JPS62197372A - Manufacture of aluminum nitride sintered body with electroconductive metallized layer - Google Patents

Manufacture of aluminum nitride sintered body with electroconductive metallized layer

Info

Publication number
JPS62197372A
JPS62197372A JP3382486A JP3382486A JPS62197372A JP S62197372 A JPS62197372 A JP S62197372A JP 3382486 A JP3382486 A JP 3382486A JP 3382486 A JP3382486 A JP 3382486A JP S62197372 A JPS62197372 A JP S62197372A
Authority
JP
Japan
Prior art keywords
group
metallized layer
elements
sintered body
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3382486A
Other languages
Japanese (ja)
Other versions
JPH0369873B2 (en
Inventor
英樹 佐藤
水野谷 信幸
光芳 遠藤
俊一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3382486A priority Critical patent/JPS62197372A/en
Priority to DE3789628T priority patent/DE3789628T3/en
Priority to EP87102344A priority patent/EP0235682B2/en
Priority to US07/016,557 priority patent/US4770953A/en
Priority to KR1019870001437A priority patent/KR900006122B1/en
Publication of JPS62197372A publication Critical patent/JPS62197372A/en
Publication of JPH0369873B2 publication Critical patent/JPH0369873B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、その表面に高い接合強度で導電性メタライズ
層が形成されている窒化アルミニウム(A!LN)焼結
体の製造方法に関し、更に詳しくは、AIHの焼結前駆
体を焼結すると同時にその表面に高い接合強度で導電性
メタライズ層を形成する方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing an aluminum nitride (A!LN) sintered body having a conductive metallized layer formed on its surface with high bonding strength. relates to a method of sintering an AIH sintered precursor and simultaneously forming a conductive metallized layer on its surface with high bonding strength.

[従来技術とその問題点] AfLN焼結体は熱伝導性が良好で放熱性に優れ、かつ
電気絶縁性を有するので、半導体用の基板材料として注
目を集めている。
[Prior art and its problems] AfLN sintered bodies have good thermal conductivity, excellent heat dissipation, and electrical insulation properties, so they are attracting attention as substrate materials for semiconductors.

このAIN焼結体は概ね次のようにして製造される。す
なわち、AIN粉末にy2o3 。
This AIN sintered body is generally manufactured as follows. That is, y2o3 to AIN powder.

Sm203 、CaOのような焼結助剤を所定量配合し
、更に必要に応じてアクリル系樹脂バインダーなどを添
加して全体を充分に混合し、得られた混合体を例えば加
圧成形して所定形状のA4N焼結前駆体(生成形体)と
したのち、これを例えば窒素雰囲気中にて所定温度で焼
結するのである。
A predetermined amount of sintering aids such as Sm203 and CaO are added, and an acrylic resin binder is added as needed, the whole is thoroughly mixed, and the resulting mixture is, for example, pressure molded to form a predetermined shape. After forming an A4N sintered precursor (formed body) in the shape, this is sintered at a predetermined temperature in, for example, a nitrogen atmosphere.

ところで、半導体用の基板としてAIN焼結体を用いる
場合には、このA、Q−N焼結体の表面に導電性の薄層
を形成することが必要となる。従来、この薄層はAIN
焼結体の表面にDBC法(Direct Band C
upper法)や厚膜法を適用して形成された銅(Cu
)、金(Au)、銀−パラジウム(Ag−Pd)のメタ
ライズ層であった。
By the way, when using an AIN sintered body as a substrate for a semiconductor, it is necessary to form a conductive thin layer on the surface of this A, Q-N sintered body. Traditionally, this thin layer is AIN
DBC method (Direct Band C) is applied to the surface of the sintered body.
copper (Cu upper method) or thick film method.
), gold (Au), and silver-palladium (Ag-Pd) metallized layers.

しかしながら、従来のこの基板においては次のような問
題がある。
However, this conventional substrate has the following problems.

その第1は、形成された上記メタライズ層とAfLN焼
結体表面との接合強度が低く往々にして両者間に剥離現
象が発生して基板の信頼性が低いということである。
The first problem is that the bonding strength between the formed metallized layer and the surface of the AfLN sintered body is low, and a peeling phenomenon often occurs between the two, resulting in low reliability of the substrate.

第2の問題は、形成したメタライズ層に所定の半導体素
子若しくはワイヤをろう付けしたり高温半田付けしたり
する際に生起する問題である。すなわち、例えばろう付
けの場合は水素−窒素混合ガス中において約800℃近
辺の温度で行なわれるが、しかしながら上記メタライズ
層焼付は処理時の温度は通常600−tooo℃程度の
低温であるため、このろう付は時にメタライズ層とAR
N焼結体表面との間の接合強度が著しく低下してしまい
事実上ろう付けが不可部になるということである。また
、高温半田付けの場合も同様の問題が発生する。
The second problem is a problem that occurs when a predetermined semiconductor element or wire is brazed or high-temperature soldered to the formed metallized layer. That is, for example, in the case of brazing, it is carried out in a hydrogen-nitrogen mixed gas at a temperature of around 800°C, however, the temperature during the process of baking the metallized layer is usually as low as 600-toooo°C. Brazing sometimes involves a metallized layer and AR
This means that the bonding strength with the surface of the N sintered body is significantly reduced, making brazing virtually impossible. A similar problem also occurs in the case of high-temperature soldering.

