JP2001220253A - Metal-ceramic bonded material and method for producing the same - Google Patents

Metal-ceramic bonded material and method for producing the same

Info

Publication number
JP2001220253A
JP2001220253A JP2000035747A JP2000035747A JP2001220253A JP 2001220253 A JP2001220253 A JP 2001220253A JP 2000035747 A JP2000035747 A JP 2000035747A JP 2000035747 A JP2000035747 A JP 2000035747A JP 2001220253 A JP2001220253 A JP 2001220253A
Authority
JP
Japan
Prior art keywords
metal
ceramic
brazing material
brazing
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000035747A
Other languages
Japanese (ja)
Other versions
JP3607553B2 (en
Inventor
Yasuaki Takashima
庸晃 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2000035747A priority Critical patent/JP3607553B2/en
Publication of JP2001220253A publication Critical patent/JP2001220253A/en
Application granted granted Critical
Publication of JP3607553B2 publication Critical patent/JP3607553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a metal-ceramic bonded material having stable bonded state and high bonding strength and provide its production method. SOLUTION: A metallic part 3 and a ceramic part 2 are bonded together at their butt ends interposing a reaction layer 4 being in contact with the ceramic part 2 and a soldering material layer 5 being in contact with the metallic part 3. The ceramic part 2 is made of e.g. an alumina-based ceramic composed mainly of alumina and the metallic part 3 is made of a Ni-containing alloy such as an Fe-Ni-Co alloy The reaction layer 4 contains Ti as a main active metal element and the soldering material layer 5 contains a Ag-Cu alloy as a main component. A Ti-Ni intermetallic compound is scarcely formed between the soldering material layer 5 and the metallic part 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属−セラミック
接合体と、その製造方法とに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-ceramic joint and a method for manufacturing the same.

【0002】[0002]

【従来の技術】セラミック部材は優れた耐熱性、耐衝撃
性及び絶縁性を有するため、その特性を生かして種々の
分野に利用されつつある。例えば、セラミックチューブ
を使用した真空スイッチ外管等においては、筒状のセラ
ミック部材の開口端部を、蓋体を備えた筒状の金属部材
で溶接封着した構成にて用いられている。このようなセ
ラミック部材と金属部材との接合に際しては従来より、
両部材の突き合わせ端部同士をろう付け接合する方法が
用いられている。金属部材としては、耐食性と高温強度
とを確保するために、Niを含有した鉄合金が使用され
ることが多い。
2. Description of the Related Art Ceramic members have excellent heat resistance, impact resistance and insulation properties, and are being utilized in various fields by utilizing their properties. For example, in a vacuum switch outer tube using a ceramic tube, an opening end of a cylindrical ceramic member is welded and sealed with a cylindrical metal member provided with a lid. Conventionally, when joining such a ceramic member and a metal member,
A method is used in which the butted ends of both members are joined by brazing. As a metal member, an iron alloy containing Ni is often used in order to secure corrosion resistance and high-temperature strength.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来の金
属部材とセラミック部材とのろう付け接合においては、
例えばろう材中に含まれるTi等の活性金属が、金属部
材中のNi金属等と反応して金属間化合物を形成するこ
とがある。この場合、その金属間化合物が形成された箇
所において接合強度が低下したり、セラミック部材と反
応する活性金属が不足して、セラミック部材とろう材と
の界面付近の接合状態が不安定になる問題が生じてい
る。
However, in the conventional brazing connection between a metal member and a ceramic member,
For example, an active metal such as Ti contained in a brazing material may react with Ni metal or the like in a metal member to form an intermetallic compound. In this case, the joining strength is reduced at the portion where the intermetallic compound is formed, or the active metal reacting with the ceramic member is insufficient, and the joining state near the interface between the ceramic member and the brazing material becomes unstable. Has occurred.

【0004】本発明の課題は、接合状態が安定し、かつ
接合強度の高い金属−セラミック接合体と、その製造方
法を提供することにある。
[0004] It is an object of the present invention to provide a metal-ceramic joint having a stable joining state and high joining strength, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段及び作用・効果】上記課題
を解決するための本発明の金属−セラミック接合体は、
Niを含有する金属部材とセラミック部材とがろう材層
を介して接合されるとともに、そのろう材層とセラミッ
ク部材との間には、Ti,Zr,Hfから選択される1
種又は2種以上の活性金属成分を含む反応層が形成され
てなり、他方、ろう材層と金属部材との間における、活
性金属成分とNiとを含有した金属間化合物の形成量を
可及的に小さくしたことを特徴とする。
Means for Solving the Problems and Functions / Effects The metal-ceramic joined body of the present invention for solving the above problems is:
A metal member containing Ni and a ceramic member are joined via a brazing material layer, and between the brazing material layer and the ceramic member, a material selected from Ti, Zr, and Hf is used.
A reaction layer containing one or more active metal components is formed, while the amount of the intermetallic compound containing the active metal component and Ni between the brazing material layer and the metal member is increased as much as possible. It is characterized by being made smaller in size.

【0006】また、本発明の金属−セラミック接合体の
製造方法は、Niを含有する金属部材とセラミック部材
とをろう材層を介して接合した金属−セラミック接合体
の製造方法であって、Ti,Zr,Hfから選択される
1種又は2種以上の活性金属成分を含む一次ろう材を用
いて、セラミック部材の接合面にメタライズ処理する一
次ろう付けを行い、その後に、一次ろう材よりも低融点
で、かつ活性金属成分の含有量が小さい二次ろう材によ
り、セラミック部材のメタライズ処理された端面部に金
属部材を二次ろう付けすることを特徴とする。
A method of manufacturing a metal-ceramic joint according to the present invention is a method of manufacturing a metal-ceramic joint in which a metal member containing Ni and a ceramic member are joined via a brazing material layer. , Zr, Hf, a primary brazing material containing one or more active metal components selected from the group consisting of a primary brazing material and a metallizing treatment is performed on the joining surface of the ceramic member. The metal member is secondarily brazed to the metalized end face of the ceramic member by a secondary brazing material having a low melting point and a small content of the active metal component.

【0007】すなわち、上記課題に鑑みて本発明者らが
鋭意検討した結果、上記製法に記した通り、セラミック
部材と金属部材とを接合するろう材を、活性金属成分を
含む一次ろう材と、一次ろう材よりも低融点で、かつ活
性金属成分の含有量が小さい(望ましくは含有されてい
ない)二次ろう材とに分け、それぞれ個々にろう付けす
る二段階のステップろう付けを行ったところ、上記のよ
うに、ろう材層と金属部材との間に形成される前記活性
金属成分とNiとを含有した金属間化合物の量を可及的
に小さくした金属−セラミック接合体を製造することが
可能となった。
That is, as a result of intensive studies conducted by the present inventors in view of the above problems, as described in the above-mentioned manufacturing method, a brazing material for joining a ceramic member and a metal member is replaced with a primary brazing material containing an active metal component, A two-step brazing process in which the brazing material is divided into a secondary brazing material having a lower melting point than the primary brazing material and a small content of the active metal component (preferably not contained), and brazing individually. As described above, to produce a metal-ceramic joined body in which the amount of the intermetallic compound containing Ni and the active metal component formed between the brazing material layer and the metal member is made as small as possible. Became possible.

【0008】すなわち、一次ろう付けにおいては、活性
金属を含有する一次ろう材によりセラミック部材側の接
合面にメタライズ処理することで、セラミック部材の接
合面には、活性金属とセラミック成分との反応層が形成
される。反応層は、セラミックとろう材層中の活性金属
以外のろう材金属成分とのいずれに対しても親和性に優
れ、ろう材層とセラミック部材との間に強固な接合構造
を形成するための中心的な役割を果たす。そして、二次
ろう付け時においては、一次ろう材よりも低融点であ
り、かつ活性金属成分の含有量が低い(望ましくは含有
しない)二次ろう材により、一次ろう付け時よりも低温
でろう付けを行うため、該反応層からの活性金属成分の
ろう材層側への拡散が抑制され、ろう材層を介して接合
される金属部材中のNi成分と、反応層(すなわち一次
ろう材)からの活性金属成分との反応が極めて生じにく
くなる。その結果、活性金属成分とNiとを含有した金
属間化合物が殆ど形成されなくなり、ひいては、接合界
面において接合状態が安定し、接合強度の高い金属−セ
ラミック接合体が得られるようになる。
That is, in the primary brazing, a primary brazing material containing an active metal is metallized on the joining surface on the ceramic member side, so that a reaction layer of the active metal and the ceramic component is formed on the joining surface of the ceramic member. Is formed. The reaction layer has excellent affinity for both the ceramic and the brazing metal component other than the active metal in the brazing material layer, and forms a strong joint structure between the brazing material layer and the ceramic member. Play a central role. At the time of the secondary brazing, the secondary brazing material having a lower melting point than the primary brazing material and having a low content of the active metal component (preferably not containing) has a lower temperature than at the time of the primary brazing. In this case, diffusion of the active metal component from the reaction layer to the brazing material layer side is suppressed, and the Ni component in the metal member joined via the brazing material layer and the reaction layer (ie, the primary brazing material) The reaction with the active metal component from the catalyst becomes extremely unlikely. As a result, an intermetallic compound containing an active metal component and Ni is hardly formed, and as a result, a metal-ceramic bonded body having a high bonding strength with a stable bonding state at a bonding interface can be obtained.

