JP4659812B2 - Method of manufacturing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel - Google Patents

Method of manufacturing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel Download PDF

Info

Publication number
JP4659812B2
JP4659812B2 JP2007334644A JP2007334644A JP4659812B2 JP 4659812 B2 JP4659812 B2 JP 4659812B2 JP 2007334644 A JP2007334644 A JP 2007334644A JP 2007334644 A JP2007334644 A JP 2007334644A JP 4659812 B2 JP4659812 B2 JP 4659812B2
Authority
JP
Japan
Prior art keywords
ceramic member
bonding
ceramic
metallized
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007334644A
Other languages
Japanese (ja)
Other versions
JP2008150285A (en
Inventor
友亮 牧野
庸晃 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2007334644A priority Critical patent/JP4659812B2/en
Publication of JP2008150285A publication Critical patent/JP2008150285A/en
Application granted granted Critical
Publication of JP4659812B2 publication Critical patent/JP4659812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • H01H2033/66215Details relating to the soldering or brazing of vacuum switch housings

Landscapes

  • Ceramic Products (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

本発明は、例えば金属とセラミックを接合する場合のように、接合強度、気密性等が要求される部材などに関し、接合用セラミック部材の製造方法、接合用セラミック部材、接合体、真空スイッチ、及び真空容器に関するものである。   The present invention relates to a member that requires bonding strength, airtightness, and the like, for example, when a metal and ceramic are bonded, a method for manufacturing a bonding ceramic member, a bonding ceramic member, a bonded body, a vacuum switch, and the like It relates to a vacuum vessel.

従来より、セラミック基材の表面にメタライズを施す方法として、モリブデン−マンガン法(Mo−Mn法;テレフンケン法)が知られている。   Conventionally, a molybdenum-manganese method (Mo-Mn method; Telefunken method) is known as a method for metallizing the surface of a ceramic substrate.

このMo−Mn法は、WやMo等の高融点金属の粉末に、Mn粉末、Ti粉末、ガラス成分(SiO2)等の接合助剤を添加し、有機バインダと混合してペーストとしたメタライズインクを、セラミック基材上に塗布し焼き付ける方法(焼成方法)である。 This Mo-Mn method is a metallized paste in which a bonding aid such as Mn powder, Ti powder, glass component (SiO 2 ), etc. is added to a powder of a high melting point metal such as W or Mo and mixed with an organic binder. This is a method (firing method) in which ink is applied onto a ceramic substrate and baked.

上述した従来技術では、メタライズの焼き付け温度は、1300〜1500℃の高温であり、炉の構造、光熱費、耐熱消耗材等、焼成費用が大きくかかるという問題があった。
また、高温の焼き付けにより、セラミック自体の変形も生じ、寸法精度を満足しない製品が発生するという問題もあった。
In the prior art described above, the baking temperature of the metallization is a high temperature of 1300 to 1500 ° C., and there is a problem that the firing cost is high, such as the furnace structure, the utility cost, and the heat-resistant consumable material.
Further, there is a problem that the ceramic itself is deformed by baking at a high temperature, resulting in a product that does not satisfy the dimensional accuracy.

この対策として、従来の組成のメタライズインクを、1300℃未満の低温で焼き付けることが考えられるが、この場合は、十分な接合強度が得られないという問題があり、その改善が求められていた。   As a countermeasure against this, it is conceivable to bake a metallized ink having a conventional composition at a low temperature of less than 1300 ° C. However, in this case, there is a problem that sufficient bonding strength cannot be obtained, and improvement thereof has been demanded.

本発明は前記課題を解決するためになされたものであり、その目的は、低温での焼成でも十分なメタライズの接合強度が得られる接合用セラミック部材の製造方法、接合用セラミック部材、接合体、真空スイッチ、及び真空容器を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and its purpose is to provide a method for manufacturing a ceramic member for bonding, which can provide sufficient metallized bonding strength even when fired at a low temperature, a ceramic member for bonding, a bonded body, To provide a vacuum switch and a vacuum vessel.

従来のメタライズ方法では、主に二つの作用により、金属がセラミックと接合する。即ち、高融点金属粒子同士の焼結と、同粒子間の空隙へのガラス成分の拡散浸透である。
この従来方法において、メタライズ焼成温度が十分に高いと、高融点金属の焼結が進み、メタライズ層自体の強度が向上し、なおかつ、セラミック内又はインク成分のガラス質(SiO2等)が、高融点金属粒子間に浸透し、投錨効果として機械的に接合強度が向上する。しかし、これらの効果が得られる十分な反応には、1300℃以上の温度が必要であった。
In the conventional metallization method, the metal is joined to the ceramic mainly by two actions. That is, sintering of refractory metal particles and diffusion and penetration of the glass component into the gaps between the particles.
In this conventional method, when the metallization firing temperature is sufficiently high, the sintering of the high melting point metal proceeds, the strength of the metallization layer itself is improved, and the vitreous material (SiO 2 etc.) in the ceramic or ink component is high. It penetrates between the melting point metal particles and mechanically improves the bonding strength as an anchoring effect. However, a temperature of 1300 ° C. or higher is necessary for a sufficient reaction to obtain these effects.

それに対して、本発明では、Niが高融点金属と反応して焼結を促進させることにより、低温で焼結することができる On the other hand, in the present invention, Ni can be sintered at a low temperature by reacting with a refractory metal to promote sintering .

