JP3577109B2 - Metallized substrate - Google Patents

Metallized substrate Download PDF

Info

Publication number
JP3577109B2
JP3577109B2 JP20040794A JP20040794A JP3577109B2 JP 3577109 B2 JP3577109 B2 JP 3577109B2 JP 20040794 A JP20040794 A JP 20040794A JP 20040794 A JP20040794 A JP 20040794A JP 3577109 B2 JP3577109 B2 JP 3577109B2
Authority
JP
Japan
Prior art keywords
metallized
substrate
metallized layer
ceramic substrate
active metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20040794A
Other languages
Japanese (ja)
Other versions
JPH0859375A (en
Inventor
隆之 那波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20040794A priority Critical patent/JP3577109B2/en
Publication of JPH0859375A publication Critical patent/JPH0859375A/en
Application granted granted Critical
Publication of JP3577109B2 publication Critical patent/JP3577109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5127Cu, e.g. Cu-CuO eutectic

Description

【0001】
【産業上の利用分野】
本発明は、セラミックス基板上にメタライズ層を形成したメタライズ基板に係り、特に高接着強度、高熱サイクル特性を有すると共に、ハンダ濡れ性等に優れるメタライズ基板に関する。
【0002】
【従来の技術】
セラミックス材料は、一般に、軽量でかつ高硬度を有する、耐熱性や耐食性に優れる、電気絶縁性に優れる等という特徴を有しており、これらの特徴を生かして構造用材料や電気・電子部品用材料等として利用されている。
【0003】
例えば、高電気絶縁性等の特性を利用して、セラミックス基板は電子部品の搭載用基板等として使用されている。このような場合、回路の形成や電子部品の搭載部の形成等を目的として、セラミックス基板の表面に導電性を有する金属化層(メタライズ層)を形成することが不可欠とされている。
【0004】
セラミックス基板上にメタライズ層を形成する方法としては、Moや W等の高融点金属を用いたメタライズ法、Ti等の活性金属を含む Ag−Cu系ペーストを用いた厚膜メタライズ法等が使用されている。また、高融点金属を用いたメタライズ法においても、セラミックス基板に対する濡れ性を改善し、セラミックス基板とメタライズ層との接合強度を高めるために、Moや W等の高融点金属を主とするメタライズ層形成材料に、Ti、Zr、Nbのような活性金属の窒化物等を添加することが行われている。
【0005】
【発明が解決しようとする課題】
ところで、上述したようなメタライズ基板には、メタライズ層とセラミックス基板との高接合強度が求められる一方、セラミックス基板の熱膨張率は金属材料のそれに比べて小さいため、この熱膨張差に起因する欠点の発生を抑制することが強く求められている。すなわち、熱膨張率が大きく異なるメタライズ層形成材料によりセラミックス基板の表面にメタライズ層を形成すると、接合後の冷却過程で熱膨張差に起因する残留応力が生じ、外部応力との相乗等によって接合強度が大幅に低下したり、接合後の冷却過程あるいは冷熱サイクルの付加によって応力の最大点からクラックが発生したり、またメタライズ層が剥離してしまう等の問題を招いてしまう。
【0006】
このような点に対して、従来のメタライズ法では、高接合強度は得られても、冷熱サイクル等の付加に対して十分な信頼性を再現性よく得るまでには至っていない。例えば、メタライズ層を形成したセラミックス基板は、半導体素子等の搭載部品として用いられているが、近年の半導体素子の高集積化や大電力化等によって、半導体素子からの放熱量は飛躍的に増大していることから、冷熱サイクルの付加等に対する信頼性を向上させることが強く望まれている。
【0007】
