JPH07172961A - Sintered aluminum nitride having metallized layer and its production - Google Patents

Sintered aluminum nitride having metallized layer and its production

Info

Publication number
JPH07172961A
JPH07172961A JP31867093A JP31867093A JPH07172961A JP H07172961 A JPH07172961 A JP H07172961A JP 31867093 A JP31867093 A JP 31867093A JP 31867093 A JP31867093 A JP 31867093A JP H07172961 A JPH07172961 A JP H07172961A
Authority
JP
Japan
Prior art keywords
aluminum nitride
metallized layer
sintered body
nitride sintered
metal paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31867093A
Other languages
Japanese (ja)
Inventor
Takao Kanamaru
孝男 金丸
Masakazu Iida
正和 飯田
Masato Kumagai
正人 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd, Kawasaki Steel Corp filed Critical Kawasaki Refractories Co Ltd
Priority to JP31867093A priority Critical patent/JPH07172961A/en
Publication of JPH07172961A publication Critical patent/JPH07172961A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5133Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the refractory metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a metallized product of sintered aluminum nitride having high reliability and practical bonding strength and exhibiting high reliability in soldering and high-temperature soldering. CONSTITUTION:This invention relates to a sintered aluminum nitride having a metallized layer formed by using a high-melting metal paste composed mainly of tungsten and/or molybdenum and a process for the production of the metallized product. The sum of the aluminum, yttrium and oxygen in the high-melting metal paste is adjusted to 0.1-20wt.% and the total content of the group IVa elements of the Periodic Table (titanium, zirconium and hafnium) is 0.1-50wt.%. The post-baking of the high-melting metal paste is carried out in a non-oxidizing atmosphere, more preferably in a non-oxidizing atmosphere containing >=5mol% of nitrogen gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒化アルミニウム焼結
体とその製造方法に関し、特にろう付けや高温ハンダ付
を可能とするメタライズ層を有する窒化アルミニウム焼
結体とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum nitride sintered body and a method for producing the same, and more particularly to an aluminum nitride sintered body having a metallized layer that enables brazing and high temperature soldering and a method for producing the same. .

【0002】[0002]

【従来の技術】パワー半導体デバイスを搭載されるセラ
ミックス製の絶縁板は、セラミックス基材の下層に例え
ばCu−Fe−Ag系材料の熱伝導率の高い金属板が放
熱板として積層配置されてなり、これらパワー半導体デ
バイス、セラミックス基材、及び放熱板は相互にロウ付
けやハンダ付けによって接合される。
2. Description of the Related Art A ceramic insulating plate on which a power semiconductor device is mounted is formed by laminating a metal plate of Cu-Fe-Ag type material having high thermal conductivity as a heat radiating plate under a ceramic base material. The power semiconductor device, the ceramic base material, and the heat dissipation plate are joined to each other by brazing or soldering.

【0003】上記セラミックス基材の裏面に接合される
金属板は、パワー半導体デバイスの熱障害を防止するた
めの放熱層としての機能を果たすものであり、これによ
って半導体デバイスが発生するジュール熱を効率よく放
散させることができる。
The metal plate bonded to the back surface of the ceramic base material functions as a heat dissipation layer for preventing heat failure of the power semiconductor device, and thereby the Joule heat generated by the semiconductor device is efficiently generated. Can be well dissipated.

【0004】上記セラミックス基材としてはアルミナ質
焼結体が多く使用されてきたが、より高度な信頼性、耐
久性が半導体デバイスに要求されるようになり、セラミ
ックス基材としてはより熱伝導率が高く、かつ半導体デ
バイスを構成するシリコンの熱膨張率に近い窒化アルミ
ニウム焼結体も採用されるようになってきた。
Alumina-based sintered bodies have been often used as the ceramic base material, but semiconductor devices are required to have higher reliability and durability, and the ceramic base material has higher thermal conductivity. Aluminum nitride sintered bodies, which have a high thermal conductivity and are close to the coefficient of thermal expansion of silicon constituting a semiconductor device, have also been adopted.