本発明は、上述した知見により得られたものである。以下各請求項毎に説明する。
(1)前記目的を達成するための請求項1の発明は、W及び/又はMoの高融点金属粉末と、Ni粉末とを含有する混合物を、有機バインダと混合してペーストとしてメタライズインクを製造し、該メタライズインクをセラミック焼成体であるセラミック基材に塗布して焼き付けてメタライズ層を形成する接合用セラミック部材の製造方法であって、前記混合物として、前記W及び/又はMoの高融点金属粉末を70〜97重量%と、前記Ni粉末を1〜10重量%とを含有する混合物を用いるとともに、SiO 2 を含む前記セラミック基体を用い、前記焼き付けの際の焼成温度を、1150℃以上1250℃以下とし、その焼成の際に前記セラミック基体中のSiO 2 を前記メタライズ層の前記高融点金属の粒子間に浸透させることを特徴とする接合用セラミック部材の製造方法を要旨とする。
The present invention has been obtained based on the above-described findings. Each claim will be described below.
(1) The invention of claim 1 for achieving the above object is to produce a metallized ink as a paste by mixing a mixture containing a refractory metal powder of W and / or Mo and Ni powder with an organic binder. The metallized ink is applied to a ceramic substrate which is a ceramic fired body and baked to form a metallized layer , which is a method for producing a ceramic member for joining , wherein the mixture is a refractory metal of W and / or Mo. A mixture containing 70 to 97% by weight of powder and 1 to 10% by weight of the Ni powder is used, and the ceramic substrate containing SiO 2 is used. The firing temperature during the baking is 1150 ° C. or higher and 1250 ° C. It is characterized by being made to permeate between the refractory metal particles of the metallized layer with the SiO 2 in the ceramic substrate at the time of firing. The gist of the manufacturing method of the joining ceramic member is as follows.

本発明では、メタライズインク中に、Niを含むので、上述したように、Niが高融点金属と反応し、メタライズ層における焼結を促進する。これにより、1150〜1250℃の低温でも十分に焼結が可能である。 In the present invention, since the metallized ink contains Ni, as described above, Ni reacts with the refractory metal and promotes sintering in the metallized layer. Thereby, it is possible to sufficiently sinter even at a low temperature of 1150 to 1250 ° C.

その結果、従来と比べて、炉の構造、光熱費、耐熱消耗材等に関する焼成費用を小さくすることができる。また、低温での焼き付けにより、セラミック自体の変形も生じにくく、高い寸法精度が得られるという顕著な効果を奏する。更に、低温でも十分に焼結ができるので、高い接合強度を確保できるという利点がある。   As a result, it is possible to reduce the firing cost related to the furnace structure, the utility cost, the heat-resistant consumables, and the like as compared with the conventional case. In addition, by baking at a low temperature, the ceramic itself is hardly deformed, and there is a remarkable effect that high dimensional accuracy can be obtained. Furthermore, since sintering can be performed sufficiently even at a low temperature, there is an advantage that high bonding strength can be secured.

詳しくは、本発明では、メタライズインク中に、Niを1〜10重量%含むので、上述したように、Niが高融点金属と反応し、メタライズ層における焼結を促進する。これにより、1150〜1250℃の低温でも十分に焼結が可能である Specifically, in the present invention, since 1 to 10% by weight of Ni is contained in the metallized ink, as described above, Ni reacts with the refractory metal and promotes sintering in the metallized layer. This allows a sufficiently sintered even at a low temperature of 1150 to 1250 ° C..

更に、Si成分は、ガラス質のSiO2として機能し、このSiO2が高融点金属粒子間に浸透することにより、投錨効果として機械的に接合強度が向上する。特に、低温でも高い接合強度が得られる。 Further, the Si component functions as vitreous SiO 2 , and when this SiO 2 penetrates between the high melting point metal particles, the joint strength is mechanically improved as an anchoring effect. In particular, high bonding strength can be obtained even at low temperatures.

(2)請求項2の発明は、前記請求項1に記載の接合用セラミック部材の製造方法により製造されたことを特徴とする接合用セラミック部材を要旨とする。
)請求項の発明は、 前記請求項に記載の接合用セラミック部材に、前記メタライズ層を介して金属部材を接合したことを特徴とする接合体を要旨とする。
(2) The invention according to claim 2 is a bonding ceramic member manufactured by the method for manufacturing a bonding ceramic member according to claim 1.
( 3 ) The invention of claim 3 is a joined body characterized in that a metal member is joined to the joining ceramic member according to claim 2 via the metallized layer.

本発明は、接合用セラミック部材と金属部材とを、上述したNi等を含むメタライズ層にて接合したものである。
従って、上述した様に、この接合用セラミック部材と金属部材とが接合した接合体を製造する際には、その製造コストが低減し、また、接合体においては、高い接合強度及び寸法精度が得られる。
In the present invention, a joining ceramic member and a metal member are joined by the metallized layer containing Ni or the like described above.
Therefore, as described above, when manufacturing a bonded body in which the ceramic member for bonding and the metal member are bonded, the manufacturing cost is reduced, and the bonded body has high bonding strength and dimensional accuracy. It is done.

)請求項の発明は、前記請求項に記載の接合用セラミック部材に、前記メタライズ層を介して他の接合用セラミック部材を接合したことを特徴とする接合体を要旨とする。 ( 4 ) The gist of the invention of claim 4 is characterized in that the joining ceramic member according to claim 2 is joined to another joining ceramic member via the metallized layer.

本発明は、接合用セラミック部材と他の接合用セラミック部材とを、上述したNi等を含むメタライズ層にて接合したものである。尚、接合の際には、このメタライズ層上の接合面にメッキを施すことが好ましい。また、接合方法としてはろう付け接合が好適である。   In the present invention, a joining ceramic member and another joining ceramic member are joined by the above-described metallized layer containing Ni or the like. In joining, it is preferable to apply plating to the joining surface on the metallized layer. Moreover, brazing joining is suitable as a joining method.

従って、上述した様に、この接合用セラミック部材同士が接合した接合体を製造する際には、その製造コストが低減し、また、接合体においては、高い接合強度及び寸法精度が得られる。   Therefore, as described above, when manufacturing a bonded body in which the ceramic members for bonding are bonded, the manufacturing cost is reduced, and the bonded body can have high bonding strength and dimensional accuracy.

)請求項の発明は、前記請求項3又は4の接合体を備えたことを特徴とする真空スイッチを要旨とする。
本発明は、上述した接合体を用いた真空スイッチである。この真空スイッチとは、例えばセラミック製の絶縁バルブを用いた電気回路開閉器であり、特に高電圧、大電流の開閉に好適なものである。
( 5 ) The invention of claim 5 is summarized in a vacuum switch comprising the joined body of claim 3 or 4 .
The present invention is a vacuum switch using the above-described joined body. The vacuum switch is an electric circuit switch using an insulating valve made of ceramic, for example, and is particularly suitable for high voltage and large current switching.

