JPH02159797A - Ceramic multilayer board - Google Patents
Ceramic multilayer boardInfo
- Publication number
- JPH02159797A JPH02159797A JP31395988A JP31395988A JPH02159797A JP H02159797 A JPH02159797 A JP H02159797A JP 31395988 A JP31395988 A JP 31395988A JP 31395988 A JP31395988 A JP 31395988A JP H02159797 A JPH02159797 A JP H02159797A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- tungsten
- transition metal
- firing
- conductive layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 64
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical group [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 28
- 239000010937 tungsten Substances 0.000 claims abstract description 28
- 150000003624 transition metals Chemical class 0.000 claims abstract description 18
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims description 22
- 238000010304 firing Methods 0.000 abstract description 26
- 238000000034 method Methods 0.000 abstract description 9
- 238000000280 densification Methods 0.000 abstract description 6
- 239000004020 conductor Substances 0.000 description 14
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000000926 separation method Methods 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的コ
(産業上の利用分野)
本発明は、交互に積層された導電層とセラミックス層と
が、同時焼成されているセラミックス多層基板に関する
。DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Industrial Application Field) The present invention relates to a ceramic multilayer substrate in which conductive layers and ceramic layers that are alternately laminated are co-fired.
(従来の技術)
ハイブリッドICは、基板表面を2次元的に利用する形
で発展してきた。しかし、ICの高密度化の勢いは激し
く、より高い単位面積当たりの回路密度を実現する実装
形態として基板の多層化による3次元的回路構成が取入
れられている。(Prior Art) Hybrid ICs have been developed by utilizing the surface of a substrate two-dimensionally. However, there is a strong trend toward increasing the density of ICs, and three-dimensional circuit configurations based on multilayered substrates are being adopted as a mounting form to achieve higher circuit density per unit area.
このような多層化の方法として、薄膜多層、厚膜多層お
よびグリーンシート多層などが挙げられるが、層数、す
なわち回路密度の点においてグリンシート多層が最も有
利である。Examples of such multilayering methods include thin film multilayering, thick film multilayering, and green sheet multilayering, but green sheet multilayering is the most advantageous in terms of the number of layers, that is, circuit density.
これは、薄膜多層は層形成に複雑な工程と高価な設備を
要し、厚膜多層は層を重ねる毎に焼成を行うため下部に
形成した層が繰返し熱履歴を受けることになり、層数に
制限が生じるためである。This is because thin film multilayers require complicated processes and expensive equipment to form layers, and thick film multilayers are fired each time they are layered, so the layer formed at the bottom is subjected to repeated thermal history, and the number of layers increases. This is because there are restrictions on
グリーンシート多層によるセラミックス多層基板は、セ
ラミックス層と導電層とか交互に積層されており、上下
の導電層はセラミックス層に設けられているスルーホー
ルによって導通している。A ceramic multilayer board made of multilayer green sheets has ceramic layers and conductive layers stacked alternately, and the upper and lower conductive layers are electrically connected through through holes provided in the ceramic layers.
このような多層基板は、たとえば、あらかじめ導通用の
スルーホールを設けたグリーンシートにタングステンま
たはモリブデンなどを主成分とする導体ペーストを印刷
し、また、上下の配線が接続するようにスルーホールに
も同種のペースト全印刷した後、必要な層の数だけグリ
ーンシートを重ねて熱圧着した後、同時焼成することな
どにより作製される。Such multilayer boards are made by, for example, printing a conductive paste containing tungsten or molybdenum as a main component on a green sheet with through holes for conduction in advance, and also adding through holes to connect the upper and lower wiring. After printing all of the same type of paste, stacking the required number of green sheets, thermocompression bonding, and simultaneous firing.
また、セラミックスとして、熱伝導率、放熱性に優れ、
加えてシリコンチップに近似した低熱膨張率を有してい
る窒化アルミニウムセラミックスが多用され始めている
。In addition, as a ceramic, it has excellent thermal conductivity and heat dissipation.
In addition, aluminum nitride ceramics, which have a low coefficient of thermal expansion similar to that of silicon chips, are beginning to be used frequently.