【0005】ところで上記セラミックス基材はそのまま
の状態ではハンダ濡れ性が悪いところから、予め表面に
所定パターンのメタライズ層を形成する前処理が施され
る。該メタライズ層を形成するには、例えばタングステ
ン(W)、モリブデン(Mo)等の高融点金属ペースト
をスクリーン印刷等の手法で所定パターンに塗布し、1
100〜1600℃の湿潤窒素−水素雰囲気中で焼結さ
せるようにした、いわゆるテレフンケン法とよばれる前
処理が行われ、さらに必要に応じて該メタライズ層上に
無電解メッキなどによりNi,Cu,Au,Pt等の金
属被膜を選択的に形成し、上記ハンダや銀ロウの載りを
よくするようしている。
By the way, since the above-mentioned ceramic base material has a poor solder wettability as it is, a pretreatment for forming a metallized layer having a predetermined pattern on the surface is performed in advance. To form the metallized layer, a refractory metal paste such as tungsten (W) or molybdenum (Mo) is applied in a predetermined pattern by a method such as screen printing, and 1
A pretreatment called a so-called telefunken method, which is performed by sintering in a wet nitrogen-hydrogen atmosphere at 100 to 1600 ° C., is performed, and if necessary, Ni, Cu, or the like is electroplated on the metallized layer. A metal film of Au, Pt, or the like is selectively formed to improve the mounting of the solder or the silver solder.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記テ
レフンケン法はアルミナ質焼結体で構成されたセラミッ
クス基材に対しては実用に耐えうる接合強度で形成され
るものの、窒化アルミニウム焼結体に適用した場合には
次のような事情によりメタライズ層が充分な接合強度で
該焼結体上に形成できなかった。
However, although the above-mentioned Telefunken method is formed with a bonding strength that can withstand practical use with a ceramic substrate composed of an alumina sintered body, it is applied to an aluminum nitride sintered body. In such a case, the metallized layer could not be formed on the sintered body with sufficient bonding strength due to the following circumstances.

【0007】すなわち、上記テレフンケン法はアルミナ
質材料中におけるアルミナ成分の粒界に存在するSiO
2 によって促進される金属酸化物(この場合はW,M
o)の液相反応を利用することによって該W,Moより
なるメタライズ層を該焼結体に接合させることができる
のに対して、窒化アルミニウム質焼結体には上記SiO
2 等の不純物が含有されないため上記液相反応が生じ難
い傾向にある。
That is, the above Telefunken method uses alumina.
Existing in the grain boundary of the alumina component in the porous material
2Metal oxides promoted by (in this case W, M
By utilizing the liquid phase reaction of o)
Can be bonded to the sintered body
On the other hand, the above-mentioned SiO is contained in the aluminum nitride sintered body.
2The above liquid phase reaction does not easily occur because impurities such as
Tend to be

【0008】そこで、上記のような問題を解決すべく様
々な検討がなされ、例えば特開昭63−115393号
公報には、上記高融点金属ペーストに接合強度増強剤と
してSiO2 、Al2 3 、CaOの酸化物混合体を添
加し、窒化アルミニウム焼結体上に印刷した後、160
0℃以上で焼成する方法が、また特開昭64−8358
6号公報には、上記接着強度増強剤としてCaO、Y2
3 、Al2 3 を添加し、印刷した後、1500℃〜
2000℃で焼成する方法等が開示されている。
Therefore, various studies have been made to solve the above problems. For example, in Japanese Patent Laid-Open No. 63-115393, SiO 2 and Al 2 O 3 are added to the refractory metal paste as a bonding strength enhancer. , CaO oxide mixture was added and printed on the aluminum nitride sintered body.
A method of baking at 0 ° C. or higher is also disclosed in JP-A 64-8358.
No. 6 discloses, as the above-mentioned adhesive strength enhancer, CaO, Y 2
After adding O 3 and Al 2 O 3 and printing, 1500 ° C.
A method of firing at 2000 ° C. is disclosed.

【0009】ところが、上記特開昭63−115393
号公報、特開昭64−83586号公報のいずれに記載
の製造方法によっても充分な接合強度を付与することが
できないばかりでなく、上記接合強度増強剤として添加
した酸化物成分がメタライズ層上にガラス成分として表
出するため、却ってハンダとの濡れを阻害し、メッキ不
良及びハンダ濡れ不良が発生するという問題点があっ
た。
However, the above-mentioned Japanese Patent Laid-Open No. 63-115393.
In addition to the fact that sufficient bonding strength cannot be imparted by any of the manufacturing methods described in JP-A No. 8-83586 and JP-A-64-83586, the oxide component added as the above-mentioned bonding strength enhancer is present on the metallized layer. Since it is expressed as a glass component, there is a problem that it rather impedes the wetting with solder, resulting in poor plating and poor solder wetting.