)請求項の発明は、前記請求項3又は4の接合体を備えたことを特徴とする真空容器を要旨とする。
本発明は、上述した真空スイッチなどに用いられる真空容器(例えば絶縁バルブ)であり、この真空容器内に電極などを配置することにより、真空スイッチ(電気回路開閉器)を形成することができる。
( 6 ) The invention of claim 6 is summarized in a vacuum vessel comprising the joined body of claim 3 or 4 .
The present invention is a vacuum vessel (for example, an insulating valve) used for the above-described vacuum switch, and a vacuum switch (electric circuit switch) can be formed by disposing an electrode or the like in the vacuum vessel.

以上詳述した様に、請求項1の発明の接合用セラミック部材の製造方法により、メタライズの低温での十分な焼結が可能であるので、従来と比べて、炉の構造、光熱費、耐熱消耗材等に関する焼成費用を小さくすることができる。また、高い寸法精度及び高い接合強度を実現できる。   As described above in detail, the method for manufacturing a ceramic member for bonding according to the first aspect of the invention allows sufficient sintering of the metallization at a low temperature, so that the furnace structure, utility cost, The firing cost for consumables and the like can be reduced. Moreover, high dimensional accuracy and high bonding strength can be realized.

また、請求項の発明の接合用セラミック部材は、低温でも十分に焼結が進んだメタライズ層を有するので、前記請求項1と同様に、焼成費用を低減でき、高い寸法精度及び高い接合強度を有する。 In addition, since the ceramic member for bonding according to the second aspect of the present invention has a metallized layer that has been sufficiently sintered even at a low temperature, as in the case of the first aspect, the firing cost can be reduced, and high dimensional accuracy and high bonding strength. Have

更に、請求項及び請求項の接合体は、上述した接合用セラミック部材を有するので、前記と同様に、コストの低減や高い接合強度及び高い寸法精度という利点がある。
その上、請求項の発明の真空スイッチ及び請求項の発明の真空容器は、上述した接合用セラミック部材を備えた接合体を有するので、前記と同様に、コストの低減や高い接合強度及び高い寸法精度という利点がある。
Furthermore, since the joined body of claim 3 and claim 4 has the joining ceramic member described above, there are advantages such as cost reduction, high joining strength, and high dimensional accuracy, as described above.
In addition, since the vacuum switch of the invention of claim 5 and the vacuum container of the invention of claim 6 have the joined body provided with the above-described joining ceramic member, the cost reduction, high joining strength and There is an advantage of high dimensional accuracy.

以下、本発明の、接合用セラミック部材の製造方法、接合用セラミック部材、接合体、真空スイッチ、及び真空容器の実施の形態の例(実施例)を、図面を参照して説明する。
(実施例1)
ここでは、接合用セラミック部材と金属部材の接合体を例に挙げる。
Hereinafter, an example (example) of an embodiment of a manufacturing method of a joining ceramic member, a joining ceramic member, a joined object, a vacuum switch, and a vacuum vessel of the present invention is explained with reference to drawings.
Example 1
Here, a joined body of a joining ceramic member and a metal member is taken as an example.

a)図1に模式的に示す様に、本実施例では、接合用セラミック部材1と金属部材3とがロー材5により接合されて接合体7が形成されている。
詳しくは、接合用セラミック部材1は、セラミック基材9上にメタライズ層11が形成されたものであり、このメタライズ層11上にメッキ層13が形成され、メッキ層13と金属部材3とがロー材5により接合され、これにより接合用セラミック部材1と金属部材3とが接合一体化されている。
a) As schematically shown in FIG. 1, in this embodiment, a joining ceramic member 1 and a metal member 3 are joined together by a brazing material 5 to form a joined body 7.
Specifically, the bonding ceramic member 1 is obtained by forming a metallized layer 11 on a ceramic base material 9, a plated layer 13 is formed on the metallized layer 11, and the plated layer 13 and the metal member 3 are low-coated. The ceramic member 1 for joining and the metal member 3 are joined and integrated by the material 5.

b)次に、この接合体の1例として円形のテストピースの製造方法を、接合用セラミック部材の製造方法とともに説明する。
1)まず、下記表1に示すメタライズインク成分の粉末(例えば87重量%)を、粉砕混合し、エトセル等の有機バインダ(例えば13重量%)と混合してペーストとし、メタライズインクを製造した。
b) Next, a method for producing a circular test piece as an example of the joined body will be described together with a method for producing a joining ceramic member.
1) First, a powder (for example, 87% by weight) of a metallized ink component shown in Table 1 below was pulverized and mixed and mixed with an organic binder (for example, 13% by weight) such as etose to obtain a metallized ink.

2)次に、前記メタライズインクを、セラミック焼成体であるアルミナ製(例えばアルミナ92重量%)のセラミック基材9(例えば厚み5mm×外径φ30mm×内径φ8.5mmの円筒形のテストピース)の表面に、厚み10〜20μm程度塗布した。   2) Next, the metallized ink is made of an alumina ceramic substrate 9 (for example, 92% by weight of alumina) (for example, a cylindrical test piece having a thickness of 5 mm, an outer diameter of 30 mm, and an inner diameter of 8.5 mm). About 10-20 micrometers in thickness was apply | coated to the surface.

3)次に、前記メタライズインクを塗布したセラミック基材9を炉中に入れ、ウエッター温度50℃のH2/N2(1:1)のフォーミングガス雰囲気にて、下記表2に示す1150〜1350℃の温度範囲の温度にて焼成した(メタライズした)。これにより、セラミック基材9の表面にメタライズ層11を備えた接合用セラミック部材1が得られた。 3) Next, the ceramic base material 9 coated with the metallized ink was placed in a furnace, and 1150 shown in Table 2 below in a forming gas atmosphere of H 2 / N 2 (1: 1) with a wetter temperature of 50 ° C. Baked (metallized) at a temperature in the temperature range of 1350 ° C. Thereby, the joining ceramic member 1 provided with the metallized layer 11 on the surface of the ceramic base material 9 was obtained.

4)次に、メタライズ層11の表面(メタライズ面)に、電解メッキによりNiメッキを施してメッキ層13を形成した。その後、H2雰囲気中、温度830℃にて、メッキ層13を焼成(シンタリング)した。 4) Next, Ni plating was applied to the surface (metallized surface) of the metallized layer 11 by electrolytic plating to form a plated layer 13. Thereafter, the plating layer 13 was baked (sintered) at a temperature of 830 ° C. in an H 2 atmosphere.