上述した熱サイクル特性以外にも、従来のメタライズ基板は様々な問題点を有している。例えば、Moに TiN等を添加したメタライズ層形成材料は、窒化アルミニウム等の窒化物系セラミックス基板に対して高接合強度のメタライズ層を形成し得るものの、メタライズ温度が高いために、セラミックス基板側の粒界構成相等の液相がメタライズ層内に拡散してメタライズ層表面に染み出し、外観不良等を招いていた。また、Ag−Cu−Ti系のメタライズ層は、材質的に半田濡れ性が悪く、半導体素子の実装信頼性を低下させるというような問題を有していた。
【0008】
本発明は、このような課題を解決するためになされたもので、良好な接合強度を有すると共に熱サイクル特性に優れ、さらに外観が良好で半田濡れ性に優れるメタライズ基板を提供することを目的とするものである。
【0009】
【課題を解決するための手段と作用】
本発明のメタライズ基板は、セラミックス基板と、このセラミックス基板上に設けられたメタライズ層とを具備するメタライズ基板において、前記メタライズ層は2 6 質量%の Ti Zr Hf および Nb から選ばれる少なくとも 1 種の活性金属と、 12 20 質量%の In とを含み、残部が実質的に Ag-Cu 系ろう材からなる、活性金属を含むIn-Ag-Cu系金属材料により構成されており、かつ前記メタライズ層上にめっきまたは半田が施されていることを特徴としている。
【0010】
本発明に用いられるセラミックス基板は、特に限定されるものではなく、酸化アルミニウム焼結体、ムライト焼結体(3Al−2SiO)等の酸化物系焼結体から、窒化アルミニウム焼結体、窒化ケイ素焼結体、炭化ケイ素焼結体等の非酸化物系焼結体まで、各種のセラミックス材料を適用することができ、用途や要求特性に応じて適宜選択して使用することが可能である。ただし、特に窒化アルミニウム焼結体や窒化ケイ素焼結体等からなる窒化物系セラミックス基板に対して有効である。
【0011】
また、本発明におけるメタライズ層は Ti、Zr、HfおよびNbから選ばれる少なくとも1種の活性金属を含むIn-Ag-Cu系金属材料により構成されたものである。ここで、メタライズ層の主成分としては Ag-Cuの共晶組成(72%Ag-28%Cu)もしくはその近傍組成のAg-Cu系ろう材が用いられる。そして、本発明のメタライズ層は、このようなAg-Cu系ろう材に上記活性金属とInとを添加した活性金属含有In-Ag-Cu系メタライズ層形成材料、具体的にはこれらを含むメタライズ用ペーストを用いて形成したものである。
【0012】
上記したようなAg-Cu系ろう材に添加する活性金属量は、メタライズ層形成材料の全量に対して2〜6質量%の範囲とすることが好ましく、またInの添加量はメタライズ層形成材料の全量に対して12〜20質量%の範囲とすることが好ましい。活性金属量が2質量%未満であると、セラミックス基板特に窒化物系セラミックス基板への十分な接合がなされず、6質量%を超えると、逆に耐熱サイクル特性の低下を招くおそれがある。また、インジウム量が12質量%未満であると、融点の低下効果や残留応力の低減効果を十分に得ることができず、また20質量%を超えると、脆弱な金属間化合物を生成しやすくなり、メタライズ層自体の強度低下を招く。
【0013】
上記活性金属含有In−Ag−Cu系メタライズ層形成材料は、Inにより融点が低下して、通常の1053K から953K程度まで融点が下がる。これにより、例えば実際のメタライズ層形成のための熱処理を、従来の1073〜 1173K程度の温度から 973〜 1073K程度の温度に低下させることができる。このように、比較的低温での熱処理が可能となることにより、まずセラミックス基板内の液相成分の染み出しによる外観不良等を防止することができる。
【0014】
また、そもそもInは降伏応力が極めて小さく、柔らかい金属であるため、上記熱処理温度の低下とメタライズ層形成材料自体の降伏応力の低下とによって、メタライズ後の残留応力が低減される。従って、メタライズ基板の熱サイクル特性を向上させることが可能となる。具体的には、熱サイクル試験に対して高サイクルまで高接合強度を維持することが可能となる。
【0015】
さらに、In自体は半田合金等の他の金属との濡れ性が良好であるため、Inを含むメタライズ層は半田濡れ性やめっき付着力が優れたものとなる。
【0016】
本発明のメタライズ基板は、例えば以下のようにして作製することができる。まず、活性金属を添加したIn−Ag−Cu系メタライズ層形成材料を用意し、これに樹脂結合剤および必要に応じて分散媒を添加して、均一に分散させて所望の粘度のメタライズ用ペーストを作製する。
【0017】