【0010】さらに上記のようにより高温で焼成を行う
必要があり、窒化アルニウム焼結体に対する熱ストレス
が増大するため、一定以上の製品歩留まりをあげること
ができなかった。
Further, as described above, it is necessary to perform the firing at a high temperature, and the thermal stress on the aluminum nitride sintered body increases, so that the product yield above a certain level cannot be raised.

【0011】本発明は上記従来の事情に鑑みてなされた
ものであって、信頼性が高く、実用的な接着強度を備
え、かつ、ろう付けや高温はんだ付けに対して高い信頼
性を有する窒化アルミニウム焼結体のメタライズ技術を
提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and has high reliability, practical adhesive strength, and high reliability for brazing and high-temperature soldering. It is an object of the present invention to provide a metallization technology for an aluminum sintered body.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、タングステン及び/又はモリブデンを主
成分とする高融点金属ペーストによるメタライズ層を有
する窒化アルミニウム焼結体及びその製造方法を前提と
し、以下の手段を提供する。
In order to achieve the above object, the present invention provides an aluminum nitride sintered body having a metallized layer made of a refractory metal paste containing tungsten and / or molybdenum as a main component, and a method for producing the same. As a premise, the following means are provided.

【0013】すなわち、上記高融点金属ペースト中のア
ルミニウム、イットリウム、酸素の総含有量を0.1〜
20重量%とし、また周期律表の第IVa族元素(チタニ
ウム、ジルコニウム、ハフニウム)の総含有量を0.1
〜50重量%としたことを特徴とするものであり、上記
高融点金属ペーストの後の焼成を非酸化性雰囲気下、よ
り望ましくは5モル%以上の窒素ガスが存在する非酸化
性雰囲気下で行うようにするものである。
That is, the total content of aluminum, yttrium and oxygen in the high melting point metal paste is 0.1 to 0.1%.
20% by weight, and the total content of Group IVa elements (titanium, zirconium, hafnium) of the periodic table is 0.1
˜50% by weight, and the firing after the refractory metal paste is performed in a non-oxidizing atmosphere, more preferably in a non-oxidizing atmosphere in which 5 mol% or more of nitrogen gas is present. It is something to do.

【0014】[0014]

【作用】本発明によって良好なメタライズ層を得るに到
る具体的な機構は未だ明確にはなっていないが、各構成
材料が以下のような作用を奏するものと推定される。
Although the specific mechanism for obtaining a good metallized layer according to the present invention has not been clarified yet, it is presumed that each constituent material has the following effects.

【0015】すなわち、上記金属ペーストに添加される
第IVa族元素の窒化物は、窒化アルミニウム焼結体表面
の結晶方位と極めて整合性の良い結晶方位を有し、両者
の界面において強固な接合構造を形成することが透視型
電子顕微鏡で確認されている。本発明においても同様に
焼成によって第IVa族元素の窒化物が窒化アルミニウム
焼結体との界面において生成され、これによって相互が
強固に接合するものと推定される。
That is, the nitride of the group IVa element added to the above metal paste has a crystal orientation that is extremely well matched with the crystal orientation of the surface of the aluminum nitride sintered body, and has a strong joint structure at the interface between the two. It has been confirmed by a transmission electron microscope that the In the present invention as well, it is presumed that similarly, a nitride of a Group IVa element is generated at the interface with the aluminum nitride sintered body by firing, whereby the elements are strongly bonded to each other.

【0016】また上記第IVa族元素がメタライズ層−窒
化アルミニウム焼結体界面へ拡散する際に、Al
2 3 、Y2 3 の一部と共に移動するため、メタライ
ズ層上に表出する金属酸化物の量を減少させ、従来のよ
うに酸化物による液相反応のみを利用した方法と比較し
て、メッキ不良やハンダ濡れ不良を解消することができ
ると考えられる。
When the Group IVa element diffuses into the interface of the metallized layer-aluminum nitride sintered body, Al
To move with a part of the 2 O 3, Y 2 O 3 , to reduce the amount of metal oxide exposed on the metallized layer, as compared by the conventional oxide as the method using only the liquid phase reaction Therefore, it is considered possible to eliminate defective plating and poor solder wetting.