5)次に、接合用セラミック部材1とコバール製(Fe−Ni−Co)の金属部材3をロー付けした。   5) Next, the ceramic member 1 for bonding and the metal member 3 made of Kovar (Fe—Ni—Co) were brazed.

具体的には、メッキ層13と金属部材3(例えば厚み1mm×外径φ16mmのコバール円板)との間に、銀ロー材(BAg−8)5の箔を配置して、所定のロー付け温度にて加熱して冷却することにより、接合用セラミック部材1と金属部材3とをロー付け接合して接合体7を完成した。   Specifically, a silver brazing material (BAg-8) 5 foil is disposed between the plating layer 13 and the metal member 3 (for example, a Kovar disk having a thickness of 1 mm and an outer diameter of φ16 mm), and predetermined brazing. By heating and cooling at a temperature, the joining ceramic member 1 and the metal member 3 were brazed and joined to complete the joined body 7.

つまり、上述した(1)〜(5)の製造工程によって、下記表1に示す様に、メタライズインクの成分を違えて、図2に示す様に、実験に供する接合体7としてNo.2〜17の円形のテストピース(試料)を作成した。ここで、試料No.15が本発明の範囲の試料であり、試料No.2〜14、16、17は、メタライズインクにSiO 2 を含む参考例である。尚、メタライズインクの組成を違えた(即ちNiを含まない)比較例のNo.1の試料も作成した。 That is, as shown in FIG. 2, the manufacturing process of (1) to (5) described above differs in the components of the metallized ink, and as shown in FIG. Seventeen round test pieces (samples) were prepared. Here, sample No. 15 is a sample within the scope of the present invention, and sample Nos . 2 to 14, 16, and 17 are reference examples including SiO 2 in the metallized ink . A sample No. 1 of a comparative example in which the composition of the metallized ink was different (that is, Ni was not included) was also prepared.

Figure 0004659812
Figure 0004659812

また、上述した製造工程の際に、製造された接合用セラミック部材1のメタライズ層11の成分の定量分析を行った。詳しくは、電子プローブマイクロアナライザー(加速電圧;20kV、スポット径;5μm)により定量分析を行った。その結果を、下記表2に記す。   Moreover, the quantitative analysis of the component of the metallized layer 11 of the manufactured ceramic member 1 for joining was performed in the case of the manufacturing process mentioned above. Specifically, quantitative analysis was performed using an electron probe microanalyzer (acceleration voltage: 20 kV, spot diameter: 5 μm). The results are shown in Table 2 below.

尚、分析は、偏析の影響を少なくするために、各試料とも5箇所行い、その平均値を求めた。また、Si、Al、Ca、Mgの重量%は、酸化物換算した値である。   In addition, in order to reduce the influence of segregation, the analysis was performed at five locations for each sample, and the average value was obtained. Moreover, the weight% of Si, Al, Ca, Mg is a value in terms of oxide.

Figure 0004659812
Figure 0004659812

但し、試料No.10は、Moに代えてWを使用。
c)次に、前記の製造方法にて製造した接合体の各試料の接合強度を調べた。
具体的には、図3に示す様に、接合体7を金属部材3を下向きにして配置するとともに、セラミック基材9の外周の下端を円筒形の鉄製の受け台21で支える。この状態で、セラミック基台9の中央の貫通孔23に、上方より円柱形のステンレス製の打ち抜き棒25を配置し、打ち抜き棒25を荷重速度0.5mm/minで図の下方に移動させる。
However, sample No. 10 uses W instead of Mo.
c) Next, the bonding strength of each sample of the bonded body manufactured by the above manufacturing method was examined.
Specifically, as shown in FIG. 3, the joined body 7 is arranged with the metal member 3 facing downward, and the lower end of the outer periphery of the ceramic base 9 is supported by a cylindrical iron cradle 21. In this state, a cylindrical stainless steel punching rod 25 is disposed in the central through hole 23 of the ceramic base 9 from above, and the punching rod 25 is moved downward in the figure at a load speed of 0.5 mm / min.

そして、この際の金属部材3が剥がれる時の強度(破壊強度)を、打ち抜き棒25の上方に配置した荷重計(図示せず)によって測定し、これをロー付け強度とした。このロー付け強度を、各試料の焼成温度別に下記表3に記す。   Then, the strength (breaking strength) when the metal member 3 peeled at this time was measured by a load meter (not shown) arranged above the punching rod 25, and this was used as brazing strength. The brazing strength is shown in Table 3 below according to the firing temperature of each sample.

Figure 0004659812
Figure 0004659812

尚、前記表3の評価は、1150〜1250℃において、○は17MPa以上のピーク有りを示し、△は11〜17MPaのピーク有りを示し、×は10MPa以上のピーク無しを示している。   In the evaluation of Table 3, at 1150 to 1250 ° C., ◯ indicates that there is a peak of 17 MPa or more, Δ indicates that there is a peak of 11 to 17 MPa, and × indicates that there is no peak of 10 MPa or more.

この表3から明らかな様に、本発明の範囲のNo.15の試料は、低温での焼成にもかかわらず、メタライズ層は十分に焼結するので、高いロー付け強度が得られ好適である。例えば1150℃の焼成では、6.9MPa以上の強度を有する。また、低温での焼結が可能であるので、焼結のためのコストが少なくて済むという利点がある。更に、低温での十分な焼結が可能であるので、高温での焼結に比べて、接合用セラミック部材の寸法精度が高いという効果がある。 As is apparent from Table 3, the sample No. 15 within the scope of the present invention is suitable because the metallized layer is sufficiently sintered despite the firing at a low temperature, so that a high brazing strength is obtained. . For example, the firing at 1150 ° C. has a strength of 6.9 MPa or more. Further, since sintering at a low temperature is possible, there is an advantage that the cost for sintering can be reduced. Furthermore, since sufficient sintering at a low temperature is possible, there is an effect that the dimensional accuracy of the ceramic member for bonding is higher than that at high temperature.

それに対して、比較例のNo.1の試料は、低温で焼成した場合には、メタライズ層は十分に焼結せず、よってロー付け強度が低く好ましくない。
(実施例2)
次に、実施例2について説明するが、前記実施例1と同様な箇所の説明は省略する。
On the other hand, when the No. 1 sample of the comparative example is fired at a low temperature, the metallized layer does not sinter sufficiently, so that the brazing strength is low, which is not preferable.
(Example 2)
Next, the second embodiment will be described, but the description of the same parts as the first embodiment will be omitted.