次に、上記メタライズ用ペーストをセラミックス基板上に、例えばスクリ―ン印刷法によって所要の形状に塗布する。メタライズ用ペーストの印刷層を乾燥させた後に、用いたセラミックス基板に応じた雰囲気中にて熱処理し、メタライズ層を形成する。熱処理温度は、前述したように 973〜 1073K程度とすることができる。
【0018】
ここで、活性金属と例えば窒化物系セラミックス基板中の窒素との反応は、 773〜873K程度から進行し始める。従って、活性金属含有In−Ag−Cu系メタライズ層形成材料を用いた場合には、窒素雰囲気中でメタライズ処理を行っても、上記反応開始温度とメタライズ層形成材料の液相形成温度との差が小さいことから、メタライズ温度に到達した後においても、活性金属と窒化物系セラミックス基板中の窒素との反応が十分に進行する。
【0019】
言い換えれば、上記活性金属含有In−Ag−Cu系メタライズ層形成材料は、973K程度の温度から液相を形成し、活性金属と窒化物系セラミックス基板との反応が促進される。この活性金属と窒化物系セラミックス基板との反応は、活性金属と窒素との反応開始温度とあまり差のない温度から液相により促進されつつ進行するため、結果として雰囲気中の窒素と活性金属との反応は抑制される。従って、窒素雰囲気中においても十分な接着強度を得ることが可能となる。このように窒素雰囲気中でのメタライズ処理が可能となることによって、量産性に優れた連続炉が使用可能となる。
【0020】
【実施例】
次に、本発明の実施例について説明する。
【0021】
実施例1
まず、セラミックス基板として、12× 8×1.52mmの窒化アルミニウム基板(熱伝導率=170W/m K )を用意した。一方、メタライズ層形成材料として、質量比で14.0%In−59.0%Ag−23.0%Cu−4.0%Tiの活性金属含有In−Ag−Cu系ろう材を用意した。この活性金属含有In−Ag−Cu系ろう材粉末に、適量の結合剤樹脂および分散媒を混合してメタライズ用ペーストを作製した。
【0022】
次に、上記窒化アルミニウム基板の表面に、メタライズ用ペ―ストをスクリーン印刷し、乾燥させた。この後、メタライズ用ペ―ストを塗布した窒化アルミニウム基板を、 (1)1.33×10−2Pa以下の真空中、 (2)Ar雰囲気中、 (3) N雰囲気中で、それぞれ973K×10分間の条件で熱処理し、それぞれメタライズ層を形成した。このようにして 3種類のメタライズ基板を得た。
【0023】
また、本発明との比較例として、Mo−TiN系メタライズ用ペーストを用い、窒化アルミニウム基板に N雰囲気中でメタライズ処理を行って、メタライズ基板を作製した。
【0024】
このようにして得た実施例および比較例のメタライズ基板の特性等を評価した。まず、各メタライズ基板のメタライズ面にNiめっきをそれぞれ施し、外観を目視検査したところ、上述した実施例による 3種類のメタライズ基板は汚れもなく、まったく問題はなかった。一方、Mo−TiN系メタライズペーストを用いた比較例のメタライズ基板は外観不良が発生していた。
【0025】
次に、各メタライズ基板の熱サイクル特性を測定、評価した。まず、熱サイクル試験(TCT)を施す前に各メタライズ層の密着強度を測定した後、233K×30分+R.T×10分+398K×30分+R.T×10分を1サイクルとしてTCTを行い、TCT後のメタライズ層の密着強度を測定した。その結果として、TCTサイクル数と密着強度との関係を図1に示す。
【0026】
図1から明らかなように、実施例によるメタライズ基板は、メタライズ処理時の雰囲気にかかわらずいずれも優れた TCT特性を有していることが分かる。一方、比較例によるメタライズ基板は、 TCTサイクル数の増加と共に密着強度が低下しており、 TCT特性に劣ることが分かる。なお、上記実施例のメタライズ基板において、窒素雰囲気中におけるメタライズ処理によっても優れた TCT特性が得られているということは、量産性に優れた連続炉の使用が可能となることを意味する。このことはメタライズ基板の製造コストの大幅な低減に繋がる。
【0027】
また、実施例および比較例によるメタライズ基板の半田濡れ性を評価したところ、実施例による各メタライズ基板は比較例によるメタライズ基板と同様に良好な半田濡れ性を示した。なお、Inを添加しない活性金属含有 Ag−Cu系ろう材を用いて、窒化アルミニウム基板上にメタライズ層を形成したところ、得られたメタライズ層は半田濡れ性が悪く、半導体素子等の実装信頼性に劣るものであった。実施例2
表1に組成を示す活性金属含有In−Ag−Cu系メタライズ層形成材料を用いて、実施例1と同様にメタライズ用ペーストを作製し、実施例1と同一の窒化アルミニウム基板上にメタライズ層を形成した。メタライズ条件は、表1に示す通りである。このようにして得た各メタライズ基板の TCT特性を、1000サイクル後の密着強度により評価した。その結果を併せて表1に示す。
【0028】
【表1】