(発明が解決しようとする課題)
しかしながら、上述したような同時焼成による方法を用
いる場合、タングステンの緻密化が充分に進行する温度
は、セラミックスの焼成温度領域である1300℃〜2
000℃よりも高く、従来の焼成方法ではタングステン
の緻密化が不十分なため導体抵抗が高くなるという問題
や、焼成時におけるセラミックスとタングステンの収縮
量に差が生じるという問題があった。(Problem to be Solved by the Invention) However, when using the above-mentioned simultaneous firing method, the temperature at which tungsten becomes sufficiently densified is within the ceramic firing temperature range of 1300°C to 2.0°C.
000° C., and conventional firing methods have the problem of high conductor resistance due to insufficient densification of tungsten, and the problem of a difference in the amount of shrinkage between ceramics and tungsten during firing.
このため、焼成時にセラミックス多層基板のセラミック
ス層に割れや反り、歪みなどが生じ、これによってセラ
ミックス層と導電層との間の剥離などを招いていた。For this reason, cracks, warpage, distortion, etc. occur in the ceramic layer of the ceramic multilayer substrate during firing, which causes separation between the ceramic layer and the conductive layer.
そして、窒化アルミニウムセラミックスを使用する場合
、上述した問題に加えて、窒化アルミニウムはタングス
テンペーストとの接合力が弱いため、セラミックス層−
導電層間の剥離や多層基板としての強度低下が顕著であ
り、窒化アルミニウムの優れた特性を充分に生かすこと
ができなかった。When using aluminum nitride ceramics, in addition to the above-mentioned problems, aluminum nitride has a weak bonding force with tungsten paste, so the ceramic layer
Separation between conductive layers and a decrease in strength as a multilayer substrate were noticeable, and the excellent properties of aluminum nitride could not be fully utilized.
また、上述したような収縮量の差を低減させるために、
タングステンペースト中に、使用するセラミックス基板
と同一のセラミックス粉末を添加することが試みられて
いるか、導体抵抗が大ぎくなってしまうという難点を有
していた。In addition, in order to reduce the difference in the amount of shrinkage as described above,
Attempts have been made to add the same ceramic powder as the ceramic substrate to be used into the tungsten paste, but this has had the disadvantage of increasing conductor resistance.
本発明はこのような課題に対処するためになされたもの
で、導体抵抗の低減と、同時焼成を行ってもセラミック
ス層に゛割れや歪みを生じさせず、セラミックス層−導
電層間の剥離を防ぎ、充分な強度を有する、信頼性の高
いセラミックス多層基板を提供することを目的とする。The present invention has been made to address these issues, and aims to reduce conductor resistance, prevent cracks or distortions in the ceramic layer even when simultaneously fired, and prevent separation between the ceramic layer and the conductive layer. The purpose of the present invention is to provide a highly reliable ceramic multilayer substrate having sufficient strength.
[発明の構成コ
(課題を解決するための手段)
本発明は、タングステンを主成分とし、所望形状の回路
を形成する導電層と、セラミックス層とが交互に積層さ
れ、これら導電層とセラミックス層とが同時焼成されて
いるセラミックス多層基板において、前記導電層が■族
あるいは■族の遷移金属を含有することを特徴としてい
る。[Structure of the Invention (Means for Solving the Problems) The present invention is characterized in that conductive layers containing tungsten as a main component and forming a circuit of a desired shape and ceramic layers are alternately laminated. The conductive layer is characterized in that the conductive layer contains a group (1) or group (2) transition metal.
本発明における導電層は、タングステンを主成分とする
導体ペーストを、焼成後にセラミックス層となるグリー
ンシート上に塗布し、必要な数だけ重ねて熱圧着した後
、これら導電層とセラミックス層とを同時焼成すること
によって形成されている。The conductive layer in the present invention is produced by applying a conductive paste containing tungsten as a main component onto a green sheet that will become a ceramic layer after firing, stacking the required number of sheets and thermo-compression bonding, and then simultaneously combining the conductive layer and the ceramic layer. It is formed by firing.
