystals (white part in the figure) are not uniformly dispersed within the A-N sintered plate (the right part in the figure) but are concentrated at the interface.

次に、このAuN基板のメタライズ層の上に無電解めっ
き法によって厚み約3〜5JiIRのNiめっき層を形
成した。ついで、800℃のホーミングガス中でめっき
層をシンターしたのち、ここに、線径Q、5++m、引
張り強度55 kg/ mm2のコバール線を銀ろうを
用いてろう付けした。ろう付は温度は800℃、雰囲気
は水素50Vo1%、窒素50Vo1%の混合ガス雰囲
気であった。
Next, a Ni plating layer having a thickness of about 3 to 5 JiIR was formed on the metallized layer of this AuN substrate by electroless plating. Then, after sintering the plating layer in a homing gas at 800°C, a Kovar wire with a wire diameter Q of 5++m and a tensile strength of 55 kg/mm2 was brazed thereto using silver solder. The brazing temperature was 800° C. and the atmosphere was a mixed gas atmosphere of 50 Vol 1% hydrogen and 50 Vol 1% nitrogen.

その後、A交N基板を固定し室温(20℃)下でコバー
ル線を引張り、メタライズ層の剥離状態を観察した。
Thereafter, the A/N substrate was fixed, a Kovar wire was pulled at room temperature (20° C.), and the peeling state of the metallized layer was observed.

引張り強さ5kg/mm2のときにメタライズ層とコバ
ール線のろう行部分が引きちぎられた。すなわち、AI
N基板とメタライズ層との接合強度は5kg/ ■2以
上であることが判明した。
When the tensile strength was 5 kg/mm2, the metallized layer and the soldered portion of the Kovar wire were torn off. In other words, A.I.
It was found that the bonding strength between the N substrate and the metallized layer was 5 kg/2 or more.

比較のために、焼結温度を1600℃としたことを除い
ては実施例と同様にしてAJIN基板を製造した。
For comparison, an AJIN substrate was manufactured in the same manner as in the example except that the sintering temperature was 1600°C.

このAuN基板の界面近傍におけるEPMA線分析の結
果を第3図、走査電子顕微鏡写真を第4図に示した。
The results of EPMA line analysis near the interface of this AuN substrate are shown in FIG. 3, and the scanning electron micrograph is shown in FIG. 4.

第3図から明らかなように、Yは界面近傍に集中してい
ない。このことは1、第4図においてYAG結晶(図中
の白い部分)がAIN焼結板の中に均一に点在している
ことからも明瞭である。
As is clear from FIG. 3, Y is not concentrated near the interface. This is clear from the fact that YAG crystals (white portions in the figures) are uniformly scattered within the AIN sintered plate in FIGS. 1 and 4.

なお、このA4N基板におけるメタライズ層とAfLN
焼結板との接合強度は実施例と同様の方法で測定して1
 kg/ mad2以下であった。
Note that the metallized layer and AfLN in this A4N substrate
The bonding strength with the sintered plate was measured using the same method as in the example.
kg/mad2 or less.

[発明の効果] 以上の説明で明らかなように、本発明のAuN基板は、
メタライズ層とA4N焼結板の界面近傍にYAG層が集
中的に形成されているので、メタライズ層とAIN焼結
板との接合強度は高い。それゆえ、本発明のAfLN基
板は実用に供したときその信頼性が高く、その工業的価
値は大である。
[Effects of the Invention] As is clear from the above explanation, the AuN substrate of the present invention has the following effects:
Since the YAG layer is intensively formed near the interface between the metallized layer and the A4N sintered plate, the bonding strength between the metallized layer and the AIN sintered plate is high. Therefore, the AfLN substrate of the present invention has high reliability when put into practical use, and has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のAuN基板におけるメタライズ層とA
IN焼結板との界面近傍のEPMA線分析の結果を示す
図であり、第2図は界面近傍の金属組織を表わす走査電
子顕微鏡写真である。第3図は比較例のAuN基板にお
けるメタライズ層とA文N焼結板との界面近傍のEPM
A線分析の結果を示す図であり、第4図は界面近傍の金
属組織を表わす走査電子顕微鏡写真である。 第1図 ° 第21.;
Figure 1 shows the metallized layer and A of the AuN substrate of the present invention.
FIG. 2 is a diagram showing the results of EPMA line analysis near the interface with the IN sintered plate, and FIG. 2 is a scanning electron micrograph showing the metal structure near the interface. Figure 3 shows the EPM near the interface between the metallized layer and the A-N sintered plate in the AuN substrate of the comparative example.
FIG. 4 is a diagram showing the results of A-line analysis, and FIG. 4 is a scanning electron micrograph showing the metal structure near the interface. Figure 1° 21. ;

Claims (1)