Figure 0003577109
【0029】
【発明の効果】
以上説明したように、本発明のメタライズ基板によれば、良好な接合強度を有すると共に、熱サイクルの印加後においても高接合強度を維持することができ、さらに外観不良の防止や半田濡れ性の向上を達成することができる。よって、高接合強度を有し、かつ熱サイクルの印加に対する信頼性に優れると共に、外観が良好で半田濡れ性に優れるメタライズ基板を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施例で作製したメタライズ基板の TCTサイクル数とメタライズ層の密着強度との関係を従来のメタライズ基板と比較して示す図である。[0001]
[Industrial applications]
The present invention relates to a metallized substrate having a metallized layer formed on a ceramic substrate, and more particularly to a metallized substrate having high adhesive strength, high thermal cycle characteristics, and excellent solder wettability.
[0002]
[Prior art]
Ceramic materials generally have the features of being lightweight and having high hardness, being excellent in heat resistance and corrosion resistance, and being excellent in electrical insulation. These characteristics are used for structural materials and electric / electronic parts. It is used as a material.
[0003]
For example, a ceramic substrate is used as a substrate for mounting electronic components, etc., utilizing characteristics such as high electrical insulation. In such a case, it is indispensable to form a conductive metallized layer (metallized layer) on the surface of the ceramic substrate for the purpose of forming a circuit, forming a mounting portion of an electronic component, and the like.
[0004]
As a method of forming a metallization layer on a ceramic substrate, a metallization method using a high melting point metal such as Mo or W, a thick film metallization method using an Ag-Cu paste containing an active metal such as Ti, and the like are used. ing. Also, in the metallization method using a refractory metal, a metallized layer mainly composed of a refractory metal such as Mo or W is used to improve the wettability to the ceramic substrate and increase the bonding strength between the ceramic substrate and the metallized layer. It has been performed to add a nitride of an active metal such as Ti, Zr, or Nb to a forming material.
[0005]
[Problems to be solved by the invention]
By the way, the metallized substrate as described above is required to have a high bonding strength between the metallized layer and the ceramic substrate, but the thermal expansion coefficient of the ceramic substrate is smaller than that of the metal material. There is a strong demand to suppress the occurrence of phenomena. That is, when a metallized layer is formed on the surface of a ceramic substrate using a metallized layer forming material having a significantly different coefficient of thermal expansion, a residual stress due to a difference in thermal expansion occurs in a cooling process after joining, and a joint strength with external stress or the like causes a joint strength. , Cracks are generated from the maximum stress point due to the cooling process after the joining or the addition of the cooling / heating cycle, and the metallized layer is peeled off.
[0006]
In view of this point, the conventional metallization method does not achieve sufficient reliability with good reproducibility for the application of a cooling and heating cycle, etc., even though high bonding strength can be obtained. For example, ceramic substrates on which metallized layers are formed are used as mounting components for semiconductor devices and the like, but the heat dissipation from semiconductor devices has dramatically increased due to the recent high integration and high power of semiconductor devices. Therefore, it is strongly desired to improve the reliability against the addition of a cooling / heating cycle.
[0007]
In addition to the thermal cycle characteristics described above, the conventional metallized substrate has various problems. For example, a metallized layer forming material obtained by adding TiN or the like to Mo can form a metallized layer having a high bonding strength on a nitride-based ceramic substrate such as aluminum nitride, but has a high metallization temperature. A liquid phase such as a grain boundary constituent phase diffused into the metallized layer and oozed out to the surface of the metallized layer, resulting in poor appearance and the like. In addition, the Ag-Cu-Ti-based metallized layer has a problem that the material has poor solder wettability and deteriorates the mounting reliability of the semiconductor element.
[0008]
The present invention has been made in order to solve such a problem, and has an object to provide a metallized substrate having good bonding strength and excellent heat cycle characteristics, and further having a good appearance and excellent solder wettability. Is what you do.
[0009]
[Means and Actions for Solving the Problems]
The metallized substrate of the present invention is a metallized substrate comprising a ceramic substrate and a metallized layer provided on the ceramic substrate, wherein the metallized layer is at least selected from 2 to 6 % by mass of Ti , Zr , Hf and Nb. One kind of active metal, containing 12 to 20 % by mass of In , and the balance substantially consisting of an Ag-Cu- based brazing material , comprising an In-Ag-Cu-based metal material containing an active metal , In addition, plating or soldering is performed on the metallized layer .
[0010]
