JPH05226515A - Aluminum nitride substrate having metallized layer and the metallizing method thereof - Google Patents

Aluminum nitride substrate having metallized layer and the metallizing method thereof

Info

Publication number
JPH05226515A
JPH05226515A JP4028194A JP2819492A JPH05226515A JP H05226515 A JPH05226515 A JP H05226515A JP 4028194 A JP4028194 A JP 4028194A JP 2819492 A JP2819492 A JP 2819492A JP H05226515 A JPH05226515 A JP H05226515A
Authority
JP
Japan
Prior art keywords
metallized layer
aluminum nitride
titanium hydride
alloy
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4028194A
Other languages
Japanese (ja)
Inventor
Naomi Mura
直美 村
Tadashi Nakano
正 中野
Masato Kumagai
正人 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4028194A priority Critical patent/JPH05226515A/en
Publication of JPH05226515A publication Critical patent/JPH05226515A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To form a metallized layer on an aluminum substrate at lower electric resistance than that of conventional method at low temperature having sufficient bonding strength. CONSTITUTION:The title aluminum nitride sintered substrate is coated with a paste containing Ag-Cu alloy as the main component and a titanium hydride as the sub component. At this time, it is preferable that 1-50wt% of titanium hydride is contained in the paste while the particle diameter of Ag-Cu alloy and titanium hydride is specified to be 1-50mum furthermore, a metallic surface film may be formed on the metallized layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、メタライズ層を有する
窒化アルミニウム基板及びそのメタライズ方法に関し、
特に、信頼性が高く、実用的な接着強度を備え、かつ、
導電性に優れたメタライズ層を有する高熱伝導性窒化ア
ルミニウム基板とそのメタライズ方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum nitride substrate having a metallized layer and a method for metallizing the same.
In particular, it has high reliability, practical adhesive strength, and
The present invention relates to a highly heat conductive aluminum nitride substrate having a metallized layer having excellent conductivity and a metallizing method thereof.

【0002】[0002]

【従来の技術】窒化アルミニウム(以下、AlNと記
す)焼結体は熱伝導率が高く電気絶縁性に優れ熱膨張係
数がSiに近いという特徴を有することから、パワー半
導体搭載用の放熱板を兼ねた絶縁板への適用が期待され
ている。従来のパワー半導体では、Ag−Cu合金,F
e,Al系の放熱板と半導体チップとの間にAl23
の絶縁板がおかれ、それらの接着には放熱特性をよくす
るためにはんだ付けまたはろう付けが一般的に用いられ
てきた。この絶縁板をAl23 からAlNに置換する
ことにより低熱抵抗化による放熱特性の向上がなされ
る。そのためにはAlNがはんだ付けまたはろう付け可
能でなければならず、AlN表面をメタライズする技術
が必須となる。
2. Description of the Related Art Aluminum nitride (hereinafter referred to as "AlN") sintered bodies are characterized by high thermal conductivity, excellent electrical insulation properties, and a coefficient of thermal expansion close to that of Si. It is expected to be applied to an insulating plate that also serves as a doublet. In conventional power semiconductors, Ag-Cu alloy, F
e, Al 2 O 3 between the Al-based heat sink and the semiconductor chip
Insulation plates have been placed and soldering or brazing has been commonly used for their adhesion to improve heat dissipation properties. By replacing this insulating plate with Al 2 O 3 by AlN, the heat dissipation characteristics are improved by lowering the thermal resistance. For that purpose, AlN must be solderable or brazable, and a technique for metallizing the AlN surface is essential.