【0017】また、上記Al2 3 、Y2 3 は、窒化
アルミニウムの焼結助材として一般的に用いられている
ことからも明らかなように、窒化アルミニウムと安定な
界面を形成する作用があり、上記第IVa族元素の窒化物
と窒化アルミニウム焼結体との接合を阻害するものでは
なく、むしろW、Moの粒子の焼結助材としての効果も
期待される。
Further, as is clear from the fact that Al 2 O 3 and Y 2 O 3 are generally used as a sintering aid for aluminum nitride, the action of forming a stable interface with aluminum nitride. However, it does not hinder the bonding between the nitride of the Group IVa element and the aluminum nitride sintered body, and rather, is expected to be effective as a sintering aid for the particles of W and Mo.

【0018】上記のように本発明に係るメタライズ層は
窒化アルミニウム焼結体との相性が極めて良好であるこ
とから、焼成条件は、非酸化雰囲気中1500〜175
0℃という比較的低温域で充分である。
As described above, since the metallized layer according to the present invention has a very good compatibility with the aluminum nitride sintered body, the firing conditions are 1500 to 175 in a non-oxidizing atmosphere.
A relatively low temperature range of 0 ° C is sufficient.

【0019】また、上記非酸化性雰囲気中には上述のよ
うな第IVa族元素の窒化物の生成を促進するために窒素
ガスが存在することが望ましく、本発明者らの実験によ
ればかかる窒素ガス濃度は5モル%以上でメタライズ層
との接合強度に充分な値を得ており、これよりも低い濃
度では接合強度がやや低下する傾向にあることが確認で
きた。
In addition, it is desirable that nitrogen gas be present in the non-oxidizing atmosphere in order to promote the formation of the nitride of the group IVa element as described above. It was confirmed that the nitrogen gas concentration was 5 mol% or more, which was a sufficient value for the bonding strength with the metallized layer, and the bonding strength tended to be slightly lowered at a concentration lower than this.

【0020】ペースト中に含有されるAl、Y、酸素の
総添加量が0.1重量%未満では酸化物による液相生成
量が不足するため該メタライズ層の接合強度が低下す
る。またAl2 3 、Y2 3 の総添加量が、20重量
%より多いと液相生成量が多すぎてメタライズ層表面を
ガラス化した成分が覆いつくすため却ってハンダ濡れ性
を低下させることになる。
If the total amount of Al, Y and oxygen contained in the paste is less than 0.1% by weight, the amount of liquid phase produced by the oxide will be insufficient and the bonding strength of the metallized layer will be reduced. Further, if the total amount of Al 2 O 3 and Y 2 O 3 added is more than 20% by weight, the amount of liquid phase produced is too large and the vitrified component covers the surface of the metallized layer, which rather lowers the solder wettability. become.

【0021】また、ペースト中に含有される第IVa族元
素の総量が、0.1重量%未満では接合界面における上
記化学反応が不足するため所要の接着強度が得られず、
また第IVa族元素の総添加量が50重量%よりも多い
と、W及び/又はMo粒子同志の接着強度が低下するた
め、メタライズ層の充分な強度が得られない。
If the total amount of the Group IVa elements contained in the paste is less than 0.1% by weight, the above-mentioned chemical reaction at the bonding interface will be insufficient, and the required adhesive strength cannot be obtained.
If the total amount of the Group IVa element added is more than 50% by weight, the adhesive strength between the W and / or Mo particles decreases, so that the metallized layer cannot have sufficient strength.

【0022】本発明では上記のように形成されたメタラ
イズ層の上層に無電解メッキなどによりNi、Cu、A
u、Ptなどの金属被膜を形成することは妨げず、必要
に応じて実施例することが形成することも可能である。
In the present invention, Ni, Cu, A is formed on the metallization layer formed as described above by electroless plating or the like.
It is possible to form the metal film of u, Pt, etc. without obstructing the formation of the metal film, and to form the embodiment if necessary.

【0023】第IVa族元素の添加形態は、金属粉末でも
良いし、水素化物、窒化物などのような化合物の粉末で
もよいし、金属粉末と化合物粉末の混合物でもよい。ま
た、焼成は、非酸化雰囲気中焼成に先だって、ペースト
中に含まれる有機物を除去するための脱脂処理を行って
もよい。
The group IVa element may be added in the form of metal powder, compound powder such as hydride or nitride, or a mixture of metal powder and compound powder. Further, the firing may be a degreasing treatment for removing organic substances contained in the paste prior to firing in a non-oxidizing atmosphere.

