JPS6383240A - Electric contact material and its production - Google Patents

Electric contact material and its production

Info

Publication number
JPS6383240A
JPS6383240A JP61228031A JP22803186A JPS6383240A JP S6383240 A JPS6383240 A JP S6383240A JP 61228031 A JP61228031 A JP 61228031A JP 22803186 A JP22803186 A JP 22803186A JP S6383240 A JPS6383240 A JP S6383240A
Authority
JP
Japan
Prior art keywords
powder
resistance
nitride
alloy
contact material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61228031A
Other languages
Japanese (ja)
Inventor
Akira Fukui
彰 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61228031A priority Critical patent/JPS6383240A/en
Publication of JPS6383240A publication Critical patent/JPS6383240A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/027Composite material containing carbon particles or fibres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Switches (AREA)
  • Contacts (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture an electric contact material having consumption resistance, low contact resistance, and deposition resistance, by subjecting a mixture of specific percentages of copper powder, metal nitrides, and graphite powder to mechanical alloying and then to compacting and by applying sintering and recompacting to the resulting green compact. CONSTITUTION:The copper powder (97-50wt%), 50-3% nitrides of the group IVa, Va, and VIa metals of the periodic table, and 10-0.1% graphite powder are mixed to undergo mechanical alloying. The resulting powder is compacted. This green compact is sintered in a reduced atmosphere or in vacuum, and the resulting sintered compact is recompacted. In this way, an alloy in which size of carbon is regulated to <=3mu and also respective above-mentioned carbon grins are dispersed uniformly and independently can be obtained. The above alloy can be used for electric contact material having consumption resistance, low contact resistance, deposition resistance, and arc extinction and excellent in practical utility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電流を通電開閉する機器に使用される新規な電
気接点材料及びその製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel electrical contact material used in equipment that conducts current and switches on and off, and a method for manufacturing the same.

〔従来の技術、発明が解決しようとする問題点〕銅−グ
ラ7アイト接点は低接触抵抗で耐溶着が優れている。し
かも消耗が多い欠点がある。
[Prior art and problems to be solved by the invention] Copper-graphite contacts have low contact resistance and excellent welding resistance. Moreover, it has the disadvantage of high wear and tear.

銅−グラファイトに窒化物全加えた接点材料を作ると消
耗が減少するが、通常の製造法では接点合金中のグラフ
ァイト粒子が大きく又いくつかが連続しているので、接
点開閉時のアーク熱でグラファイトが大気中の酸素と反
応してCOガスとなり必要以上に抜けて減少していくた
め接点合金内部に気泡や亀裂が発生し、消耗が著しく増
加したり、必要以上KCOガス反応が進み、アーク切れ
を悪くしたシ又開閉が進むにつれてグラファイトが不足
し窒化物が分解、酸化する現象が起こり、接触抵抗が増
加するなど多くの問題があった。さらに接点合金中のグ
ラファイトや窒化物の分散が不均一な場合には、銅の偏
析したところで溶着が起こることがあった。
Making a contact material made of copper-graphite with all nitrides reduces wear, but in normal manufacturing methods, the graphite particles in the contact alloy are large and some are continuous, so arc heat during contact opening and closing reduces wear. Graphite reacts with oxygen in the atmosphere and becomes CO gas, which escapes and decreases more than necessary, causing bubbles and cracks inside the contact alloy, resulting in a significant increase in wear, and the KCO gas reaction progressing more than necessary, causing arcing. As the opening and closing of the poor cutting progresses, graphite becomes insufficient and nitride decomposes and oxidizes, resulting in an increase in contact resistance and many other problems. Furthermore, if the dispersion of graphite or nitride in the contact alloy is non-uniform, welding may occur where copper is segregated.