そして、この導電層はニッケル、コバルト、クロムなど
の■族あるいは■族の遷移金属を含有している。これら
の遷移金属が導電層中に含有される量は、焼成温度とタ
ングステンの緻密化との関係からみて、0.1〜5重量
%が好ましい。これは、遷移金属の含有量が余り多いと
、焼成時に溶融した遷移金属成分がセラミックス層表面
まで到達し、セラミックス成分と混じりあうことによっ
て抵抗特性が低下する可能性があるためである。This conductive layer contains a transition metal of Group 1 or Group 2, such as nickel, cobalt, and chromium. The content of these transition metals in the conductive layer is preferably 0.1 to 5% by weight in view of the relationship between firing temperature and densification of tungsten. This is because if the transition metal content is too high, the transition metal components melted during firing may reach the surface of the ceramic layer and mix with the ceramic components, resulting in a decrease in resistance characteristics.
一方、本発明のセラミックス多層基板におけるセラミッ
クス層となるグリーンシートは、ドクタブレード法やカ
レンダー法などによって作製され、成分としては、窒化
アルミニウム、アルミナなど特に限定はないが、従来タ
ングステンペーストとの接合力が弱く、信頼性の低かっ
た窒化アルミニウムセラミックスを用いる場合に特に有
効である。On the other hand, the green sheet serving as the ceramic layer in the ceramic multilayer substrate of the present invention is produced by a doctor blade method, a calender method, etc., and its components include aluminum nitride, alumina, etc., but are not particularly limited. This is particularly effective when using aluminum nitride ceramics, which have weak properties and low reliability.
なぜならば、窒化アルミニウムセラミックスはセラミッ
クス内に不均一に存在する粒界構成相成分か導電層との
接合に関与しており、熱伝導率が180W/m K以上
と大きく粒界相の少ないものについては、通常の焼成温
度領域である1300℃〜2000℃で焼成を行うと、
不良品の発生が多く、形状修正の必要が生じていた。し
かし、本発明のセラミックス多層基板によれば、上述し
たような焼成温度においても窒化アルミニウムセラミッ
クスと導電層との接合が可能となるからである。This is because aluminum nitride ceramics are involved in bonding with the grain boundary phase components that exist unevenly within the ceramic or with the conductive layer, and the thermal conductivity is 180 W/mK or higher and there are few grain boundary phases. When fired at the normal firing temperature range of 1300°C to 2000°C,
There were many defective products, and the shape needed to be corrected. However, according to the ceramic multilayer substrate of the present invention, it is possible to bond the aluminum nitride ceramic and the conductive layer even at the above-mentioned firing temperature.
(作 用)
本発明においては、タングステンを主成分とする導電層
がVI族あるいはVIII族の遷移金属を含有している
ため、これら遷移金属か焼結助剤的に働いて、セラミッ
クスの焼成温度領域である1300〜2000℃で、タ
ングステンの粒界にタングステンと遷移−金属とが合金
化するなどして、タングステンの緻密化か進行し、セラ
ミックスとタングステンの焼成時における収縮量の差が
緩和される。(Function) In the present invention, since the conductive layer containing tungsten as a main component contains transition metals of group VI or group VIII, these transition metals act as sintering aids and reduce the firing temperature of ceramics. In the range of 1,300 to 2,000°C, tungsten and transition metals form an alloy at the grain boundaries of tungsten, which progresses to densification of tungsten, and the difference in the amount of shrinkage between ceramics and tungsten during firing is alleviated. Ru.
これによって、焼成時においてセラミックス層に割れや
歪みが生じるのを防ぎ、セラミックス層−導電層間の剥
離を防止することができる。This prevents cracks and distortions from occurring in the ceramic layer during firing, and prevents separation between the ceramic layer and the conductive layer.
また、形状修正の手間を省き、コストダウンを図ること
も可能である。Moreover, it is also possible to reduce costs by eliminating the need for shape correction.
(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.
実施例1
平均粒径0.8μmのタングステン粉末99,5重量%
と、平均粒径1.0μmのニッケル粉末0.5重量%と
を混合し、この混合粉末に有機バインダを加えて、導体
ペーストを調製した。Example 1 99.5% by weight of tungsten powder with an average particle size of 0.8 μm
and 0.5% by weight of nickel powder having an average particle size of 1.0 μm were mixed, and an organic binder was added to this mixed powder to prepare a conductor paste.
この導体ペーストを、所望の回路形状となるように窒化
アルミニウムを主成分とするグリーンシト上に塗布した
。This conductor paste was applied onto a green sheet containing aluminum nitride as a main component so as to form a desired circuit shape.