【特許請求の範囲】[Claims]  窒化アルミニウム焼結板と該窒化アルミニウム焼結板
の表面に形成されたメタライズ層との界面近傍にイット
リウムガリウムガネット層が存在することを特徴とする
窒化アルミニウム基板。
An aluminum nitride substrate characterized in that a yttrium gallium gannet layer is present near the interface between a sintered aluminum nitride plate and a metallized layer formed on the surface of the sintered aluminum nitride plate.
JP62073989A 1987-03-30 1987-03-30 Aluminum nitride substrate and manufacturing method thereof Expired - Lifetime JPH0788266B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP62073989A JPH0788266B2 (en) 1987-03-30 1987-03-30 Aluminum nitride substrate and manufacturing method thereof
US07/174,902 US4883704A (en) 1987-03-30 1988-03-29 Circuit substrate comprising nitride type ceramics, method for preparing it, and metallizing composition for use in it
DE3855613T DE3855613T2 (en) 1987-03-30 1988-03-30 Metallized substrate for circuits made of nitride-type ceramics
DE3855680T DE3855680T2 (en) 1987-03-30 1988-03-30 Substrate for circuits made of nitride-type ceramics, process for its production and metallization
KR888803597A KR900006680B1 (en) 1987-03-30 1988-03-30 Circuit substrate comprising aitride type ceramics method for preparing it and metallizing composition for use in it
EP93111133A EP0574956B1 (en) 1987-03-30 1988-03-30 Metallized circuit substrate comprising nitride type ceramics
EP88105174A EP0285127B1 (en) 1987-03-30 1988-03-30 Circuit substrate comprising nitride type ceramics, method for preparing it, and metallizing composition for use in it
US07/410,863 US5063121A (en) 1987-03-30 1989-09-22 Circuit substrate comprising nitride type ceramics, method for preparing it, and metallizing composition for use in it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62073989A JPH0788266B2 (en) 1987-03-30 1987-03-30 Aluminum nitride substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS63242985A true JPS63242985A (en) 1988-10-07
JPH0788266B2 JPH0788266B2 (en) 1995-09-27

Family

ID=13534029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62073989A Expired - Lifetime JPH0788266B2 (en) 1987-03-30 1987-03-30 Aluminum nitride substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0788266B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126286A (en) * 1987-11-11 1989-05-18 Sumitomo Electric Ind Ltd Aluminum nitride sintered body having metallized surface and production thereof
JP2021157948A (en) * 2020-03-27 2021-10-07 日本特殊陶業株式会社 Ceramic heater and manufacturing method thereof
CN113956062A (en) * 2021-10-25 2022-01-21 燕山大学 Ceramic substrate AlN/Ti layered composite material and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108191449B (en) * 2018-01-03 2021-04-27 上海富乐华半导体科技有限公司 Copper-aluminum oxide ceramic substrate and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134587A (en) * 1986-11-20 1988-06-07 古河電気工業株式会社 Preparation of aluminum nitirde sintered body surface

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134587A (en) * 1986-11-20 1988-06-07 古河電気工業株式会社 Preparation of aluminum nitirde sintered body surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126286A (en) * 1987-11-11 1989-05-18 Sumitomo Electric Ind Ltd Aluminum nitride sintered body having metallized surface and production thereof
JP2021157948A (en) * 2020-03-27 2021-10-07 日本特殊陶業株式会社 Ceramic heater and manufacturing method thereof
CN113956062A (en) * 2021-10-25 2022-01-21 燕山大学 Ceramic substrate AlN/Ti layered composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0788266B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
US5063121A (en) Circuit substrate comprising nitride type ceramics, method for preparing it, and metallizing composition for use in it
US7433187B2 (en) Heat spreader module
JP4688380B2 (en) Circuit board and manufacturing method thereof
JPS63242985A (en) Aluminum nitride substrate
CN111933603A (en) Semiconductor chip packaging structure and preparation method thereof
JP2822518B2 (en) Method for forming metallized layer on aluminum nitride sintered body
JPH05238857A (en) Method for metallizing substrate of aluminum nitride
JP3482580B2 (en) High heat dissipation metal composite plate and high heat dissipation metal substrate using the same
JPS62197372A (en) Manufacture of aluminum nitride sintered body with electroconductive metallized layer
JPS62197375A (en) Aluminum nitride substrate
US3702787A (en) Method of forming ohmic contact for semiconducting devices
JP3569093B2 (en) Wiring board and method of manufacturing the same
JPS60107845A (en) Circuit substrate for semiconductor
JPS62182182A (en) Aluminum nitride sintered body with metallized surface
JP4880830B2 (en) Aluminum nitride substrate with metallized layer
JPH1013006A (en) Electronic component
KR900006680B1 (en) Circuit substrate comprising aitride type ceramics method for preparing it and metallizing composition for use in it
JP2537653B2 (en) Aluminum nitride substrate, manufacturing method, and semiconductor device
JPH07172961A (en) Sintered aluminum nitride having metallized layer and its production
JPH08109084A (en) Aluminum nitride sintered material having electrically conductive metallized layer and its manufacture
JP2704158B2 (en) Aluminum nitride sintered body having conductive metallized layer and method of manufacturing the same
JPH05320943A (en) Metallizing paste for aluminum nitride sintered compact
JPS62291153A (en) Ceramic circuit substrate
JP2001144447A (en) Aluminum nitride multilayer substrate
JPH0344064A (en) Junction structure of aluminum nitride substrate and metal substrate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070927

Year of fee payment: 12