The ceramic substrate used in the present invention is not particularly limited, and may be an oxide-based sintered body such as an aluminum oxide sintered body, a mullite sintered body (3Al 2 O 3 -2SiO 2 ), or an aluminum nitride sintered body. Body, silicon nitride sintered body, non-oxide sintered body such as silicon carbide sintered body, various ceramic materials can be applied, and can be appropriately selected and used according to the application and required characteristics. It is possible. However, it is particularly effective for a nitride ceramic substrate made of an aluminum nitride sintered body, a silicon nitride sintered body, or the like.
[0011]
Also, metallization layer in the present invention are those composed of In-Ag-Cu-based metal material containing at least one active metal selected Ti, Zr, Hf, and Nb. Here, as a main component of the metallized layer , an Ag- Cu eutectic composition (72% Ag-28% Cu) or an Ag-Cu-based brazing material having a composition in the vicinity thereof is used . Further, the metallized layer of the present invention is an active metal-containing In-Ag-Cu-based metallized layer forming material obtained by adding the above active metal and In to such an Ag-Cu-based brazing material, specifically, a metallized layer containing these. It is formed using a paste for use.
[0012]
The amount of the active metal added to the Ag-Cu-based brazing material as described above is preferably in the range of 2 to 6% by mass relative to the total amount of the metallized layer forming material, and the amount of In added is preferably Is preferably in the range of 12 to 20% by mass with respect to the total amount of If the amount of the active metal is less than 2% by mass , sufficient bonding to a ceramic substrate, particularly a nitride-based ceramics substrate, cannot be achieved. If the amount exceeds 6% by mass , the heat cycle characteristics may be deteriorated. If the indium content is less than 12% by mass , the effect of lowering the melting point and the effect of reducing the residual stress cannot be sufficiently obtained, and if it exceeds 20% by mass , fragile intermetallic compounds are easily generated. This causes a reduction in the strength of the metallized layer itself.
[0013]
The melting point of the active metal-containing In-Ag-Cu-based metallized layer forming material is lowered by In, and the melting point is lowered from the usual 1053K to about 953K. Thereby, for example, the heat treatment for forming the actual metallized layer can be reduced from the conventional temperature of about 1073 to 1173K to a temperature of about 973 to 1073K. As described above, since the heat treatment can be performed at a relatively low temperature, it is possible to first prevent appearance defects or the like due to seepage of the liquid phase component in the ceramic substrate.
[0014]
In addition, since In has a very small yield stress and is a soft metal in the first place, the residual stress after metallization is reduced due to the decrease in the heat treatment temperature and the decrease in the yield stress of the metallized layer forming material itself. Therefore, it is possible to improve the thermal cycle characteristics of the metallized substrate. Specifically, it is possible to maintain a high bonding strength up to a high cycle in a heat cycle test.
[0015]
Furthermore, since In itself has good wettability with other metals such as a solder alloy, the metallized layer containing In has excellent solder wettability and plating adhesion.
[0016]
The metallized substrate of the present invention can be produced, for example, as follows. First, an In-Ag-Cu-based metallizing layer forming material to which an active metal is added is prepared, and a resin binder and a dispersing medium are added thereto as required, and the paste is uniformly dispersed to form a metallizing paste having a desired viscosity. Is prepared.
[0017]
Next, the metallizing paste is applied to a ceramic substrate in a required shape by, for example, a screen printing method. After drying the printed layer of the metallizing paste, heat treatment is performed in an atmosphere corresponding to the ceramic substrate used to form a metallized layer. The heat treatment temperature can be about 973 to 1073K as described above.
[0018]
Here, the reaction between the active metal and, for example, nitrogen in the nitride-based ceramic substrate, starts to progress from about 773 to 873K. Accordingly, when the active metal-containing In-Ag-Cu-based metallized layer forming material is used, even if the metallizing treatment is performed in a nitrogen atmosphere, the difference between the above reaction initiation temperature and the liquid phase forming temperature of the metallized layer forming material is obtained. Is small, the reaction between the active metal and nitrogen in the nitride-based ceramic substrate sufficiently proceeds even after the metallization temperature is reached.
[0019]
In other words, the active metal-containing In-Ag-Cu-based metallized layer forming material forms a liquid phase at a temperature of about 973 K, and promotes the reaction between the active metal and the nitride-based ceramic substrate. The reaction between the active metal and the nitride-based ceramic substrate proceeds while being accelerated by the liquid phase from a temperature that is not so different from the reaction start temperature of the active metal and nitrogen. Is suppressed. Therefore, a sufficient adhesive strength can be obtained even in a nitrogen atmosphere. As described above, the metallizing treatment in the nitrogen atmosphere becomes possible, so that a continuous furnace excellent in mass productivity can be used.