このように導体ペーストを塗布したグリーンシトを4枚
重ねて、80°C、150kg/ cJで熱圧着した後
、1800℃、2時間で常圧焼成を行った。Four sheets of green sheets coated with the conductive paste were stacked together and thermocompression bonded at 80°C at 150 kg/cJ, followed by normal pressure firing at 1800°C for 2 hours.
こうして得たセラミックス多層基板について、セラミッ
クス層−導電層間の接合強度および導体抵抗を測定した
。その結果を第1表に示した。Regarding the ceramic multilayer substrate thus obtained, the bonding strength and conductor resistance between the ceramic layer and the conductive layer were measured. The results are shown in Table 1.
実施例2〜6
第1表に示す遷移金属を用いて、第1表に示すように含
有量を変化させ、それぞれの焼成条件に従って、実施例
1と同様にセラミックス多層基板を作製した。Examples 2 to 6 Ceramic multilayer substrates were produced in the same manner as in Example 1 using the transition metals shown in Table 1, varying the contents as shown in Table 1, and following the respective firing conditions.
得られたセラミックス多層基板について、セラミックス
層−導電層間の接合強度および導体抵抗を実施例1と同
一の条件で1llll定した。その結果を実施例1と併
せて第1表に示した。Regarding the obtained ceramic multilayer substrate, the bond strength and conductor resistance between the ceramic layer and the conductive layer were determined under the same conditions as in Example 1. The results are shown in Table 1 together with Example 1.
比較例1
平均粒径08μmのタングステン粉末90,0重量%と
、平均粒径2μmの窒化アルミニウム粉末10.0重量
%とを混合し、この混合粉末に有機バインダを加えて導
体ペーストを調製した。Comparative Example 1 A conductor paste was prepared by mixing 90.0% by weight of tungsten powder with an average particle size of 08 μm and 10.0% by weight of aluminum nitride powder with an average particle size of 2 μm, and adding an organic binder to this mixed powder.
この導体ペーストを、所望の回路形状となるように窒化
アルミニウムを主成分とするグリーンシート上に塗布し
た。This conductor paste was applied onto a green sheet containing aluminum nitride as a main component so as to form a desired circuit shape.
このように導体ペーストを塗布したグリーンシートを4
枚重ねて、80℃、150kg/cシで熱圧着した後、
1800℃、2時間で常圧焼成を行った。4 green sheets coated with conductive paste in this way
After stacking the sheets and heat-pressing them at 80℃ and 150kg/c,
Normal pressure firing was performed at 1800°C for 2 hours.
こうして得たセラミックス多層基板について、セラミッ
クス層−導電層間の接合強度および導体抵抗を測定した
。その結果を上述した実施例と併せて第1表に示した。Regarding the ceramic multilayer substrate thus obtained, the bonding strength and conductor resistance between the ceramic layer and the conductive layer were measured. The results are shown in Table 1 together with the above-mentioned Examples.
比較例2
平均粒径0.8μmのタングステン粉末に有機バインダ
を加えて導体ペーストを調製した。Comparative Example 2 A conductive paste was prepared by adding an organic binder to tungsten powder having an average particle size of 0.8 μm.
この導体ペーストを、所望の回路形状となるように窒化
アルミニウムを主成分とするグリーンシート上に塗布し
、比較例1と同一の条件でセラミックス多層基板を作製
した。This conductive paste was applied onto a green sheet containing aluminum nitride as a main component so as to form a desired circuit shape, and a ceramic multilayer substrate was produced under the same conditions as in Comparative Example 1.
得られたセラミックス多層基板について、セラミックス
層−導電層間の接合強度および導体抵抗を測定した。そ
の結果を上述した実施例および比較例と併せて第1表に
示した。Regarding the obtained ceramic multilayer substrate, the bonding strength and conductor resistance between the ceramic layer and the conductive layer were measured. The results are shown in Table 1 together with the above-mentioned Examples and Comparative Examples.
(以下余白)
第
表
この結果から、タングステンを主成分とする導電層に■
族あるいは■族の遷移金属を含有させると、セラミック
スとタングステンの焼成時における収縮量の差が緩和さ
れ、セラミックス層−導電層間の剥がれなどが防止され
るのみならず、接合強度が向上することが明らかとなっ
た。(Left below) From the results in Table 1, it can be seen that the conductive layer mainly composed of tungsten is
Inclusion of group or group II transition metals alleviates the difference in the amount of shrinkage between ceramics and tungsten during firing, which not only prevents peeling between the ceramic layer and the conductive layer but also improves the bonding strength. It became clear.