【0003】AlN焼結体のメタライズ方法としては、
W,Mo等の高融点金属をペースト状にしたものをAl
Nの表面に塗布し、1000〜1600℃程度の湿潤窒
素と水素との混合雰囲気中で焼結させる方法が試みられ
ている。この方法は一般にテレフンケン法として知ら
れ、従来、Al23 中の粒界相成分であるSiO2
よって促進される酸化物の液相反応を利用することによ
り、メタライズ層を形成する技術として利用されてき
た。しかし、AlNはガラスとの濡れが悪く、SiO2
等の不純物が含まれていないため液相反応も起こりにく
く、十分な接着強度が得られない。また、W,Mo等の
高融点金属ペースト中への添加物とAlN焼結体中に粒
界相成分としてわずかに存在するYAGの拡散反応を利
用した方法も試みられている。しかし、この方法で十分
な接着強度を得るためには1700℃以上の高い焼結温
度を必要とし、かつ、AlN焼結基板の変形が発生する
という問題があった。さらに、W,Mo等の高融点金属
は、電気抵抗が比較的大きいため、放熱特性が悪化する
という問題があった。
As a method of metallizing an AlN sintered body,
A high-melting-point metal such as W or Mo in the form of paste is Al
A method of applying it to the surface of N and sintering it in a mixed atmosphere of wet nitrogen and hydrogen at about 1000 to 1600 ° C. has been attempted. This method is generally known as the Telefunken method, and is conventionally used as a technique for forming a metallized layer by utilizing a liquid phase reaction of an oxide promoted by SiO 2 which is a grain boundary phase component in Al 2 O 3. It has been. However, AlN has poor wettability with glass, and SiO 2
Since such impurities are not contained, liquid phase reaction is unlikely to occur and sufficient adhesive strength cannot be obtained. In addition, a method utilizing a diffusion reaction of additives such as W and Mo in a high-melting-point metal paste and YAG which slightly exists as a grain boundary phase component in an AlN sintered body has been attempted. However, this method has a problem that a high sintering temperature of 1700 ° C. or higher is required to obtain sufficient adhesive strength, and the AlN sintered substrate is deformed. Further, refractory metals such as W and Mo have a relatively large electric resistance, so that there is a problem that the heat dissipation characteristics are deteriorated.

【0004】[0004]

【発明が解決しようとする課題】本発明は前記課題を解
決し、信頼性が高く、実用的な接着強度を備え、かつ、
導電性に優れたメタライズ層を有する高熱伝導性窒化ア
ルミニウム基板と、その製造方法を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, has high reliability and practical adhesive strength, and
An object of the present invention is to provide a high thermal conductive aluminum nitride substrate having a metallized layer having excellent conductivity, and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】本発明は前記課題を解決
するために、Ag−Cu合金を主成分とし副成分として
水素化チタンを含有するペーストを、窒化アルミニウム
焼結体基板に塗布した後に焼成することにより窒化アル
ミニウム焼結体にメタライズ層を形成したものである。
ペーストの塗布にはスクリーン印刷を使用することがで
き、焼成して10〜50μmの厚さに導電性の膜を形成
するのが適当である。また、上記のペーストに用いられ
るAg−Cu合金及び水素化チタンの粒径は1μm以上
50μm以下とし、水素化チタンを1重量%以上50重
量%以下含有させると好適である。焼成はAg−Cu合
金及び水素化チタンの分解・酸化を防ぐために、非酸化
性雰囲気中又は不活性雰囲気中又は真空雰囲気中で80
0〜1100℃に加熱することにより行う。焼成に先立
って、ペースト中に含まれる有機物を除去するために非
酸化性雰囲気中又は不活性雰囲気中での脱脂処理を行っ
てもよい。
In order to solve the above-mentioned problems, the present invention applies a paste containing Ag-Cu alloy as a main component and titanium hydride as a sub-component to an aluminum nitride sintered body substrate. A metallized layer is formed on the aluminum nitride sintered body by firing.
Screen printing can be used to apply the paste, and it is suitable to form a conductive film by baking to a thickness of 10 to 50 μm. Further, it is preferable that the Ag—Cu alloy and titanium hydride used in the above-mentioned paste have a particle size of 1 μm or more and 50 μm or less, and contain titanium hydride in an amount of 1% by weight or more and 50% by weight or less. Firing is performed in a non-oxidizing atmosphere, an inert atmosphere, or a vacuum atmosphere to prevent decomposition and oxidation of the Ag-Cu alloy and titanium hydride.
It is performed by heating at 0 to 1100 ° C. Prior to firing, a degreasing treatment may be carried out in a non-oxidizing atmosphere or an inert atmosphere in order to remove organic substances contained in the paste.