【0009】上記製造方法において、一次ろう付け温度
T1は、使用するろう材の種別にもよるが、840〜8
80℃とするのがよい。同様に、二次ろう付け温度T2
は、800〜820℃とするのがよい。そして、それら
の差ΔT≡T1−T2は、20〜80℃を満足している
のがよい。すなわち、二次ろう付け温度T2を、一次ろ
う付け温度T1よりも上記ΔT程度低く設定することに
よって、一次ろう付けにより形成される反応層中の活性
金属成分が、二次ろう付け時にろう材層を経て金属部材
中に含まれるNi成分と反応することを効果的に抑制で
き、ひいては、ろう材層と金属部材との間に活性金属−
Ni系金属間化合物が形成されにくくなる。T1及びT
2が上記の範囲に設定されるとき、ΔTが20℃未満で
あると、上記の効果が不十分となる。他方、80℃を超
えると、二次ろう付け温度が低くなりすぎて、ろう材層
の形成が不完全となり、却って接合強度を低下させるこ
とにもつながる。ΔTは、望ましくは30〜70℃、さ
らに望ましくは40〜60℃程度とするのがよい。
In the above manufacturing method, the primary brazing temperature T1 depends on the type of the brazing material to be used, but it is 840-8.
The temperature is preferably set to 80 ° C. Similarly, the secondary brazing temperature T2
Is preferably 800 to 820 ° C. The difference ΔT≡T1−T2 preferably satisfies 20 to 80 ° C. That is, by setting the secondary brazing temperature T2 to be lower than the primary brazing temperature T1 by about ΔT, the active metal component in the reaction layer formed by the primary brazing is changed to the brazing material layer during the secondary brazing. Through the reaction with the Ni component contained in the metal member can be effectively suppressed.
Ni-based intermetallic compounds are less likely to be formed. T1 and T
When 2 is set in the above range, if ΔT is less than 20 ° C., the above effects will be insufficient. On the other hand, when the temperature exceeds 80 ° C., the secondary brazing temperature becomes too low, so that the formation of the brazing material layer becomes incomplete and the bonding strength is rather lowered. ΔT is desirably about 30 to 70 ° C., and more desirably about 40 to 60 ° C.

【0010】一次ろう材には、具体的にTi、Zr、H
fから選択される1種又は2種以上の活性金属元素から
構成される単体及び/又は化合物が1〜20重量%含有
されているものとすることができる。活性金属成分とし
ては、多くのセラミックに対して優れた接合性能を発揮
でき、かつ価格的にも比較的安価なことから、Tiを特
に好適に使用できる。この場合、上記のTi成分の反応
活性を高めるため、一次ろう材中のTi成分は水素化チ
タン(一般組成式はTiHであるが、化学量論化合物
に限られるものではない)の形で含有されていることが
望ましい。また、TiHとして一次ろう材中に含有さ
せることで、Tiの酸化あるいは窒化等も効果的に防止
することができる。一次ろう材中の上記活性金属成分の
含有量が1重量%未満の場合は、反応層の形成が不十分
となり、接合不良が起こりやすくなる場合がある。一
方、活性金属成分の含有量が20重量%を超えると、二
次ろう付け時に一次ろう材と二次ろう材との間の濡れ不
良が起こることがあり、また、反応層が過度に厚くなり
すぎて接合強度が却って低下したり、接合部の気密性が
低下したりする場合がある。なお、一次ろう材中の活性
金属成分の含有量は、好ましくは5〜10重量%とする
のがよい。
[0010] The primary brazing material specifically includes Ti, Zr, and H.
f and 1 to 20% by weight of a simple substance and / or a compound composed of one or more active metal elements selected from f. As the active metal component, Ti can be particularly preferably used because it can exhibit excellent bonding performance with many ceramics and is relatively inexpensive in terms of price. In this case, in order to enhance the reaction activity of the Ti component, the Ti component in the primary brazing material is in the form of titanium hydride (the general composition formula is TiH 2 , but is not limited to a stoichiometric compound). It is desirable that it be contained. Also, by including TiH 2 in the primary brazing material, oxidation or nitridation of Ti can be effectively prevented. When the content of the active metal component in the primary brazing material is less than 1% by weight, formation of a reaction layer becomes insufficient, and bonding failure may easily occur. On the other hand, if the content of the active metal component exceeds 20% by weight, poor wetting may occur between the primary brazing material and the secondary brazing material during secondary brazing, and the reaction layer may become excessively thick. Too much, the bonding strength may be reduced, or the airtightness of the bonded portion may be reduced. The content of the active metal component in the primary brazing material is preferably 5 to 10% by weight.

【0011】また、上記製造方法において、一次ろう付
けは真空中で行うのがよく、その真空度は1.0×10
−3Torr以下とするのがよい。一次ろう付けを1.
0×10−3Torrを超える条件下で行うと、一次ろ
う材の濡れ不良が生じたり、上記活性金属成分が酸化あ
るいは窒化されて、安定な反応層が形成されにくくなる
場合がある。なお、一次ろう付けの雰囲気は真空雰囲気
に限られるものではなく、例えばArガス雰囲気等の不
活性ガス雰囲気中で一次ろう付けを行っても、安定な反
応層を形成することが可能である。
Further, in the above manufacturing method, the primary brazing is preferably performed in a vacuum, and the degree of vacuum is 1.0 × 10
-3 Torr or less is preferable. Primary brazing 1.
If performed under conditions exceeding 0 × 10 −3 Torr, poor wetting of the primary brazing material may occur, or the active metal component may be oxidized or nitrided, making it difficult to form a stable reaction layer. The atmosphere of the primary brazing is not limited to a vacuum atmosphere, and a stable reaction layer can be formed even if the primary brazing is performed in an inert gas atmosphere such as an Ar gas atmosphere.

【0012】例えば、一次ろう付けによるメタライズ処
理では、一次ろう材中の活性金属成分がセラミック部材
と反応して反応層を形成する一方、残余の金属成分は、
この反応層を密着形態で覆う一次メタライズ層を形成す
る場合がある。例えば、一次ろう材としては、活性金属
以外の成分(以下、ベース成分という)、換言すれば一
次メタライズ層を構成すべき成分を、Ag,Cu,A
u,Sn等としたものが使用できるが、二次ろう付けに
使用する二次ろう材は、上記ベース成分に基づく一次メ
タライズ層との濡れ性あるいは親和性に優れたもの、例
えば一次メタライズ層と類似組成のろう材を使用するこ
とが望ましいといえる。このような二次ろう材として、
具体的には、Ag−Cu系合金を用いることができる。
Ag−Cu系合金は、Ti等の活性金属成分と反応して
金属間化合物を形成することも少なく、融点が低く、金
属部材との接合性も良いため、本発明の二次ろう材とし
て適している。なお、Ag−Cu系合金におけるAgと
Cuとの含有比率は、Ag100重量部に対してCu3
0〜50重量部とするのがよい。Cuが30重量部未満
では、ろう材の融点が高くなりすぎ、例えば反応層から
の活性金属成分の拡散により前記した金属間化合物等の
形成により接合強度が低下する場合がある。他方、50
重量部を超えた場合も、ろう材の高融点化による同様の
問題のほか、ろう材層の耐酸化性が損なわれて、高温接
合強度等が損なわれる場合がある。なお、上記のような
Ag−Cu系合金としては、例えばJIS−Z3261
に記載された銀ろう:BAg−8等を用いることができ
る。
For example, in the metallizing process by primary brazing, the active metal component in the primary brazing material reacts with the ceramic member to form a reaction layer, while the remaining metal component is
In some cases, a primary metallized layer that covers the reaction layer in a contact form is formed. For example, as the primary brazing material, components other than the active metal (hereinafter, referred to as base components), in other words, components to constitute the primary metallized layer, are Ag, Cu, A
u, Sn, etc. can be used. The secondary brazing material used for the secondary brazing is a material having excellent wettability or affinity with the primary metallized layer based on the base component, for example, the primary metallized layer. It may be desirable to use brazing materials of similar composition. As such a secondary brazing material,
Specifically, an Ag-Cu alloy can be used.
The Ag-Cu alloy is less likely to react with an active metal component such as Ti to form an intermetallic compound, has a low melting point, and has good bondability with a metal member, and thus is suitable as the secondary brazing material of the present invention. ing. In addition, the content ratio of Ag and Cu in the Ag-Cu-based alloy is such that Cu3
The content is preferably 0 to 50 parts by weight. If Cu is less than 30 parts by weight, the melting point of the brazing material becomes too high, and for example, the bonding strength may decrease due to the formation of the above-mentioned intermetallic compound due to the diffusion of the active metal component from the reaction layer. On the other hand, 50
When the amount exceeds the weight part, in addition to the same problem due to the high melting point of the brazing material, the oxidation resistance of the brazing material layer may be impaired, and the high-temperature bonding strength and the like may be impaired. In addition, as the Ag-Cu-based alloy as described above, for example, JIS-Z3261
Silver wax: BAg-8 or the like can be used.