[0020]
【Example】
Next, examples of the present invention will be described.
[0021]
Example 1
First, a 12 × 8 × 1.52 mm aluminum nitride substrate (thermal conductivity = 170 W / m K) was prepared as a ceramic substrate. On the other hand, as a metallized layer forming material, an active metal-containing In-Ag-Cu-based brazing filler metal having a mass ratio of 14.0% In-59.0% Ag-23.0% Cu-4.0% Ti was prepared. An appropriate amount of a binder resin and a dispersion medium were mixed with the active metal-containing In-Ag-Cu-based brazing filler metal powder to prepare a metallizing paste.
[0022]
Next, a paste for metallizing was screen-printed on the surface of the aluminum nitride substrate and dried. Thereafter, the aluminum nitride substrate coated with the metallizing paste is coated with 973K in (1) a vacuum of 1.33 × 10 −2 Pa or less, (2) an Ar atmosphere, and (3) an N 2 atmosphere. Heat treatment was performed for 10 minutes to form a metallized layer. Thus, three types of metallized substrates were obtained.
[0023]
In addition, as a comparative example with the present invention, a metallized substrate was manufactured by performing a metallization process in an N 2 atmosphere on an aluminum nitride substrate using a Mo—TiN-based metallizing paste.
[0024]
The properties and the like of the metallized substrates of the examples and comparative examples obtained in this way were evaluated. First, Ni plating was applied to the metallized surface of each metallized substrate, and the external appearance was visually inspected. As a result, the three types of metallized substrates according to the above-described embodiments were free from contamination and had no problem. On the other hand, the metallized substrate of the comparative example using the Mo-TiN-based metallized paste had poor appearance.
[0025]
Next, the thermal cycle characteristics of each metallized substrate were measured and evaluated. First, after measuring the adhesion strength of the metallization layer prior to application of the thermal cycle test (TCT), performed TCT 233 K × 30 minutes + R.T. × 10 minutes + 398K × 30 minutes + a R.T. × 10 minutes as one cycle The adhesion strength of the metallized layer after TCT was measured. As a result, the relationship between the number of TCT cycles and the adhesion strength is shown in FIG.
[0026]
As is clear from FIG. 1, it can be seen that the metallized substrates according to the examples have excellent TCT characteristics regardless of the atmosphere at the time of the metallization process. On the other hand, in the metallized substrate according to the comparative example, the adhesion strength decreases with an increase in the number of TCT cycles, which indicates that the TCT characteristics are inferior. In the metallized substrate of the above embodiment, the fact that excellent TCT characteristics are obtained even by metallizing treatment in a nitrogen atmosphere means that a continuous furnace excellent in mass productivity can be used. This leads to a significant reduction in the manufacturing cost of the metallized substrate.
[0027]
Further, when the solder wettability of the metallized substrates according to the example and the comparative example was evaluated, each metallized substrate according to the example showed good solder wettability similarly to the metallized substrate according to the comparative example. When a metallized layer was formed on an aluminum nitride substrate using an active metal-containing Ag-Cu-based brazing filler metal to which In was not added, the obtained metallized layer had poor solder wettability, and the mounting reliability of semiconductor elements and the like was poor. Was inferior. Example 2
A metallizing paste was prepared in the same manner as in Example 1 by using the active metal-containing In-Ag-Cu-based metallizing layer forming material having the composition shown in Table 1, and a metallizing layer was formed on the same aluminum nitride substrate as in Example 1. Formed. The metallization conditions are as shown in Table 1. The TCT characteristics of each metallized substrate thus obtained were evaluated based on the adhesion strength after 1000 cycles. Table 1 also shows the results.
[0028]
[Table 1]
Figure 0003577109
[0029]
【The invention's effect】
As described above, according to the metallized substrate of the present invention, the metallized substrate has good bonding strength, can maintain high bonding strength even after application of a thermal cycle, and further prevents appearance defects and solder wettability. Improvement can be achieved. Therefore, it is possible to provide a metallized substrate having high bonding strength, excellent reliability in applying a thermal cycle, good appearance, and excellent solder wettability.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the number of TCT cycles of a metallized substrate manufactured in an example of the present invention and the adhesion strength of a metallized layer in comparison with a conventional metallized substrate.