【0006】さらに必要であれば、無電解メッキなどに
よりNi,Ag−Cu合金,Au,Ptなどの金属皮膜
を上記の方法で形成されたメタライズ層上に形成する。
If necessary, a metal film of Ni, Ag—Cu alloy, Au, Pt, etc. is formed on the metallized layer formed by the above method by electroless plating or the like.

【0007】[0007]

【作用】本発明ではペースト中に水素化チタンを添加し
ているが、これはチタンを添加する場合、金属チタンよ
り水素化チタンの方が安定なためである。特に微粉化し
た場合、TiH2 は約700℃まで分解・酸化せずに存
在することを実験的に確認している。
In the present invention, titanium hydride is added to the paste because titanium hydride is more stable than metallic titanium when titanium is added. It has been experimentally confirmed that TiH 2 exists up to about 700 ° C. without being decomposed and oxidized particularly when it is pulverized.

【0008】本発明によれば、Ag−Cu合金を活性金
属の拡散及び反応によってAlN焼結体に焼き付けるこ
とによってメタライズ層を形成するため、従来のような
酸化物による液相反応や粒界相成分の拡散反応を利用せ
ずにメタライズ層を形成することが可能となり、実用上
十分な接着強度を有するメタライズ層をAlN焼結基板
上に形成することができる。
According to the present invention, since the metallized layer is formed by baking the Ag—Cu alloy on the AlN sintered body by the diffusion and reaction of the active metal, the liquid phase reaction by the oxide and the grain boundary phase as in the prior art. The metallized layer can be formed without utilizing the component diffusion reaction, and the metallized layer having practically sufficient adhesive strength can be formed on the AlN sintered substrate.

【0009】また、Ag−Cu合金を主成分とすること
により、従来のW,Mo等の高融点金属を用いたメタラ
イズ方法よりも低い800〜1000℃程度の温度範囲
で焼結させることができるので、より低温で信頼性が高
く実用的な接着強度を備えたメタライズ層を有する窒化
アルミニウム基板を製造することができる。また、低温
でメタライズ層を形成するため、従来のメタライズ方法
のようなAlN基板の変形が発生しなくなる。さらに、
主成分のAg−Cu合金は従来用いられていたW,Mo
等と比較して電気抵抗が非常に小さいため、導電性に優
れたメタライズ層を形成することができ放熱特性の向上
が期待できる。
Further, by using an Ag-Cu alloy as a main component, it is possible to sinter in a temperature range of about 800 to 1000 ° C., which is lower than the conventional metallizing method using a refractory metal such as W or Mo. Therefore, it is possible to manufacture an aluminum nitride substrate having a metallized layer having high reliability and practical adhesive strength at a lower temperature. Further, since the metallized layer is formed at a low temperature, the deformation of the AlN substrate unlike the conventional metallized method does not occur. further,
The main component of Ag-Cu alloy is W, Mo which has been used conventionally.
Since the electric resistance is very small as compared with the above, it is possible to form a metallized layer having excellent conductivity, and it can be expected that the heat dissipation characteristics are improved.

【0010】ペースト中に含有される水素化チタンの含
有量は、少量では接着強度が小さく、また、多量ではメ
タライズ層の強度が低下し、なおかつ電気抵抗が大きく
なるので1重量%以上50重量%以下が好適である。本
発明でペーストに用いられるAg−Cu合金及び水素化
チタンの粒径は1μm以上50μm以下が好適である。
薄いメタライズ層を形成できるよう粒径は細かい方が望
ましいが、1μm未満では凝集しやすくペースト化が困
難となるうえ、表面酸化による影響が無視できなくな
り、一方、粒径が50μmを越えるとペーストのスクリ
ーン印刷による塗布が困難となる。
When the content of titanium hydride contained in the paste is small, the adhesive strength is small, and when the content is large, the strength of the metallized layer is lowered and the electric resistance is increased. The following are preferred: The particle size of the Ag—Cu alloy and titanium hydride used in the paste in the present invention is preferably 1 μm or more and 50 μm or less.
It is desirable that the particle size is small so that a thin metallized layer can be formed, but if it is less than 1 μm, it easily aggregates and it becomes difficult to form a paste, and the effect of surface oxidation cannot be ignored, while if the particle size exceeds 50 μm, the paste Application by screen printing becomes difficult.