【0013】金属−セラミック接合体においては、金属
部材とセラミック部材との接合方向において、反応層の
厚さが、50μm〜300μmとされているのがよい。
反応層厚さが、50μm未満の場合、反応層の不足によ
り接合性が低下する場合があり、300μmを超える
と、反応層が厚くなりすぎて接合強度が却って低下する
場合がある。なお、上記反応層の厚さの範囲は望ましく
は150μm〜200μmとすることで、金属−セラミ
ック接合体の接合状態が一層安定し、接合強度もさらに
向上する。
In the metal-ceramic joint, the thickness of the reaction layer in the joining direction of the metal member and the ceramic member is preferably 50 μm to 300 μm.
When the thickness of the reaction layer is less than 50 μm, the bondability may decrease due to the lack of the reaction layer, and when it exceeds 300 μm, the reaction layer may become too thick and the bonding strength may decrease. By setting the range of the thickness of the reaction layer to desirably 150 μm to 200 μm, the bonding state of the metal-ceramic bonded body is further stabilized, and the bonding strength is further improved.

【0014】また、上記金属−セラミック接合体におい
て、ろう材層の、反応層側の端面と金属部材の接合端面
との間の厚さ(以下、ろう材接合厚さという)は、30
μm〜100μmとされているのがよい。該厚さが、3
0μm未満の場合、活性金属成分と金属部材との間に金
属間化合物が形成されやすくなり接合強度の低下を招く
場合がある。また、100μmを超えると、ろう材層が
厚くなりすぎて、接合強度が却って低下する場合があ
る。なお、上記範囲は望ましくは50μm〜80μmと
するのがよく、この場合、金属−セラミック接合体の接
合状態が一層安定し、接合強度もさらに向上する。
In the above metal-ceramic joint, the thickness between the end surface of the brazing material layer on the reaction layer side and the joining end surface of the metal member (hereinafter referred to as the brazing material joining thickness) is 30.
It is good that it is set to μm to 100 μm. The thickness is 3
When it is less than 0 μm, an intermetallic compound is easily formed between the active metal component and the metal member, which may cause a decrease in bonding strength. On the other hand, when the thickness exceeds 100 μm, the brazing material layer becomes too thick, and the bonding strength may be reduced. The above range is desirably 50 μm to 80 μm. In this case, the bonding state of the metal-ceramic bonded body is further stabilized, and the bonding strength is further improved.

【0015】次に、セラミック部材は、アルミナを主成
分とするアルミナ系セラミックが、高温強度及び高温耐
食性あるいは耐薬品性に優れ、かつ、比較的安価である
ことから本発明に好適に使用することができる。他方、
金属部材は、線膨張係数が比較的小さく、セラミック部
材との間の熱応力が比較的生じにくいこと、さらには、
真空スイッチ等へ適用する場合は、耐熱性や耐食性の確
保できること等が、材料選定上のポイントとなる。具体
的には、Feを主成分とし、最も含有率の高い副成分が
Ni及びCoの一方であり、2番目に含有率の高い副成
分がNi及びCoの他方であるFe−Ni−Co系合
金、Feを主成分とし、最も含有率の高い副成分がNi
であるFe−Ni系合金等を使用できる。なお、Fe−
Ni−Co系合金としては、例えば、Fe:54%,N
i:29%,Co:17%を含有するもの(商品名:コ
バール)等、また、Fe−Ni系合金としては、例え
ば、Fe:58%,Ni:42%を含有するもの(通
称:42アロイ)等を用いることができる。なお、本明
細書において、「主成分とする」、「主に」あるいは
「主体とする」等は、特に断りのない限り、着目してい
る物質中にて重量含有率の最も高い成分をいう。
Next, the ceramic member is preferably used in the present invention because alumina-based ceramics containing alumina as a main component are excellent in high-temperature strength and high-temperature corrosion resistance or chemical resistance and relatively inexpensive. Can be. On the other hand,
The metal member has a relatively small coefficient of linear expansion, and thermal stress between the ceramic member and the ceramic member is relatively unlikely to occur.
When applied to a vacuum switch or the like, the point of selecting materials is to ensure heat resistance and corrosion resistance. Specifically, an Fe-Ni-Co-based alloy containing Fe as a main component and the subcomponent having the highest content being one of Ni and Co and the subcomponent having the second highest content being the other of Ni and Co Alloy, Fe as the main component, the secondary component with the highest content is Ni
And the like can be used. In addition, Fe-
As the Ni—Co alloy, for example, Fe: 54%, N
An alloy containing i: 29% and Co: 17% (trade name: Kovar), and an Fe-Ni-based alloy containing, for example, 58% Fe and 42% Ni (commonly referred to as 42) Alloy) or the like can be used. In the present specification, “main component”, “mainly” or “main component” and the like refer to a component having the highest weight content in a substance of interest unless otherwise specified. .

【0016】次に、セラミック部材の接合面の平面度は
0.1mm以下にするのがよい。平面度が0.1mmを
超えると、反応層の形成が不完全となったり、二次ろう
付け時のろう付け不良の原因ともなり、結果として製造
される接合体の接合強度の低下を招く場合がある。
Next, the flatness of the joining surface of the ceramic member is preferably set to 0.1 mm or less. When the flatness exceeds 0.1 mm, the formation of the reaction layer becomes incomplete or causes brazing failure at the time of secondary brazing, and as a result, the bonding strength of the manufactured joined body is reduced. There is.

【0017】次に、上記金属−セラミック接合体の具体
的態様としては、例えば金属部材とセラミック部材との
突き合わせ部を高強度に接合できる態様として、ろう材
層を、セラミック部材と金属部材との突き合わせ部に形
成されるフィレット(以下、ろう材フィレットともい
う)とする態様を例示できる。例えば、各々筒状に構成
された金属部材とセラミック部材とを接合する構造とし
て、各々、少なくとも片側の端面が開放する金属筒状体
及びセラミック筒状体とし、該金属筒状体とセラミック
筒状体とを開放端面側にて同軸状に突き合わせ、その突
き合わせ部を環状のろう材層(ろう材フィレット)を介
して接合したものとすることができる。なお、この場
合、金属筒状体及びセラミック筒状体をいずれも円筒状
に形成し、半径方向において金属筒状体側の接合端面を
セラミック筒状体側の接合端面の略中央に位置決めする
ことができる。このように筒状部材同士をろう付け接合
する場合、本発明の接合体の導入により、接合層(反応
層とろう材層から構成される)に接合ムラがなく良好な
接合状態で、接合強度及び接合部の気密性の高いものを
提供することが可能である。
Next, as a specific embodiment of the above-mentioned metal-ceramic joined body, for example, a brazing material layer is formed so that a butt portion between the metal member and the ceramic member can be joined with high strength. A mode in which a fillet formed at the butted portion (hereinafter also referred to as a brazing filler material) can be exemplified. For example, as a structure for joining a metal member and a ceramic member, each of which is formed in a cylindrical shape, a metal cylindrical body and a ceramic cylindrical body each having at least one open end surface are open, and the metal cylindrical body and the ceramic cylindrical body are respectively formed. The body may be coaxially butted on the open end face side, and the butted portion may be joined via an annular brazing material layer (brazing material fillet). In this case, both the metal tubular body and the ceramic tubular body are formed in a cylindrical shape, and the joining end face on the metal tubular body side can be positioned substantially at the center of the joining end face on the ceramic tubular body side in the radial direction. . When the tubular members are brazed to each other in this manner, by introducing the joined body of the present invention, the joining layer (consisting of the reaction layer and the brazing material layer) has no joining unevenness, and has a good joining state. And it is possible to provide a highly airtight joint.