ここでは、接合用セラミック部材同士を接合した接合体を例に挙げる。
a)図4に模式的に示す様に、本実施例では、アルミナ製の第1の接合用セラミック部材31と同様なアルミナ製の第2の接合用セラミック部材33とがロー材35により接合されて接合体37が形成されている。
Here, a bonded body obtained by bonding ceramic members for bonding to each other will be described as an example.
a) As schematically shown in FIG. 4, in this embodiment, the first bonding ceramic member 31 made of alumina and the second bonding ceramic member 33 made of alumina are bonded by a brazing material 35. Thus, a joined body 37 is formed.

詳しくは、第1の接合用セラミック部材31は、第1のセラミック基材39上に第1のメタライズ層41が形成されたものであり、この第1のメタライズ層41上にはNiメッキにより第1のメッキ層43が形成されている。一方、第2の接合用セラミック部材33は、第2のセラミック基材45上に第2のメタライズ層47が形成されたものであり、この第2のメタライズ層47上にはNiメッキにより第2のメッキ層49が形成されている。そして、第1メッキ層43と第2のメッキ層49とがロー材35により接合されることにより、第1の接合用セラミック部材31と第2の接合用セラミック部材33とが接合されて一体となっている。   Specifically, the first bonding ceramic member 31 is obtained by forming a first metallized layer 41 on a first ceramic substrate 39, and the first metallized layer 41 is plated with Ni by first plating. 1 plating layer 43 is formed. On the other hand, the second bonding ceramic member 33 is obtained by forming a second metallized layer 47 on a second ceramic substrate 45, and the second metallized layer 47 is second plated by Ni plating. The plating layer 49 is formed. Then, the first plating layer 43 and the second plating layer 49 are joined together by the brazing material 35, whereby the first joining ceramic member 31 and the second joining ceramic member 33 are joined together. It has become.

b)次に、この接合体の1例として円形のテストピースの製造方法を、接合用セラミック部材の製造方法とともに説明する。
1)前記実施例1にて説明した様に(以下省略した内容は前記実施例1と同様である)、前記表1に示すメタライズインク成分の粉末を使用して、各試料のメタライズインクを製造した。
b) Next, a method for producing a circular test piece as an example of the joined body will be described together with a method for producing a joining ceramic member.
1) As explained in Example 1 (the contents omitted below are the same as in Example 1), the metallized ink component powders shown in Table 1 above were used to produce metallized ink for each sample. did.

2)次に、前記メタライズインクを、第1のセラミック基材39と第2のセラミック基材45の表面に塗布した。   2) Next, the metallized ink was applied to the surfaces of the first ceramic substrate 39 and the second ceramic substrate 45.

3)次に、前記メタライズインクを塗布した第1、2のセラミック基材39、45を、それぞれ炉中に入れ、1150〜1350℃の温度にて焼成し、第1、2の接合用セラミック部材31、33を得た。   3) Next, the first and second ceramic base materials 39 and 45 coated with the metallized ink are placed in a furnace and fired at a temperature of 1150 to 1350 ° C. 31 and 33 were obtained.

4)次に、第1,2のメタライズ層41、47の表面に、Niメッキを施して第1、2のメッキ層43,49を形成した。   4) Next, Ni plating was applied to the surfaces of the first and second metallized layers 41 and 47 to form first and second plated layers 43 and 49.

5)次に、両メッキ層43、49の間に、銀ロー材35を配置してロー付け接合し、両接合用セラミック部材31、33を接合して一体化して接合体37を完成した。   5) Next, a silver brazing material 35 was placed between the plated layers 43 and 49 and brazed and joined, and the joined ceramic members 31 and 33 were joined and integrated to complete a joined body 37.

c)次に、前記の製造方法にて製造した接合体の各試料(試料No.1〜17のテストピース)の接合強度を、前記実施例1と同様な方法で調べた。
その結果を、下記表4に記す。
c) Next, the bonding strength of each sample of the bonded body manufactured by the above manufacturing method (test pieces of sample Nos. 1 to 17) was examined by the same method as in Example 1.
The results are shown in Table 4 below.

Figure 0004659812
Figure 0004659812

尚、前記表4の評価は、1150〜1250℃において、○は60MPa以上のピーク有りを示し、△は40〜60MPaのピーク有りを示し、×は40MPa以上のピーク無しを示している。   In the evaluation of Table 4, at 1150 to 1250 ° C., ◯ indicates that there is a peak of 60 MPa or more, Δ indicates that there is a peak of 40 to 60 MPa, and × indicates that there is no peak of 40 MPa or more.

この表4から明らかな様に、本発明の範囲のNo.15の試料は、低温での焼成にもかかわらず、メタライズ層は十分に焼結しており、高いロー付け強度が得られ好適である。また、低温での焼結が可能であるので、焼結のためのコストが少なくて済むという利点がある。更に、低温での焼結が可能であるので、高温での焼結に比べて、接合用セラミック部材の寸法精度が高いという効果がある。 As is apparent from Table 4, the No. 15 sample within the scope of the present invention is suitable because the metallized layer is sufficiently sintered despite high-temperature firing, and high brazing strength is obtained. is there. Further, since sintering at a low temperature is possible, there is an advantage that the cost for sintering can be reduced. Furthermore, since sintering at a low temperature is possible, there is an effect that the dimensional accuracy of the bonding ceramic member is higher than that at high temperature.

それに対して、比較例のNo.1の試料は、低温で焼成した場合には、メタライズ層は十分に焼結しておらず、ロー付け強度が低く好ましくない。
(実施例3)
次に、実施例3について説明するが、前記実施例1、2と同様な箇所の説明は省略する。
On the other hand, when the No. 1 sample of the comparative example was fired at a low temperature, the metallized layer was not sufficiently sintered, and the brazing strength was low, which is not preferable.
(Example 3)
Next, the third embodiment will be described, but the description of the same parts as the first and second embodiments will be omitted.