Claims (2)

セラミックス基板と、このセラミックス基板上に設けられたメタライズ層とを具備するメタライズ基板において、
前記メタライズ層は、2 6 質量%の Ti Zr Hf および Nb から選ばれる少なくとも 1 種の活性金属と、 12 20 質量%の In とを含み、残部が実質的に Ag-Cu 系ろう材からなる、活性金属を含むIn-Ag-Cu系金属材料により構成されており、かつ前記メタライズ層上にめっきまたは半田が施されていることを特徴とするメタライズ基板。
In a metallized substrate comprising a ceramic substrate and a metallized layer provided on the ceramic substrate,
The metallized layer contains 2 to 6 % by mass of at least one active metal selected from Ti , Zr , Hf and Nb , and 12 to 20 % by mass of In , and the balance is substantially Ag-Cu- based. A metallized substrate made of an In-Ag-Cu-based metal material containing an active metal , wherein the metallized layer is plated or soldered on the metallized layer .
前記セラミックス基板は窒化物系セラミックス基板であることを特徴とする請求項1記載のメタライズ基板。Claim 1 Symbol mounting metallized substrate, wherein the ceramic substrate is a nitride ceramic substrate.
JP20040794A 1994-08-25 1994-08-25 Metallized substrate Expired - Lifetime JP3577109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20040794A JP3577109B2 (en) 1994-08-25 1994-08-25 Metallized substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20040794A JP3577109B2 (en) 1994-08-25 1994-08-25 Metallized substrate