【0024】上記配合のペーストの塗布方法は特に限定
されないが、例えば従来より採用されているスクリーン
印刷によって10〜50μmの膜厚を形成するのが適当
である。
The method of applying the paste having the above composition is not particularly limited, but it is suitable to form a film thickness of 10 to 50 μm by screen printing which has been conventionally used.

【0025】[0025]

【実施例】以下、本発明に係る実施例に基づいて説明す
る。尚、下記表1〜19中、本発明にかかる試料は「網
かけ」表示している。 <実施例1>平均粒径2〜3μm、最大粒径5μm以下
のタングステン粉末に、平均粒径2〜3μm、最大粒径
5μm以下のAl2 3 と、平均粒径2〜3μm、最大
粒径5μm以下のY2 3 と、平均粒径5〜10μmの
TiH2 とを表1〜表4の割合で混合した粉末に、アク
リル樹脂、テレピネオールを添加し、乳鉢で粗く混練し
た後、3本ロールミルでさらに充分混練してペーストを
調製した。
EXAMPLES Hereinafter, examples will be described according to the present invention. In addition, in the following Tables 1 to 19, the samples according to the present invention are indicated by "shading". <Example 1> Tungsten powder having an average particle size of 2 to 3 μm and a maximum particle size of 5 μm or less, Al 2 O 3 having an average particle size of 2 to 3 μm and a maximum particle size of 5 μm or less, and an average particle size of 2 to 3 μm and a maximum particle size. Acrylic resin and terpineol were added to a powder obtained by mixing Y 2 O 3 having a diameter of 5 μm or less and TiH 2 having an average particle diameter of 5 to 10 μm in a ratio shown in Tables 1 to 4, and after roughly kneading in a mortar, 3 A paste was prepared by further thoroughly kneading with the roll mill.

【0026】このペーストを窒化アルミニウムの含有量
が98重量%である窒化アルミニウム焼結体に、スクリ
ーン印刷法によって、1mm×1mmの大きさのパッドパタ
ーンを約20μmの厚さで形成し、乾燥後、窒素雰囲気
(窒素ガス濃度100モル%)中1600℃で焼成して
メタライズ層を形成した。
This paste was applied to an aluminum nitride sintered body having an aluminum nitride content of 98% by weight to form a pad pattern of a size of 1 mm × 1 mm with a thickness of about 20 μm by a screen printing method, and after drying. A metallized layer was formed by firing at 1600 ° C. in a nitrogen atmosphere (nitrogen gas concentration 100 mol%).

【0027】このようにして形成されたメタライズ層表
面に、無電解メッキ法で約2μmのNi被膜を形成し
た。このメッキ層上に銅製リードフレームをハンダ付け
し、リードフレームを垂直方向に5mm/分で引張ること
によりメタライズ層のピール強度を測定した。また、2
50℃の60Sn−Pbハンダ槽中に試料を浸漬するこ
とによりハンダ濡れ性を調べた。尚、以下の実施例2〜
9においても同様の測定を行った。
On the surface of the metallized layer thus formed, a Ni coating of about 2 μm was formed by electroless plating. A copper lead frame was soldered onto this plated layer, and the lead frame was pulled vertically at 5 mm / min to measure the peel strength of the metallized layer. Also, 2
The solder wettability was investigated by immersing the sample in a 60Sn-Pb solder bath at 50 ° C. In addition, the following Examples 2 to
The same measurement was performed in No. 9.

【0028】以上のようにして測定したピール強度及び
ハンダ濡れ性を表1〜4に併せて示す。 <実施例2>第IVa族元素として平均粒径5〜10μm
のZrH2 を用い、他は実施例1と同じ原料を用いた例
を上記ピール強度及びハンダ濡れ性とともに表5,6に
示す。
The peel strength and solder wettability measured as described above are also shown in Tables 1 to 4. <Example 2> Average particle size 5 to 10 m as a group IVa element
Tables 5 and 6 show examples in which the same raw material as in Example 1 was used except that ZrH 2 of No. 1 was used and the peel strength and solder wettability.

【0029】<実施例3>第IVa族元素として平均粒径
5〜10μmのHfH2 を用い、他は実施例1と同じ原
料を用いた例を上記ピール強度及びハンダ濡れ性ととも
に表7,8に示す。
Example 3 An example in which HfH 2 having an average particle size of 5 to 10 μm was used as the Group IVa element and the same raw material as in Example 1 was used except for the peel strength and the solder wettability are shown in Tables 7 and 8. Shown in.

