JPH10219312A - Titanium carbide dispersion-strengthened aluminum-base powder, its production and titanium carbide dispersion-strengthened aluminum-base composite material - Google Patents
Titanium carbide dispersion-strengthened aluminum-base powder, its production and titanium carbide dispersion-strengthened aluminum-base composite materialInfo
- Publication number
- JPH10219312A JPH10219312A JP9027017A JP2701797A JPH10219312A JP H10219312 A JPH10219312 A JP H10219312A JP 9027017 A JP9027017 A JP 9027017A JP 2701797 A JP2701797 A JP 2701797A JP H10219312 A JPH10219312 A JP H10219312A
- Authority
- JP
- Japan
- Prior art keywords
- titanium carbide
- aluminum
- powder
- dispersion
- molten metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、炭化チタン分散強
化アルミニウム基粉末、その製造方法およびその粉末を
用いて炭化チタン分散強化アルミニウム基複合材料を製
造する方法に関する。The present invention relates to a titanium carbide dispersion strengthened aluminum-based powder, a method for producing the same, and a method for producing a titanium carbide dispersion strengthened aluminum-based composite material using the powder.
【0002】[0002]
【従来の技術】粉末冶金法においては、アトマイズ法に
より製造された粉末の長所を利用して、溶製法では得ら
れない優れた材料特性を得ることができる。すなわち、
アトマイズの際の急冷により、粉末粒子中に多量の溶質
元素を強制固溶させて実質的に固溶限を拡大させること
ができると同時に急冷凝固組織の形成により粉末粒子の
組織を微細化させることができる。それにより、この粉
末を固化成形した材料は、溶製材に比べて固溶強化によ
る強度向上を増大できると同時に組織微細化により強度
および靱性を向上させることができる。2. Description of the Related Art In powder metallurgy, the advantages of powders produced by the atomization method can be utilized to obtain excellent material properties that cannot be obtained by the melting method. That is,
Rapid cooling during atomization allows a large amount of solute elements to be forcibly dissolved in the powder particles to substantially increase the solid solubility limit, and at the same time, refines the structure of the powder particles by forming a rapidly solidified structure Can be. Thereby, the material obtained by solidifying and molding this powder can increase the strength improvement by solid solution strengthening as compared with the ingot material, and at the same time, can improve the strength and toughness by microstructural refinement.
【0003】ただし、急冷による固溶強化の利用には下
記のように限界がある。 (1) 固溶量の限界 例えば常温におけるアルミニウム中の鉄の固溶限は、平
衡状態で0.05wt%であるが、急冷凝固してもこれを
高々8〜10wt%程度に拡大するのが限界である。However, the use of solid solution strengthening by rapid cooling has the following limitations. (1) Limit of solid solution amount For example, the solid solution limit of iron in aluminum at room temperature is 0.05 wt% in an equilibrium state, but even if it is rapidly solidified, it is increased to about 8 to 10 wt% at most. It is the limit.
【0004】(2) 固化成形の限界 固溶強化した粉末粒子は粒子全体が著しく硬化している
ため変形能が低く、固化成形が困難である。 (3) 熱間加工適用の限界 過飽和固溶体は熱的に不安定な状態であるため、熱間加
工による強制的な固化成形を行うと、析出等により過飽
和固溶状態が解消して、固溶強化作用が実質的に失われ
てしまう。これは、典型的には固溶強化を利用したアモ
ルファス合金でこれまでにも問題とされてきた。(2) Limitations of solidification molding Solid solution-strengthened powder particles have a low deformability because the whole particles are extremely hardened, and solidification molding is difficult. (3) Limits of hot working The supersaturated solid solution is in a thermally unstable state, so if forcibly solidified by hot working, the supersaturated solid solution state will be eliminated by precipitation, etc. The strengthening effect is substantially lost. This has typically been a problem in amorphous alloys that typically utilize solid solution strengthening.
【0005】(4) 適用粒度の限界 急冷による固溶強化作用を確保するには、粒子の冷却速
度が十分に大きいことが必要であるため、適用できる対
象は微細粉に限定される。すなわち、アトマイズにより
得られた粒度分布の内で所要強度を持つ小さい粒度の部
分のみ採用され、それより粗大な部分は棄却されるの
で、それによる歩留り低下分がコスト増となる。また、
アトマイズ法は本来高価なプロセスであり、冷却性能を
高めるには装置および運転コストが更に増大する。(4) Limit of Applicable Particle Size In order to secure the solid solution strengthening effect by quenching, it is necessary that the cooling speed of the particles is sufficiently high, and therefore, the applicable target is limited to fine powder. That is, only a small particle size portion having a required strength in the particle size distribution obtained by atomization is adopted, and a coarser portion is rejected, so that the yield is reduced and the cost is increased. Also,
The atomizing method is an expensive process by nature, and increasing the cooling performance further increases equipment and operating costs.
【0006】[0006]
【発明が解決しようとする課題】そこで本発明は、上記
のように多くの限界がある従来の固溶強化による強化機
構を用いずに、全く別の強化機構である分散強化により
強化した炭化チタン分散強化アルミニウム基粉末、その
製造方法および炭化チタン分散強化アルミニウム基複合
材料を提供することを目的とする。SUMMARY OF THE INVENTION Accordingly, the present invention provides a titanium carbide reinforced by dispersion strengthening, which is a completely different strengthening mechanism, without using the conventional solid solution strengthening mechanism having many limitations as described above. An object of the present invention is to provide a dispersion-strengthened aluminum-based powder, a method for producing the same, and a titanium carbide dispersion-strengthened aluminum-based composite material.
【0007】[0007]
【課題を解決するための手段】上記の目的は、本発明に
よれば、アルミニウムまたはアルミニウム合金のマトリ
クス中に粒径0.5μm以下の炭化チタン粒子が均一に
分散した複合材料である粉末粒子から成ることを特徴と
する炭化チタン分散強化アルミニウム基粉末によって達
成される。SUMMARY OF THE INVENTION According to the present invention, there is provided, according to the present invention, a method for preparing a composite material comprising titanium carbide particles having a particle size of 0.5 μm or less dispersed uniformly in a matrix of aluminum or an aluminum alloy. This is achieved by a titanium carbide dispersion-strengthened aluminum-based powder characterized by the fact that
【0008】分散強化粉である本発明のアルミニウム基
粉末により、前記従来の固溶強化粉に特有の限界が下記
のように克服される。 (1) 固溶量 アルミニウムまたはアルミニウム合金のマトリクス中に
分散した炭化チタン粒子による分散強化機構を利用する
ので、固溶量の限界は問題とならない。むしろマトリク
ス中への強化成分の固溶量は小さい程有利になる。[0008] The aluminum-based powder of the present invention, which is a dispersion strengthened powder, overcomes the limitations inherent in the conventional solid solution strengthened powder as follows. (1) Amount of solid solution Since a dispersion strengthening mechanism using titanium carbide particles dispersed in a matrix of aluminum or an aluminum alloy is used, the limit of the amount of solid solution does not matter. Rather, the smaller the solid solution amount of the reinforcing component in the matrix, the more advantageous.
【0009】(2) 固化成形性 固溶強化のように粉末粒子全体が均等に強化されるので
はなく、変形能の大きいマトリクス中に変形能の小さい
炭化チタン粒子が分散した状態であるため、粉末粒子全
体としてはマトリクスの高い変形能が有効に作用し、高
い固化成形性を発揮できる。(2) Solidification moldability Since the entire powder particles are not uniformly strengthened as in solid solution strengthening, titanium carbide particles having low deformability are dispersed in a matrix having high deformability. As a whole of the powder particles, the high deformability of the matrix effectively acts, and high solidification moldability can be exhibited.
【0010】(3) 熱間加工の適用 分散強化作用を提供している炭化チタンは熱的に安定な
化合物であり、マトリクスを構成するアルミニウムまた
はアルミニウム合金の熱間加工温度では全く分解も粗大
化もせず初期の形態を維持するので、固化成形に熱間加
工を適用して種々の所望形状を容易に得ることができ
る。(3) Application of hot working Titanium carbide, which provides a dispersion strengthening action, is a thermally stable compound. At the hot working temperature of the aluminum or aluminum alloy constituting the matrix, decomposition and coarsening occur at all. Since the initial shape is maintained without any problem, various desired shapes can be easily obtained by applying hot working to solidification molding.
【0011】(4) 適用粒度 製造方法について下記に説明するように、既に安定な化
合物として生成している炭化チタン粒子を含む溶湯をア
トマイズして粉末を形成するので、強化作用はアトマイ
ズ時の冷却速度に実質的な影響を受けることがないた
め、適用粒度に限界はない。(4) Applicable Particle Size As will be described below with respect to the production method, a molten metal containing titanium carbide particles already formed as a stable compound is atomized to form a powder. There is no limit to the applied particle size since it is not substantially affected by speed.
【0012】上記本発明の炭化チタン分散強化アルミニ
ウム基粉末を製造する方法は、チタン粉末、黒鉛粉末、
アルミニウム粉末を混合し、得られた混合粉末を圧粉成
形してペレットを形成し、上記ペレットにアルミニウム
またはアルミニウム合金の第1の溶湯を含浸させ、上記
含浸後のペレットを1000〜1800℃の温度で熱処
理することにより該ペレット中に粒径0.5μm以下の
炭化チタン粒子を析出させ、上記熱処理後のペレットを
アルミニウムまたはアルミニウム合金の第2の溶湯に添
加することにより、このペレットのアルミニウムまたは
アルミニウム合金の部分を上記第2の溶湯中に溶解させ
て第3の溶湯を形成させると共に該ペレットの前記炭化
チタン粒子を該第3の溶湯中に分散させ、上記分散した
炭化チタン粒子を含む上記第3の溶湯をアトマイズする
ことにより、アルミニウムまたはアルミニウム合金のマ
トリクス中に上記炭化チタン粒子が均一に分散した複合
材料である粉末粒子を形成することを特徴とする。The method for producing the titanium carbide dispersion-strengthened aluminum-based powder of the present invention comprises a titanium powder, a graphite powder,
The aluminum powder is mixed, the obtained mixed powder is compacted to form a pellet, the pellet is impregnated with a first molten metal of aluminum or an aluminum alloy, and the impregnated pellet is heated to a temperature of 1000 to 1800 ° C. By depositing titanium carbide particles having a particle size of 0.5 μm or less in the pellets by heat treatment, and adding the pellets after the heat treatment to a second molten aluminum or aluminum alloy, the aluminum or aluminum of the pellets Dissolving a portion of the alloy in the second molten metal to form a third molten metal, dispersing the titanium carbide particles of the pellets in the third molten metal, and dispersing the titanium carbide particles in the third molten metal; By atomizing the molten metal of No. 3 above, the above Characterized in that the titanium particles to form a uniformly dispersed powder particles is a composite material.
【0013】本発明の方法において、炭化チタン粒子を
析出させたペレットの作製およびこのペレットを添加し
て炭化チタンを分散させた第3の溶湯の作製は、本出願
人による特開平6−17165号公報において既に開示
した方法に準じて行う。このペレットはアルミニウムま
たはアルミニウム合金のマトリクスと、このマトリクス
中に析出分散した炭化チタン粒子とから成り、粒子とマ
トリクスとは両者間の界面で密に接触した状態、いわば
高度の濡れ状態になっている。この固相間の界面エネル
ギーが、このペレットを溶湯中へ添加してマトリクスが
溶解する際に、粒子と溶湯の間の濡れ界面の形成エネル
ギーを提供する。そのため、ペレットを溶湯中に添加す
ると、攪拌等により外部からエネルギーを付与しなくと
も、粒子は溶湯中に容易に分散する。In the method of the present invention, the preparation of pellets in which titanium carbide particles are precipitated and the preparation of a third molten metal in which titanium pellets are added to disperse titanium carbide are disclosed in Japanese Patent Application Laid-Open No. 6-17165 by the present applicant. This is performed according to the method already disclosed in the gazette. The pellets consist of a matrix of aluminum or aluminum alloy and titanium carbide particles precipitated and dispersed in the matrix, and the particles and the matrix are in a state of intimate contact at the interface between them, so to speak, a highly wet state. . The interfacial energy between the solid phases provides the energy to form a wetting interface between the particles and the melt when the matrix is dissolved by adding the pellets into the melt. Therefore, when the pellets are added to the molten metal, the particles are easily dispersed in the molten metal without applying external energy by stirring or the like.
【0014】これは、溶湯中に粉末として粒子を添加し
た場合には得られない利点である。粉末として添加した
場合、粉末粒子が微細になると粒子同士の凝集が起きや
すくなり、通常の機械的な攪拌では粒子を溶湯中へ分散
させることができないため、溶湯中で良好な分散性を確
保できる粒子サイズは1μm程度が下限であった。本発
明は、上記特開平6−17165号公報に開示したアル
ミニウムまたはアルミニウム合金のマトリクス中に析出
相としての炭化チタン粒子が分散しているペレットを溶
湯中に添加し、この溶湯をアトマイズすることにより
0.5μm以下の微細な炭化チタン粒子が均一に分散し
た複合材料としての粉末粒子から成る炭化チタン分散強
化アルミニウム基粉末を実現したものである。This is an advantage that cannot be obtained when particles are added as a powder in a molten metal. When added as a powder, when the powder particles become finer, the particles tend to aggregate with each other, and the particles cannot be dispersed in the molten metal by ordinary mechanical stirring, so that good dispersibility in the molten metal can be ensured. The lower limit of the particle size was about 1 μm. The present invention provides a method of adding a pellet in which titanium carbide particles as a precipitation phase are dispersed in a matrix of aluminum or an aluminum alloy disclosed in JP-A-6-17165 to a molten metal, and atomizing the molten metal. This realizes a titanium carbide dispersion-strengthened aluminum-based powder composed of powder particles as a composite material in which fine titanium carbide particles of 0.5 μm or less are uniformly dispersed.
【0015】分散強化のためには、強化相としての炭化
チタン粒子は小さい程有利であり、特に粒径0.5μm
以下とすると顕著な強化作用が得られる。含浸後のペレ
ット中に粒径0.5μm以下の炭化チタン粒子を析出さ
せるには、1000℃〜1800℃の範囲の温度で熱処
理する必要がある。熱処理温度が1000℃未満である
と炭化チタン粒子が実質的に生成せず、1800℃より
高温であると生成した炭化チタン粒子が粗大化する。[0015] For dispersion strengthening, the smaller the titanium carbide particles as the strengthening phase, the more advantageous it is.
The following strengthening effect is obtained. In order to precipitate titanium carbide particles having a particle size of 0.5 μm or less in the impregnated pellets, it is necessary to perform heat treatment at a temperature in the range of 1000 ° C. to 1800 ° C. When the heat treatment temperature is lower than 1000 ° C., titanium carbide particles are not substantially generated, and when the heat treatment temperature is higher than 1800 ° C., the generated titanium carbide particles are coarsened.
【0016】アトマイズに供する上記第3の溶湯中に含
まれる炭化チタン粒子含有量は、0.2〜5wt%の範囲
とすることが望ましい。0.2wt%未満では分散強化作
用が小さくなり、5wt%を超えると溶湯の粘性が大きく
なってアトマイズ時に噴霧し難くなる。上記本発明の炭
化チタン分散強化アルミニウム基粉末は、過飽和固溶体
とは異なり熱的に安定な状態であるため、強化作用を維
持しながら熱間加工により所定形状を得ることができ
る。The content of the titanium carbide particles contained in the third molten metal to be atomized is desirably in the range of 0.2 to 5 wt%. If it is less than 0.2 wt%, the dispersion strengthening effect will be small, and if it exceeds 5 wt%, the viscosity of the molten metal will increase, making it difficult to spray at the time of atomization. Unlike the supersaturated solid solution, the titanium carbide dispersion-strengthened aluminum-based powder of the present invention is in a thermally stable state, so that a predetermined shape can be obtained by hot working while maintaining the strengthening action.
【0017】以下に、実施例により本発明を更に詳細に
説明する。Hereinafter, the present invention will be described in more detail by way of examples.
【0018】[0018]
[1] Al−TiCペレットの作製 Ti粉末(平均粒径50μm)、Al粉末(平均粒径1
00μm)、黒鉛粉末(平均粒径10μm)を重量比
8:5:2で配合し、V型混合機で1時間混合した。得
られた混合粉末を圧粉成形して円柱状ペレット(φ1
1.3mm×5mm)を作製した。このペレットを温度10
03Kの純Al溶湯中に30秒間浸漬し、ペレットの空
隙に純Alを含浸させた。この含浸によりペレットの空
隙率はほぼ0となった。含浸後のペレットをAr雰囲気
中で0.083K/秒の昇温速度で1327Kまで加熱
した後、水焼入れした。この熱処理後に組織を観察する
とAlマトリクス中に平均粒径0.1μm(最大粒径
0.5μm以下)のTiC微細粒子のみが分散してい
た。加熱中のペレット内では下記の反応〜が進行し
たと考えられる。[ ]内は反応温度を示す。[1] Preparation of Al—TiC pellets Ti powder (average particle size 50 μm), Al powder (average particle size 1
00 μm) and graphite powder (average particle size: 10 μm) in a weight ratio of 8: 5: 2 and mixed with a V-type mixer for 1 hour. The obtained mixed powder is compacted into a cylindrical pellet (φ1
(1.3 mm × 5 mm). The pellets are heated at a temperature of 10
It was immersed in a pure Al melt of 03K for 30 seconds to impregnate the voids of the pellets with pure Al. By this impregnation, the porosity of the pellets became almost zero. The impregnated pellets were heated to 1327K in an Ar atmosphere at a rate of 0.083K / sec, and then water-quenched. Observation of the structure after this heat treatment revealed that only TiC fine particles having an average particle size of 0.1 μm (maximum particle size of 0.5 μm or less) were dispersed in the Al matrix. It is considered that the following reaction (1) has progressed in the pellets during heating. [] Indicates the reaction temperature.
【0019】 Ti(s)+Al(s) → Al3Ti(s) .....................[890K] Al(s) → Al(l) ...............................[930K] Ti(s)+Al(l) →Al3Ti(s) .......................[940K] 3Al3Ti(s)+Al4C3(s)→ 3TiC(s)+13Al(s) ........[1150K] Al3Ti(s)+C(s) →TiC(s)+Al(l) .........[1155K〜1260K] [2] ガスアトマイズによる粉末作製 マトリクス合金として、粉末合金として一般的な表1の
組成のAl−8Fe元合金とAl−20Si合金を選ん
だ。どちらも2元合金である。Ti (s) + Al (s) → Al 3 Ti (s)... [890K] Al (s) → Al ( l) ............... [930K] Ti (s) + Al (l) → Al 3 Ti ( s) ............. [940K] 3Al 3 Ti (s) + Al 4 C 3 (s) → 3TiC (s) + 13Al ( s) ........ [1150K] Al 3 Ti (s) + C (s) → TiC (s) + Al (l) ......... [1155K ~ 1260K] [2 Production of Powder by Gas Atomization As a matrix alloy, an Al-8Fe base alloy and an Al-20Si alloy having general compositions shown in Table 1 were selected as powder alloys. Both are binary alloys.
【0020】ガスアトマイズ装置の溶解坩堝内で約30
0gの合金を1100℃に加熱して溶解し、この溶湯中
に表1に示したTiC添加量になる量で上記のAl−T
iCペレットを添加した。添加後約5分間攪拌した後、
9.8MPaのN2 ガスで噴霧した。この噴霧には、ノ
ズル径2mmのBN製噴霧ノズルを用いた。TiC添加量
を10wt%として比較例3、6は、溶湯の粘性が大きく
なりノズルの噴霧口が詰まり、噴霧ができなかった。溶
湯温度を1200℃まで昇温させても、やはり噴霧はで
きず、粉末を作製することができなかった。Approximately 30 in a melting crucible of a gas atomizing device
0 g of the alloy was heated and melted at 1100 ° C., and the above-mentioned Al-T was added to the molten metal in such an amount that the amount of TiC shown in Table 1 was obtained.
iC pellets were added. After stirring for about 5 minutes after the addition,
It was sprayed with 9.8 MPa N 2 gas. For this spraying, a BN spray nozzle having a nozzle diameter of 2 mm was used. In Comparative Examples 3 and 6 in which the amount of TiC added was 10 wt%, the viscosity of the molten metal was increased, the spray port of the nozzle was blocked, and spraying was not possible. Even if the temperature of the molten metal was raised to 1200 ° C., spraying was not possible, and powder could not be produced.
【0021】一般にTiCの添加により溶湯の粘性が高
くなるため、無添加のものと比較すると噴霧温度は高温
に、ノズル径は大きくする必要がある。本発明の範囲内
の添加量でTiCを添加した溶湯は、無添加の場合と同
等の噴霧温度およびノズル径にて全く支障なく噴霧を行
うことができた。 [3] 固化成形 上記のアトマイズにより得られた粉末を、粒径45μm
以下に調整した後、間接押出により固化成形した。In general, the addition of TiC increases the viscosity of the molten metal, so that the spray temperature must be higher and the nozzle diameter must be larger than that of the non-added metal. The molten metal to which TiC was added in an addition amount within the range of the present invention could be sprayed without any trouble at the same spray temperature and nozzle diameter as in the case of no addition. [3] Solidification molding The powder obtained by the above atomization was subjected to a particle size of 45 μm.
After the following adjustment, solidification was performed by indirect extrusion.
【0022】先ず上記の粉末30gをφ30mmの銅缶に
入れ、3ton/cm2 の圧力でプリフォームを作製し、これ
を窒素ガス雰囲気中で1時間加熱して脱気した後、間接
押出を行った。押出条件は、温度400℃、押出比1
2、ラム速度0.2mm/秒とした。得られた押出材から
試験片を採取し、引張試験を行った。引張試験は、イン
ストロン型試験機を用い、クロスヘッドスピード1mm/
分で行った。試験結果を表1に示す。First, 30 g of the above powder is placed in a copper can of φ30 mm, a preform is prepared under a pressure of 3 ton / cm 2 , and the preform is heated for one hour in a nitrogen gas atmosphere to be degassed. Was. Extrusion conditions were as follows: temperature 400 ° C, extrusion ratio 1
2. The ram speed was 0.2 mm / sec. A test piece was collected from the obtained extruded material and subjected to a tensile test. The tensile test was performed using an Instron type testing machine and the crosshead speed was 1 mm /
Went in minutes. Table 1 shows the test results.
【0023】表1に示したように、TiC粒子の添加に
より分散強化がなされ添加量の増加に伴って引張強さが
向上している。別途行った組織観察の結果、TiC粒子
を添加した粉末から作製した押出材中には、Al−8F
e合金およびAl−20Si合金ともに微細なTiC粒
子が均一に分散していることが確認された。また、Al
−8Fe合金の押出材には、サブミクロンのAl−Fe
金属間化合物が生成していたが、そのサイズおよび分散
の状態はTiC添加材も無添加材も同様であった。一
方、Al−20Si合金の押出材には、約4μmのSi
相が存在しており、そのサイズおよび分散状態もTiC
の添加・無添加によらず同等であった。すなわち、溶湯
中に固相として存在していたTiC粒子は、その後のア
トマイズ処理および押出加工によっても変質・凝集する
ことなく、有効な分散強化相として作用したと考えられ
る。As shown in Table 1, the addition of TiC particles strengthens the dispersion, and the tensile strength is improved as the amount of TiC particles is increased. As a result of the structure observation performed separately, the extruded material produced from the powder to which TiC particles were added contained Al-8F.
It was confirmed that fine TiC particles were uniformly dispersed in both the e alloy and the Al-20Si alloy. Also, Al
-8Fe alloy extruded materials include submicron Al-Fe
Although an intermetallic compound was formed, the size and the state of dispersion were the same in the TiC additive and the non-additive. On the other hand, about 4 μm Si
Phase and its size and dispersion
It was the same regardless of the addition or non-addition of. That is, it is considered that the TiC particles that existed as a solid phase in the molten metal did not deteriorate or agglomerate even by the subsequent atomizing treatment and extrusion, and acted as an effective dispersion strengthening phase.
【0024】押出材中のTiC粒子は平均粒径で0.1
μmと微細であるため、実施例1、4のように0.2wt
%というごく微量でも強化作用を発揮する。しかし、比
較例2、5のように0.1wt%の添加では強化作用は認
められなかった。TiC添加量の増加に伴い、強度の著
しい向上に対し、伸びは若干低下する傾向が認められ
た。TiC添加量が余り多くなりすぎると、前述のよう
に溶湯粘性の増加によりノズル閉塞が起きてしまい、添
加量10wt%の比較例3、6では噴霧できず、粉末を作
製することができなかった。The TiC particles in the extruded material have an average particle size of 0.1
Since it is as fine as μm, 0.2 wt.
Even a very small amount of% exerts a strengthening effect. However, as in Comparative Examples 2 and 5, the addition of 0.1 wt% did not show a strengthening effect. With the increase in the amount of TiC added, the elongation tended to slightly decrease while the strength was remarkably improved. If the amount of TiC added is too large, nozzle clogging occurs due to an increase in the viscosity of the molten metal as described above, and in Comparative Examples 3 and 6 with an addition amount of 10 wt%, spraying could not be performed, and powder could not be produced. .
【0025】[0025]
【表1】 [Table 1]
【0026】[0026]
【発明の効果】以上説明したように、本発明によれば、
従来のように多くの限界がある固溶強化による強化機構
を用いずに、全く別の強化機構である分散強化により強
化した炭化チタン分散強化アルミニウム基粉末、その製
造方法および炭化チタン分散強化アルミニウム基複合材
料が提供される。As described above, according to the present invention,
A titanium carbide dispersion-strengthened aluminum-based powder reinforced by dispersion strengthening, which is a completely different strengthening mechanism, without using a solid-solution strengthening mechanism having many limitations as in the past, a method for producing the same, and a titanium carbide dispersion-strengthened aluminum base A composite material is provided.
【0027】すなわち、固溶強化による強化機構を用い
た従来の粉末のように固溶限に拘束されずに多量のTi
Cを添加して高強度化することができ、それにも係わら
ずマトリクスの変形能により高い固化成形性を有し、更
にTiCが熱的に安定であるため熱間加工を適用しても
強化作用が失われることがなく種々の所望形状を得るこ
とができ、アトマイズ時の冷却速度によらず強化作用が
確保されるので微細粉に限らず種々の粒径の粉末につい
て高強度化ができる。That is, unlike conventional powders using a strengthening mechanism by solid solution strengthening, a large amount of Ti
C can be added to increase the strength. Nevertheless, the matrix has high solidification moldability due to its deformability, and since TiC is thermally stable, it has a strengthening effect even when hot working is applied. Various desired shapes can be obtained without loss, and the strengthening action is ensured irrespective of the cooling rate at the time of atomization, so that not only fine powder but also powders of various particle sizes can be strengthened.
Claims (4)
マトリクス中に粒径0.5μm以下の炭化チタン粒子が
均一に分散した複合材料である粉末粒子から成ることを
特徴とする炭化チタン分散強化アルミニウム基粉末。1. A titanium carbide dispersion-strengthened aluminum base powder comprising powder particles which are a composite material in which titanium carbide particles having a particle size of 0.5 μm or less are uniformly dispersed in a matrix of aluminum or an aluminum alloy.
末を混合し、 得られた混合粉末を圧粉成形してペレットを形成し、 上記ペレットにアルミニウムまたはアルミニウム合金の
第1の溶湯を含浸させ、 上記含浸後のペレットを1000〜1800℃の温度で
熱処理することにより該ペレット中に粒径0.5μm以
下の炭化チタン粒子を析出させ、 上記熱処理後のペレットをアルミニウムまたはアルミニ
ウム合金の第2の溶湯に添加することにより、このペレ
ットのアルミニウムまたはアルミニウム合金の部分を上
記第2の溶湯中に溶解させて第3の溶湯を形成させると
共に該ペレットの前記炭化チタン粒子を該第3の溶湯中
に分散させ、 上記分散した炭化チタン粒子を含む上記第3の溶湯をア
トマイズすることにより、アルミニウムまたはアルミニ
ウム合金のマトリクス中に上記炭化チタン粒子が均一に
分散した複合材料である粉末粒子を形成することを特徴
とする炭化チタン分散強化アルミニウム基粉末の製造方
法。2. A method comprising: mixing titanium powder, graphite powder, and aluminum powder; pressing the obtained mixed powder to form a pellet; impregnating the pellet with a first molten metal of aluminum or an aluminum alloy; The impregnated pellet is heat-treated at a temperature of 1000 to 1800 ° C. to precipitate titanium carbide particles having a particle size of 0.5 μm or less in the pellet, and the heat-treated pellet is converted into a second molten metal of aluminum or aluminum alloy. By adding, the aluminum or aluminum alloy portion of the pellet is dissolved in the second molten metal to form a third molten metal, and the titanium carbide particles of the pellet are dispersed in the third molten metal. By atomizing the third molten metal containing the dispersed titanium carbide particles, Method for producing titanium carbide dispersion strengthening aluminum base powder, characterized in that the aluminum alloy the titanium carbide particles in a matrix of form powder particles are uniformly dispersed composite material.
炭化チタン粒子を含むことを特徴とする請求項2記載の
方法。3. The method according to claim 2, wherein said third molten metal contains 0.2 to 5% by weight of said titanium carbide particles.
ミニウム基粉末を所定形状に熱間加工することを特徴と
する炭化チタン分散強化アルミニウム基複合材料の製造
方法。4. A method for producing a titanium carbide dispersion-strengthened aluminum-based composite material, comprising hot-working the titanium carbide dispersion-strengthened aluminum-based powder according to claim 1 into a predetermined shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9027017A JPH10219312A (en) | 1997-02-10 | 1997-02-10 | Titanium carbide dispersion-strengthened aluminum-base powder, its production and titanium carbide dispersion-strengthened aluminum-base composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9027017A JPH10219312A (en) | 1997-02-10 | 1997-02-10 | Titanium carbide dispersion-strengthened aluminum-base powder, its production and titanium carbide dispersion-strengthened aluminum-base composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10219312A true JPH10219312A (en) | 1998-08-18 |
Family
ID=12209333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9027017A Pending JPH10219312A (en) | 1997-02-10 | 1997-02-10 | Titanium carbide dispersion-strengthened aluminum-base powder, its production and titanium carbide dispersion-strengthened aluminum-base composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10219312A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1079443C (en) * | 1999-06-24 | 2002-02-20 | 东南大学 | Titanium carbide reinforced antiwear aluminium alloy and its preparing process |
CN100376705C (en) * | 2002-12-11 | 2008-03-26 | 山东大学 | Prepn of alumina-titanium carbide particle reinforced aluminium-base composite material |
KR101143887B1 (en) * | 2009-12-15 | 2012-05-11 | 한국기계연구원 | The method for preparation of metal matrix powder using gas atomization and metal matrix powder thereby |
KR101143888B1 (en) | 2009-12-15 | 2012-05-11 | 한국기계연구원 | The method for preparation of metal matrix powder with mechanical alloying and metal matrix powder thereby |
US9267190B2 (en) | 2009-12-15 | 2016-02-23 | Korea Institute Of Machinery And Materials | Production method and production device for a composite metal powder using the gas spraying method |
KR20160072943A (en) * | 2014-12-15 | 2016-06-24 | 한국기계연구원 | Aluminum alloy matrix composite clad and fabrication method thereof |
CN106544549A (en) * | 2015-09-22 | 2017-03-29 | 中国矿业大学 | A kind of preparation method of the double yardstick TiC particle enhanced aluminum-based composite materials of micro-nano |
CN108103346A (en) * | 2017-06-12 | 2018-06-01 | 吉林大学 | Contain micro nano particle aluminium alloy welding wire wire rod and preparation method thereof |
CN109967749A (en) * | 2018-11-28 | 2019-07-05 | 陕西理工大学 | Preparation method of advanced metal matrix composite material for brake disc |
CN111360274A (en) * | 2020-03-07 | 2020-07-03 | 福达合金材料股份有限公司 | Silver-tungsten electric contact material and preparation method thereof |
CN113751707A (en) * | 2021-09-14 | 2021-12-07 | 郑州磨料磨具磨削研究所有限公司 | Method for preparing nano carbide particle dispersion strengthening alloy powder |
-
1997
- 1997-02-10 JP JP9027017A patent/JPH10219312A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1079443C (en) * | 1999-06-24 | 2002-02-20 | 东南大学 | Titanium carbide reinforced antiwear aluminium alloy and its preparing process |
CN100376705C (en) * | 2002-12-11 | 2008-03-26 | 山东大学 | Prepn of alumina-titanium carbide particle reinforced aluminium-base composite material |
KR101143887B1 (en) * | 2009-12-15 | 2012-05-11 | 한국기계연구원 | The method for preparation of metal matrix powder using gas atomization and metal matrix powder thereby |
KR101143888B1 (en) | 2009-12-15 | 2012-05-11 | 한국기계연구원 | The method for preparation of metal matrix powder with mechanical alloying and metal matrix powder thereby |
US9267190B2 (en) | 2009-12-15 | 2016-02-23 | Korea Institute Of Machinery And Materials | Production method and production device for a composite metal powder using the gas spraying method |
KR20160072943A (en) * | 2014-12-15 | 2016-06-24 | 한국기계연구원 | Aluminum alloy matrix composite clad and fabrication method thereof |
CN106544549A (en) * | 2015-09-22 | 2017-03-29 | 中国矿业大学 | A kind of preparation method of the double yardstick TiC particle enhanced aluminum-based composite materials of micro-nano |
CN108103346A (en) * | 2017-06-12 | 2018-06-01 | 吉林大学 | Contain micro nano particle aluminium alloy welding wire wire rod and preparation method thereof |
CN109967749A (en) * | 2018-11-28 | 2019-07-05 | 陕西理工大学 | Preparation method of advanced metal matrix composite material for brake disc |
CN109967749B (en) * | 2018-11-28 | 2022-03-29 | 陕西理工大学 | Preparation method of advanced metal matrix composite material for brake disc |
CN111360274A (en) * | 2020-03-07 | 2020-07-03 | 福达合金材料股份有限公司 | Silver-tungsten electric contact material and preparation method thereof |
CN113751707A (en) * | 2021-09-14 | 2021-12-07 | 郑州磨料磨具磨削研究所有限公司 | Method for preparing nano carbide particle dispersion strengthening alloy powder |
CN113751707B (en) * | 2021-09-14 | 2023-08-22 | 郑州磨料磨具磨削研究所有限公司 | Method for preparing nano carbide particle dispersion strengthening alloy powder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0295008B1 (en) | Aluminium alloy composites | |
US4753690A (en) | Method for producing composite material having an aluminum alloy matrix with a silicon carbide reinforcement | |
US5093148A (en) | Arc-melting process for forming metallic-second phase composites | |
EP0529520B1 (en) | Method of preparing particle composited alloy of aluminum matrix | |
US4915908A (en) | Metal-second phase composites by direct addition | |
CN113755726B (en) | High-modulus high-toughness aluminum-based composite material and preparation method thereof | |
CN103667758A (en) | Preparation method of particle-reinforced aluminum base composite | |
US20160168668A1 (en) | Method of fabricating an aluminum matrix composite and an aluminum matrix composite fabricated by the same | |
EP0529993B1 (en) | Production of Aluminum matrix composite powder | |
JPH10219312A (en) | Titanium carbide dispersion-strengthened aluminum-base powder, its production and titanium carbide dispersion-strengthened aluminum-base composite material | |
EP2514542B1 (en) | Production method and production device for a composite metal powder using the gas spraying method | |
US5045278A (en) | Dual processing of aluminum base metal matrix composites | |
JPH0143012B2 (en) | ||
JPH03504142A (en) | Arc melting process for producing metal-second phase composite materials and its products | |
CN111304506A (en) | Micro-nano TiB2Preparation method of particle-reinforced magnesium-lithium-based composite material | |
JP2703840B2 (en) | High strength hypereutectic A1-Si powder metallurgy alloy | |
US4676830A (en) | High strength material produced by consolidation of rapidly solidified aluminum alloy particulates | |
KR20100092055A (en) | Magnesium-based composite material having ti particles dispersed therein, and method for production thereof | |
DE102014002583B3 (en) | Method for producing a wear-resistant light metal component | |
JPH0578708A (en) | Production of aluminum-based grain composite alloy | |
KR101143887B1 (en) | The method for preparation of metal matrix powder using gas atomization and metal matrix powder thereby | |
CN111349834B (en) | Micro-nano dual-phase hybrid particle reinforced magnesium-lithium-based composite material and preparation method thereof | |
JP3363459B2 (en) | Method for producing aluminum-based particle composite alloy | |
US4557770A (en) | Aluminum base alloys | |
KR100436401B1 (en) | Manufacturing method of high heat-resistance dispersion strengthened aluminum alloys |