【0011】さらに必要であれば、無電解メッキなどに
よりNi,Ag−Cu合金,Au,Ptなどの金属皮膜
を上記の方法で形成されたメタライズ層上に形成するこ
とも可能である。
Further, if necessary, a metal film of Ni, Ag—Cu alloy, Au, Pt or the like can be formed on the metallized layer formed by the above method by electroless plating or the like.

【0012】[0012]

【実施例】以下に実施例を示す。ここでは水素化チタン
としてTiH2 を用いたが、TiH2 は水素化チタンの
不定比化合物をも代表するものである。平均粒径6〜7
μm、最大粒径22μm以下のAg−Cu合金に、平均
粒径16〜17μm、最大粒径40μm以下の水素化チ
タン(TiH2 )を表1の割合で混合した粉末中に、ア
クリル樹脂、テレピネオールを添加し、3本ロールミル
を用いて十分混練することによりペーストを作成した。
EXAMPLES Examples will be shown below. Although TiH 2 is used here as titanium hydride, TiH 2 also represents a non-stoichiometric compound of titanium hydride. Average particle size 6-7
Acrylic resin and terpineol were added to a powder obtained by mixing Ag-Cu alloy having a maximum particle size of 22 μm or less and titanium hydride (TiH 2 ) having an average particle size of 16 to 17 μm and a maximum particle size of 40 μm or less at a ratio of Table 1. Was added and sufficiently kneaded using a three-roll mill to prepare a paste.

【0013】このペーストをAlNの含有量が98重量
%であるAlN焼結体基板に、スクリーン印刷により2
mm×2mmの大きさのパッドを約20μmの厚さで形
成するように印刷した。この試料を乾燥・脱脂した後、
真空雰囲気中で850℃で焼成しメタライズ層を形成し
た。このようにして形成されたメタライズ層表面に約2
μmの膜厚を有するNiめっき層を形成した。このめっ
き層上にリードフレームをはんだ付けし、リードフレー
ムを垂直方向に5mm/minで引っ張ることによりピ
ール強度(引き剥し強度)を測定した。以上のようにし
て測定したピール強度を表1に併せて示す。
This paste was screen-printed onto an AlN sintered body substrate containing 98% by weight of AlN.
A pad having a size of mm × 2 mm was printed so as to have a thickness of about 20 μm. After drying and degreasing this sample,
It was fired at 850 ° C. in a vacuum atmosphere to form a metallized layer. About 2 on the surface of the metallized layer thus formed
A Ni plating layer having a film thickness of μm was formed. A lead frame was soldered on the plated layer, and the lead frame was pulled vertically at 5 mm / min to measure the peel strength (peeling strength). The peel strength measured as described above is also shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】本発明によって形成されたメタライズ層
(試料No.2〜7)ではAlN焼結基板内で破壊が起
こり、接着強度はピール強度として5kg/2mm□以
上のものが得られ、実用上十分な強度を有している。一
方、TiH2 を含有しないペーストを用いたメタライズ
層(試料No.1)ではAlN焼結体とメタライズ層と
の接着強度が不足し界面で剥離した。
In the metallized layer (Sample Nos. 2 to 7) formed by the present invention, fracture occurred in the AlN sintered substrate, and the adhesive strength was 5 kg / 2 mm □ or more, which is practically sufficient. Has strong strength. On the other hand, in the metallized layer (Sample No. 1) using the paste containing no TiH 2 , the adhesive strength between the AlN sintered body and the metallized layer was insufficient and the metallized layer was peeled off at the interface.