第3の問題は、AQN焼結体とメタライズ層との熱膨張
率の差異に基づく問題である。すなわち、ろう付け、高
温半田付けの場合もそうであるが、シリコンウェハーの
ような半導体素子をマウントせしめた基板はその使用時
に過酷な加熱−冷却の熱サイクルを経験する。その結果
、AIN焼結体−メタライズ層−ろう付は層(又は半田
層)−半導体素子のそれぞれの接合面では、各層の熱膨
張率の差異に基づく熱応力が発生してそれぞれを剥離せ
しめる作用が生ずる。
The third problem is a problem based on the difference in coefficient of thermal expansion between the AQN sintered body and the metallized layer. That is, as in the case of brazing and high-temperature soldering, a substrate on which a semiconductor element is mounted, such as a silicon wafer, undergoes severe thermal cycles of heating and cooling during use. As a result, at the bonding surfaces of the AIN sintered body - metallized layer - brazing layer (or solder layer) - semiconductor element, thermal stress is generated due to the difference in the coefficient of thermal expansion of each layer, causing each layer to peel off. occurs.

上記したメタライズ層の場合、AIN焼結体(熱膨張率
は約4.6XlO−6/”Cりの熱膨張率よりもその値
が約2〜4倍大きく、またろう付層(又は半田層)と同
等の値から繕位の値であってAINとの差が大きいので
、熱サイクル時にメタライズ層又はろう付は層(若しく
は半田層)とAIHの界面に微小クラックが発生し易い
、熱サイクルが加重されるにつれてこの微小クラックは
徐々に発達し、最終的にはマウントした半導体素子の剥
離を招くことがある。
In the case of the above metallized layer, the value is about 2 to 4 times larger than that of the AIN sintered body (the coefficient of thermal expansion is about 4.6XlO-6/"C), and the brazing layer (or solder layer ), and the difference from AIN is large, so micro-cracks are likely to occur at the interface between the metallized layer or brazing layer (or solder layer) and AIH during thermal cycling. As the load is applied, these microcracks gradually develop and may eventually lead to peeling of the mounted semiconductor element.

このような問題は半導体素子をマウントせしめた基板を
実装した装置の信頼性を低下せしめて極めて不都合であ
る。
Such a problem is extremely inconvenient because it reduces the reliability of a device mounted with a substrate on which a semiconductor element is mounted.

第4の問題は、上記メタライズ層とAiN焼結体との高
温下における接合強度が小さく、第2の場合と同様に高
温使用時の信頼性は低いということである。
The fourth problem is that the bonding strength between the metallized layer and the AiN sintered body at high temperatures is low, and as in the second case, reliability during high temperature use is low.

第5は、完成された基板からその製作工程を逆視した場
合、熱エネルギー使用の面で不経済であるということで
ある。すなわち、完成基板を得るためには、A9.N焼
結前駆体を焼結し、その上でこの焼結したものをメタラ
イズ層形成のために再び焼成するという問題である。
Fifth, when looking at the manufacturing process from the perspective of a completed board, it is uneconomical in terms of thermal energy usage. That is, in order to obtain a completed board, A9. The problem is that a N sintered precursor is sintered, and then the sintered material is fired again to form a metallized layer.

[発明の目的] 本発明は上記したような問題を解決し、AIN焼結前駆
体を焼結すると同時にその表面に、AfLN焼結体と熱
膨張率が近似しており、耐熱性も高く、しかも接合強度
も高い導電性メタライズ層を形成する方法の提供を目的
とする。
[Objective of the Invention] The present invention solves the above-mentioned problems, and at the same time sintering the AIN sintered precursor, the surface thereof has a coefficient of thermal expansion similar to that of the AfLN sintered body, and has high heat resistance. Moreover, the object of the present invention is to provide a method for forming a conductive metallized layer with high bonding strength.

[発明の概要] 本発明者らは上記目的を達成すべく鋭意研究を重ねた結
果、焼結前の/IN成形体に後述するペーストを塗布し
、両者を同時に焼結すると優れたメタライズ層をA!2
.N焼結体の表面に形成することができるとの事実を確
認して本発明方法を開発するに到った。
[Summary of the Invention] As a result of intensive research to achieve the above object, the present inventors have found that an excellent metallized layer can be formed by applying the paste described below to the /IN molded body before sintering and sintering both at the same time. A! 2
.. After confirming the fact that it can be formed on the surface of a N sintered body, we developed the method of the present invention.