本実施例は、前記実施例1のような接合用セラミック部材と金属部材からなる接合体を真空スイッチに用いた例である。
即ち、本実施例の真空スイッチは、真空容器内に電極等を内蔵し、高電圧、大電流の開閉に適した高負荷開閉器である。
The present embodiment is an example in which a joined body made of a joining ceramic member and a metal member as in the first embodiment is used for a vacuum switch.
That is, the vacuum switch according to the present embodiment is a high load switch that incorporates an electrode or the like in a vacuum vessel and is suitable for switching a high voltage and a large current.

詳しくは、図5に示す様に、真空負荷開閉器100は、絶縁バルブ101と、絶縁バルブ101の端部を塞いで取り付けられた第1及び第2の端蓋102、103と、第1の端蓋102に取り付けられ絶縁バルブ101内に突出された固定電極104と、第2の端蓋103に摺動自在に配置された可動電極105とを備え、固定電極104と可動電極105により接点106を構成している。   Specifically, as shown in FIG. 5, the vacuum load switch 100 includes an insulating valve 101, first and second end covers 102 and 103 attached by closing the end of the insulating valve 101, A fixed electrode 104 attached to the end lid 102 and projecting into the insulating valve 101 and a movable electrode 105 slidably disposed on the second end lid 103 are provided. A contact 106 is formed by the fixed electrode 104 and the movable electrode 105. Is configured.

前記絶縁バルブ101は、アルミナ92重量%のセラミック焼成体で形成され、内径80mm×肉厚5mm程度×長さ100mmの略円筒形である。また、絶縁バルブ101は、内径が一定の直胴部110及び内周壁111の中間にて内側に突出して周設される凸状部112を有している。更に、絶縁バルブ101の外周面には、釉薬層115を備えている。   The insulating valve 101 is made of a ceramic fired body of 92% by weight of alumina and has a substantially cylindrical shape with an inner diameter of 80 mm, a thickness of about 5 mm, and a length of 100 mm. Further, the insulating valve 101 has a straight body portion 110 having a constant inner diameter and a convex portion 112 that protrudes inwardly in the middle of the inner peripheral wall 111. Further, a glaze layer 115 is provided on the outer peripheral surface of the insulating valve 101.

前記第1、2端蓋102,103は、円板状のコバール(Fe−Ni−Co)板で形成され、各中央部に固定電極104、ガイド131を固着するための穴121、132が設けられている。このガイド131は、可動電極105の可動軸151が摺動し易いように設けられている。   The first and second end lids 102 and 103 are formed of a disk-shaped Kovar (Fe—Ni—Co) plate, and holes 121 and 132 for fixing the fixed electrode 104 and the guide 131 are provided in the respective central portions. It has been. The guide 131 is provided so that the movable shaft 151 of the movable electrode 105 can easily slide.

前記固定電極104は、先端が穴121に固着される固定軸141となり、先端が絶縁バルブ101内に突出される円環状の電極142となっている。
前記可動電極105は、後端がガイド131内を摺動する可動軸151となり、先端が固定電極104側の電極142に接触する電極152となっている。この可動電極105は、電極152付近の可動軸151と第2の端蓋103との間に設けられる蛇腹状の金属べローズ153により、真空保持状態で開閉動作を可能とされている。
The fixed electrode 104 is a fixed shaft 141 whose tip is fixed to the hole 121, and an annular electrode 142 whose tip is projected into the insulating valve 101.
The movable electrode 105 has a movable shaft 151 that slides in the guide 131 at the rear end, and an electrode 152 that contacts the electrode 142 on the fixed electrode 104 side. The movable electrode 105 can be opened and closed in a vacuum state by a bellows-shaped metal bellows 153 provided between the movable shaft 151 near the electrode 152 and the second end cover 103.

前記金属ベローズ153は、ベローズカバー154で囲まれ、電流開閉時に、電極142,152(即ちその先端の接触子143、155)から発生する金属蒸気が直接触れるのを防いでいる。   The metal bellows 153 is surrounded by a bellows cover 154 to prevent direct contact with metal vapor generated from the electrodes 142 and 152 (that is, the contacts 143 and 155 at the tips) when the current is opened and closed.

前記接点106は、電極142,152の接触が行われる接触子143、155に、高融点のタングステン系の焼結金属を用い、発生する真空アークにより溶着し難い構造となっている。   The contact 106 has a structure in which a high melting point tungsten-based sintered metal is used for the contacts 143 and 155 with which the electrodes 142 and 152 are contacted, and is difficult to be welded by a generated vacuum arc.

また、接点106を囲んでアークシールド161が配置されている。このアークシールド161は、前述の金属蒸気が絶縁バルブ101の内周壁111に付着して絶縁が低下するのを防止するために、絶縁バルブ101の凸状部112にロー付けにより接合されている。   An arc shield 161 is disposed around the contact 106. This arc shield 161 is joined to the convex portion 112 of the insulating valve 101 by brazing in order to prevent the above-described metal vapor from adhering to the inner peripheral wall 111 of the insulating valve 101 and lowering the insulation.

つまり、本実施例の高負荷開閉器100では、前記実施例1の接合体と同様に、接合用セラミック部材である絶縁バルブ101の凸状部112に、金属部材であるアークシールド161がロー材162によるロー付けにより接合されている。   That is, in the high load switch 100 of the present embodiment, the arc shield 161 that is a metal member is provided on the convex portion 112 of the insulating valve 101 that is a ceramic member for bonding, as in the joined body of the first embodiment. Joined by brazing with 162.

詳しくは、図6に要部を模式的に示す様に、絶縁バルブ101の凸状部112の先端には、前記実施例1に示した様に、低温でのメタライズにより、メタライズ層171が形成され、このメタライズ層171上にNiメッキによりメッキ層173が形成され、このメッキ層173とアークシールド161とがロー材162によるロー付けによって接合されているのである。   Specifically, as schematically shown in FIG. 6, a metallized layer 171 is formed at the tip of the convex portion 112 of the insulating valve 101 by metallization at a low temperature as shown in the first embodiment. A plated layer 173 is formed on the metallized layer 171 by Ni plating, and the plated layer 173 and the arc shield 161 are joined by brazing with a brazing material 162.