【0030】<実施例4>第IVa族元素として平均粒径
5〜10μmのTiH2 と平均粒径5〜10μmのZi
2 と平均粒径5〜10μmのHiF2 を用い、他は実
施例1と同じ原料用いた例を表9,10に示す。
Example 4 TiH 2 having an average particle size of 5 to 10 μm and Zi having an average particle size of 5 to 10 μm as Group IVa elements.
The average particle size 5~10μm of HiF 2 using a H 2, others show an example using the same raw material as Example 1 in Table 9.

【0031】<実施例5>上記実施例1における金属ペ
ーストにおいて、主成分のタングステンをモリブデンに
代えた例を表11,12に示す。
<Example 5> Tables 11 and 12 show examples in which molybdenum was used as the main component of the metal paste in Example 1 instead of molybdenum.

【0032】<実施例6>同じく上記主成分としてW:
Mo=1:1に混合した例を表13,14に示す。
<Example 6> Similarly, as the main component, W:
Examples of mixing Mo = 1: 1 are shown in Tables 13 and 14.

【0033】<実施例7>第IVa族元素として平均粒径
5〜10μmのTi単体を用い、他は実施例1と同原料
を用いた例を表15,16に示す。
Example 7 Tables 15 and 16 show examples in which a simple substance of Ti having an average particle size of 5 to 10 μm was used as the Group IVa element and the same raw material as in Example 1 was used.

【0034】<実施例8>第IVa族元素として平均粒径
5〜10μmのTiNを用い、他は実施例1と同じ原料
を用いた例を表17,18に示す。
Example 8 Tables 17 and 18 show examples in which TiN having an average particle diameter of 5 to 10 μm was used as the Group IVa element and the same raw material as in Example 1 was used.

【0035】<実施例9>実施例1と同じ原料を用い、
Al2 3 :4重量%、Y2 3 :4重量%、Ti
2 :(Ti換算)5重量%、残りをタングステンとし
た組成の金属ペーストを実施例1と同じ方法で調製し
た。これをアルゴンと窒素の混合ガス中1600℃で焼
成しメタライズ層を形成し、実施例1と同じ方法で評価
した例を表19に示す。
<Example 9> Using the same raw materials as in Example 1,
Al 2 O 3 : 4% by weight, Y 2 O 3 : 4% by weight, Ti
A metal paste having a composition in which H 2 : 5% by weight (as Ti) and the balance tungsten was prepared in the same manner as in Example 1. Table 19 shows an example in which the metallized layer was formed by firing this at 1600 ° C. in a mixed gas of argon and nitrogen and evaluated by the same method as in Example 1.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【表6】 [Table 6]

【0042】[0042]

【表7】 [Table 7]

【0043】[0043]

【表8】 [Table 8]

【0044】[0044]

【表9】 [Table 9]

【0045】[0045]

【表10】 [Table 10]

【0046】[0046]

【表11】 [Table 11]

【0047】[0047]

【表12】 [Table 12]

【0048】[0048]

【表13】 [Table 13]

【0049】[0049]

【表14】 [Table 14]

【0050】[0050]

【表15】 [Table 15]

【0051】[0051]

【表16】 [Table 16]

【0052】[0052]

【表17】 [Table 17]

【0053】[0053]

【表18】 [Table 18]

【0054】[0054]

【表19】 [Table 19]

【0055】上記表1〜18によっても明らかなよう
に、本発明で規定した範囲内の配合の金属ペーストによ
って形成されたメタライズ層は、いずれもピール強度で
2.5kgf/mm2 以上と実用上充分な接合強度で窒化アル
ニウム焼結体に形成され、しかも無電解メッキ層を形成
した後のハンダ濡れ性も95%以上のパッドパターンで
良好な濡れを示した。
As is clear from Tables 1 to 18, the metallized layers formed by the metal paste having the composition within the range specified in the present invention have a peel strength of 2.5 kgf / mm 2 or more in practical use. It was formed on the aluminum nitride sintered body with sufficient bonding strength, and the solder wettability after forming the electroless plating layer showed good wetting with a pad pattern of 95% or more.

【0056】一方、本発明で規定された範囲外の組成の
金属ペーストで形成されたメタライズ層は、いずれの試
料においても充分な接着強度が得られず、ピール強度が
2kgf/mm2 以下であり、ハンダ濡れ性を低く、絶縁基板
に適用した場合の信頼性に不安が残る。
On the other hand, the metallized layer formed of the metal paste having a composition outside the range specified in the present invention could not obtain sufficient adhesive strength in any of the samples and had a peel strength of 2 kgf / mm 2 or less. The solder wettability is low, and the reliability remains uncertain when applied to an insulating substrate.