すなわち、本発明の導電性メタライズ層を有するA!;
LN焼結体の製造方法は、A文Nの焼結前駆体にモリブ
デン(Mo)、タングステン(W)。
That is, A! having the conductive metallized layer of the present invention! ;
The method for manufacturing the LN sintered body uses molybdenum (Mo) and tungsten (W) as sintering precursors of Amon.

タンタル(T a)およびそれらの1種若しくは2種以
上を含有する化合物の群から選ばれる少なくとも1種と
、周期律表の■族元素、IVa族元素、希土類元素(希
土類元素はSc 、Yを含むランタン系である)、アク
チノイド系元素およびそれらの1種若しくは2種以上を
含有する化合物の群から選ばれる少なくとも1種とを含
むペーストを塗布し、ついで全体を同時に焼結すること
を特徴とする特 まず、本発明方法が適用されるAIN焼結前駆体は、例
えば所定粒度のAMN粉末と。
At least one member selected from the group consisting of tantalum (T a) and compounds containing one or more of them, and elements of group II of the periodic table, elements of group IVa, and rare earth elements (rare earth elements include Sc and Y). A paste containing at least one selected from the group of lanthanum-based elements (containing lanthanum-based elements), actinide-based elements, and compounds containing one or more of these elements is applied, and then the whole is sintered at the same time. In particular, the AIN sintering precursor to which the method of the present invention is applied is, for example, AMN powder of a predetermined particle size.

Y202  、YF3 、Sm203 、CaCO3の
ような焼結助剤の粉末とワックス系または、プラスチッ
ク系のようなバインダー成分とを所定量比で混合し、こ
の混合体を室温下において加圧成形又はドクターブレー
ドによりシート状に成形した成形体である。A文N粉末
、焼結助剤粉末の粒度。
A powder of a sintering aid such as Y202, YF3, Sm203, or CaCO3 is mixed with a wax-based or plastic-based binder component in a predetermined ratio, and this mixture is molded under pressure or with a doctor blade at room temperature. This is a molded body formed into a sheet shape. Particle size of A-mon powder and sintering aid powder.

混合比、または成形圧等は目的とするAuN焼結体の特
性との関係で適宜選定される。
The mixing ratio, molding pressure, etc. are appropriately selected in relation to the characteristics of the intended AuN sintered body.

本発明方法においては、このAIN焼結前駆体は焼結後
にその熱伝導率が50W/■・に以上となるようなもの
であることが好ましい。
In the method of the present invention, it is preferable that the AIN sintered precursor has a thermal conductivity of 50 W/■· or more after sintering.

このAIN焼結前駆体に、後述する組成のペーストが塗
布される。塗布方法としては、例えばスクリーン印刷、
刷毛塗り、スピンローラー塗りなど周知の方法を適用す
ればよい。
A paste having a composition described below is applied to this AIN sintered precursor. Application methods include screen printing,
Well-known methods such as brush coating and spin roller coating may be applied.

本発明方法にかかるペーストは、焼結後メタライズ層に
転化する2つのグループ成分I、ITとそれらを分散せ
しめる媒体とで構成される。
The paste according to the method of the invention consists of two group components I, IT, which are converted into a metallized layer after sintering, and a medium in which they are dispersed.

まず、グループ成分工としては、MO、W。First, the group component works are MO and W.

Taおよびこれら元素をそれぞれ1種若しくは2種以上
含む化合物の群から選ばれる少なくとも1種である。
It is at least one selected from the group of compounds containing Ta and one or more of these elements.

具体的には次のような成分である。すなわち、M o 
、 W 、 T aの単体金属;これらの各種酸化物;
これらの各種炭化物;これらの各種ホウ化物;これらの
各種ケイ化物;これらの各種酸窒化物;これらの各種炭
窒化物:これらの各種ハロゲン化物;これらの各種水素
化物;これらの各種水酸化物;これらの元素の亜硝酸塩
、硝酸塩、亜硫酸塩、硫酸塩、ホウ酸塩、炭酸塩、ケイ
酸塩、リン酸塩。
Specifically, the ingredients are as follows. That is, M o
, W, Ta; various oxides thereof;
These various carbides; These various borides; These various silicides; These various oxynitrides; These various carbonitrides; These various halides; These various hydrides; These various hydroxides; nitrites, nitrates, sulfites, sulfates, borates, carbonates, silicates, phosphates of these elements.

亜すン醜塩、塩酸塩、塩素酸塩、シュウ酸塩、アンモニ
ウム塩のような各種の塩;アトロンNTa/700(商
品名二日本曹達輛製)等のフルコキシド、ゾル−ゲルの
ような各種の有機金属化合物;並びに上記した成分の2
種以上を適宜に混合した混合物をあげることができる。
Various salts such as sulfur salt, hydrochloride, chlorate, oxalate, and ammonium salt; various types of flucoxide and sol-gel such as Atron NTa/700 (trade name manufactured by Nippon Soda Co., Ltd.); an organometallic compound; and two of the above-mentioned components.
A mixture of more than one species may be used.