これにより、アークシールド161を備えた絶縁バルブ101(従って高負荷開閉器100)を、低コストで製造でき、また、高い寸法精度及び高い接合強度を実現することができる。
(実施例4)
次に、実施例4について説明するが、前記実施例3と同様な箇所の説明は省略する。
Thereby, the insulation valve 101 (hence, high load switch 100) provided with the arc shield 161 can be manufactured at low cost, and high dimensional accuracy and high joint strength can be realized.
Example 4
Next, Example 4 will be described, but the description of the same parts as Example 3 will be omitted.

本実施例は、前記実施例3の様に、接合用セラミック部材と金属部材からなる接合体を真空スイッチに用いた例であるが、アークシールドと絶縁バルブの構造が異なる。
図7に要部を模式的に示す様に、本実施例の真空スイッチ(高負荷開閉器)200は、上絶縁バルブ201と下絶縁バルブ203との間に、無酸素銅からなる金属製の接続部材205がロー付けされ、その接続部材205の先端側に、アークシールド207がロー付け接合されている。
The present embodiment is an example in which a joined body made of a joining ceramic member and a metal member is used for a vacuum switch as in the third embodiment, but the structures of the arc shield and the insulating valve are different.
As schematically shown in FIG. 7, the vacuum switch (high load switch) 200 of this embodiment is made of a metal made of oxygen-free copper between the upper insulating valve 201 and the lower insulating valve 203. The connecting member 205 is brazed, and the arc shield 207 is brazed and joined to the distal end side of the connecting member 205.

特に、前記上絶縁バルブ201及び下絶縁バルブ203と接続部材205とが固定される部分(固定部209)には、前記実施例1と同様な方法で、それぞれメタライズ層211、213が形成され、各メタライズ層211、213上にはそれぞれNiメッキによりメッキ層215、217が形成されている。   In particular, metallized layers 211 and 213 are respectively formed in portions (fixed portions 209) where the upper insulating valve 201 and the lower insulating valve 203 and the connection member 205 are fixed in the same manner as in the first embodiment. Plated layers 215 and 217 are formed on the metallized layers 211 and 213 by Ni plating, respectively.

そして、このメッキ層215、217と接続部材205とが、それぞれロー材219、221により接合されることにより、両絶縁バルブ201、203と接続部材205とが接合一体化されている。   The plated layers 215 and 217 and the connecting member 205 are joined by the brazing materials 219 and 221, respectively, so that both the insulating valves 201 and 203 and the connecting member 205 are joined and integrated.

尚、両絶縁バルブ201、203の外周面には 前記実施例3と同様の釉薬層223、225がそれぞれ形成されている。
本実施例によっても、前記実施例3と同様な効果を奏する。
Note that glaze layers 223 and 225 similar to those of the third embodiment are formed on the outer peripheral surfaces of the both insulating valves 201 and 203, respectively.
Also according to this embodiment, the same effects as those of the third embodiment can be obtained.

尚、本発明は前記実施例になんら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。   In addition, this invention is not limited to the said Example at all, and it cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from the summary of this invention.

実施例1の接合体の要部を破断して示す説明図である。It is explanatory drawing which fractures | ruptures and shows the principal part of the conjugate | zygote of Example 1. FIG. 実施例1の接合体を示す斜視図である。1 is a perspective view showing a joined body of Example 1. FIG. 実施例1の接合体の接合強度の測定方法を示す説明図である。It is explanatory drawing which shows the measuring method of the joint strength of the joined body of Example 1. FIG. 実施例2の接合体の要部を破断して示す説明図である。It is explanatory drawing which fractures | ruptures and shows the principal part of the conjugate | zygote of Example 2. FIG. 実施例3の真空スイッチを破断して示す説明図である。It is explanatory drawing which fractures | ruptures and shows the vacuum switch of Example 3. FIG. 実施例3の真空スイッチの要部を破断して示す説明図である。It is explanatory drawing which fractures | ruptures and shows the principal part of the vacuum switch of Example 3. FIG. 実施例4の真空スイッチの要部を破断して示す説明図である。It is explanatory drawing which fractures | ruptures and shows the principal part of the vacuum switch of Example 4. FIG.

符号の説明Explanation of symbols

1…接合用セラミック部材
3…金属部材
5、35、162,219,221…ロー材
7、37…接合体
9…セラミック基材
11…メタライズ層
13…メッキ層
31…第1の接合用セラミック部材
33…第2の接合用セラミック部材
39…第1のセラミック基材
41…第1のメタライズ層
45…第2のセラミック基材
47…第2のメタライズ層
161、207…アークシールド
101…絶縁バルブ
100、200…真空スイッチ(高負荷開閉器)
171、211、213…メタライズ層
201…上絶縁バルブ
203…下絶縁バルブ
205…接続部材
DESCRIPTION OF SYMBOLS 1 ... Ceramic member for joining 3 ... Metal member 5, 35, 162, 219, 221 ... Raw material 7, 37 ... Joined body 9 ... Ceramic base material 11 ... Metallized layer 13 ... Plating layer 31 ... 1st ceramic member for joining 33 ... Second bonding ceramic member 39 ... First ceramic substrate 41 ... First metallized layer 45 ... Second ceramic substrate 47 ... Second metallized layer 161, 207 ... Arc shield 101 ... Insulating valve 100 , 200 ... Vacuum switch (high load switch)
171, 211, 213 ... Metallized layer 201 ... Upper insulating valve 203 ... Lower insulating valve 205 ... Connection member

Claims (6)