【0018】具体的にそれらセラミック筒状体と金属筒
状体を一層高強度に接合するための構造として、下記の
ものを例示できる。すなわち、突き合わせ部において、
金属筒状体とセラミック筒状体との接合端面はそれぞれ
平面状に形成されるとともに、それら金属筒状体とセラ
ミック筒状体との軸線を含む任意の断面において、金属
筒状体の接合端面(以下、金属側接合端面という)の幅
がセラミック筒状体の接合端面(以下、セラミック側接
合端面という)の幅よりも小さくされ、前記断面におい
てフィレットは、金属筒状体の端部を埋没させる形でそ
の厚さ方向両側を覆うとともに、金属筒状体の端部内面
側及び外面側の双方においてその断面外形が、該金属筒
状体側からセラミック筒状体側に向けて裾拡がりとなる
形状を呈するものとする。そして、本発明の接合体構造
の適用により、筒状部材同士の突き合わせ接合におい
て、接合ムラが少なく、接合強度と気密性に優れた接合
構造が得られるようになる。例えば、上記のような構造
の金属−セラミック接合体は、真空スイッチへの応用が
特に有効である。この場合、その筒状のセラミック部材
を真空スイッチ用の外管として用いることができ、金属
部材は、その真空スイッチ外管を覆う金属製蓋部として
使用することができる。この場合、本発明の適用によ
り、高い気密性を有し、かつ接合強度の高い真空スイッ
チ外管を提供することが可能となる。
Specific examples of the structure for joining the ceramic tubular body and the metal tubular body with higher strength include the following. That is, at the butting portion,
The joining end faces of the metal tubular body and the ceramic tubular body are each formed in a planar shape, and the joining end face of the metal tubular body at an arbitrary cross section including the axis of the metallic tubular body and the ceramic tubular body. The width of the metal-side joining end surface (hereinafter, referred to as a metal-side joining end surface) is made smaller than the width of the joining end surface of the ceramic tubular body (hereinafter, referred to as a ceramic-side joining end surface). A shape in which both sides in the thickness direction of the metal cylindrical body are covered, and the cross-sectional outer shape of the metal cylindrical body at both the inner surface side and the outer surface side is flared from the metal cylindrical body side toward the ceramic cylindrical body side. Shall be presented. Then, by applying the joined structure of the present invention, in the butt joining of the tubular members, a joining structure with little joining unevenness and excellent in joining strength and airtightness can be obtained. For example, the metal-ceramic joint having the above structure is particularly effective for application to a vacuum switch. In this case, the cylindrical ceramic member can be used as an outer tube for a vacuum switch, and the metal member can be used as a metal cover that covers the vacuum switch outer tube. In this case, by applying the present invention, it is possible to provide a vacuum switch outer tube having high airtightness and high bonding strength.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を、図
面に示す実施例を参照して説明する。図1は本発明の一
実施例たる金属−セラミック接合体1の接合部を、拡大
して示す断面図である。金属部材3とセラミック部材2
とが、それらの突き合わせ部において、セラミック部材
2と接する反応層4と、金属部材3と接するろう材フィ
レット(ろう材層)5とを介して接合されている。各部
材2,3の接合端面、すなわちセラミック側接合端面
6、金属側接合端面7はそれぞれ平面状に形成され、特
にセラミック側接合端面6の平面度は0.1mm以下と
されている。また、金属側接合端面7はセラミック側接
合端面6よりも小さくされている。一方、ろう材フィレ
ット5は、金属部材3の接合側端部を埋没させる形態で
該端部の全周縁を覆うとともに、金属部材3の両側にお
いてその断面外形が金属部材3側からセラミック部材2
側に向けて裾拡がりとなる形状を呈している。なお、本
実施例においては、金属部材3の接合端面の幅が、セラ
ミック部材の接合端面の幅よりも小さくされている。
Embodiments of the present invention will be described below with reference to the embodiments shown in the drawings. FIG. 1 is an enlarged sectional view showing a joint portion of a metal-ceramic joint body 1 according to one embodiment of the present invention. Metal member 3 and ceramic member 2
Are joined at their butted portions via a reaction layer 4 in contact with the ceramic member 2 and a brazing material fillet (brazing material layer) 5 in contact with the metal member 3. The joining end faces of the members 2 and 3, that is, the ceramic-side joining end face 6 and the metal-side joining end face 7 are each formed in a flat shape, and the flatness of the ceramic-side joining end face 6 is particularly set to 0.1 mm or less. The metal-side joint end face 7 is smaller than the ceramic-side joint end face 6. On the other hand, the brazing filleret 5 covers the entire peripheral edge of the joining end of the metal member 3 so as to be buried in the joining end, and the cross-sectional outer shape of the metal member 3 on both sides of the metal member 3 is changed from the metal member 3 side to the ceramic member 2.
It has a shape that expands toward the side. In this embodiment, the width of the joining end face of the metal member 3 is smaller than the width of the joining end face of the ceramic member.

【0020】セラミック部材2は、例えばアルミナを主
成分とするアルミナ系セラミックにて構成され、金属部
材3は、例えばFe:54%,Ni:29%,Co:1
7%を含有するFe−Ni−Co系合金にて構成されて
いる。反応層4は、活性金属成分としてTiを含有し、
ろう材フィレット5はAg−Cu系合金を主体に構成さ
れる。
The ceramic member 2 is made of, for example, an alumina-based ceramic containing alumina as a main component, and the metal member 3 is made of, for example, Fe: 54%, Ni: 29%, Co: 1.
It is composed of an Fe-Ni-Co alloy containing 7%. The reaction layer 4 contains Ti as an active metal component,
The brazing filler material 5 is mainly composed of an Ag-Cu alloy.

【0021】金属−セラミック接合体1において、反応
層4の厚さt1は、例えば、50μm〜300μm(本
実施例では、150μm)とされ、また、ろう材フィレ
ット5において、反応層4側の端面8と金属部材3の接
合端面7との間の厚さ、すなわちろう材接合層5aの厚
さt2は、例えば、30μm〜100μm(本実施例で
は、80μm)とされている。
In the metal-ceramic joined body 1, the thickness t1 of the reaction layer 4 is, for example, 50 μm to 300 μm (150 μm in this embodiment), and the end face on the reaction layer 4 side in the brazing filler material 5. The thickness between the metal member 3 and the bonding end face 7 of the metal member 3, that is, the thickness t2 of the brazing material bonding layer 5a is, for example, 30 μm to 100 μm (80 μm in the present embodiment).

【0022】反応層4の厚さt1とろう材接合層5aの
厚さt2とは、例えば電子プローブ・マイクロ・アナラ
イザ(EPMA)、エネルギー分散型X線分光(ED
S)、波長分散型X線分光(WDS)等の公知の方法に
より測定することができる。本発明では、以下のように
定義する。図5に示すように、セラミック部材の最も含
有率の高いカチオン成分(例えば、X線光電子分光(X
PS)等により分析したときに正の価数を示す元素成分
であり、アルミナであればAl、窒化珪素であればSi
である)をQとし、金属部材の最も含有率の高い金属成
分をMとする一方、活性金属成分をAとする。そして、
接合部の断面を走査電子顕微鏡(SEM)により観察
し、さらに各部の接合方向において、上記カチオン成分
Qと、金属成分Mと、活性金属成分Aとについて該SE
M付属のEPMAにより線分析を行なったとする。この
場合、成分Q、成分M及び成分Aの各含有量は、それぞ
れ対応する特性X線の検出強度に比例すると考えられ
る。このとき、成分Qに基づく特性X線強度の最大値が
IQmax(金属部材側の最低値をバックグラウンドとし
て、そのバックグラウンドからの高さにて測定する)で
あり、成分Mに基づく特性X線強度の最大値がIMmax
(セラミック部材側の最低値をバックグラウンドとし
て、そのバックグラウンドからの高さにて測定する)で
あり、成分Aに基づく特性X線強度の最大値がIAmax
(セラミック部材側ないし金属部材側の最低値をバック
グラウンドとして、そのバックグラウンドからの高さに
て測定する)であったとすれば、0.8IQmaxとなる位
置をセラミック部材と反応層との境界BC-Rとして、
0.8IAmaxとなる位置を反応層とろう材層との境界B
R-Wとして、また、0.8IMmaxとなる位置をろう材層
と金属部材との境界BW-Mとして定める。そして、反応
層4の厚さt1は境界BC-RとBR-Wとの間の距離とし
て、また、ろう材接合層5aの厚さt2は境界BR-Wと
BW-Mとの間の距離として、それぞれ定める。
The thickness t1 of the reaction layer 4 and the thickness t2 of the brazing material joining layer 5a are determined, for example, by an electron probe microanalyzer (EPMA), an energy dispersive X-ray spectroscopy (EDM).
S), and can be measured by a known method such as wavelength dispersive X-ray spectroscopy (WDS). In the present invention, it is defined as follows. As shown in FIG. 5, a cation component having the highest content of the ceramic member (for example, X-ray photoelectron spectroscopy (X
PS) is an elemental component showing a positive valence when analyzed by, for example, Al for alumina and Si for silicon nitride.
Is Q, and the metal component having the highest content of the metal member is M, while the active metal component is A. And
The cross section of the joint was observed with a scanning electron microscope (SEM). Further, in the joining direction of each part, the SE component, the metal component M, and the active metal component A of the SE were examined.
Suppose that a line analysis was performed using the EPMA attached to M. In this case, it is considered that the content of each of the component Q, the component M, and the component A is proportional to the detection intensity of the corresponding characteristic X-ray. At this time, the maximum value of the characteristic X-ray intensity based on the component Q is IQmax (measured at the height from the background with the lowest value on the metal member side as the background), and the characteristic X-ray intensity based on the component M Maximum intensity is IMmax
(Measured at the height from the background with the lowest value on the ceramic member side as the background), and the maximum value of the characteristic X-ray intensity based on the component A is IAmax
(Measured at the height from the background, with the lowest value on the ceramic member side or the metal member side as the background), the position where 0.8 IQmax is reached is defined as the boundary BC between the ceramic member and the reaction layer. As -R,
The position where 0.8IAmax is reached is the boundary B between the reaction layer and the brazing material layer.
RW, and a position at which the value of 0.8 IMmax is determined as a boundary BW-M between the brazing material layer and the metal member. The thickness t1 of the reaction layer 4 is the distance between the boundaries BC-R and BR-W, and the thickness t2 of the brazing material joining layer 5a is the distance between the boundaries BR-W and BW-M. Respectively.