さらに、遷移金属を含有させたタングステンペストは、
セラミックスの焼成温度領域でも緻密化が充分に進行し
、導体抵抗の低減を図ることができた。Furthermore, tungsten pest containing transition metals is
Densification progressed sufficiently even in the firing temperature range of ceramics, and it was possible to reduce conductor resistance.
また、上述した実施例および比較例におけるセラミック
ス多層基板の形状について比較すると、本発明による多
層基板は従来の導体ペーストを使用したものより形状不
良が少ないため、形状修正の必要がなく、歩留りの向上
と共にコスト低減を図ることができた。Furthermore, when comparing the shapes of the ceramic multilayer substrates in the above-mentioned examples and comparative examples, the multilayer substrates according to the present invention have fewer shape defects than those using conventional conductor paste, so there is no need for shape correction, and the yield is improved. At the same time, we were able to reduce costs.
このほか、遷移金属としてニッケルを用いれば、セラミ
ックス多層基板の最外層に半導体素子などを塔載するた
めニッケルめっきを施す際、めっきとの付着力を向上さ
せることができる。In addition, if nickel is used as the transition metal, it is possible to improve the adhesion to the plating when nickel plating is applied to the outermost layer of a ceramic multilayer substrate to mount a semiconductor element or the like.
なお、この実施例では窒化アルミニウム基板を使用した
場合について述べなが、本発明はこれに限るものではな
く、アルミナ、炭化ケイ素など他のセラミックス基板を
用いても差支えない。Although this embodiment describes the case where an aluminum nitride substrate is used, the present invention is not limited to this, and other ceramic substrates such as alumina and silicon carbide may also be used.
[発明の効果]
以上説明したように、本発明によれば、タングステンを
主成分とする導電層に■族あるいは■族の遷移金属を含
有させているため、セラミックスの焼成温度においてタ
ングステンの緻密化か充分に進行し、セラミックスとタ
ングステンとの焼成時における収縮量の差を緩和するこ
とができる。[Effects of the Invention] As explained above, according to the present invention, since the conductive layer containing tungsten as a main component contains a transition metal of the group III or group III, the densification of tungsten is suppressed at the firing temperature of ceramics. The process progresses sufficiently, and the difference in the amount of shrinkage between ceramics and tungsten during firing can be alleviated.
これによって、セラミックス層−導電層間の接合強度を
向上させることができる。Thereby, the bonding strength between the ceramic layer and the conductive layer can be improved.
さらに、タングステンの緻密化が充分に進行するため、
導体抵抗の低減を図ることができる。Furthermore, since the tungsten becomes sufficiently densified,
Conductor resistance can be reduced.
代理人 弁理士 則 近 憲 右Agent Patent Attorney Norihiro Kon
Claims (1)
する導電層と、セラミックス層とが交互に積層され、こ
れら導電層とセラミックス層とが同時焼成されているセ
ラミックス多層基板において、前記導電層がVI族あるい
はVIII族の遷移金属を含有することを特徴とするセラミ
ックス多層基板。(1) A ceramic multilayer substrate in which conductive layers containing tungsten as a main component and forming a circuit of a desired shape and ceramic layers are alternately laminated, and these conductive layers and ceramic layers are co-fired. A ceramic multilayer substrate characterized by containing a Group VI or Group VIII transition metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31395988A JPH02159797A (en) | 1988-12-14 | 1988-12-14 | Ceramic multilayer board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31395988A JPH02159797A (en) | 1988-12-14 | 1988-12-14 | Ceramic multilayer board |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02159797A true JPH02159797A (en) | 1990-06-19 |
Family
ID=18047548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31395988A Pending JPH02159797A (en) | 1988-12-14 | 1988-12-14 | Ceramic multilayer board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02159797A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06177546A (en) * | 1992-12-08 | 1994-06-24 | Sumitomo Metal Ind Ltd | Conductor paste and ceramic multilayer interconnection board |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53124772A (en) * | 1977-04-06 | 1978-10-31 | Ngk Insulators Ltd | Ceramic body having metallized layer |