本発明はこのような問題点を解消するため開発されたも
のであって、耐消耗性、低接触抵抗性、耐溶着性それに
アーク切れ全具備した実用性に優れた電気接点材料及び
その製造方法全提供するものである。
The present invention was developed to solve these problems, and provides a highly practical electrical contact material that has wear resistance, low contact resistance, welding resistance, and arc breakage, and a method for manufacturing the same. All that is offered.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明者らは鋭意検討の結果、銅、金属窒化物及びグラ
ファイト接点材料にメカニカルアロイング法を適用して
、接点合金中のグラファイト粒子の大きさを3μ以下に
し、おのおのを独立させ均一分散することで上記の問題
点全解決できること全見出した。
As a result of extensive studies, the present inventors applied a mechanical alloying method to copper, metal nitride, and graphite contact materials to reduce the size of graphite particles in the contact alloy to 3μ or less, making each particle independent and uniformly dispersed. I have found that all of the above problems can be solved by doing this.

本発明は銅粉重量比97〜50%、周期律表第■a、v
a、Wa族金属の窒化物重量比50〜3%及びグラファ
イト粉重量比10〜0.1%全メカニカルアロイングし
てなる合金であって、該合金中のカーボンの大きさは3
μ以下であり、かつ該カーボンはおのおのが独立して均
一分散していることを特徴とする電気接点材料である。
The present invention has a copper powder weight ratio of 97 to 50%, periodic table items a and v.
a, an alloy formed by mechanical alloying with a Wa group metal nitride weight ratio of 50 to 3% and a graphite powder weight ratio of 10 to 0.1%, and the size of carbon in the alloy is 3
μ or less, and is an electrical contact material characterized in that each carbon is independently and uniformly dispersed.

本発明者は銅−窒化物−グラファイト接点の優れた性能
を生かし欠点を改善する方法としてメカニカルアロイン
グ法によって銅粉、窒化物粉、グラファイト粉を混合し
銅粉末中に象眼状に窒化物とブラフアイトラうめこんだ
混合粉全作シ、これ全加圧成形、焼結、再加圧して接点
合金全作ることで接点合金中のグラファイト粒子が3μ
以下の大きさでおのおの独立し均一分散している接点を
作ることに成功した。
As a method to take advantage of the excellent performance of the copper-nitride-graphite contact and improve its shortcomings, the present inventor mixed copper powder, nitride powder, and graphite powder using a mechanical alloying method, and created an inlaid pattern of nitride in the copper powder. The graphite particles in the contact alloy are reduced to 3 μm by making the entire contact alloy by making all the mixed powder filled with bluff eye, press molding, sintering, and repressing.
We succeeded in creating independent and uniformly distributed contacts with the following sizes.

このようにして作った本発明の電気接点の特性としては
、グラファイト粒子が3μ以下と小さくおのおの独立し
均一分散していることから、開閉時のアーク熱で気中の
酸素と反応するグラファイト量が必要最小限におさえら
れるとともに、内部までこの反応がおよげないので耐消
耗特性が著しく向上することである。又、グラファイト
の不足が生じにくいため窒化物の酸化も起こりにくく低
接触抵抗が得られ、さらに窒化物やグラファイトが均一
に分散されているので銅の偏析による溶着もなくなり、
耐溶着性も著しく向上する効果が認められた。
The characteristics of the electrical contact of the present invention made in this way are that the graphite particles are small, less than 3 μm, and are each independent and uniformly dispersed, so the amount of graphite that reacts with oxygen in the air due to the arc heat during opening and closing is small. This is suppressed to the necessary minimum level, and since this reaction does not extend to the inside, the wear resistance is significantly improved. In addition, because graphite shortages are less likely to occur, nitride oxidation is less likely to occur, resulting in low contact resistance.Furthermore, since nitrides and graphite are evenly dispersed, welding due to copper segregation is eliminated.
The effect of significantly improving welding resistance was also observed.

本発明における窒化物は、周期律表第1Va。The nitride in the present invention belongs to Va.1 of the periodic table.

Va、Va族の金属の窒化物の1種又は2種以上からな
るものが好ましく、特に好ましくはチタン、ジルコニウ
ム、ニオブ、クロム、モI77’ テン、マンガン、鉄
、バナジウム、タンタルよpなる群から選ばれる1種又
は2種以上の金属の窒化物である。
One or more nitrides of Va and Va group metals are preferred, and particularly preferred are those from the group consisting of titanium, zirconium, niobium, chromium, molybdenum, manganese, iron, vanadium, and tantalum. It is a nitride of one or more selected metals.

窒化物の重量比%としては50〜3%の範囲が好ましく
、50%を超えると接触抵抗が大きくなる又3%未満で
は耐消耗性が不足する。
The weight ratio of nitride is preferably in the range of 50 to 3%; if it exceeds 50%, the contact resistance will increase, and if it is less than 3%, the abrasion resistance will be insufficient.

銅粉の重量比としては97〜50%が好ましい。The weight ratio of copper powder is preferably 97 to 50%.

′グラファイトの重量比としては10〜0.1%が好ま
しく、特に好ましくは5〜1%である。
'The weight ratio of graphite is preferably 10 to 0.1%, particularly preferably 5 to 1%.

10zを超えるとグラファイトが多すぎるため本発明の
効果が出にくく、消耗が多くアーク切れも良くない。0
.1%未満ではグラファイトの不足から溶着と接触抵抗
が良くない。又グラファイト粒子の大きさについては3
μ以下が好ましい。これ以上大きくなるとGO反応が必
要以上に起こジアーク切れが無くなり消耗が増加し実用
性がとぼしい。
If it exceeds 10z, there will be too much graphite, making it difficult to achieve the effects of the present invention, resulting in a lot of wear and poor arc cutting. 0
.. If it is less than 1%, welding and contact resistance will be poor due to the lack of graphite. Regarding the size of graphite particles, 3
It is preferably less than μ. If it becomes larger than this, the GO reaction will occur more than necessary, the di-arc will not break, the consumption will increase, and the practicality will be poor.

このように銅−窒化物−グラファイト合金において、合
金中に微細なカーボン粒子を独立して均一分散させるた
めに、本発明は所定量の銅粉と窒化物とグラファイト粉
をメカニカルアロイングする。ここでいうメカニカルア
ロイングとは基質(マトリックス相:本発明においては
銅粉)とは平衡しないような分散粒子粉(本発明におい
てはカーボン粉及び窒化物)であっても、両者全混合し
て強力な(高エネルギーな)ボールミル中にて高速攪拌
することによシ、機械的かつ強性的に複合比することを
いう。これにより原料粉末は破砕、接合ヲ<9返して最
終的には合金中に微細なカーボン粒子が独立して均一に
分散した複合体が得られる。該複合体を加圧成形後還元
雰囲気もしくは真空中にて焼結し、さらに再加圧して接
点用合金とする。
In this way, in a copper-nitride-graphite alloy, in order to independently and uniformly disperse fine carbon particles in the alloy, the present invention mechanically alloys a predetermined amount of copper powder, nitride powder, and graphite powder. Mechanical alloying here means that even if the dispersed particle powder (carbon powder and nitride in the present invention) is not in equilibrium with the substrate (matrix phase: copper powder in the present invention), the two are fully mixed. This refers to mechanically and strongly compounding by stirring at high speed in a powerful (high energy) ball mill. As a result, the raw material powder is crushed and joined together, and finally a composite in which fine carbon particles are independently and uniformly dispersed in the alloy is obtained. After pressure molding, the composite is sintered in a reducing atmosphere or in a vacuum, and then pressed again to form a contact alloy.

以上により得られた本発明の電気接点材料は、合金中に
3μ以下の大きさのカーボン粒子がおのおの微細に独立
してかつ均一に分散していることを特徴とするものであ
る。
The electrical contact material of the present invention obtained as described above is characterized in that carbon particles having a size of 3 μm or less are individually and uniformly dispersed in the alloy.

〔実施例〕〔Example〕

実施例1 銅粉、窒化物粉及びカーボン粉を下記の表に示す割合で
混合し、ボールミルを用いてメカニアルアロイングして
粉末を作り、得られた粉末23 t /cm’で型押し
後、水素雰囲気中温度900UKで2時間焼結した。該
焼結体を5t、/cri’にて再加圧し気孔率が殆んど
ゼロである合金を得た(サンプル屋2〜10)。
Example 1 Copper powder, nitride powder and carbon powder were mixed in the proportions shown in the table below, mechanically alloyed using a ball mill to make powder, and the resulting powder was embossed at 23 t/cm'. , and sintered for 2 hours at a temperature of 900 UK in a hydrogen atmosphere. The sintered body was pressurized again at 5t/cri' to obtain alloys with almost zero porosity (Samples 2 to 10).

上記の方法にて得られた本発明の電気接点材料の特性音
調べるため従来材(サンプルA1)と比較テストした。
In order to investigate the characteristic sound of the electrical contact material of the present invention obtained by the above method, a comparison test was conducted with a conventional material (sample A1).

テスト条件 ASTM接点試験機 サンプル寸法 5 X 5 X 1.5 X Rサンプ
ルを専用治具Kfi付けし、十分酸洗したのち評価 〔発明の効果〕 以上のように本発明は耐消耗・低接触抵抗、耐溶着、ア
ーク切れを具備した実用性に優れた電気接点材料である
。又本発明の製造方法によるとメカニカルアロイング法
で接点合金中のGr核粒子大きさを3μ以下にし、おの
おの独立させ均一分散させることができて上記の如く優
れた電気接点材料の製作が可能となる。
Test conditions ASTM contact tester sample dimensions 5 x 5 x 1.5 It is a highly practical electrical contact material that is resistant to welding and arc breakage. Furthermore, according to the manufacturing method of the present invention, the size of the Gr core particles in the contact alloy can be reduced to 3μ or less using the mechanical alloying method, and each particle can be made independent and uniformly dispersed, making it possible to manufacture the excellent electrical contact material as described above. Become.

Claims (3)

【特許請求の範囲】[Claims] (1)銅粉重量比97〜50%、周期律表第IVa、Va
、VIa族金属の窒化物重量比50〜3%及びグラファイ
ト粉重量比10〜0.1%をメカニカルアロイングして
なる合金であつて、該合金中のカーボンの大きさは3μ
以下であり、かつ該カーボンはおのおのが独立して均一
分散していることを特徴とする電気接点材料。
(1) Copper powder weight ratio 97-50%, periodic table IVa, Va
, an alloy formed by mechanical alloying of a group VIa metal nitride weight ratio of 50 to 3% and a graphite powder weight ratio of 10 to 0.1%, and the size of carbon in the alloy is 3 μm.
An electrical contact material having the following properties and characterized in that each of the carbons is independently and uniformly dispersed.
(2)窒化物がチタン、ジルコニウム、ニオブ、クロム
、モリブデン、マンガン、鉄、バナジウム、タンタルよ
りなる群から選ばれた1種又は2種以上の金属の窒化物
である特許請求の範囲第(1)項記載の電気接点材料。
(2) The nitride is a nitride of one or more metals selected from the group consisting of titanium, zirconium, niobium, chromium, molybdenum, manganese, iron, vanadium, and tantalum. ) Electrical contact materials listed in paragraph ).
(3)銅粉重量比97〜50%、周期律表第IVa、Va
、VIa族金属の窒化物重量比50〜3%及びグラファイ
ト粉重量比10〜0.1%を混合してメカニカルアロイ
ングし、得られた粉末を加圧成形の後還元雰囲気もしく
は真空中にて焼結し、得られた焼結体を再加圧すること
を特徴とする電気接点材料の製造方法。
(3) Copper powder weight ratio 97-50%, periodic table IVa, Va
, 50 to 3% by weight of nitride of group VIa metal and 10 to 0.1% by weight of graphite powder are mixed and mechanically alloyed, and the resulting powder is pressed and then molded in a reducing atmosphere or in a vacuum. A method for producing an electrical contact material, comprising sintering and repressing the obtained sintered body.
JP61228031A 1986-09-29 1986-09-29 Electric contact material and its production Pending JPS6383240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61228031A JPS6383240A (en) 1986-09-29 1986-09-29 Electric contact material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61228031A JPS6383240A (en) 1986-09-29 1986-09-29 Electric contact material and its production

Publications (1)

Publication Number Publication Date
JPS6383240A true JPS6383240A (en) 1988-04-13

Family

ID=16870111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61228031A Pending JPS6383240A (en) 1986-09-29 1986-09-29 Electric contact material and its production

Country Status (1)

Country Link
JP (1) JPS6383240A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620286A1 (en) * 1993-03-18 1994-10-19 Hitachi, Ltd. Ceramic-particle-dispersed metallic member, manufacturing method of same and use of same
RU171785U1 (en) * 2016-04-26 2017-06-16 Сергей Михайлович Романов MATERIAL OF SURFACE ELEMENT ROMANIT-UVLSh
WO2017176233A1 (en) * 2016-04-04 2017-10-12 Сергей Михайлович Романов Current collector material and method for producing said material
RU2657148C2 (en) * 2016-04-28 2018-06-08 Сергей Михайлович Романов Sintered material of current collector element romanit-uvls, method of its production and current collector element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164948A (en) * 1981-04-02 1982-10-09 Sumitomo Electric Ind Ltd Electrical contact material and its manufacture
JPS6063337A (en) * 1983-09-14 1985-04-11 Sumitomo Electric Ind Ltd Heat-resistant conductive material
JPS60208402A (en) * 1984-04-02 1985-10-21 Fukuda Kinzoku Hakufun Kogyo Kk Production of dispersion-strengthened copper alloy powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164948A (en) * 1981-04-02 1982-10-09 Sumitomo Electric Ind Ltd Electrical contact material and its manufacture
JPS6063337A (en) * 1983-09-14 1985-04-11 Sumitomo Electric Ind Ltd Heat-resistant conductive material
JPS60208402A (en) * 1984-04-02 1985-10-21 Fukuda Kinzoku Hakufun Kogyo Kk Production of dispersion-strengthened copper alloy powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620286A1 (en) * 1993-03-18 1994-10-19 Hitachi, Ltd. Ceramic-particle-dispersed metallic member, manufacturing method of same and use of same
WO2017176233A1 (en) * 2016-04-04 2017-10-12 Сергей Михайлович Романов Current collector material and method for producing said material
RU171785U1 (en) * 2016-04-26 2017-06-16 Сергей Михайлович Романов MATERIAL OF SURFACE ELEMENT ROMANIT-UVLSh
RU2657148C2 (en) * 2016-04-28 2018-06-08 Сергей Михайлович Романов Sintered material of current collector element romanit-uvls, method of its production and current collector element
RU2657148C9 (en) * 2016-04-28 2020-07-29 Сергей Михайлович Романов Sintered material of current collector element romanit-uvls, method of its production and current collector element

Similar Documents

Publication Publication Date Title
CN100575515C (en) A kind of method for preparing ultra-fine crystal WC-Co hard alloy
US5112388A (en) Process for making nanocrystalline metallic alloy powders by high energy mechanical alloying
CN111304512B (en) Medium-high entropy alloy material, preparation method and application thereof
US5236523A (en) Silver- or silver-copper alloy-metal oxide composite material
KR100423456B1 (en) Pre-alloyed powder and its use in the manufacture of diamond tools
CN108326289A (en) A kind of method of modifying and Nano metal powder modification diamond of diamond
CN106683914B (en) A kind of low-voltage electrical apparatus copper-based electrical contact material and preparation method thereof
JP4217667B2 (en) Method for producing capacitor anode based on niobium suboxide, powder mixture having niobium suboxide, powder for producing anode structure, powder mixture and powder aggregate, and solid electrolyte capacitor
JPH03166335A (en) Dispersively reinforcing material
CN112553499B (en) CuCrZr/WC composite material, preparation method and application thereof
JPS6383240A (en) Electric contact material and its production
US2765227A (en) Titanium carbide composite material
WO2019037651A1 (en) Boron-containing tungsten carbide copper alloy and method for manufacturing same
US4450135A (en) Method of making electrical contacts
US3576619A (en) Method for making alloy powders
JPH0470380B2 (en)
JPS6379925A (en) Electric contact material and its production
JPS62284031A (en) Electric contact point material and its production
JPS62284030A (en) Electric contact point material and its production
JPS6350437A (en) Electric contact material and its production
JP2748667B2 (en) Ni alloy powder and method for producing the same
Tracey The Properties and Some Applications of Carbonyl-Nickel Powders
RU2739493C1 (en) Method of producing composite electric contact material of cu-sic
JPS6386837A (en) Electric contact material and its production
JPS6350438A (en) Electric contact material and its production