【0057】また上記表19に示すように、焼成の際の
雰囲気において窒素ガス濃度が3モル%の試料では、同
じ構成の金属ペーストを用いているにも関わらず、それ
よりも窒素ガス濃度の高い雰囲気で焼成した試料よりも
ピール強度が低いことが明らかである。これは既述のよ
うに第IVa族元素の窒化物が充分に生成されないことに
よるものと推定できる。
Further, as shown in Table 19 above, in the sample having a nitrogen gas concentration of 3 mol% in the atmosphere at the time of firing, although the metal paste having the same constitution was used, the nitrogen gas concentration It is clear that the peel strength is lower than the sample fired in a high atmosphere. It can be presumed that this is because the nitride of the Group IVa element is not sufficiently generated as described above.

【0058】[0058]

【発明の効果】以上のように、本発明によれば、放熱特
性に優れた窒化アルミニウム焼結体を使用しながらも、
ろう付け、はんだ付けに対して信頼性の高いメタライズ
層を形成することができ、例えば信頼性の高いパワー半
導体搭載用の絶縁基板を提供することを可能とするもの
である。
As described above, according to the present invention, while using an aluminum nitride sintered body having excellent heat dissipation characteristics,
It is possible to form a highly reliable metallized layer for brazing and soldering, and it is possible to provide an insulating substrate for mounting a highly reliable power semiconductor, for example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯田 正和 赤穂市中広字東沖1576番地の2 川崎炉材 株式会社内 (72)発明者 熊谷 正人 赤穂市中広字東沖1576番地の2 川崎炉材 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masakazu Iida 2 1576, East Offshore, Nakaho, Ako City, Kawasaki Furnace Co., Ltd. (72) Masato Kumagai 2 1576, East Off Nakaho, Ako City, Kawasaki 2 Furnace Material Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 タングステン及び/又はモリブデンを主
成分とする高融点金属ペーストによるメタライズ層を有
する窒化アルミニウム焼結体において、 上記高融点金属ペースト中のアルミニウム、イットリウ
ム、酸素の総含有量を0.1〜20重量%とし、また周
期律表の第IVa族元素(チタニウム、ジルコニウム、ハ
フニウム)の総含有量を0.1〜50重量%としたこと
を特徴とするメタライズ層を有する窒化アルミニウム焼
結体。
1. An aluminum nitride sintered body having a metallized layer of a refractory metal paste containing tungsten and / or molybdenum as a main component, wherein the total content of aluminum, yttrium and oxygen in the refractory metal paste is 0. 1 to 20% by weight, and the total content of Group IVa elements (titanium, zirconium, hafnium) of the periodic table was 0.1 to 50% by weight, and aluminum nitride sintered having a metallized layer. body.
【請求項2】 タングステン及び/又はモリブデンを主
成分とする高融点金属ペーストを塗布した後、焼成する
ようにしたメタライズ層を有する窒化アルミニウム焼結
体の製造方法において、 上記高融点金属ペースト中のアルミニウム、イットリウ
ム、酸素の総含有量を0.1〜20重量%とし、また周
期律表の第IVa族元素(チタニウム、ジルコニウム、ハ
フニウム)の総含有量を0.1〜50重量%となるよう
に調合し、該窒化アルミニウム焼結体への塗布後の焼成
を非酸化性雰囲気下で行うことを特徴とするメタライズ
層を有する窒化アルミニウム焼結体の製造方法。
2. A method for manufacturing an aluminum nitride sintered body having a metallized layer, which comprises firing a high-melting-point metal paste containing tungsten and / or molybdenum as a main component, followed by firing. The total content of aluminum, yttrium, and oxygen is 0.1 to 20% by weight, and the total content of Group IVa elements (titanium, zirconium, hafnium) of the periodic table is 0.1 to 50% by weight. A method for producing an aluminum nitride sintered body having a metallized layer, which is characterized in that the sintering is performed in a non-oxidizing atmosphere after being applied to the aluminum nitride sintered body.
【請求項3】 上記非酸化性雰囲気には、5モル%以上
の窒素ガスが存在するようにした請求項2に記載の窒化
アルミニウム焼結体の製造方法。
3. The method for producing an aluminum nitride sintered body according to claim 2, wherein 5 mol% or more of nitrogen gas is present in the non-oxidizing atmosphere.
JP31867093A 1993-12-17 1993-12-17 Sintered aluminum nitride having metallized layer and its production Pending JPH07172961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31867093A JPH07172961A (en) 1993-12-17 1993-12-17 Sintered aluminum nitride having metallized layer and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31867093A JPH07172961A (en) 1993-12-17 1993-12-17 Sintered aluminum nitride having metallized layer and its production

Publications (1)

Publication Number Publication Date
JPH07172961A true JPH07172961A (en) 1995-07-11

Family

ID=18101725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31867093A Pending JPH07172961A (en) 1993-12-17 1993-12-17 Sintered aluminum nitride having metallized layer and its production

Country Status (1)

Country Link
JP (1) JPH07172961A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100747160B1 (en) * 2001-10-05 2007-08-07 엔지케이 스파크 플러그 캄파니 리미티드 Process for producing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel
JP2008150285A (en) * 2007-12-26 2008-07-03 Ngk Spark Plug Co Ltd Method for producing ceramic member to be joined, ceramic member to be joined, vacuum switch and vacuum vessel
WO2009066692A1 (en) * 2007-11-19 2009-05-28 Mitsubishi Materials Corporation Process for producing substrate for power module, substrate for power module, and power module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100747160B1 (en) * 2001-10-05 2007-08-07 엔지케이 스파크 플러그 캄파니 리미티드 Process for producing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel
WO2009066692A1 (en) * 2007-11-19 2009-05-28 Mitsubishi Materials Corporation Process for producing substrate for power module, substrate for power module, and power module
JP2009147316A (en) * 2007-11-19 2009-07-02 Mitsubishi Materials Corp Method of manufacturing substrate for power module, substrate for power module, and power module
US8116084B2 (en) 2007-11-19 2012-02-14 Mitsubishi Materials Corporation Method for manufacturing power module substrate, power module substrate, and power module
JP2008150285A (en) * 2007-12-26 2008-07-03 Ngk Spark Plug Co Ltd Method for producing ceramic member to be joined, ceramic member to be joined, vacuum switch and vacuum vessel
JP4659812B2 (en) * 2007-12-26 2011-03-30 日本特殊陶業株式会社 Method of manufacturing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel

Similar Documents

Publication Publication Date Title
US4883704A (en) Circuit substrate comprising nitride type ceramics, method for preparing it, and metallizing composition for use in it
KR100270149B1 (en) Silicon nitride circuit board and its manufacturing method
JPH0840789A (en) Ceramic metallized substrate having smooth plating layer and its production
US5045400A (en) Composition for and method of metallizing ceramic surface, and surface-metallized ceramic article
JPS5830759B2 (en) Screen printing paste and thick film conductive circuits
JP3408298B2 (en) High thermal conductive silicon nitride metallized substrate, method of manufacturing the same, and silicon nitride module
JP2822518B2 (en) Method for forming metallized layer on aluminum nitride sintered body
JPH07172961A (en) Sintered aluminum nitride having metallized layer and its production
JP2578283B2 (en) Metallization method for aluminum nitride substrate
JP3538549B2 (en) Wiring board and method of manufacturing the same
JPS62216979A (en) Aluminum nitride sintered body with glass layer and manufacture
JPH05226515A (en) Aluminum nitride substrate having metallized layer and the metallizing method thereof
JP3411140B2 (en) Metallized composition and method for manufacturing wiring board using the same
EP3799965A1 (en) Metallized ceramic substrate and method for manufacturing same
JPH05170552A (en) Aluminum nitride substrate having metallized layer and metallization of the substrate
JPH05221759A (en) Aluminum nitride substrate with metallizing layer and metallizing method
US6068912A (en) Platible non-metallic filler material for metallurgical screening paste
JP3778949B2 (en) Insulating paste and method for forming insulating layer using insulating paste
JPH118447A (en) Wiring board
JPH0723273B2 (en) Method for metallizing aluminum nitride substrate
JP2537653B2 (en) Aluminum nitride substrate, manufacturing method, and semiconductor device
JP2616951B2 (en) Aluminum nitride sintered body having metallized surface and method for producing the same
JP3928645B2 (en) Insulating paste and method for forming insulating layer using insulating paste
JP2763516B2 (en) Metallization method for aluminum nitride substrate
JPH02101131A (en) Metallizing composition on the surface of ceramics and metallizing method