JPS54164251A (en) * | 1978-06-17 | 1979-12-27 | Ngk Insulators Ltd | Ceramic body provided with metallized layer |
JPS57206088A (en) * | 1981-06-12 | 1982-12-17 | Ngk Spark Plug Co | Ceramic metallized ink |
JPS6273799A (en) * | 1985-09-27 | 1987-04-04 | 日本電気株式会社 | Multilayer ceramic circuit substrate |
JPS62136501A (en) * | 1985-12-09 | 1987-06-19 | Shinko Electric Ind Co Ltd | Metallized powder for ceramics and metallized paste for ceramics using said powder |
JPS62197374A (en) * | 1986-02-20 | 1987-09-01 | 株式会社東芝 | Aluminum nitride sintered body |
JPS62197372A (en) * | 1986-02-20 | 1987-09-01 | 株式会社東芝 | Manufacture of aluminum nitride sintered body with electroconductive metallized layer |
-
1988
- 1988-12-14 JP JP31395988A patent/JPH02159797A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53124772A (en) * | 1977-04-06 | 1978-10-31 | Ngk Insulators Ltd | Ceramic body having metallized layer |
JPS54164251A (en) * | 1978-06-17 | 1979-12-27 | Ngk Insulators Ltd | Ceramic body provided with metallized layer |
JPS57206088A (en) * | 1981-06-12 | 1982-12-17 | Ngk Spark Plug Co | Ceramic metallized ink |
JPS6273799A (en) * | 1985-09-27 | 1987-04-04 | 日本電気株式会社 | Multilayer ceramic circuit substrate |
JPS62136501A (en) * | 1985-12-09 | 1987-06-19 | Shinko Electric Ind Co Ltd | Metallized powder for ceramics and metallized paste for ceramics using said powder |
JPS62197374A (en) * | 1986-02-20 | 1987-09-01 | 株式会社東芝 | Aluminum nitride sintered body |
JPS62197372A (en) * | 1986-02-20 | 1987-09-01 | 株式会社東芝 | Manufacture of aluminum nitride sintered body with electroconductive metallized layer |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06177546A (en) * | 1992-12-08 | 1994-06-24 | Sumitomo Metal Ind Ltd | Conductor paste and ceramic multilayer interconnection board |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7473460B2 (en) | Ceramic substrate, electronic apparatus, and method for producing ceramic substrate | |
WO2004074210A1 (en) | Ceramics-metal composite body and method of producing the same | |
JP2001060767A (en) | Method for manufacturing ceramic board and unfired ceramic board | |
JPH06329481A (en) | Ceramics-metal composite and its production | |
JPH0679995B2 (en) | WN metallization structure of AlN substrate | |
JPH02159797A (en) | Ceramic multilayer board | |
JPH05152463A (en) | Mullite-alumina multilayer board, its production and ceramic package | |
JP2005501795A (en) | Method for manufacturing ceramic substrate and ceramic substrate | |
JP2692332B2 (en) | Manufacturing method of aluminum nitride substrate | |
JPS62206861A (en) | Ceramic multilayer circuit board and semiconductor mounting structure | |
JP4782397B2 (en) | Conductive paste and method for manufacturing wiring board using the same | |
JP2001085839A (en) | Method for manufacturing multi-ceramic substrate | |
JPS6010696A (en) | Method of producing thin film ceramic circuit board | |
JP4493158B2 (en) | Ceramic circuit board | |
JPH0624880A (en) | Metal-ceramic material and production thereof | |
JP3121769B2 (en) | Silicon nitride multilayer substrate and method of manufacturing the same | |
JP2002134885A (en) | Circuit board, manufacturing method thereof, electronic device mounting body, and green sheet | |
US6395337B1 (en) | Substrate with ceramic coating for camber modification and method for making | |
JPH0795630B2 (en) | Composite monolithic ceramic parts | |
JPH08274422A (en) | Circuit board | |
JPH10107180A (en) | Silicon nitride wiring board and its manufacturing method | |
JP3878784B2 (en) | Manufacturing method of glass ceramic substrate | |
JP3450111B2 (en) | Metallized composition and wiring board using the same | |
JP3722419B2 (en) | Au conductor paste and glass ceramic circuit board manufacturing method | |
JP2002179467A (en) | METALLIZED AlN SUBSTRATE AND ITS PRODUCTION PROCESS |