【0023】また、ろう材フィレット5と金属部材3と
の間には、活性金属成分とNiとを含有する金属間化合
物、例えばTi−Ni系化合物がほとんど形成されてい
ない。これは、換言すれば、金属部材中のNi成分と、
反応層を作るTi成分との間の反応がほとんど生じてい
ないことを意味する。このことを具体的に確認するため
の手段としては、例えば接合部の断面に対し、微小X線
回折等により結晶構造解析を行い、例えばTiNi、
TiNiあるいはNiTi等のTi−Ni系化合物の
回折ピークが確認されなければ、Ti−Ni系化合物が
形成されていないものと考えることができる。また、図
5において、活性金属成分Aの線分析を行なったとき
に、ろう材層と金属部材との界面において観察される活
性金属成分Aの特性X線強度のピーク値I’Amaxの、反
応層におけるピーク値IAmaxに対する比I’Amax/IAm
axは、0.01以下(望ましくは測定ばらつきの範囲内
にて略ゼロ)となっていることが望ましい。
Further, an intermetallic compound containing an active metal component and Ni, for example, a Ti—Ni-based compound is hardly formed between the brazing filler material 5 and the metal member 3. This is, in other words, the Ni component in the metal member,
This means that the reaction with the Ti component forming the reaction layer hardly occurred. As means for specifically confirming this, for example, a crystal structure analysis is performed on the cross section of the joint by micro X-ray diffraction or the like, and for example, Ti 2 Ni,
If a diffraction peak of a Ti—Ni-based compound such as TiNi or Ni 3 Ti is not confirmed, it can be considered that a Ti—Ni-based compound is not formed. In FIG. 5, when the line analysis of the active metal component A was performed, the reaction of the peak value I′Amax of the characteristic X-ray intensity of the active metal component A observed at the interface between the brazing filler metal layer and the metal member was observed. The ratio I'Amax / IAm to the peak value IAmax in the layer
ax is desirably 0.01 or less (preferably substantially zero within the range of measurement variation).

【0024】以下、上記金属−セラミック接合体1の製
造方法について説明する。まず、図4(a)に示すよう
に、活性金属成分としてTiを含む一次ろう材104の
ペーストを、セラミック部材2の端面部(接合面)に配
置し、雰囲気加熱炉内にて所定の雰囲気及び温度で加熱
することによりメタライズ処理して、図4(b)に示す
ような反応層4を形成する。なお、活性金属成分以外の
ろう材成分が、反応層4を密着形態で覆う一次メタライ
ズ層5bを形成する場合がある。一次ろう付けの条件
は、ろう付け温度T1が840〜880℃(本実施例で
は860℃)で、真空度が1.0×10−3Torr以
下(本実施例では、例えば1.0×10 Torr)
の真空中にて行うことができる。一次ろう材の組成は、
例えば活性金属以外の部分をAg,Cuとすることがで
き、活性金属成分として、例えばTiを、TiHの形
で1〜20重量%(本実施例では5重量%)含有させた
ものを使用できる。
Hereinafter, a method of manufacturing the metal-ceramic joined body 1 will be described. First, as shown in FIG. 4A, a paste of a primary brazing material 104 containing Ti as an active metal component is placed on an end surface (joining surface) of the ceramic member 2 and a predetermined atmosphere is set in an atmosphere heating furnace. Then, a metallizing process is performed by heating at a temperature to form a reaction layer 4 as shown in FIG. In some cases, a brazing filler metal component other than the active metal component may form the primary metallized layer 5b that covers the reaction layer 4 in a contact form. The conditions of the primary brazing are as follows: the brazing temperature T1 is 840 to 880 ° C. (860 ° C. in the present embodiment), and the degree of vacuum is 1.0 × 10 −3 Torr or less (in the present embodiment, for example, 1.0 × 10 −3 Torr). - 4 Torr)
Can be performed in a vacuum. The composition of the primary brazing material is
For example, portions other than the active metal can be made of Ag and Cu. As the active metal component, for example, a material containing 1 to 20% by weight (5% by weight in the present embodiment) of Ti in the form of TiH 2 is used. it can.

【0025】次に、図4(c)に示すように、上記一次
ろう材よりも低融点で、かつ活性金属成分の含有量が小
さい、具体的には不可避不純物を除いて活性金属成分を
実質的に含有しない二次ろう材の箔105を、反応層4
(あるいは一次メタライズ層5b)上に重ね、さらに金
属部材3の端面(接合面)を突き合わせて、雰囲気加熱
炉内にて所定の雰囲気及び温度で加熱することにより、
二次ろう付けする。これにより、二次ろう材箔105が
溶融して、図4(d)に示すろう材フィレット5を形成
する。なお、一次メタライズ層5bが形成される場合
は、その一部又は全部が二次ろう材箔105と溶融一体
化して、ろう材フィレット5に取り込まれる場合があ
る。二次ろう付けの条件は、ろう付け温度T2が800
〜820℃(本実施例では800℃)とされ、上記一次
ろう付け温度T1との差ΔT≡T1−T2が、20〜8
0℃(本実施例では60℃)に設定される。なお、二次
ろう材としては、JIS−Z3261に記載された銀ろ
うBAg−8(Ag:Cu=18:7)が用いられてい
る。
Next, as shown in FIG. 4 (c), the melting point of the active metal component is lower than that of the primary brazing material and the content of the active metal component is smaller. The secondary brazing material foil 105 that is not contained in the reaction layer 4
(Or the primary metallized layer 5b), and the end faces (joining surfaces) of the metal members 3 are abutted and heated in an atmosphere heating furnace at a predetermined atmosphere and temperature.
Secondary brazing. Thereby, the secondary brazing material foil 105 is melted to form the brazing material fillet 5 shown in FIG. When the primary metallization layer 5b is formed, a part or all of the primary metallization layer 5b may be melted and integrated with the secondary brazing material foil 105 and taken into the brazing material fillet 5. The condition of the secondary brazing is that the brazing temperature T2 is 800
8820 ° C. (800 ° C. in the present embodiment), and the difference ΔT≡T1−T2 from the primary brazing temperature T1 is 20 to 8
The temperature is set to 0 ° C. (60 ° C. in this embodiment). In addition, silver brazing BAg-8 (Ag: Cu = 18: 7) described in JIS-Z3261 is used as the secondary brazing material.

【0026】一方、図2は、上記金属−セラミック接合
体1が用いられた真空スイッチ外管の一部分を模式的に
断面図にて示している。真空スイッチ外管10には、セ
ラミックチューブを形成する円筒状のセラミック部材
(セラミック筒状体)12と、蓋部材14を備えた金属
部材(金属筒状体)13とが気密接合された形態を有し
ている。これらセラミック筒状体12と金属筒状体13
はそれぞれ開放端面を有する円筒状体であって、該開放
端面側にて同軸状に突き合わされており、その突き合わ
せ部を環状の接合層(反応層4とろう材フィレット5よ
りなる)15を介して接合され、本発明に係る金属−セ
ラミック接合体を形成している。なお、突き合わせ部に
おいて、金属筒状体13側の接合端面はセラミック筒状
体12側の接合端面の半径方向略中央に位置決めされて
いる。
FIG. 2 is a schematic cross-sectional view of a part of a vacuum switch outer tube using the metal-ceramic composite 1. The vacuum switch outer tube 10 has a form in which a cylindrical ceramic member (ceramic cylindrical body) 12 forming a ceramic tube and a metal member (metal cylindrical body) 13 having a lid member 14 are hermetically bonded. Have. These ceramic tubular body 12 and metal tubular body 13
Are cylindrical bodies each having an open end face, which are coaxially butted on the open end face side, and the butt portion is interposed via an annular bonding layer (consisting of the reaction layer 4 and the brazing filler material 5) 15. To form a metal-ceramic joint according to the present invention. In the abutting portion, the joining end face on the side of the metal tubular body 13 is positioned substantially at the center in the radial direction of the joining end face on the side of the ceramic tubular body 12.

【0027】このようなセラミック筒状体12の接合面
に一次ろう付けを行う際には、図4(e)に示すよう
に、端面形状に対応した環状の一次ろう材箔104を用
いることができる。また、二次ろう付けを行う場合は、
図4(f)に示すように、セラミック筒状体12と金属
筒状体13との端面間に、環状の二次ろう材箔105を
挟み込むようにする。
When performing primary brazing on the joining surface of such a ceramic tubular body 12, as shown in FIG. 4E, an annular primary brazing material foil 104 corresponding to the end face shape is used. it can. Also, when performing secondary brazing,
As shown in FIG. 4F, an annular secondary brazing material foil 105 is sandwiched between the end surfaces of the ceramic tubular body 12 and the metal tubular body 13.