これらの成分はそれぞれ単独で用いてもよいし、また適
宜に選定した2種以上を組合わせて用いてもよい。
These components may be used alone or in combination of two or more appropriately selected.

形成すべきメタライズ層の導電性を高めるという点では
、とくにM o 、 W 、 T aの各単体金属であ
ることが好ましい。
In terms of increasing the conductivity of the metallized layer to be formed, single metals such as Mo, W, and Ta are particularly preferable.

グループIIの成分としては、周期律表の■族元素、T
Va族元素、希土類元素(希土類元素はSc、Yを含む
ランタン系である)、アクチノイド系元素およびこれら
元素をそれぞれ1種若しくは2種以上含む化合物の群か
ら選ばれる少なくとも1種である。
Group II components include group II elements of the periodic table, T
At least one element selected from the group of Va group elements, rare earth elements (rare earth elements are lanthanum elements including Sc and Y), actinide elements, and compounds containing one or more of these elements.

これらのうち、■族元素としては、A文。Among these, as a group ■ element, it is A sentence.

Ga、Inをあげることができる。とくにAnは好適で
ある。IVa族元素としては、Ti、Zr。
Ga and In can be mentioned. An is particularly suitable. Group IVa elements include Ti and Zr.

Hfをあげることができる。とくにTiはグループIの
成分がいかなるものであった場合でも、焼結後は良好な
メタライズ層を形成することができて好適である。希土
類元素としては、Sc。
Hf can be increased. In particular, Ti is suitable because it can form a good metallized layer after sintering, regardless of the group I components. As a rare earth element, Sc.

Y、La、Ce、Pr、Nd、Sm、Gd等をあげるこ
とができる。とくにY、Smは好適である。アクチノイ
ド系元素としては、Ac、Th等をあげることができる
。とくにAcは好適である。
Examples include Y, La, Ce, Pr, Nd, Sm, and Gd. Particularly suitable are Y and Sm. Actinide elements include Ac, Th, and the like. Ac is particularly suitable.

グループIIの成分としては具体的に次のようなものを
あげることができる。すなわち、■族元素。
Specific examples of Group II components include the following: In other words, group ■ elements.

■a族元素、希土類元素、アクチノイド系元素のそれぞ
れの単体;これら各元素の酸化物;これらの各元素の窒
化物;これらの各元素の炭化物;これら各元素のホウ化
物;これらの各元素のケイ化物;これら各元素の酸窒化
物;これら各元素の炭窒化物;これら各元素のハロゲン
化物;これら各元素の水素化物:これらの各元素の水酸
化物;これら各元素の亜偽酸塩、硝酸塩、亜硫酸塩、硫
酸塩、ホウ酸111 、炭酸塩、ケイ酸塩、リン酸塩、
亜リン酸、塩酸塩、塩素酸塩、シュウ酸塩、アンモニウ
ム塩のような各種の塩;アトロンNTi(商品名二日本
曹達■製)等のフルコキシド、ゾル−ゲルのような各種
の有機金属化合物;並びに上記した成分の2種以上を適
宜に混合した混合物をあげることができる。これらの成
分はそれぞれ単独で用いてもよいし、また適宜に選定し
た2種以上を組合わせて用いてもよい。
■Each of group A elements, rare earth elements, and actinide elements; oxides of these elements; nitrides of these elements; carbides of these elements; borides of these elements; Silicides; oxynitrides of these elements; carbonitrides of these elements; halides of these elements; hydrides of these elements; hydroxides of these elements; pseudosalts of these elements , nitrates, sulfites, sulfates, boric acid 111, carbonates, silicates, phosphates,
Various salts such as phosphorous acid, hydrochloride, chlorate, oxalate, and ammonium salt; various organometallic compounds such as flucoxide and sol-gel such as Atron NTi (trade name manufactured by Nippon Soda ■); and a mixture of two or more of the above-mentioned components as appropriate. These components may be used alone or in combination of two or more appropriately selected.

これらグループエの成分とグループHの成分とを媒体に
均一分散せしめて本発明にかかるペーストが調製される
。用いる媒体としては、例えばエチルセルロース、ニト
ロセルロースとそれら溶剤としてテレピネオール、テト
ラリン、ブチルカルピトールをあげることができる。
The paste according to the present invention is prepared by uniformly dispersing these Group E components and Group H components in a medium. Examples of the medium used include ethylcellulose and nitrocellulose, and their solvents include terpineol, tetralin, and butylcarpitol.

なお、グループIの成分は、形成されたメタライズ層に
おいて主にその導電性及び耐熱性を高位の水準に維持す
るための有効成分であり、また、グループ■の成分は、
上記グループエの成分を結着せしめてメタライズ層の強
度を保持するに有効な成分であると推考される。
In addition, the components of group I are effective components mainly for maintaining the conductivity and heat resistance of the formed metallized layer at a high level, and the components of group
It is thought that this is an effective component for binding the above-mentioned group components and maintaining the strength of the metallized layer.