Publications (2)

Publication Number Publication Date
JPH0859375A JPH0859375A (en) 1996-03-05
JP3577109B2 true JP3577109B2 (en) 2004-10-13

Family

ID=16423810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20040794A Expired - Lifetime JP3577109B2 (en) 1994-08-25 1994-08-25 Metallized substrate

Country Status (1)

Country Link
JP (1) JP3577109B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102151579B (en) * 2011-02-18 2013-04-17 李伟 Copper phosphide catalyst for synthesizing chloroethylene and preparation method thereof
WO2019044752A1 (en) * 2017-08-29 2019-03-07 京セラ株式会社 Circuit board and electronic device provided with same

Also Published As

Publication number Publication date
JPH0859375A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
US5807626A (en) Ceramic circuit board
EP0574956B1 (en) Metallized circuit substrate comprising nitride type ceramics
JP3845925B2 (en) Semiconductor device member using aluminum nitride substrate and method for manufacturing the same
JP3834351B2 (en) Ceramic circuit board
JP3238051B2 (en) Brazing material
JP3577109B2 (en) Metallized substrate
JP4081865B2 (en) Method for producing conductor composition
JP5016756B2 (en) Nitride-based ceramic member and metal member joined body and nitride-based ceramic circuit board using the same
JP3887645B2 (en) Manufacturing method of ceramic circuit board
JP4557398B2 (en) Electronic element
JPH05170552A (en) Aluminum nitride substrate having metallized layer and metallization of the substrate
JPH05226515A (en) Aluminum nitride substrate having metallized layer and the metallizing method thereof
JP2003192462A (en) Silicon nitride circuit board and method of producing the same
JPH0597533A (en) Composition for bonding ceramic-metal and bonded product of ceramic-metal
JP3370060B2 (en) Ceramic-metal joint
JPH05221759A (en) Aluminum nitride substrate with metallizing layer and metallizing method
JP2704158B2 (en) Aluminum nitride sintered body having conductive metallized layer and method of manufacturing the same
JPH04285085A (en) Ceramic substrate with thick film
JP2000349098A (en) Bonded body of ceramic substrate and semiconductor device, and its manufacture
JP2000311969A (en) Copper circuit bonded board and manufacture of the same
JP2003192463A (en) Nitride ceramic copper circuit board
JPH02101131A (en) Metallizing composition on the surface of ceramics and metallizing method
KR900006680B1 (en) Circuit substrate comprising aitride type ceramics method for preparing it and metallizing composition for use in it
JPH05319944A (en) Ceramic circuit board and joining agent for circuit board
JPH01788A (en) Surface conductive ceramic substrate, method for manufacturing the same, and metallizing composition used therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

EXPY Cancellation because of completion of term