W及び/又はMoの高融点金属粉末と、Ni粉末とを含有する混合物を、有機バインダと混合してペーストとしてメタライズインクを製造し、該メタライズインクをセラミック焼成体であるセラミック基材に塗布して焼き付けてメタライズ層を形成する接合用セラミック部材の製造方法であって、
前記混合物として、前記W及び/又はMoの高融点金属粉末を70〜97重量%と、前記Ni粉末を1〜10重量%とを含有する混合物を用いるとともに、
SiO 2 を含む前記セラミック基体を用い、
前記焼き付けの際の焼成温度を、1150℃以上1250℃以下とし、その焼成の際に前記セラミック基体中のSiO 2 を前記メタライズ層の前記高融点金属の粒子間に浸透させることを特徴とする接合用セラミック部材の製造方法。
A mixture containing a refractory metal powder of W and / or Mo and Ni powder is mixed with an organic binder to produce a metallized ink as a paste, and the metallized ink is applied to a ceramic substrate which is a ceramic fired body. A method of manufacturing a ceramic member for bonding, wherein a metallized layer is formed by baking ,
As the mixture, a mixture containing 70 to 97 wt% of the refractory metal powder of W and / or Mo and 1 to 10 wt% of the Ni powder is used,
Using the ceramic substrate containing SiO 2 ,
A bonding temperature in which baking is performed at 1150 ° C. or more and 1250 ° C. or less, and SiO 2 in the ceramic base is infiltrated between particles of the refractory metal of the metallized layer during the baking. Of manufacturing ceramic member for use.
前記請求項1に記載の接合用セラミック部材の製造方法により製造されたことを特徴とする接合用セラミック部材。 A bonding ceramic member manufactured by the method for manufacturing a bonding ceramic member according to claim 1 . 前記請求項に記載の接合用セラミック部材に、前記メタライズ層を介して金属部材を接合したことを特徴とする接合体。 A bonded body comprising a metal member bonded to the bonding ceramic member according to claim 2 via the metallized layer. 前記請求項に記載の接合用セラミック部材に、前記メタライズ層を介して他の接合用セラミック部材を接合したことを特徴とする接合体。 The joined ceramic member according to claim 2 , wherein another joining ceramic member is joined via the metallized layer. 前記請求項3又は4の接合体を備えたことを特徴とする真空スイッチ。 A vacuum switch comprising the joined body according to claim 3 or 4 . 前記請求項3又は4の接合体を備えたことを特徴とする真空容器。 A vacuum vessel comprising the joined body according to claim 3 or 4 .
JP2007334644A 2007-12-26 2007-12-26 Method of manufacturing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel Expired - Fee Related JP4659812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007334644A JP4659812B2 (en) 2007-12-26 2007-12-26 Method of manufacturing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007334644A JP4659812B2 (en) 2007-12-26 2007-12-26 Method of manufacturing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000017213A Division JP4095748B2 (en) 2000-01-26 2000-01-26 Method of manufacturing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel

Publications (2)

Publication Number Publication Date
JP2008150285A JP2008150285A (en) 2008-07-03
JP4659812B2 true JP4659812B2 (en) 2011-03-30

Family

ID=39652871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007334644A Expired - Fee Related JP4659812B2 (en) 2007-12-26 2007-12-26 Method of manufacturing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel

Country Status (1)

Country Link
JP (1) JP4659812B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217680A (en) * 1983-05-25 1984-12-07 株式会社日立製作所 Metallizing paste and ceramic product
JPS60166288A (en) * 1984-02-03 1985-08-29 工業技術院長 Metallization of carbide ceramic surface
JPS63201079A (en) * 1986-10-02 1988-08-19 日本タングステン株式会社 Metallizing paste for ceramic sintered body and metallization therefor
JPH04331778A (en) * 1991-05-08 1992-11-19 Nippon Steel Corp Method for metallizing oxide based ceramics
JPH05238857A (en) * 1992-02-27 1993-09-17 Kawasaki Steel Corp Method for metallizing substrate of aluminum nitride
JPH07161864A (en) * 1993-12-02 1995-06-23 Ngk Spark Plug Co Ltd Manufacture of thyristor container
JPH07172961A (en) * 1993-12-17 1995-07-11 Kawasaki Steel Corp Sintered aluminum nitride having metallized layer and its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217680A (en) * 1983-05-25 1984-12-07 株式会社日立製作所 Metallizing paste and ceramic product
JPS60166288A (en) * 1984-02-03 1985-08-29 工業技術院長 Metallization of carbide ceramic surface
JPS63201079A (en) * 1986-10-02 1988-08-19 日本タングステン株式会社 Metallizing paste for ceramic sintered body and metallization therefor
JPH04331778A (en) * 1991-05-08 1992-11-19 Nippon Steel Corp Method for metallizing oxide based ceramics
JPH05238857A (en) * 1992-02-27 1993-09-17 Kawasaki Steel Corp Method for metallizing substrate of aluminum nitride
JPH07161864A (en) * 1993-12-02 1995-06-23 Ngk Spark Plug Co Ltd Manufacture of thyristor container
JPH07172961A (en) * 1993-12-17 1995-07-11 Kawasaki Steel Corp Sintered aluminum nitride having metallized layer and its production

Also Published As

Publication number Publication date
JP2008150285A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
EP1367039B1 (en) Ceramic member for bonding, process for producing the same, vacuum switch and vacuum vessel
KR101454983B1 (en) Brazing material for bonding in atmosphere, bonded article, and current collecting material
US20130260285A1 (en) Brazing material for bonding in atmosphere, bonded article, and current collecting material
JP2007331026A (en) Joined body, and joining brazing filler metal
JP2009283510A (en) Ceramic wiring board and method of manufacturing the same
JP4457056B2 (en) Method of manufacturing ceramic member for bonding, ceramic member for bonding, bonded body, vacuum switch, and vacuum container
JP4095748B2 (en) Method of manufacturing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel
JP4659812B2 (en) Method of manufacturing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel
JP3875613B2 (en) Method of manufacturing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel
JP4342084B2 (en) Method of manufacturing ceramic member for bonding, ceramic member for bonding, bonded body, vacuum switch, and vacuum container
JP2005327709A (en) Container for switch, switch and manufacturing method of ceramic cylinder
US6733871B2 (en) Process for producing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel
JP4428890B2 (en) Ceramic member, joined body, and container for vacuum switch
JP6146707B2 (en) Ceramic-metal bonded body and method for manufacturing the same
JP2006139956A (en) Sealed contact device
JP2022054717A (en) Ceramic sealing component and manufacturing method thereof
JP2001220253A (en) Metal-ceramic bonded material and method for producing the same
JPS6228067A (en) Joining method for ceramics
JP2023124937A (en) Ceramic sealing component and manufacturing method thereof
JP2024016326A (en) Ceramic-sealed component and method for producing the same
GB2591861A (en) High temperature capable and thermal shock resistant brazed article
JP2021044088A (en) Ceramic component for magnetron and manufacturing method thereof
JP2004217483A (en) Alumina sintered compact, insulated body, vessel for vacuum switch and insulator
JPH06344228A (en) Joined body of ceramics with metal and its manufacture

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees