JPH0378191B2 - - Google Patents
Info
- Publication number
- JPH0378191B2 JPH0378191B2 JP61150005A JP15000586A JPH0378191B2 JP H0378191 B2 JPH0378191 B2 JP H0378191B2 JP 61150005 A JP61150005 A JP 61150005A JP 15000586 A JP15000586 A JP 15000586A JP H0378191 B2 JPH0378191 B2 JP H0378191B2
- Authority
- JP
- Japan
- Prior art keywords
- bonding
- component
- powder
- adhesive
- paste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000853 adhesive Substances 0.000 claims description 50
- 230000001070 adhesive effect Effects 0.000 claims description 50
- 239000000843 powder Substances 0.000 claims description 49
- 239000002131 composite material Substances 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 14
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 7
- 238000005551 mechanical alloying Methods 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 description 31
- 229910052751 metal Inorganic materials 0.000 description 29
- 239000002184 metal Substances 0.000 description 29
- 238000000034 method Methods 0.000 description 27
- 239000000919 ceramic Substances 0.000 description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- 229910002804 graphite Inorganic materials 0.000 description 13
- 239000010439 graphite Substances 0.000 description 13
- 238000005304 joining Methods 0.000 description 12
- 239000010936 titanium Substances 0.000 description 12
- 239000010949 copper Substances 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 238000007639 printing Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- WRYLYDPHFGVWKC-UHFFFAOYSA-N 4-terpineol Chemical compound CC(C)C1(O)CCC(C)=CC1 WRYLYDPHFGVWKC-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- DAFHKNAQFPVRKR-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylpropanoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)C DAFHKNAQFPVRKR-UHFFFAOYSA-N 0.000 description 3
- 239000001856 Ethyl cellulose Substances 0.000 description 3
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000005238 degreasing Methods 0.000 description 3
- 229920001249 ethyl cellulose Polymers 0.000 description 3
- 235000019325 ethyl cellulose Nutrition 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 229940116411 terpineol Drugs 0.000 description 2
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- WRYLYDPHFGVWKC-SNVBAGLBSA-N 4-Terpineol Natural products CC(C)[C@]1(O)CCC(C)=CC1 WRYLYDPHFGVWKC-SNVBAGLBSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920003319 Araldite® Polymers 0.000 description 1
- 229910000952 Be alloy Inorganic materials 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010273 cold forging Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000002447 crystallographic data Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Powder Metallurgy (AREA)
Description
(産業上の利用分野)
本発明は金属と金属、金属とセラミツク、セラ
ミツクとセラミツクの接合用に好適な接着ペース
トに関するものである。
(従来の技術)
従来より、金属と金属、セラミツクとセラミツ
クのように同一材質間の接合法、或いは金属とセ
ラミツクの異材質間の接合法としては様々な接合
法が知られている。
例えば、金属と金属の接合法としては電気溶
接、ガス溶接、摩擦溶接等々の融接法があり、基
材を溶融しない方法としてロウ付け処理や有機接
着剤による接着法がある。
また、セラミツクとセラミツクの接合法として
は有機接着剤による接着法や耐熱金属法(特開昭
61−58870号参照)などがある。
これらの同一材質間の接合に対し、金属とセラ
ミツクとの異材質間の接合法としては、有機接着
剤による接着法や活性金属法、焼きばめ法、固相
反応法などがあり、またセラミツク基材にMoや
Wなどでメタライズした後にニツケルメツキを施
し、金属基材と半田付けする耐熱金属法があり、
最近の技術では酸化物系の無機接着剤を使用して
水和化合物をつくるなどの化学反応による接合法
も出現している。
(発明が解決しようとする問題点)
しかし、上記各種接合法のうち、金属同志の固
有な接合法である融接法を除けば、いずれも熱に
弱く、接着強度も充分でないという欠点がある。
一方、僅かに、蒸着、スパツタリング、溶射等
による接合技術や箔状のインサート材を使用する
接合技術も提案されてはいるが、接着力に乏しい
という欠点があるばかりでなく、使用範囲が限定
されるなどのため、実用性に乏しく、経済性でも
満足し得る接合法とは言えない。
本発明は、上記従来技術の欠点を解消し、耐熱
性を有し、かつ、接着強度が高く、しかも金属、
セラミツクの同一材質間の接合のみならず、金属
とセラミツクの異材質間の接合にも簡便に利用で
き、実用性、経済性を満足する新規な接着剤を提
供することを目的とするものである。
(問題点を解決するための手段)
上記目的を達成するため、本発明者は、耐熱性
を確保するためにまず接着剤を金属質のものと
し、この金属質の接着剤において特に接着強度を
高め得る方策について鋭意研究したところ、従来
の金属ロウの如く(例、特公昭61−10235号)、単
にその化学成分を調整するだけではその用途が制
限され、しかも耐熱性、接着強度の向上の要請に
対して限界があることが判明し、したがつて、化
学成分の調整はもとより、加えて接着剤の物理的
構造面に重点をおいて実験研究を重ねた結果、
Agを必須成分として含む特定組成であつて、し
かも接着剤の構造として各成分を混合状態で、か
つ共存せしめた複合粉末構造とし、この複合粉末
を有機溶楳中に分散させペースト状にすることに
より、上記目的が達成できることを見い出したも
のである。
因みに、Ag粉45%とCu粉45%とTi粉10%を用
いて、メカニカルアロイ法にて複合粉末にした場
合と、単に混合した混合粉末の場合とを粒子構造
を比較した。複合粉末の場合は第2図のa〜bに
示すようにAg、Cu、Tiが互いに層状に絡み合つ
た複合構造を示している。このことは、Ag成分
をフイルターにかけたcよりAgが主として中央
部に分布し、dよりTiが主として外周に分布し、
eよりCuがAgとTiの間に分布していることから
わかるが、各成分はfのX線回折データより合金
化していることが確認された。つまり、1個の粒
子が合金化した複合構造を有している。一方、混
合粉の場合は第4図のa〜bに示すように各成分
粒子が単に混ざり合つているだけであり、このこ
とは、各成分をフイルターにかけたc〜eより
Ag、Cu、Tiが原形のまま単独に存在しているこ
とからわかり、fのX回折データで確認された。
すなわち、本発明に係る接着ペーストは、Cu
及びNiのうちの少なくとも1種(以下、A成分
という)を10〜60%、Ti、Nb及びZrのうちの少
なくとも1種(以下、B成分という)を10〜80%
含み、必要に応じてYを含む希土類元素のうちの
少なくとも1種(以下、D成分という)を5ppm
〜3%含み、残部が実質的にAg(以下、C成分と
いう)10〜80%である組成を有し、かつ、各成分
粒子がメカニカルアロイ法によつて機械的に層状
に絡み合つて固相状態で合金化した複合粉末を有
機溶楳中に分散させペースト状にしたことを特徴
とするものである。
以下に本発明を実施例に基づいて詳細に説明す
る。
本発明の接着剤はペースト状にするものである
が、それに用いる金属粉末として、従来の金属ロ
ウの主な成分系として知られている銀ロウ、ニツ
ケルロウ、銅ロウなどの主成分を参酌し、Cu−
Ti−Agの三成分系をベース組成とし、その物理
的構造について種の実験研究を行つた。
まず、上記3成分を単に混合した単純混合粉末
状態と3成分微粉を機械的に層状に絡み合つて固
相状態で合金化せしめた複合粉末状態とに区分
し、これらの各状態における金属粉末をペースト
状にし、接合温度(使用温度)と物理的構造の変
化の可能性について調べ、接合効果を考察した。
その結果、単純な粉末混合状態の場合には特に
接合効果の向上は見られず、接合温度と有機的な
関係がなかつたのに対し、複合粉末状態の場合に
は接合温度を適切に選ぶならば接合強度が顕著に
向上することを発見した。これは、第2図に示す
ように、各成分の微粉が機械的に層状に絡み合つ
て固相状態で合金化されているため、接合温度に
おいて緻密に隣接する各成分微粉が表面で溶融し
て粒子間結合が強固になり、これが一種のノリの
役目を果たして接合強度が増大するものと考えら
れる。因みに、そのような適切な接合温度(Ag
−Cu系で800〜900℃)を超える高温で各成分が
合金化した状態で使用した場合には、その効果が
低下する現象がみられた。また単純混合状態では
各成分が分離した混合状態にあるために加熱して
も上記効果は期待できなかつた。
以上の基礎実験に基づき、上記3成分系の組成
範囲、他元素の添加等々について更に実験研究を
重ね、接着剤として使用し得る化学成分を確定し
たものである。
すなわち、第1図は本発明の接着ペーストにお
ける複合粉末の成分系並びに組成域(wt%)を
示す図であり、A成分はCu及びNiのうちの少な
くとも1種からなり、B成分はTi、Nb及びZrの
うちの少なくとも1種からなり、残部はC成分
(すなわち、Ag)からなる成分系において、その
組成域がA成分10〜60%、B成分10〜80%、C成
分10〜80%からなる範囲内が接着剤として所望の
性能を発揮し使用することができる。なお、A成
分が60%を超えると接着力が出ず、またB成分が
80%を超えると接合層の硬度が高くなり、熱シヨ
ツクに弱くなるので、好ましくない。
上記組成域のうちでも耐熱性、接着強度ともに
優れている範囲は、A成分20〜50%、B成分10%
を超え60%以下、C成分20〜50%からなる範囲で
ある。
なお、Ti、Niはスポンジチタン粉末、カルボ
ニルニツケル粉末を使用するのがよい。
Niはステンレス板を接着する場合に効果的で
ある。
また、上記成分系に対し、必要に応じてD成分
として希土類元素(Yを含む)のうちの少なくと
も1種を添加することができる。添加する量は
5ppm〜3wt%とし、ミツシユメタルを使用して
もよい。D成分を添加することによりB成分の添
加率の下限を7%に下げることができ、特にTi
の添加率を小さくしても接着力を得ることができ
るほか、特にSiC、黒鉛などのセラミツク基材を
接合する場合に添加すると効果が顕著である。
上記化学成分を有する複合粉末は、いわゆるメ
カニカルアロイ法によつて製造することができ、
各成分の金属粉末を擂潰機、ボールミル、アトラ
イター等の撹拌機を用いて高速、高エネルギー下
で所要時間混合撹拌して粉砕することにより、各
成分粒子が機会的に層状に絡み合つて固相状態で
合金化したいわゆるメカニカルアロイ形態の複合
粉末が得られる。この複合粉末の粒度は44μm以
下、好ましくは10μm以下のものが50wt%以上で
ある微粉末が望ましい。
メカニカルアロイ法(メカニカルアロイング)
は成分粉末を機械的に(すなわち、非溶融状態又
は固相状態で)合金化する方法であり、高速、高
エネルギーを与え得る撹拌機によつて粗粒の成分
粉末を微粉砕し、これが展伸(冷間鍛造)作用に
より破片化し、相対的に延性のある成分破片によ
り他の成分破片が畳み込まれ絡み合つて凝着した
層状構造となり、更に展伸作用を受け、遂には光
学顕微鏡では見分けがつかないほどに均質化、す
なわち、合金化した粒子が得られる。この粒子は
各成分の破片粒子間の凝着作用を利用した固相状
態における合金粒子ということができ、X線回折
により合金化していることを容易に確認できる。
この複合粉末はペースト状にするために有機溶
媒中に分散させる。有機溶媒としては、テレピネ
オール、ブチルカルビトール、テキサノール、ブ
チルカルビトールアセテートなどを使用すること
ができ、またペースト中の金属粉量は60〜90wt
%とするのが適当である。なお、有機溶媒の他に
界面活性剤(例、ロジン・ワツクス)を少量添加
したり、またバインダーとしてエチルセルロース
などを添加してもよい。
上記接着ペーストの好ましい使用態様として
は、まず金属、セラミツク等の基材の一方又は双
方の接着面に接着ペーストを所要量塗布し、乾燥
後、不活性雰囲気下で550〜600℃で焼成してバイ
ンダー分を揮散させ、次いで非酸化性雰囲気中又
は10-3Torr以下の減圧下で1〜100Kg/cm2の荷重
のもとに600〜900℃に所要時間加熱し、接合す
る。塗布量は焼成後の膜厚が30〜60μ程度が良
い。あまり薄いと拡散不充分となり接着強度が上
がらない。また、500μ以上に厚くなりすぎると
セラミツク基板に使用した場合、熱膨張差の影響
が大きくなり、セラミツク板に亀裂が生ずるよう
になる。なお、加熱温度については、フエライト
を接着する場合は600℃程度の比較的低温でも接
着力を発揮する。これはフエライト表面がTi、
Zr、Nb等によつて還元されFe相を生ずるためと
思われる。一般には830〜900℃が好ましい。800
℃以下では接合力が低く、950℃以上になると接
合材料のソリが大きくなり、900℃を超える温度
上で熱処理すると接着剤が溶融合金化し接合効果
が低下するので、この点に留意して接着温度を決
める必要がある。接着剤がペースト状であるの
で、これを印刷工程により接着面に印刷し、基材
を接合すれば、多量処理も可能である。
(実施例)
次に本発明の実施例を示す。
実施例 1
いずれも326メツシユ(44μm)以下の粉末で
あるスポンジチタン粉末、銀粉末、銅粉末、ミツ
シユメタル粉末を第1表に示す割合(wt%)で
配合し、10μm以下になるようにボールミルを用
いて混合粉砕した。
次いで、この複合粉末を3本ロールミルで混練
し、以下に示す配合割合のペーストとした。
複合粉末 24重量部
エチルセルロース 4.4 〃
テキサノール 5 〃
界面活性剤 0.54 〃
次に、接合する一方の基板として同表に示す各
種材料で50mm×50mm口サイズの基板に上記ペース
トをスクリーン印刷機を用いて厚み30μm、面積
49mm口に印刷した。使用したスクリーンはステン
レス製200メツシユ、バイアス張りで、エマルジ
ヨン厚さ45μm、49mm口にパターン化されている
ものである。
印刷後、10分間室温にてレベルリングした後に
105℃で30分間乾燥した。乾燥したものを更に厚
膜焼成炉を使用し、窒素雰囲気中で焼成した。
700℃以上の高温で焼成すると最終的に接合しな
くなるので、本実施例では、ピーク温度は600℃
×8分間で60分間プロフアイルとした。
この焼成の目的はペースト中のバインダー成分
を揮発させることにある。第1表中の比較例では
800℃、900℃の高温で焼成したため接合力が生じ
なかつた例である。
焼成後、上記基板上に同表に示す組み合わせで
種々の材料を重ね合わせ、10-4Torrの真空下で
10Kg/cm2の荷重をかけて所定温度900℃で1時間
加熱処理し、接合した。
このようにして作製した接合試片を各々10枚準
備し、50cmの高さから繰り返し3回、鋼板上へ落
下させ、接合状態を外観で観察した。その結果を
同表に併記する。なお、同表中の接合状態の判定
基準は次のとうりである。
○印:10枚全部が全く剥離なし
△印:10枚中1〜2枚が接着面で剥離あり
×印:10枚中3枚以上が接着面で剥離あり
なお、本試験において10枚全部が全く剥離のな
い接合状態が得られるのが最も好ましいのである
が、10枚中1枚が剥離する程度でも十分使用価値
があるものといえる。
(Field of Industrial Application) The present invention relates to an adhesive paste suitable for joining metals to metals, metals to ceramics, and ceramics to ceramics. (Prior Art) Various joining methods have been known for joining the same materials, such as metal to metal, ceramic to ceramic, or joining different materials, such as metal to ceramic. For example, methods for joining metals include fusion welding methods such as electric welding, gas welding, and friction welding, and methods that do not melt the base materials include brazing and bonding methods using organic adhesives. In addition, the bonding methods for ceramics and ceramics include the bonding method using organic adhesives and the heat-resistant metal method (Japanese Patent Application Laid-open No.
61-58870). In contrast to these bonding methods between the same materials, methods for bonding dissimilar materials such as metal and ceramic include adhesive methods using organic adhesives, active metal methods, shrink fitting methods, and solid phase reaction methods. There is a heat-resistant metal method in which the base material is metallized with Mo, W, etc., then nickel plated and soldered to the metal base material.
Recent technologies include bonding methods based on chemical reactions, such as the creation of hydrated compounds using oxide-based inorganic adhesives. (Problems to be Solved by the Invention) However, among the various joining methods mentioned above, all of them, except for fusion welding, which is a unique method for joining metals together, have the drawbacks of being weak against heat and lacking in adhesive strength. . On the other hand, a few bonding techniques using vapor deposition, sputtering, thermal spraying, etc., and bonding techniques using foil insert materials have been proposed, but they not only have the disadvantage of poor adhesive strength, but also have a limited range of use. Therefore, it is not practical and cannot be said to be an economically satisfactory joining method. The present invention eliminates the drawbacks of the above-mentioned prior art, has heat resistance, high adhesive strength, and has metal,
The purpose of the present invention is to provide a new adhesive that satisfies practicality and economical efficiency and can be easily used not only for bonding between the same ceramic material, but also for bonding different materials such as metal and ceramic. . (Means for Solving the Problems) In order to achieve the above object, the present inventors first used a metallic adhesive in order to ensure heat resistance, and in this metallic adhesive, the adhesive strength was particularly improved. As a result of intensive research on ways to improve heat resistance and adhesive strength, we found that simply adjusting the chemical composition of conventional metal solders (e.g., Japanese Patent Publication No. 61-10235) limits its use, and that it is difficult to improve heat resistance and adhesive strength. It became clear that there was a limit to the requirements, and as a result of repeated experimental research focusing not only on adjusting the chemical components, but also on the physical structure of the adhesive.
It has a specific composition containing Ag as an essential component, and has a composite powder structure in which each component is mixed and coexisting as an adhesive structure, and this composite powder is dispersed in an organic solvent to form a paste. It has been discovered that the above objective can be achieved by this method. Incidentally, the particle structure was compared between a case where a composite powder was made using a mechanical alloying method using 45% Ag powder, 45% Cu powder, and 10% Ti powder, and a case where a mixed powder was simply mixed. In the case of a composite powder, it has a composite structure in which Ag, Cu, and Ti are intertwined with each other in a layered manner, as shown in a to b of FIG. This means that Ag is mainly distributed in the center from c when the Ag component is filtered, and Ti is mainly distributed on the outer periphery from d.
It can be seen from e that Cu is distributed between Ag and Ti, and it was confirmed that each component was alloyed from the X-ray diffraction data of f. In other words, it has a composite structure in which one particle is alloyed. On the other hand, in the case of mixed powder, the component particles are simply mixed together as shown in a to b in Figure 4, and this can be seen from c to e when each component is filtered.
It was found that Ag, Cu, and Ti were present independently in their original form, and this was confirmed by the X-diffraction data of f. That is, the adhesive paste according to the present invention has Cu
and 10 to 60% of at least one of Ni (hereinafter referred to as component A), and 10 to 80% of at least one of Ti, Nb, and Zr (hereinafter referred to as component B).
5ppm of at least one rare earth element (hereinafter referred to as D component), including Y as necessary.
~3%, with the remainder being substantially Ag (hereinafter referred to as C component) 10 to 80%, and each component particle is mechanically intertwined in a layered manner by a mechanical alloying method to solidify. It is characterized in that a composite powder alloyed in a phase state is dispersed in an organic solvent to form a paste. The present invention will be explained in detail below based on examples. The adhesive of the present invention is made into a paste, and the metal powder used therein is based on silver wax, nickel wax, copper wax, etc., which are known as the main components of conventional metal solders. Cu−
Using a ternary system of Ti-Ag as the base composition, we conducted experimental research on its physical structure. First, we divided the metal powder into a simple mixed powder state in which the above three components were simply mixed together, and a composite powder state in which the three component fine powders were mechanically intertwined in layers and alloyed in a solid state, and the metal powder in each of these states was We made it into a paste, investigated the bonding temperature (usage temperature) and the possibility of changes in the physical structure, and considered the bonding effect. As a result, no particular improvement in the bonding effect was observed in the case of a simple powder mixture state, and there was no organic relationship with the bonding temperature, whereas in the case of a composite powder state, if the bonding temperature was appropriately selected, It was discovered that the joint strength was significantly improved. This is because, as shown in Figure 2, the fine powders of each component are mechanically intertwined in layers and alloyed in a solid state, so the closely adjacent fine powders of each component melt on the surface at the bonding temperature. It is thought that this strengthens the bonds between the particles, which acts as a type of glue and increases the bonding strength. Incidentally, such an appropriate junction temperature (Ag
- When used in a state where each component is alloyed at a high temperature exceeding 800 to 900°C (Cu type), a phenomenon was observed in which the effectiveness decreased. In addition, in a simple mixed state, each component is in a separated mixed state, so even if heated, the above effect could not be expected. Based on the above basic experiments, we conducted further experimental research on the composition range of the three-component system, the addition of other elements, etc., and determined the chemical components that can be used as an adhesive. That is, FIG. 1 is a diagram showing the component system and composition range (wt%) of the composite powder in the adhesive paste of the present invention, where the A component consists of at least one of Cu and Ni, and the B component consists of Ti, Ti, In a component system consisting of at least one of Nb and Zr, and the remainder being C component (i.e. Ag), the composition range is 10 to 60% of A component, 10 to 80% of B component, and 10 to 80% of C component. %, it can be used as an adhesive exhibiting desired performance. In addition, if the A component exceeds 60%, adhesive strength will not be obtained, and the B component will
If it exceeds 80%, the hardness of the bonding layer becomes high and it becomes vulnerable to heat shock, which is not preferable. Among the above composition ranges, the range with excellent heat resistance and adhesive strength is 20 to 50% of A component and 10% of B component.
60% or less, and the C component is in the range of 20 to 50%. Note that it is preferable to use sponge titanium powder or carbonyl nickel powder for Ti and Ni. Ni is effective when bonding stainless steel plates. Furthermore, at least one rare earth element (including Y) can be added to the above-mentioned component system as the D component, if necessary. The amount to add is
Mitsushi Metal may be used at 5ppm to 3wt%. By adding component D, the lower limit of the addition rate of component B can be lowered to 7%.
Adhesive strength can be obtained even if the addition rate of is made small, and the effect is particularly noticeable when joining ceramic base materials such as SiC and graphite. A composite powder having the above chemical components can be produced by a so-called mechanical alloy method,
By mixing and pulverizing the metal powder of each component using a stirrer such as a crusher, ball mill, or attritor at high speed and high energy for the required time, the particles of each component are opportunistically intertwined in layers. A so-called mechanical alloy composite powder alloyed in a solid state is obtained. The composite powder preferably has a particle size of 44 μm or less, preferably 50 wt% or more of particles with a particle size of 10 μm or less. Mechanical alloying method (mechanical alloying)
This is a method of mechanically alloying component powders (that is, in a non-molten state or solid state). Coarse component powders are pulverized using a stirrer that can provide high speed and high energy. It fragments due to the elongation (cold forging) action, and the relatively ductile component fragments fold up other component fragments and intertwine to form a cohesive layered structure, which is further subjected to the elongation action, and finally becomes visible under an optical microscope. Indistinguishably homogenized, ie alloyed, particles are obtained. These particles can be said to be alloy particles in a solid state using the cohesive action between fragment particles of each component, and it can be easily confirmed that they are alloyed by X-ray diffraction. This composite powder is dispersed in an organic solvent to form a paste. As an organic solvent, terpineol, butyl carbitol, texanol, butyl carbitol acetate, etc. can be used, and the amount of metal powder in the paste is 60~90wt.
% is appropriate. In addition to the organic solvent, a small amount of a surfactant (eg, rosin wax) may be added, or ethyl cellulose or the like may be added as a binder. A preferred method of using the above adhesive paste is to first apply the required amount of adhesive paste to the adhesive surface of one or both of the base materials, such as metal or ceramic, and after drying, bake it at 550 to 600°C in an inert atmosphere. The binder content is volatilized, and then the bonding is performed by heating at 600 to 900° C. for a required time under a load of 1 to 100 Kg/cm 2 in a non-oxidizing atmosphere or under reduced pressure of 10 -3 Torr or less. The coating amount is preferably about 30 to 60 μm in film thickness after firing. If it is too thin, diffusion will be insufficient and adhesive strength will not increase. Furthermore, if the thickness is too large (500 μm or more) and it is used on a ceramic substrate, the effect of the difference in thermal expansion will become large, causing cracks to occur in the ceramic plate. Regarding the heating temperature, when bonding ferrite, adhesive strength is exhibited even at a relatively low temperature of about 600°C. This is because the ferrite surface is Ti,
This is thought to be because it is reduced by Zr, Nb, etc. and produces an Fe phase. Generally, 830 to 900°C is preferred. 800
Below 950°C, the bonding strength is low; above 950°C, the bonding material will warp; heat treatment above 900°C will turn the adhesive into a molten alloy, reducing the bonding effect, so keep this in mind when bonding. It is necessary to determine the temperature. Since the adhesive is in the form of a paste, large quantities can be processed by printing it on the adhesive surface using a printing process and bonding the base materials. (Example) Next, an example of the present invention will be shown. Example 1 Sponge titanium powder, silver powder, copper powder, and mesh metal powder, all of which are powders of 326 mesh (44 μm) or less, were blended in the proportions (wt%) shown in Table 1, and ball milled so that the powder was 10 μm or less. It was mixed and ground using. Next, this composite powder was kneaded in a three-roll mill to form a paste having the blending ratio shown below. Composite powder 24 parts by weight Ethyl cellulose 4.4 Texanol 5 Surfactant 0.54 Next, as one of the substrates to be bonded, use a screen printing machine to print the above paste onto a 50 mm x 50 mm substrate using various materials shown in the same table. 30μm, area
Printed on 49mm opening. The screen used was made of 200 mesh stainless steel, bias tensioned, with an emulsion thickness of 45 μm and a patterned opening of 49 mm. After printing, after leveling at room temperature for 10 minutes.
It was dried at 105°C for 30 minutes. The dried product was further fired in a nitrogen atmosphere using a thick film firing furnace.
If fired at a high temperature of 700°C or higher, the bond will eventually fail, so in this example, the peak temperature was 600°C.
x 8 minutes for a 60 minute profile. The purpose of this firing is to volatilize the binder component in the paste. In the comparative example in Table 1
This is an example in which no bonding force was generated because the materials were fired at high temperatures of 800°C and 900°C. After firing, various materials were layered on the above substrate in the combinations shown in the table and heated under a vacuum of 10 -4 Torr.
A load of 10 kg/cm 2 was applied and heat treatment was performed at a predetermined temperature of 900° C. for 1 hour to bond them. Ten bonded specimens prepared in this manner were each prepared and dropped onto the steel plate three times from a height of 50 cm, and the bonded state was visually observed. The results are also listed in the same table. The criteria for determining the bonding state in the same table are as follows. ○ mark: All 10 sheets did not peel at all △ mark: 1 to 2 sheets out of 10 sheets peeled on the adhesive surface × mark: 3 or more out of 10 sheets peeled off on the adhesive surface In this test, all 10 sheets It is most preferable to obtain a bonded state with no peeling at all, but even if only one sheet out of 10 peels off, it can be said to be of sufficient use.
【表】【table】
【表】
第1表より明らかなように、Ti粉末のみから
なる接着ペースト(No.1)では基材が接合しない
のに対し、本発明範囲内の化学成分及び粉末形態
の接着ペーストは、適切な使用態様により片側塗
布でも良好な接合状態を得ることができる。
なお、基材の両側に同様にして印刷して貼り合
わせたところ、更に接着強度が増すことを確認し
た。
実施例 2
実施例1と同様にして第2表に示す各成分から
なる複合粉末を製造し、以下に示す配合割合のペ
ーストを得た。
複合粉末 24重量部
アクリル樹脂 4.4 〃
テルピネオール 5 〃
界面活性剤 0.54 〃
次いで、接合する基板として第2表に示す各種
材質、寸法の基板を、まず400℃、N2気流中で脱
脂処理した後、実施例1と同様にして一方の基板
に前記ペーストを印刷(但し、厚みを変化させ
た)し、乾燥、焼成後、第2表に示す組み合わせ
で種々の材料を重ね合わせ、接合し、各接合試片
につき接合状態を調べた。
この場合、焼成後の接着剤の厚さを15μ以下と
する場合はテルピネオールで前記ペーストを希釈
して使用した。また、厚さを30μ以上とする場合
は、印刷後乾燥した後、再度印刷を重ねる操作を
繰り返して所定の厚さに仕上げた。接合に要した
時間は特に明記ない場合は30分間である。
その結果を第2表に併記する。[Table] As is clear from Table 1, the adhesive paste made only of Ti powder (No. 1) does not bond the base materials, whereas the adhesive paste with chemical components within the scope of the present invention and in powder form is suitable. Depending on the usage mode, a good bonding state can be obtained even with one-sided application. It was also confirmed that when both sides of the base material were printed in the same manner and bonded together, the adhesive strength was further increased. Example 2 A composite powder consisting of each component shown in Table 2 was produced in the same manner as in Example 1, and a paste having the blending ratio shown below was obtained. Composite powder 24 parts by weight Acrylic resin 4.4 Terpineol 5 Surfactant 0.54 Next, substrates to be bonded having various materials and dimensions shown in Table 2 were first degreased at 400°C in a N 2 stream, and then The paste was printed on one substrate in the same manner as in Example 1 (however, the thickness was varied), and after drying and baking, various materials were stacked and bonded in the combinations shown in Table 2, and each bond was The bonding condition of each specimen was examined. In this case, if the thickness of the adhesive after firing was to be 15 μm or less, the paste was diluted with terpineol. In addition, when the thickness was 30μ or more, after printing, drying, and repeating the printing again, the desired thickness was achieved. The time required for bonding is 30 minutes unless otherwise specified. The results are also listed in Table 2.
【表】【table】
【表】
(注) ** 参考例
第2表において、特に、No.14、15はペースト膜
厚が不足したために接着強度が上がらなかつた
例、No.20、21はNi−AgベースでSUS板に効果を
発揮した例、No.25は接合温度が600℃と低いにも
かかわらず、相手材がフエライトなので良く接合
できた例、No.26は接合温度が低すぎて接合力が出
なかつた例、No.29、No.30はミツシユメタルが含ま
れていないためにNo.27、28に比較して劣つている
例である。
以上、第2表からわかるように、本発明範囲内
の化学成分及び粉末形態の接着ペーストは、適切
な使用態様により片側塗布でも良好な接合状態を
得ることができる。
なお、上記各実施例とも、耐熱性に関しては、
接合部は接合温度まで耐えうることを確認した。
実施例 3
いずれも325メツシユ以下の粉末である各成分
の粉末を、Ti粉末20g、Ag粉末40g及びCu粉末
40gの割合で配合し、擂潰機にて約3時間混合粉
砕し、粒度を10μm以下に微粉砕して複合粉末と
した。
次いで、ペースト状の接着剤にするために次の
割合で配合した。
上記混合微粉末 100g
エチルセルロース 18.3g
テキサノール 20.8g
活性剤 2.2g
この組成物141.3gを万能ミキサーにて予備混
練した後、3本ロール・ミルを用いて本混練しペ
ーストとした。
次に、前記実施例1と同じ寸法で第3表に示す
基材の試験片を使用し、スクリーン印刷機にて同
表に示す組合せ基材の片側に全面印刷した。スク
リーンはステンレス製200メツシユ、バイアス張
りで、エマルジヨン厚さ45μmのものを使用し
た。
印刷後、室温にて10分間レベリングし、更に
105℃で30分間乾燥した。乾燥後、膜厚焼成炉を
使用し、窒素気流中でピーク温度600℃×8分間
の60分間プロフアイルにて脱脂処理を施した。
次いで、基材を重ね合せ、荷重0.5Kg/cm2の状
態で真空下又は窒素気流中で接合した。それぞれ
の接合時の条件は、本発明例では、真空下の場合
には10-4Torrで850℃×1hrの加熱をし、窒素気
流中の場合には厚膜焼成炉を用いてピーク温度
850℃×15分間の90分間プロフアイルで加熱した。
接合後、次の要領で接合強度を調べ、また耐熱
試験後の接合強度を調べた。その結果は同表に示
すとおりであつた。
接合強度の測定法は、まず10mm口の接合サンプ
ルをMEEK加工機により切断加工し、これを第
3図に示すようにセツトし、プツシユ・プルテス
ター(今田製作所製)により接合強度を測定し
た。なお、図中、1,2は接合層3で接着された
基材であり、一方の基材1にアラルダイトAZ−
15を使用してステンレス板4(SUS304、20mm×
50mm×4mmt)を接着し、他方の基材2にもアラ
ルダイトAZ−15を使用して銅リベツト5(6mm
φ)を接着した。接合強度の判定は、黒鉛基材が
全く接合されなかつた場合を−印で表示し、接合
面で破断した場合は破断時の荷重で示した。但
し、接合面に全く異常がなく銅リベツトが破断し
た場合はテスターの許容荷重150Kgを利用して
「150Kg以上」と表示した。
耐熱性試験は、接合用試験片をN2中、900℃で
1時間保持した後に取り出し、剥離状態を観察し
た。全く剥離が認められなかつた場合を表中○印
で示した。[Table] (Note) ** Reference examples In Table 2, in particular, Nos. 14 and 15 are examples where the adhesive strength did not increase due to insufficient paste film thickness, and Nos. 20 and 21 are Ni-Ag based SUS Examples of effective bonding for plates: No. 25, which had a low bonding temperature of 600°C, but was successfully bonded because the mating material was ferrite; and No. 26, where the bonding temperature was too low and no bonding force was produced. Examples No. 29 and No. 30 are inferior to No. 27 and 28 because they do not contain Mitsushi Metal. As can be seen from Table 2, the chemical components within the scope of the present invention and the adhesive paste in powder form can provide a good bonding state even when coated on one side if used in an appropriate manner. In addition, in each of the above examples, regarding heat resistance,
It was confirmed that the joint could withstand up to the joining temperature. Example 3 20g of Ti powder, 40g of Ag powder, and 40g of Cu powder were mixed with powders of each component, each of which has a powder size of 325 mesh or less.
The mixture was mixed in a proportion of 40 g, mixed and crushed in a crusher for about 3 hours, and then finely crushed to a particle size of 10 μm or less to obtain a composite powder. Next, the following proportions were blended to make a paste-like adhesive. The above mixed fine powder 100g Ethylcellulose 18.3g Texanol 20.8g Activator 2.2g 141.3g of this composition was pre-kneaded using a universal mixer, and then main-kneaded using a three-roll mill to form a paste. Next, using a test piece of the base material shown in Table 3 having the same dimensions as in Example 1, printing was performed on one side of the combined base material shown in the same table using a screen printer. The screen was made of 200 mesh stainless steel, bias tensioned, and had an emulsion thickness of 45 μm. After printing, level for 10 minutes at room temperature, and then
It was dried at 105°C for 30 minutes. After drying, degreasing was performed using a film thickening oven in a nitrogen stream at a peak temperature of 600° C. for 8 minutes for 60 minutes. Next, the base materials were overlapped and bonded under vacuum or in a nitrogen stream under a load of 0.5 Kg/cm 2 . In the example of the present invention, the bonding conditions are as follows: heating at 10 -4 Torr for 850°C x 1 hr in a vacuum, and heating at 850°C for 1 hr in a nitrogen stream, and using a thick film firing furnace to reach the peak temperature.
Heated at 850°C x 15 minutes profile for 90 minutes. After bonding, the bonding strength was examined in the following manner, and the bonding strength after the heat resistance test was also examined. The results were as shown in the same table. To measure the bonding strength, first, a 10mm-sized bonded sample was cut using a MEEK processing machine, and this was set as shown in Figure 3, and the bonding strength was measured using a push pull tester (manufactured by Imada Seisakusho). In addition, in the figure, 1 and 2 are base materials adhered with the bonding layer 3, and one base material 1 is coated with Araldite AZ-
Stainless steel plate 4 (SUS304, 20mm x
50mm
φ) was glued. For judgment of bonding strength, cases in which the graphite base materials were not bonded at all were indicated by a - mark, and cases in which the graphite substrates were broken at the bonded surface were indicated by the load at the time of breakage. However, if there was no abnormality at all on the joint surface and the copper rivet broke, the tester's allowable load of 150 kg was used and it was indicated as "150 kg or more." In the heat resistance test, the bonding test piece was held at 900° C. for 1 hour in N 2 and then taken out, and the state of peeling was observed. Cases in which no peeling was observed are indicated by a circle in the table.
【表】
第3表に示すとおり、本発明例のいずれも接合
面には全く異常がなく、銅リベツトが破断し、接
合強度は充分であり、150Kg以上で使用に耐え得
る強度であつた。一方、脱脂温度が高すぎたり
(No.43)、接合温度が低すぎると(No.44)、接合不
能となり、脱脂後の膜厚が薄すぎたり(No.45)、
或いは脱脂しないと(No.46)、接合強度が不足し
た。特に脱脂しない比較例No.46では接着層に気泡
が生じていた。
本実施例から明らかなとおり、従来、黒鉛同志
の接合に際しては、ピツチやタール以外の接着剤
は使用できず、しかも高温の黒鉛化炉で接合し、
黒鉛以外のセラミツクや金属との接合において
は、黒鉛自身が潤滑性を有していることや“濡れ
性”が悪いことなどにより、適した接着剤が全く
なかつた状況に対し、本発明によれば、黒鉛と黒
鉛、黒鉛と他のセラミツク、黒鉛と金属等々の基
材組合せであつても、容易に接合させることが可
能となる。特に、黒鉛同志の接合では非常に複雑
な形状のものを貼り合せ加工により容易に可能と
なり、また黒鉛と金属の接合は潤滑性を利用した
摺動部材、放熱ブロツク、ライニング等の製造に
適用でき、更に黒鉛と他のセラミツクの接合は潤
滑性を利用した摺動部材、耐摩耗性を利用した部
材、耐熱材料、耐食材料等々の製造に適用するこ
とができる。
(発明の効果)
以上詳述したように、本発明に係る接着ペース
トは、特定成分系でその化学成分を調整すると共
に粉末形態を複合粉末としペースト状にしたの
で、接合が容易で、しかも耐熱性及び接着強度の
優れた接合部を得ることができ、金属やセラミツ
クの同一材質間の接合のみならず、それらの異材
質間の接合にも使用することができる。特にペー
スト状であるため、印刷工程により塗布でき、多
量処理が可能である。[Table] As shown in Table 3, in all of the invention examples, there was no abnormality at all on the bonded surfaces, the copper rivets were broken, and the bonding strength was sufficient and was strong enough to withstand use at 150 kg or more. On the other hand, if the degreasing temperature is too high (No. 43) or the bonding temperature is too low (No. 44), bonding becomes impossible and the film thickness after degreasing is too thin (No. 45).
Or, if it was not degreased (No. 46), the bonding strength was insufficient. In particular, in Comparative Example No. 46, which was not degreased, air bubbles were generated in the adhesive layer. As is clear from this example, in the past, when bonding graphite together, adhesives other than pitch or tar could not be used;
In the case of bonding with ceramics and metals other than graphite, there were no suitable adhesives at all due to graphite's own lubricity and poor wettability. For example, even base material combinations such as graphite and graphite, graphite and other ceramics, graphite and metal, etc. can be easily joined. In particular, bonding graphite to metal can be easily achieved by bonding objects with extremely complex shapes, and bonding graphite and metal can be applied to manufacturing sliding parts, heat dissipation blocks, linings, etc. using lubricity. Furthermore, the bonding of graphite and other ceramics can be applied to the production of sliding members utilizing lubricity, members utilizing wear resistance, heat resistant materials, corrosion resistant materials, etc. (Effects of the Invention) As detailed above, the adhesive paste according to the present invention has its chemical composition adjusted using a specific component system, and the powder form is made into a composite powder into a paste form, so that it is easy to bond and is heat resistant. It is possible to obtain joints with excellent properties and adhesive strength, and it can be used not only for joining the same materials such as metals and ceramics, but also for joining different materials. In particular, since it is in the form of a paste, it can be applied by a printing process and can be processed in large quantities.
第1図は本発明の接着ペーストにおける複合粉
末の組成域を示す図、第2図a〜fは本発明にお
ける複合粉末の粒子構造を説明する図で、a及び
bは粒子構造を示すSEM写真、c〜eはSEM−
EDX写真、fはX線回折図であり、第3図は接
合層の接着強度測定法を説明する図、第4図a〜
fは混合粉末の粒子構造を説明する図で、a及び
bは粒子構造を示すSEM写真、c〜eはSEM−
EDX写真、fはX線回析図である。
Fig. 1 is a diagram showing the composition range of the composite powder in the adhesive paste of the present invention, Fig. 2 a to f are diagrams explaining the particle structure of the composite powder in the present invention, and a and b are SEM photographs showing the particle structure. , c to e are SEM-
EDX photograph, f is an X-ray diffraction diagram, Figure 3 is a diagram explaining the adhesive strength measurement method of the bonding layer, Figure 4 a-
f is a diagram explaining the particle structure of the mixed powder, a and b are SEM photographs showing the particle structure, and c to e are SEM-
EDX photograph, f is an X-ray diffraction diagram.
Claims (1)
少なくとも1種を10〜60%、Ti、Nb及びZrのう
ちの少なくとも1種を10〜80%含み、残部が実質
的にAg10〜80%である組成を有し、かつ、各成
分粒子をメカニカルアロイ法によつて機械的に層
状に絡み合つて固相状態で合金化した複合粉末を
有機溶楳中に分散させペースト状にしたことを特
徴とする接着ペースト。 2 Cu及びNiのうちの少なくとも1種を10〜60
%、Ti、Nb及びZrのうちの少なくとも1種を7
〜80%、希土類元素(Yを含む)のうちの少なく
とも1種を5ppm〜3%含み、残部が実質的に
Ag10〜80%である組成を有し、かつ、各成分粒
子をメカニカルアロイ法によつて機械的に層状に
絡み合つて固相状態で合金化した複合粉末を有機
溶楳中に分散させペースト状にしたことを特徴と
する接着ペースト。[Claims] 1% by weight (the same applies hereinafter), containing 10 to 60% of at least one of Cu and Ni, 10 to 80% of at least one of Ti, Nb and Zr, and the remainder A composite powder, which has a composition in which Ag is substantially 10 to 80%, and in which each component particle is mechanically intertwined in a layered manner by a mechanical alloying method and alloyed in a solid state, is processed during organic sifting. An adhesive paste characterized by being dispersed into a paste form. 2 At least one of Cu and Ni 10 to 60
%, at least one of Ti, Nb and Zr.
~80%, contains at least one rare earth element (including Y) at 5ppm~3%, and the remainder is substantially
A composite powder with a composition of 10 to 80% Ag, in which each component particle is mechanically intertwined in layers using a mechanical alloying method and alloyed in a solid state, is dispersed in an organic solvent to form a paste. An adhesive paste characterized by:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61150005A JPS635895A (en) | 1986-06-26 | 1986-06-26 | Adhesive paste |
US07/066,670 US4775414A (en) | 1986-06-26 | 1987-06-26 | Inorganic adhesive |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61150005A JPS635895A (en) | 1986-06-26 | 1986-06-26 | Adhesive paste |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS635895A JPS635895A (en) | 1988-01-11 |
JPH0378191B2 true JPH0378191B2 (en) | 1991-12-12 |
Family
ID=15487387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61150005A Granted JPS635895A (en) | 1986-06-26 | 1986-06-26 | Adhesive paste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS635895A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3057662B2 (en) * | 1988-09-30 | 2000-07-04 | 株式会社東芝 | Wax material |
JP5623783B2 (en) * | 2010-05-13 | 2014-11-12 | 日本発條株式会社 | Brazing material for air bonding, bonded body, and current collecting material |
JP5645307B2 (en) * | 2010-12-09 | 2014-12-24 | 日本発條株式会社 | Brazing material for air bonding, bonded body, and current collecting material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5913737A (en) * | 1982-07-15 | 1984-01-24 | Chisso Corp | 3,4-dimethyl-1-(4'-(trans-4"-alkylcyclohexyl)-cyclohexen-1'- yl)benzene |
JPS60200868A (en) * | 1984-03-22 | 1985-10-11 | 東京工業大学長 | Method of bonding silicon carbide or silicon nitride sintered body |
-
1986
- 1986-06-26 JP JP61150005A patent/JPS635895A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5913737A (en) * | 1982-07-15 | 1984-01-24 | Chisso Corp | 3,4-dimethyl-1-(4'-(trans-4"-alkylcyclohexyl)-cyclohexen-1'- yl)benzene |
JPS60200868A (en) * | 1984-03-22 | 1985-10-11 | 東京工業大学長 | Method of bonding silicon carbide or silicon nitride sintered body |
Also Published As
Publication number | Publication date |
---|---|
JPS635895A (en) | 1988-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI292355B (en) | ||
US4396677A (en) | Metal, carbon, carbide and other composites thereof | |
CA2594168A1 (en) | Method of producing metal to glass, metal to metal or metal to ceramic connections | |
JPH0153324B2 (en) | ||
JPS59126739A (en) | Quickly liquid-cooled alloy foil strip for brazing | |
JP4667103B2 (en) | Conductive filler and low-temperature solder material | |
US4775414A (en) | Inorganic adhesive | |
JP2501835B2 (en) | Metallic adhesive material | |
JP2571233B2 (en) | Circuit board manufacturing method | |
JP2007105795A (en) | Gold-nickel-copper-titanium brazing alloy for brazing wc-co to titanium alloy | |
JP3495051B2 (en) | Ceramic-metal joint | |
JP5188999B2 (en) | Metal filler and solder paste | |
WO2008147441A2 (en) | Ceramic armor, methods of joining a carbide with metal-comprising piece, and methods of metallizing carbide-comprising surfaces | |
JPH0378194B2 (en) | ||
JPH0378191B2 (en) | ||
EP0677355A1 (en) | Brazing material | |
JP2794360B2 (en) | Bonding method of materials to be bonded selected from metals and ceramics, and bonding agent used therefor | |
US3713790A (en) | Joined body of pyrolytic graphite and metallic members | |
JP3441197B2 (en) | Paste joining material for brazing | |
JPH0378192B2 (en) | ||
CN109251053B (en) | Air brazing filler material for ceramic metallizing and joining and method for metallizing and joining ceramic surfaces | |
JPH0347901A (en) | Material for adhesion | |
JPS63139966A (en) | Inorganic adhesive | |
JPH0378193B2 (en) | ||
JPS6389472A (en) | Inorganic adhesive |