このときのグループIyL分とグループ■成分との量比
関係は、それぞれに選定された成分の種類によって変動
するが、通常、重量比で、グループ■成分/グループ■
成分=l/100−10/1であればよい、ただし、グ
ループI成分を含まない場合、つまりグループI成分/
グループ■成分=O/100の場合であってもよいが、
グループI成分とグループ■成分の両者から構成されて
いる方が良好なメタライズ層の形成が可f距であるので
好ましい。
At this time, the quantitative ratio relationship between group IyL and group ■ components varies depending on the type of each component selected, but usually, in terms of weight ratio, group ■ component / group ■
It suffices if component = l/100-10/1. However, if it does not contain group I component, that is, group I component/
Although it may be the case that group ■ component = O/100,
It is preferable that the metallized layer is composed of both the group I component and the group (II) component because a good metallized layer can be formed with a flexible f distance.

また、グループII成分のうち、第■族系のものが重量
比でl/2〜2/l、第■族系のものが115〜l/1
であるものは好適である。
In addition, among the Group II components, the weight ratio of Group II components is 1/2 to 2/l, and the weight ratio of Group II components is 115 to 1/1.
It is preferable that

グループエの成分がグループIIの成分よりもあまり多
すぎる場合は形成されたメタライズ層の強度が低下し、
また逆の場合はその導電性が満足すべき水準に達しない
からである。
If the Group E component is too much than the Group II component, the strength of the formed metallized layer will decrease;
In the opposite case, the conductivity does not reach a satisfactory level.

グループIの成分とグループIIの成分の媒体への分/
l&ffiは、得られたペーストの粘稠性との関係で適
宜状められる。前者が過多量である場合は、得られたペ
ーストが高粘稠となりA見N焼結前駆体の表面への均一
塗布が困難となる。また、その逆の場合は、ペースト粘
度が低くなり塗布したペーストはAILN焼結前駆体の
表面から流下してしまう0通常、ペースト粘度が1.0
Xlo’〜2.5X10’ポイズとなるように前者を後
者に分散せしめればよい。
Group I ingredients and Group II ingredients into the medium/
l&ffi is determined as appropriate in relation to the viscosity of the obtained paste. If the former amount is too large, the resulting paste will become highly viscous, making it difficult to uniformly apply it to the surface of the A-type N sintered precursor. In the opposite case, the paste viscosity becomes low and the applied paste flows down from the surface of the AILN sintered precursor.Normally, the paste viscosity is 1.0.
The former may be dispersed into the latter so that Xlo' to 2.5X10' poise.

本発明方法は、上記したペーストをA見N焼結前駆体の
表面に塗布したのち全体を同時に焼結する。この同時焼
結に先立ち、A見N焼結前駆体のバインダ成分およびペ
ーストの媒体を除去するために1例えば50〜700℃
というような温度で脱脂処理を施してもよい。
In the method of the present invention, the above-described paste is applied to the surface of the A-type N sintered precursor, and then the whole is sintered at the same time. Prior to this co-sintering, the binder components of the A-N sintered precursor and the paste medium are removed at a temperature of 1, e.g., 50-700°C.
Degreasing treatment may be performed at such a temperature.

焼結は窒素雰囲気中で行なわれる。焼結温度。Sintering takes place in a nitrogen atmosphere. Sintering temperature.

焼結時間は、焼結後のAiN焼結体が所望の特性1例え
ば熱伝導率50w1lIIK以上となるような条件とし
て設定される。具体的には、焼結温度1600〜200
0℃、好ましくは1700〜1800℃であり、焼結時
間は0.2〜5時間。
The sintering time is set as a condition such that the AiN sintered body after sintering has a desired property 1, for example, a thermal conductivity of 50W11IIK or more. Specifically, the sintering temperature is 1600 to 200
The temperature is 0°C, preferably 1700-1800°C, and the sintering time is 0.2-5 hours.

好ましくは0.5〜1.5時間である。Preferably it is 0.5 to 1.5 hours.

かくして、AfLN焼結体の表面には塗布されたペース
トのメタライズ層が導電性の薄層として形成される。
In this way, a metallized layer of the applied paste is formed as a conductive thin layer on the surface of the AfLN sintered body.

[発明の実施例] 実施例1 (1)ペーストの調製 グループIの成分として粒径0.5〜1.0μのMO粒
粉末用意し、グループIIの成分とじて粒径1.0〜2
.0−のTiN粉末を用意した。
[Examples of the invention] Example 1 (1) Preparation of paste Prepare MO grain powder with a particle size of 0.5 to 1.0μ as a component of group I, and a particle size of 1.0 to 2 as a component of group II.
.. 0-TiN powder was prepared.

前者50重量部と後者50玉量部とを混合した。50 parts by weight of the former and 50 parts by weight of the latter were mixed.

得られた混合粉100重量部をエチルセルロース7重量
部に分散せしめて粘度2.0X105ボイズのペースト
とした。
100 parts by weight of the obtained mixed powder was dispersed in 7 parts by weight of ethyl cellulose to form a paste with a viscosity of 2.0 x 105 voids.

(2)メタライズ層の形成 焼結助剤としてY2O3を3重量%含有するAiNのグ
リーンシートの片面に、(1)で調製したペーストを厚
み15%でローラー塗布した。
(2) Formation of metallized layer The paste prepared in (1) was applied with a roller to a thickness of 15% on one side of an AiN green sheet containing 3% by weight of Y2O3 as a sintering aid.

ついで、700℃の窒素雰囲気中で180分間焼成して
脱脂処理を施したのち、全体を窒素気流中、温度180
0℃で約1時間焼結した。
Then, after degreasing by firing in a nitrogen atmosphere at 700°C for 180 minutes, the whole was heated at a temperature of 180°C in a nitrogen stream.
Sintering was performed at 0°C for about 1 hour.

得られたAIIN焼結体シートの表面には、メタライズ
層が形成されていた。このメタライズ層の構成相はMo
とT i NであることがX線回折によって確認された
A metallized layer was formed on the surface of the obtained AIIN sintered body sheet. The constituent phase of this metallized layer is Mo
It was confirmed by X-ray diffraction that it was T i N.

(3)メタライズ層と/IN焼結体シートとの接合強度 (2)で得られたメタライズ層の上に無電解めっき法に
よって厚み約3〜5−のNiめつき層を形成した。つい
で、800℃のホーミングガス中でめっき層をアニール
したのち、ここに、線径0.5mm、引張り強度55 
kg/ a+s+2のコバール線を銀ろうを用いてろう
付けした。ろう付は温度は800″C1雰囲気は水素5
0Vo1%、窒素50Vo1%の混合ガス雰囲気であっ
た。
(3) Bonding strength between metallized layer and /IN sintered sheet On the metallized layer obtained in (2), a Ni plating layer with a thickness of approximately 3 to 5 mm was formed by electroless plating. Then, after annealing the plating layer in a homing gas at 800°C, a wire with a wire diameter of 0.5 mm and a tensile strength of 55
Kovar wire of kg/a+s+2 was brazed using silver solder. Brazing temperature is 800″C1 atmosphere is hydrogen 5
The atmosphere was a mixed gas of 0Vo1% and nitrogen 50Vo1%.

その後、A文N焼結体シートを固定し室温(20℃)下
でコバール線を引張り、メタライズ層の剥離状態を観察
した。
Thereafter, the A-mon N sintered body sheet was fixed and a Kovar wire was pulled at room temperature (20° C.), and the peeling state of the metallized layer was observed.

引張り強さ5 kg/ mm2のときにメタライズ層と
コバール線のろう付部分が引きちぎられた。すなわち、
AIN焼結体シートとメタライズ層との接合強度は5 
kg/腸履2以上であることが判明した。
The brazed portion of the metallized layer and Kovar wire was torn off when the tensile strength was 5 kg/mm2. That is,
The bonding strength between the AIN sintered sheet and the metallized layer is 5
It was found that the weight was 2 kg/kg or more.

実施例2〜5 グループエの成分、グループHの成分をそれぞれ表示の
ように選定して各種のペーストを調製した。これらのペ
ーストを実施例1と同様のAuNグリーンシートの表面
に塗布し、脱脂処理を施したのち、表示の条件で焼結し
た。
Examples 2 to 5 Various pastes were prepared by selecting Group E components and Group H components as shown. These pastes were applied to the surface of the same AuN green sheet as in Example 1, subjected to degreasing treatment, and then sintered under the indicated conditions.

得られた各種の焼結体シートにおけるメタライズ層とA
IN焼結体シートとの接合強度を実施例1と同様の方法
で測定した。その結果を一括して表に示した。
The metallized layer and A in the various sintered sheets obtained
The bonding strength with the IN sintered sheet was measured in the same manner as in Example 1. The results are summarized in the table.

比較例1 熱伝導率が7ON130 W/m−にである3枚のAf
LN焼結板の表面に厚膜法を適用してそれぞれAu、C
u、Ag−Pd層を焼付けた。
Comparative Example 1 Three sheets of Af having a thermal conductivity of 7ON130 W/m-
The thick film method was applied to the surface of the LN sintered plate to deposit Au and C, respectively.
u, Ag-Pd layer was baked.

得られたメタライズ層のそれぞれにニッケルメッキを施
した銅ピンを半田付けしたのち、このピンを引張ってメ
タライズ層とAIN焼結板表面との接合強度を測定した
。いずれの場合も、約l kg/ mm2であった。
After soldering a nickel-plated copper pin to each of the obtained metallized layers, the pins were pulled to measure the bonding strength between the metallized layer and the surface of the AIN sintered plate. In both cases it was approximately 1 kg/mm2.

比較例2 熱伝導率が70〜130W/麿・にであるAffiN焼
結板の表面に実施例3で用いたペーストを塗布し170
0℃で焼付けた。得られたメタライズ層に700〜80
0℃でコバールピンをろう付けし、このピンを引張るこ
とによって接合強度を測定した・2・Okg/ ts+
”であった。
Comparative Example 2 The paste used in Example 3 was applied to the surface of an AffiN sintered plate with a thermal conductivity of 70 to 130 W/mm.
Baked at 0°C. 700-80 to the obtained metallized layer
Kovar pins were brazed at 0℃ and the joint strength was measured by pulling the pins.・2・Okg/ts+
"Met.

比較例3 用いたペーストが実施例2で用いたペーストであったこ
とを除いて1よ、比較例2と同様にしてメタライズ層を
形成した。接合強度は比較例2と略同じ値であった。
Comparative Example 3 A metallized layer was formed in the same manner as in Comparative Example 2 except that the paste used was the paste used in Example 2. The bonding strength was approximately the same value as Comparative Example 2.

[発明の効果] 以上の説明で明らかなように1本発明方法は、■AIN
焼結体表面にそれとの接合強度が高い導電性メタライズ
層を形成することができる、■そのメタライズ層はMo
、W、Taなどの高融点金属を含有していて耐熱性に優
れ、かつ熱膨張率もA文N焼結体と近似したflである
ため熱衝撃層としての機能をも有する、■そしてAfL
N焼結前駆体を焼結すると同時に塗布したペーストをメ
タライズ層に転化せしめるので熱経済的に有利である、
などの効果を奏しその工業的価値は大である。
[Effect of the invention] As is clear from the above explanation, the method of the present invention has ■AIN
A conductive metallized layer with high bonding strength can be formed on the surface of the sintered body. ■The metallized layer is made of Mo.
, contains high melting point metals such as W and Ta, has excellent heat resistance, and has a coefficient of thermal expansion similar to that of the A-N sintered body, so it also functions as a thermal shock layer.
It is thermoeconomically advantageous because the applied paste is converted into a metallized layer at the same time as the N sintering precursor is sintered.
It has the following effects and has great industrial value.

本発明方法で製造されたAfLN焼結体は上記した効果
を奏するので、イグナイター、高周波トランス、コンデ
ンサーのような基板部材;レーザ管用絶縁管、電力管用
絶縁外囲器、高周波′ii磁波進行波管の窓、高エネル
ギービーム照射用窓、マグネトロンのような部材;チュ
ーブヒーター、面ヒータ−、シースヒーター、ハンダゴ
テ、アイロンのプレス板、灸用器具、コーヒーメーカー
用のヒーター、ズボンプレッサー、ホットプレート。
Since the AfLN sintered body produced by the method of the present invention exhibits the above-mentioned effects, it can be used for substrate members such as igniters, high-frequency transformers, and capacitors; insulating tubes for laser tubes, insulating envelopes for power tubes, and high-frequency traveling magnetic wave tubes. windows, high-energy beam irradiation windows, components such as magnetrons; tube heaters, surface heaters, sheath heaters, soldering irons, press plates for irons, moxibustion equipment, heaters for coffee makers, trouser presses, hot plates.

便座、調理用なべ、熱転写プリンターのヘッド。Toilet seats, cooking pots, thermal transfer printer heads.

プラグ、熱電対の保護管、るつぼばさみの先端部、金属
溶融用るつぼ、単結晶引上げ用るつぼなどの部材に適用
することができて有用である。
It is useful because it can be applied to members such as plugs, thermocouple protection tubes, crucible scissor tips, metal melting crucibles, and single crystal pulling crucibles.

Claims (1)

【特許請求の範囲】[Claims]  窒化アルミニウムの焼結前駆体に、モリブンデン、タ
ングステン、タンタルおよびそれらの1種若しくは2種
以上を含有する化合物の群から選ばれる少なくとも1種
と、周期律表のIII族元素、IVa族元素、希土類元素(
希土類元素はSc、Yを含むランタン系である)、アク
チノイド系元素およびそれらの1種若しくは2種以上を
含有する化合物の群から選ばれる少なくとも1種とを含
むペーストを塗布し、ついで全体を同時に焼結すること
を特徴とする導電性メタライズ層を有する窒化アルミニ
ウム焼結体の製造方法。
The sintered precursor of aluminum nitride contains at least one member selected from the group of molybundenum, tungsten, tantalum, and compounds containing one or more thereof, and group III elements, group IVa elements, and rare earth elements of the periodic table. element(
A paste containing at least one element selected from the group of rare earth elements (a lanthanum element including Sc and Y), an actinide element, and a compound containing one or more of these elements is applied, and then the whole is coated at the same time. A method for producing an aluminum nitride sintered body having a conductive metallized layer, the method comprising sintering the aluminum nitride sintered body.
JP3382486A 1986-02-20 1986-02-20 Manufacture of aluminum nitride sintered body with electroconductive metallized layer Granted JPS62197372A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3382486A JPS62197372A (en) 1986-02-20 1986-02-20 Manufacture of aluminum nitride sintered body with electroconductive metallized layer
DE3789628T DE3789628T3 (en) 1986-02-20 1987-02-19 Sintered body made of aluminum nitride with conductive metallized layer.
EP87102344A EP0235682B2 (en) 1986-02-20 1987-02-19 Aluminium nitride sintered body having conductive metallized layer
US07/016,557 US4770953A (en) 1986-02-20 1987-02-19 Aluminum nitride sintered body having conductive metallized layer
KR1019870001437A KR900006122B1 (en) 1986-02-20 1987-02-20 Aluminum nitride sintered body and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3382486A JPS62197372A (en) 1986-02-20 1986-02-20 Manufacture of aluminum nitride sintered body with electroconductive metallized layer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6037555A Division JP2898877B2 (en) 1994-02-14 1994-02-14 Aluminum nitride sintered body having conductive metallized layer and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS62197372A true JPS62197372A (en) 1987-09-01
JPH0369873B2 JPH0369873B2 (en) 1991-11-05

Family

ID=12397234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3382486A Granted JPS62197372A (en) 1986-02-20 1986-02-20 Manufacture of aluminum nitride sintered body with electroconductive metallized layer

Country Status (1)

Country Link
JP (1) JPS62197372A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329991A (en) * 1986-07-23 1988-02-08 株式会社東芝 Circuit board
JPS63195183A (en) * 1987-02-06 1988-08-12 住友電気工業株式会社 Aln sintered body with metallized surface and manufacture
JPH01122984A (en) * 1987-11-06 1989-05-16 Sumitomo Electric Ind Ltd Aluminum nitride sintered form provided with metallization treatment
JPH01260713A (en) * 1988-04-08 1989-10-18 Toshiba Corp Metallized paste composition for nitride-based ceramic substrate
JPH02159797A (en) * 1988-12-14 1990-06-19 Toshiba Corp Ceramic multilayer board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329991A (en) * 1986-07-23 1988-02-08 株式会社東芝 Circuit board
JPS63195183A (en) * 1987-02-06 1988-08-12 住友電気工業株式会社 Aln sintered body with metallized surface and manufacture
JPH0511069B2 (en) * 1987-02-06 1993-02-12 Sumitomo Electric Industries
JPH01122984A (en) * 1987-11-06 1989-05-16 Sumitomo Electric Ind Ltd Aluminum nitride sintered form provided with metallization treatment
JPH01260713A (en) * 1988-04-08 1989-10-18 Toshiba Corp Metallized paste composition for nitride-based ceramic substrate
JPH02159797A (en) * 1988-12-14 1990-06-19 Toshiba Corp Ceramic multilayer board

Also Published As

Publication number Publication date
JPH0369873B2 (en) 1991-11-05

Similar Documents

Publication Publication Date Title
KR900006122B1 (en) Aluminum nitride sintered body and manufacture thereof
EP0285127B1 (en) Circuit substrate comprising nitride type ceramics, method for preparing it, and metallizing composition for use in it
US4761345A (en) Aluminum nitride substrate
JPS58223678A (en) Sic sintered body with metallized layer and manufacture
JPS62197372A (en) Manufacture of aluminum nitride sintered body with electroconductive metallized layer
JP2822518B2 (en) Method for forming metallized layer on aluminum nitride sintered body
JP2704159B2 (en) Aluminum nitride sintered body having conductive metallized layer and method of manufacturing the same
JPH08109084A (en) Aluminum nitride sintered material having electrically conductive metallized layer and its manufacture
JPS62197375A (en) Aluminum nitride substrate
JPS63242985A (en) Aluminum nitride substrate
JP2537606B2 (en) Ceramic Heater
JP2704158B2 (en) Aluminum nitride sintered body having conductive metallized layer and method of manufacturing the same
JPH0369874B2 (en)
JPH0450186A (en) Method for forming metallized layer on aluminum nitride substrate
JP3230861B2 (en) Silicon nitride metallized substrate
JPS62197376A (en) Aluminum nitride substrate
JPS62197378A (en) Insulative substance for high frequency transistor
JPH0631186B2 (en) Substrate for igniter
JP2590558B2 (en) Substrate for semiconductor device with excellent heat dissipation
JP2616060B2 (en) Substrate material for semiconductor devices with excellent heat dissipation
JPS62225886A (en) Crucible
JPH01196149A (en) Substrate for semiconductor device with excellent heat-dissipating performance
JPH0834686A (en) Aluminum nitride sintered compact with electrically conductive metallizing layer and its production
JPH04206185A (en) Ain ceramics heater and its manufacture
JPH06128722A (en) Formation of metallizing layer on aluminum nitride substrate