【0028】上記のような真空スイッチにおいては、本
発明の金属−セラミック接合体の構造により、セラミッ
ク筒状体12と金属筒状体13とが接合層15により密
封されて高い気密性が達成され、かつ、ろう付けを上記
のように2段階に行うことで、接合層15(ろう材フィ
レット5)と金属筒状体13との間にTi−Ni系金属
間化合物がほとんど形成されないので、接合強度にも優
れたものとなる。なお、金属部材13の蓋部材14側に
おいては、外向きに膨出する鍔状部13aが形成されて
おり、蓋部材14との間の気密性ならびに接合強度を保
っている。
In the above-described vacuum switch, the structure of the metal-ceramic bonded body of the present invention allows the ceramic cylindrical body 12 and the metal cylindrical body 13 to be sealed by the bonding layer 15 to achieve high airtightness. By performing the brazing in two steps as described above, since the Ti—Ni-based intermetallic compound is hardly formed between the joining layer 15 (the brazing filler material 5) and the metal cylindrical body 13, the joining is performed. It also has excellent strength. In addition, on the side of the cover member 14 of the metal member 13, a flange-like portion 13 a that bulges outward is formed to maintain the airtightness and the bonding strength between the metal member 13 and the cover member 14.

【0029】図3は、真空スイッチのさらに具体的な構
成例を示している。この真空バルブ50は、絶縁容器5
5(セラミック部材)の両端開口部に蓋付きの金属製エ
ンドプレート57,57(金属部材)を気密封着して容
器状に構成されている。この真空容器内には、接点6
0,61が、接点61を固定とし、接点60を可動とし
て接離自在に設けられ、固定接点61の固定電極棒52
がエンドプレート57に気密に取付けられ、可動接点6
0の可動電極棒56がベローズ58を介してエンドプレ
ート57に可動自在にかつ気密に取付けられている。ま
た、固定接点61、可動接点60の周りはアークシール
ド54で囲まれ、さらにベローズ58のベローズカバー
59は可動電極棒56に取付けられている。
FIG. 3 shows a more specific configuration example of the vacuum switch. This vacuum valve 50 is connected to the insulating container 5.
Metal end plates 57, 57 (metal members) with lids are hermetically sealed to the openings at both ends of 5 (ceramic member) to form a container. In this vacuum container, contact 6
Numerals 0, 61 are provided such that the contact 61 is fixed, the contact 60 is movable, and the contact 60 is movable.
Are airtightly attached to the end plate 57, and the movable contact 6
The zero movable electrode rod 56 is movably and airtightly attached to the end plate 57 via the bellows 58. The fixed contact 61 and the movable contact 60 are surrounded by the arc shield 54, and the bellows cover 59 of the bellows 58 is attached to the movable electrode rod 56.

【0030】このような真空バルブ50は、図示しない
操作機構により、可動電極棒56が引き外し方向に操作
され、接点60,61が離間する。これら接点60,6
1が離間しても、その距離が小さい間は両接点間にアー
クが発生し、電流は流れ続けるが、一定以上に距離が大
きくなると発生するアークは電流ゼロ点を迎えて真空中
に拡散され、接点間の電流が遮断される。ここで、上記
エンドプレート(金属部材)57と絶縁容器(セラミッ
ク部材)55とを、本発明の金属−セラミック接合体と
してろう付け接合することができる。これにより、その
接合部において高い気密性、接合強度を有し、真空バル
ブとして優れた性能を発揮することが可能となる。
In such a vacuum valve 50, the movable electrode rod 56 is operated in the pulling-out direction by an operating mechanism (not shown), and the contacts 60 and 61 are separated. These contacts 60, 6
Even when 1 is separated, an arc is generated between the two contacts while the distance is small, and the current continues to flow. However, when the distance is increased beyond a certain value, the generated arc reaches the zero current point and is diffused into the vacuum. , The current between the contacts is interrupted. Here, the end plate (metal member) 57 and the insulating container (ceramic member) 55 can be brazed and joined as the metal-ceramic joint of the present invention. Thereby, the joint has high airtightness and joint strength, and can exhibit excellent performance as a vacuum valve.

【0031】(実施例1)本発明の効果を確かめるため
に、以下の実験を行った。まず、図2に示すセラミック
筒状体12として、アルミナ系セラミック(アルミナ含
有量92重量%、密度3.6g/cm)製の、内径5
1mm、外径61mm、長さ91mmのものを用意し
た。他方、図2に示す金属筒状体13として、Fe:5
4重量%−Ni:29重量%−Co:17重量%の合金
(コバール)製で、内径55mm、接合面側外径57.
5mm、ツバ側外径62mm、長さ10mmのものを用
意した。
(Example 1) The following experiment was conducted to confirm the effects of the present invention. First, as the ceramic cylindrical body 12 shown in FIG. 2, an inner diameter 5 made of alumina ceramic (alumina content 92% by weight, density 3.6 g / cm 3 ) is used.
1 mm, an outer diameter of 61 mm, and a length of 91 mm were prepared. On the other hand, as the metal cylindrical body 13 shown in FIG.
4 wt% -Ni: 29 wt% -Co: 17 wt% alloy (Kovar) having an inner diameter of 55 mm and an outer diameter of the joint surface side of 57.
5 mm, a flange side outer diameter of 62 mm, and a length of 10 mm were prepared.

【0032】また、一次ろう材としては、Agを72重
量部、Cuを28重量部含む合金粉末(活性金属成分以
外の残部をなす合金粉末である)に対し、活性金属成分
としてのTiH粉末を各種の割合で含有配合し、溶媒
及び分散剤を加えて一次ろう材ペーストを作製した。ま
た、二次ろう材として、内径51mm、外径60mm、
厚さ0.13mmの環状のBAg−8ろう材箔を用意し
た。さらに、セラミック筒状体の接合側の端面を、グラ
インダ及びラップ研磨により各種平面度となるように研
磨した。また、金属筒状体の接合側の端面は、レース加
工(切削)時に平面度が0.1mmとなるように切削し
た。
As the primary brazing material, an alloy powder containing 72 parts by weight of Ag and 28 parts by weight of Cu (an alloy powder that forms the balance other than the active metal component) is compared with a TiH 2 powder as an active metal component. Was mixed in various proportions, and a solvent and a dispersant were added to prepare a primary brazing material paste. In addition, as a secondary brazing material, an inner diameter of 51 mm, an outer diameter of 60 mm,
An annular BAg-8 brazing filler metal foil having a thickness of 0.13 mm was prepared. Further, the end surface on the joining side of the ceramic cylindrical body was polished by a grinder and lap polishing so as to have various flatnesses. Further, the end face on the joining side of the metal cylindrical body was cut so that the flatness became 0.1 mm during the lace processing (cutting).

【0033】そして、セラミック筒状体の接合側端面に
前述の一次ろう材ペーストを厚さ200μmにて塗布
し、雰囲気加熱炉中にて、温度T1=860℃、真空度
=1×10−4〜1×10−2Torrにて一次ろう付
けし、一次メタライズ層を形成した。次に、前述の二次
ろう材箔を間に挟む形で、一次メタライズ層の形成され
たセラミック筒状体の接合側端面と、金属筒状体の接合
側端面とを突き合わせ、温度T2=800℃、真空度=
1.0×10−4Torrにて二次ろう付けした。
Then, the above-mentioned primary brazing material paste is applied at a thickness of 200 μm to the end face on the joining side of the ceramic cylindrical body, and the temperature T1 = 860 ° C., the degree of vacuum = 1 × 10 −4 in an atmosphere heating furnace. Primary brazing was performed at 11 × 10 −2 Torr to form a primary metallized layer. Next, the joining-side end face of the ceramic tubular body on which the primary metallized layer is formed and the joining-side end face of the metallic tubular body are abutted with the secondary brazing material foil interposed therebetween, and the temperature T2 = 800. ℃, degree of vacuum =
Secondary brazing was performed at 1.0 × 10 −4 Torr.

【0034】こうして得られた各接合体の接合強度を、
オートグラフを用いた引張試験にて測定し、強度値が3
000kg以上のものを◎、2000〜3000kgの
ものを○、2000kg以下のものを△、として評価し
た。また、気密度は、Heリークディテクタを用いたH
eリーク試験により測定し、Heリーク量が10−9
a・m/sec以下のものを◎、10−9〜10−8
Pa・m/secのものを○、10−8Pa・m
sec以上のものを△として評価した。以上の結果を表
1〜3に示す。
The joining strength of each joined body thus obtained is
Measured by a tensile test using an autograph, the strength value is 3
2,000 kg or more were evaluated as ◎, 2000 to 3000 kg were evaluated as ○, and 2000 kg or less as Δ. In addition, the airtightness is H using a He leak detector.
e measured by a leak test, the He leak amount was 10 −9 P
a · m 3 / sec or less: 、 1010 −9 to 10 −8
○ those of Pa · m 3 / sec, 10 -8 Pa · m 3 /
Those that were not shorter than sec were evaluated as Δ. The above results are shown in Tables 1 to 3.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】表1は、セラミック部材の接合側端面の平
面度を0.05mmに固定し、また、一次ろう付け時の
真空度を1.0×10−4Torrに固定し、使用する
一次ろう材中のTiHの含有量を各種変化させた場合
の結果を示す。TiHの含有量を1.0〜20.0重
量%とすることで、十分な接合強度と、高い気密性とが
両立できていることがわかる。また、この場合、接合部
を軸線方向に切断した断面を投影機により外観観察した
ところ、接合ムラのない良好な接合状態であることも確
認できた。一方、TiHの含有量が上記範囲外の接合
体(No.1,6,7)は、上記接合体(No.2〜
5)に比べて接合強度が低く、かつ気密性にも若干の低
下がみられた。
Table 1 shows that the flatness of the joining-side end face of the ceramic member was fixed at 0.05 mm, and the degree of vacuum at the time of the primary brazing was fixed at 1.0 × 10 −4 Torr, and the primary brazing used. The results in the case where the content of TiH 2 in the material is variously changed are shown. It can be seen that by setting the content of TiH 2 to 1.0 to 20.0% by weight, both a sufficient bonding strength and high airtightness can be achieved. Further, in this case, when a cross section obtained by cutting the joint portion in the axial direction was externally observed with a projector, it was also confirmed that the joint was in a good joining state without uneven joining. On the other hand, the joined bodies (Nos. 1, 6, and 7) in which the content of TiH 2 is out of the above range are the above joined bodies (No. 2 to No. 2 ).
Compared with 5), the bonding strength was low and the airtightness was slightly reduced.

【0039】表2は、一次ろう付け時の真空度を1.0
×10−4Torrに固定し、さらに、一次ろう材中の
TiHの含有量を12重量%に固定し、セラミック部
材の接合側端面の平面度を0.05〜0.15mmの各
種値に変化させた場合の結果である。平面度を0.1m
m以下とすることで、接合強度及び気密性の双方に優れ
た接合構造が実現されていることがわかる。また断面観
察結果も実施例1と同様、良好であった。一方、平面度
が0.1mmを超える接合体(No.3,4)は、接合
強度がやや低く、かつ気密性にも若干の低下がみられ
た。
Table 2 shows that the degree of vacuum during primary brazing was 1.0
× 10 −4 Torr, the content of TiH 2 in the primary brazing material was fixed at 12% by weight, and the flatness of the joining-side end face of the ceramic member was adjusted to various values of 0.05 to 0.15 mm. This is the result when the value is changed. 0.1m flatness
It can be understood that a bonding structure excellent in both bonding strength and airtightness is realized by setting the value to m or less. Also, the cross-sectional observation result was good as in Example 1. On the other hand, in the joined bodies (Nos. 3 and 4) having a flatness exceeding 0.1 mm, the joining strength was slightly low and the airtightness was slightly reduced.

【0040】表3は、セラミック部材の接合側端面の平
面度を0.05mmに固定し、さらに、一次ろう材中の
TiHの含有量を12重量%に固定し、一次ろう付け
時の真空度を1.0×10−4〜1.0×10−2To
rrの各種値に変化させた場合の結果である。一次ろう
付け時の真空度が1.0×10−3Torr以下の条件
で作製された接合体(No.12,13)は、十分な接
合強度を示し、Heリーク試験により高い気密性を有し
ていることが示され、また断面観察により接合状態が良
好であることも示された。一方、真空度が1.0×10
−3Torrを超える条件で作製された接合体(No.
14,15)は、接合強度がやや低く、かつ気密性にも
若干の低下がみられた。
Table 3 shows that the flatness of the joining side end face of the ceramic member was fixed at 0.05 mm, the content of TiH 2 in the primary brazing material was fixed at 12% by weight, and the vacuum at the time of the primary brazing was fixed. The degree is 1.0 × 10 −4 to 1.0 × 10 −2 To
These are the results when changing to various values of rr. The joined bodies (Nos. 12 and 13) produced under the condition that the degree of vacuum at the time of the primary brazing is 1.0 × 10 −3 Torr or less show sufficient joining strength and have high airtightness by a He leak test. And observation of the cross section also showed that the bonding condition was good. On the other hand, if the degree of vacuum is 1.0 × 10
-3 Torr (No. 3)
No. 14, 15), the bonding strength was slightly low and the airtightness was slightly reduced.

【0041】なお、上記実施例において、金属部材とし
て、Fe−Ni系合金(Fe:58%,Ni:42%を
含有)を用いて、上記各実施例と同様の試験を行った。
その結果、コバールを用いた場合と全く同様の傾向を示
すことが確認できた。
In the above examples, the same tests were performed as in the above examples using an Fe-Ni-based alloy (containing 58% of Fe and 42% of Ni) as the metal member.
As a result, it was confirmed that the same tendency as in the case of using Kovar was exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の金属−セラミック接合体の一実施例を
示す拡大断面模式図。
FIG. 1 is an enlarged schematic cross-sectional view showing one embodiment of a metal-ceramic joined body of the present invention.

【図2】図1の金属−セラミック接合体を用いた一実施
形態を示す断面模式図。
FIG. 2 is a schematic cross-sectional view showing one embodiment using the metal-ceramic joined body of FIG.

【図3】本発明の金属−セラミック接合体を真空スイッ
チ外管として用いる一実施例を示す断面図。
FIG. 3 is a cross-sectional view showing one embodiment in which the metal-ceramic joined body of the present invention is used as a vacuum switch outer tube.

【図4】本発明の金属−セラミック接合体の製造方法に
ついて説明する図。
FIG. 4 is a diagram illustrating a method for manufacturing a metal-ceramic joined body of the present invention.

【図5】本発明の金属−セラミック接合体において、反
応層及びろう材層の厚さを決定するための説明図。
FIG. 5 is an explanatory diagram for determining the thicknesses of a reaction layer and a brazing material layer in the metal-ceramic joined body of the present invention.

【符号の説明】[Explanation of symbols]

1 金属−セラミック接合体 2,12 セラミック部材 3,13 金属部材 4 反応層 5 ろう材フィレット(ろう材層) 6 セラミック側接合端面 7 金属側接合端面 10 真空スイッチ外管 15 接合層(反応層及びろう材層) 50 真空バルブ REFERENCE SIGNS LIST 1 metal-ceramic joined body 2, 12 ceramic member 3, 13 metal member 4 reaction layer 5 brazing material fillet (brazing material layer) 6 ceramic-side joining end face 7 metal-side joining end face 10 vacuum switch outer tube 15 joining layer (reaction layer and Brazing material layer) 50 Vacuum valve