【0016】[0016]

【発明の効果】本発明によれば、従来のメタライズ層よ
り、電気抵抗が小さいので放熱効果が高く、しかも低温
で形成し得るのでAlN基板の変形を防止することがで
き、実用上十分な密度強度が得られる。
According to the present invention, since the electric resistance is smaller than that of the conventional metallized layer, the heat dissipation effect is high, and since it can be formed at a low temperature, the deformation of the AlN substrate can be prevented, and the density is practically sufficient. Strength is obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C04B 41/88 Q 7038−4G 41/90 A 7038−4G H05K 1/09 A 6921−4E 3/24 A 7511−4E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display location C04B 41/88 Q 7038-4G 41/90 A 7038-4G H05K 1/09 A 6921-4E 3 / 24 A 7511-4E

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Ag−Cu合金を主成分とし副成分とし
て水素化チタンを含有するペーストを、窒化アルミニウ
ム焼結体基板に塗布して焼成してなることを特徴とする
メタライズ層を有する窒化アルミニウム基板。
1. An aluminum nitride having a metallized layer, which is obtained by applying a paste containing an Ag—Cu alloy as a main component and titanium hydride as a subcomponent to an aluminum nitride sintered body substrate and firing the paste. substrate.
【請求項2】 Ag−Cu合金を主成分とし副成分とし
て水素化チタンを含有するペーストを、窒化アルミニウ
ム焼結体基板に塗布して焼成することを特徴とするメタ
ライズ層を有する窒化アルミニウム基板のメタライズ方
法。
2. An aluminum nitride substrate having a metallized layer, characterized in that a paste containing an Ag—Cu alloy as a main component and titanium hydride as a subcomponent is applied to an aluminum nitride sintered body substrate and baked. Metallization method.
【請求項3】 上記メタライズ層上に、さらに金属皮膜
を形成することを特徴とする請求項2記載のメタライズ
層を有する窒化アルミニウム基板のメタライズ方法。
3. The method for metallizing an aluminum nitride substrate having a metallized layer according to claim 2, further comprising forming a metal film on the metallized layer.
JP4028194A 1992-02-14 1992-02-14 Aluminum nitride substrate having metallized layer and the metallizing method thereof Withdrawn JPH05226515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4028194A JPH05226515A (en) 1992-02-14 1992-02-14 Aluminum nitride substrate having metallized layer and the metallizing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4028194A JPH05226515A (en) 1992-02-14 1992-02-14 Aluminum nitride substrate having metallized layer and the metallizing method thereof

Publications (1)

Publication Number Publication Date
JPH05226515A true JPH05226515A (en) 1993-09-03

Family

ID=12241873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4028194A Withdrawn JPH05226515A (en) 1992-02-14 1992-02-14 Aluminum nitride substrate having metallized layer and the metallizing method thereof

Country Status (1)

Country Link
JP (1) JPH05226515A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113892A1 (en) 2009-03-30 2010-10-07 株式会社トクヤマ Process for producing metallized substrate and metallized substrate
WO2012090647A1 (en) * 2010-12-28 2012-07-05 株式会社トクヤマ Metallized substrate, metal paste composition, and method for producing metallized substrate
CN102783256A (en) * 2010-03-02 2012-11-14 株式会社德山 Method for manufacturing a metallized substrate
US9017563B2 (en) 2011-06-30 2015-04-28 Tokuyama Corporation Plating method of circuit substrate, production method of plated circuit substrate, and silver etching liquid
JP2017069189A (en) * 2015-09-29 2017-04-06 三ツ星ベルト株式会社 Conductive paste and electronic substrate, manufacturing method therefor
WO2018122971A1 (en) 2016-12-27 2018-07-05 三ツ星ベルト株式会社 Electroconductive paste, electronic substrate, and method for manufacturing said substrate
CN110642644A (en) * 2019-09-17 2020-01-03 昆山市柳鑫电子有限公司 Aluminum nitride ceramic copper-clad plate and preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9301390B2 (en) 2009-03-30 2016-03-29 Tokuyama Corporation Process for producing metallized substrate, and metallized substrate
US20120015152A1 (en) * 2009-03-30 2012-01-19 Tokuyama Corporation Process for producing metallized substrate, and metallized substrate
CN102365733A (en) * 2009-03-30 2012-02-29 株式会社德山 Process for producing metallized substrate, and metallized substrate
WO2010113892A1 (en) 2009-03-30 2010-10-07 株式会社トクヤマ Process for producing metallized substrate and metallized substrate
CN102783256A (en) * 2010-03-02 2012-11-14 株式会社德山 Method for manufacturing a metallized substrate
US9374893B2 (en) 2010-03-02 2016-06-21 Tokuyama Corporation Production method of metallized substrate
WO2012090647A1 (en) * 2010-12-28 2012-07-05 株式会社トクヤマ Metallized substrate, metal paste composition, and method for producing metallized substrate
US9462698B2 (en) 2010-12-28 2016-10-04 Tokuyama Corporation Metallized substrate, metal paste composition, and method for manufacturing metallized substrate
US9017563B2 (en) 2011-06-30 2015-04-28 Tokuyama Corporation Plating method of circuit substrate, production method of plated circuit substrate, and silver etching liquid
JP2017069189A (en) * 2015-09-29 2017-04-06 三ツ星ベルト株式会社 Conductive paste and electronic substrate, manufacturing method therefor
WO2018122971A1 (en) 2016-12-27 2018-07-05 三ツ星ベルト株式会社 Electroconductive paste, electronic substrate, and method for manufacturing said substrate
KR20180115321A (en) 2016-12-27 2018-10-22 미쓰보 시베루토 가부시키 가이샤 Conductive paste and electronic substrate and manufacturing method thereof
EP3422367A4 (en) * 2016-12-27 2019-10-16 Mitsuboshi Belting Ltd. Electroconductive paste, electronic substrate, and method for manufacturing said substrate
US10575412B2 (en) 2016-12-27 2020-02-25 Mitsuboshi Belting Ltd. Electroconductive paste, electronic substrate, and method for manufacturing said substrate
CN110642644A (en) * 2019-09-17 2020-01-03 昆山市柳鑫电子有限公司 Aluminum nitride ceramic copper-clad plate and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4812144B2 (en) Aluminum nitride sintered body and manufacturing method thereof
EP0574956B1 (en) Metallized circuit substrate comprising nitride type ceramics
EP0097058B1 (en) Sic sintered body having metallized layer and production method therefor
JP3845925B2 (en) Semiconductor device member using aluminum nitride substrate and method for manufacturing the same
JP3629783B2 (en) Circuit board
JP3924406B2 (en) Alumina sintered body and manufacturing method thereof, wiring board and manufacturing method thereof
JPH11278941A (en) Aluminum nitride sintered body and its metallized substrate
JP3408298B2 (en) High thermal conductive silicon nitride metallized substrate, method of manufacturing the same, and silicon nitride module
JPH05226515A (en) Aluminum nitride substrate having metallized layer and the metallizing method thereof
JP2578283B2 (en) Metallization method for aluminum nitride substrate
JP2772273B2 (en) Silicon nitride circuit board
EP1434750B1 (en) Thick film conductor compositions for use on aluminum nitride substrates
JPH05170552A (en) Aluminum nitride substrate having metallized layer and metallization of the substrate
JPH05221759A (en) Aluminum nitride substrate with metallizing layer and metallizing method
JP3538549B2 (en) Wiring board and method of manufacturing the same
JP3493310B2 (en) Multilayer wiring board
JPH05156303A (en) Metallizing metal powder composition and production of metallized substrate using the composition
JP2677748B2 (en) Ceramics copper circuit board
JP2009253196A (en) Manufacturing method of wiring substrate
JP2563809B2 (en) Aluminum nitride substrate for semiconductors
JP2763516B2 (en) Metallization method for aluminum nitride substrate
JP2633879B2 (en) Conductive paste composition for non-oxide ceramics
JP3577109B2 (en) Metallized substrate
JPH0723273B2 (en) Method for metallizing aluminum nitride substrate
JPH07172961A (en) Sintered aluminum nitride having metallized layer and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518