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 Niを含有する金属部材とセラミック部
材とがろう材層を介して接合されるとともに、そのろう
材層と前記セラミック部材との間には、Ti,Zr,H
fから選択される1種又は2種以上の活性金属成分を含
む反応層が形成されてなり、他方、前記ろう材層と金属
部材との間における、前記活性金属成分とNiとを含有
した金属間化合物の形成量を可及的に小さくしたことを
特徴とする金属−セラミック接合体。
1. A metal member containing Ni and a ceramic member are joined via a brazing material layer, and Ti, Zr, H is provided between the brazing material layer and the ceramic member.
f, a reaction layer containing one or more active metal components selected from the group consisting of a metal containing the active metal component and Ni between the brazing material layer and the metal member. A metal-ceramic joined body characterized in that the amount of intermetallic compound formed is made as small as possible.
【請求項2】 前記セラミック部材は、アルミナを主成
分とするアルミナ系セラミックにて構成されている請求
項1記載の金属−セラミック接合体。
2. The metal-ceramic joined body according to claim 1, wherein the ceramic member is made of an alumina-based ceramic containing alumina as a main component.
【請求項3】 前記金属部材は、 Feを主成分とし、最も含有率の高い副成分がNi及び
Coの一方であり、2番目に含有率の高い副成分がNi
及びCoの他方であるFe−Ni−Co系合金、 Feを主成分とし、最も含有率の高い副成分がNiであ
るFe−Ni系合金、のいずれかにて構成されている請
求項1又は2に記載の金属−セラミック接合体。
3. The metal member contains Fe as a main component, and the sub-component having the highest content is one of Ni and Co, and the sub-component having the second highest content is Ni.
And a Fe-Ni-Co-based alloy which is the other of Co and Co, or a Fe-Ni-based alloy whose main component is Fe and whose secondary component has the highest content of Ni. 3. The metal-ceramic joint according to 2.
【請求項4】 前記ろう材層は、前記セラミック部材と
前記金属部材との突き合わせ部に形成されるフィレット
である請求項1ないし3のいずれかに記載の金属−セラ
ミック接合体。
4. The metal-ceramic joined body according to claim 1, wherein the brazing material layer is a fillet formed at an abutting portion between the ceramic member and the metal member.
【請求項5】 前記金属部材及び前記セラミック部材
が、各々少なくとも片側の端面が開放する金属筒状体及
びセラミック筒状体とされ、それら金属筒状体とセラミ
ック筒状体とを開放端面側にて同軸状に突き合わせ、そ
の突き合わせ部を環状のろう材層を介して接合した請求
項1ないし4のいずれかに記載の金属−セラミック接合
体。
5. The metal member and the ceramic member are a metal cylindrical body and a ceramic cylindrical body each having at least one open end face, and the metal cylindrical body and the ceramic cylindrical body are arranged on the open end face side. The metal-ceramic joint according to any one of claims 1 to 4, wherein the butted portions are coaxially butted and the butted portions are joined via an annular brazing material layer.
【請求項6】 前記金属筒状体及び前記セラミック筒状
体はいずれも円筒状に形成され、半径方向において前記
金属筒状体側の接合端面は前記セラミック筒状体側の接
合端面の略中央に位置決めされている請求項5記載の金
属−セラミック接合体。
6. The metal cylindrical body and the ceramic cylindrical body are both formed in a cylindrical shape, and a joining end surface on the metal cylindrical body side is positioned substantially at a center of a joining end surface on the ceramic cylindrical body side in a radial direction. The metal-ceramic joint according to claim 5, which is formed.
【請求項7】 前記突き合わせ部において、前記金属筒
状体と前記セラミック筒状体との接合端面はそれぞれ平
面状に形成されるとともに、それら金属筒状体とセラミ
ック筒状体との軸線を含む任意の断面において、金属筒
状体の接合端面(以下、金属側接合端面という)の幅が
セラミック筒状体の接合端面(以下、セラミック側接合
端面という)の幅よりも小さくされ、 前記断面において前記フィレットは、前記金属筒状体の
端部を埋没させる形でその厚さ方向両側を覆うととも
に、金属筒状体の端部内面側及び外面側の双方において
その断面外形が、該金属筒状体側から前記セラミック筒
状体側に向けて裾拡がりとなる形状を呈する請求項5又
は6に記載の金属−セラミック接合体。
7. A joining end face between the metal tubular body and the ceramic tubular body at the abutting portion is formed in a planar shape, and includes an axis of the metal tubular body and the ceramic tubular body. In an arbitrary cross section, the width of the joining end face of the metal tubular body (hereinafter, referred to as a metal-side joining end face) is made smaller than the width of the joining end face of the ceramic tubular body (hereinafter, referred to as a ceramic-side joining end face). The fillet covers both sides in the thickness direction of the metal cylindrical body so as to bury the end of the metal cylindrical body, and the cross-sectional outer shape of the metal cylindrical body on both the inner surface side and the outer surface side is the metal cylindrical shape. The metal-ceramic joined body according to claim 5 or 6, wherein the joined body has a shape that expands from the body side toward the ceramic tubular body side.
【請求項8】 前記セラミック部材は、真空スイッチ用
の外管である請求項1ないし7のいずれかに記載の金属
−セラミック接合体。
8. The metal-ceramic joined body according to claim 1, wherein the ceramic member is an outer tube for a vacuum switch.
【請求項9】 Niを含有する金属部材とセラミック部
材とをろう材層を介して接合した金属−セラミック接合
体の製造方法において、 Ti,Zr,Hfから選択される1種又は2種以上の活
性金属成分を含む一次ろう材を用いて、前記セラミック
部材の接合面にメタライズ処理する一次ろう付けを行
い、その後に、前記一次ろう材よりも低融点で、かつ前
記活性金属成分の含有量が小さい二次ろう材により、前
記セラミック部材のメタライズ処理された端面部に前記
金属部材を二次ろう付けすることを特徴とする金属−セ
ラミック接合体の製造方法。
9. A method for manufacturing a metal-ceramic joined body in which a metal member containing Ni and a ceramic member are joined via a brazing material layer, wherein one or more of Ti, Zr, and Hf are selected. Using a primary brazing material containing an active metal component, performing primary brazing for metallizing the bonding surface of the ceramic member, and then having a lower melting point than the primary brazing material, and having a content of the active metal component of A method of manufacturing a metal-ceramic joined body, wherein the metal member is secondarily brazed to a metalized end face of the ceramic member with a small secondary brazing material.
【請求項10】 前記一次ろう付けの温度をT1とし、
前記二次ろう付けの温度をT2としたときに、 T1:840〜880℃、 T2:800〜820℃、 とされ、それらの差(T1−T2)が、20〜80℃と
されている請求項9記載の金属−セラミック接合体の製
造方法。
10. The temperature of the primary brazing is T1,
When the temperature of the secondary brazing is T2, T1: 840 to 880 ° C., T2: 800 to 820 ° C., and the difference (T1−T2) is 20 to 80 ° C. Item 10. The method for producing a metal-ceramic joint according to Item 9.
【請求項11】 前記一次ろう材には、Ti,Zr,H
fから選択される1種又は2種以上の活性金属元素から
構成される単体及び/又は化合物が1〜20重量%含有
されている請求項9又は10に記載の金属−セラミック
接合体の製造方法。
11. The primary brazing material includes Ti, Zr, H
The method for producing a metal-ceramic joined body according to claim 9 or 10, wherein a simple substance and / or a compound composed of one or more active metal elements selected from f is contained in an amount of 1 to 20% by weight. .
【請求項12】 前記一次ろう付けは真空中で行われ、
その真空度が1.0×10−3Torr以下とされてい
る請求項9ないし11のいずれかに記載の金属−セラミ
ック接合体の製造方法。
12. The primary brazing is performed in a vacuum,
The method for producing a metal-ceramic joined body according to claim 9, wherein the degree of vacuum is 1.0 × 10 −3 Torr or less.
【請求項13】 前記二次ろう材として、Ag−Cu系
合金が用いられている請求項9ないし12のいずれかに
記載の金属−セラミック接合体の製造方法。
13. The method for manufacturing a metal-ceramic joined body according to claim 9, wherein an Ag—Cu alloy is used as the secondary brazing material.
【請求項14】 前記Ag−Cu系合金におけるAgと
Cuとの含有比率は、Ag100重量部に対してCuが
30〜50重量部とされている請求項13記載の金属−
セラミック接合体の製造方法。
14. The metal according to claim 13, wherein the content ratio of Ag and Cu in the Ag—Cu alloy is 30 to 50 parts by weight of Cu with respect to 100 parts by weight of Ag.
Manufacturing method of ceramic joined body.
JP2000035747A 2000-02-14 2000-02-14 Metal-ceramic bonded body and manufacturing method thereof Expired - Fee Related JP3607553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000035747A JP3607553B2 (en) 2000-02-14 2000-02-14 Metal-ceramic bonded body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000035747A JP3607553B2 (en) 2000-02-14 2000-02-14 Metal-ceramic bonded body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001220253A true JP2001220253A (en) 2001-08-14
JP3607553B2 JP3607553B2 (en) 2005-01-05

Family

ID=18559904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000035747A Expired - Fee Related JP3607553B2 (en) 2000-02-14 2000-02-14 Metal-ceramic bonded body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3607553B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430829A (en) * 2011-10-21 2012-05-02 哈尔滨工业大学 Brazing method for ZrB2-based material
CN104276837A (en) * 2013-07-12 2015-01-14 中国科学院上海硅酸盐研究所 Metal vitrification sealing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430829A (en) * 2011-10-21 2012-05-02 哈尔滨工业大学 Brazing method for ZrB2-based material
CN104276837A (en) * 2013-07-12 2015-01-14 中国科学院上海硅酸盐研究所 Metal vitrification sealing method

Also Published As

Publication number Publication date
JP3607553B2 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
JP5623783B2 (en) Brazing material for air bonding, bonded body, and current collecting material
JP2006327888A (en) Brazed structure of ceramic and metal
JP3607552B2 (en) Metal-ceramic bonded body and manufacturing method thereof
JP2001220253A (en) Metal-ceramic bonded material and method for producing the same
JPH08253373A (en) Production of vacuum airtight vessel sealant, vacuum airtight vessel, and ceramic-metal junction body
JP6146707B2 (en) Ceramic-metal bonded body and method for manufacturing the same
JP2001220254A (en) Metal-ceramic bonded material
JP4457056B2 (en) Method of manufacturing ceramic member for bonding, ceramic member for bonding, bonded body, vacuum switch, and vacuum container
JP4095748B2 (en) Method of manufacturing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel
JPH0749152B2 (en) Method for manufacturing envelope of rectifying element
JP4342084B2 (en) Method of manufacturing ceramic member for bonding, ceramic member for bonding, bonded body, vacuum switch, and vacuum container
JP4428890B2 (en) Ceramic member, joined body, and container for vacuum switch
JP2017105682A (en) Bonding method of metal member and ceramic member
JP2003288867A (en) Ceramic terminal
JP2851881B2 (en) Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof
JP2000327442A (en) Ceramic-metal joined body, its production and high temperature type secondary battery
JP2003212671A (en) Production method of ceramic member for joining, ceramic member for joining, vacuum switch, and vacuum vessel
JP2818210B2 (en) Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof
JP2003335585A (en) Process for joining ceramics through active metal soldering
JP3872379B2 (en) Package for housing semiconductor element and manufacturing method thereof
JP2848867B2 (en) Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof
JP2023124937A (en) Ceramic sealing component and manufacturing method thereof
KR20030029488A (en) Process for producing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel
JP4659812B2 (en) Method of manufacturing ceramic member for bonding, ceramic member for bonding, vacuum switch, and vacuum vessel
JP2022054717A (en) Ceramic sealing component and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees