JPH0470380B2 - - Google Patents

Info

Publication number
JPH0470380B2
JPH0470380B2 JP61151265A JP15126586A JPH0470380B2 JP H0470380 B2 JPH0470380 B2 JP H0470380B2 JP 61151265 A JP61151265 A JP 61151265A JP 15126586 A JP15126586 A JP 15126586A JP H0470380 B2 JPH0470380 B2 JP H0470380B2
Authority
JP
Japan
Prior art keywords
powder
weight
graphite
carbide
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61151265A
Other languages
Japanese (ja)
Other versions
JPS637345A (en
Inventor
Akira Fukui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP15126586A priority Critical patent/JPS637345A/en
Publication of JPS637345A publication Critical patent/JPS637345A/en
Publication of JPH0470380B2 publication Critical patent/JPH0470380B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、電気回路のスイツチング機器に使用
する電気接点材料、特に銀−炭化物−グラフアイ
ト系の焼結合金からなる電気接点材料及びその製
造方法に関する。 〔従来の技術〕 銀−グラフアイト焼結合金からなる電気接点材
料は低接触抵抗性を保ちながら耐溶着性が優れて
いる特長を有するが、耐消耗性に劣る欠点があつ
た。 この耐消耗性を改善するために、高融点の炭化
物を添加することを試みたが、通常行われている
粉体混合法並びに焼結法を用いて製造したので
は、グラフアイト粒子が凝集して大きくなり且つ
幾つか連続してしまうので微細均一な分散状態が
得られず、又焼結合金に小さな空孔も残存するの
で、接点開閉時のアーク熱でグラフアイトが大気
中の酸素と反応してCOガスとなつて気化減少し
ていく。このため合金内部に気孔や亀裂が発生し
て逆に消耗が激しくなつたり、必要以上にCOガ
ス化反応が進行するとアーク切れを悪くする欠点
があつた。また、接点の開閉回数が多くなるにつ
れて、合金中のグラフアイトが不足して炭化物が
分解、酸化する現象がおこり、接触抵抗が増加す
る欠点があつた。更に、合金中のグラフアイトや
炭化物の分散が不均一な場合には銀の偏析があ
り、ここから溶着がおこることがあつた。 〔発明が解決しようとする問題点〕 本発明は、低接触抵抗性を保持しながら耐溶着
性及び耐消耗性に優れ、しかも良好なアーク切れ
を具えた銀−炭化物−グラフアイト系の電気接点
材料を提供することを目的とする。 〔問題点を解決するための手段〕 本発明の電気接点材料は粉末治金法による合金
であつて、銀97〜50重量%と、元素周期律表
a,a,a族金属の炭化物の少なくとも1種
3〜50重量%、及び前記銀と炭化物との合計量に
対して0.1〜10重量%のグラフアイトを含有する
焼結合金からなり、焼結合金中のグラフアイト粒
子は全て大きさが3μm以下であつて各々が独立し
て均一に分散し、且つ実質的に空孔が存在しない
ことを特徴とする。 この電気接点材料は、銀粉97〜50重量%、元素
周期律表a,a,a族金属の炭化物粉の少
なくとも1種3〜50重量%、及び前記銀粉と炭化
物粉との合計量に対して0.1〜10重量%のグラフ
アイト粉を混合し、メカニカルアロイングにより
グラフアイト粒子を全て大きさ3μm以下とし且つ
各々を独立して均一に分散させ、得られた混合粉
を加圧成形し、還元性雰囲気又は真空中で焼結し
た後、再加圧して実質的に空孔をなくすことによ
り製造できる。 〔作用〕 メカニカルアロイングは、一般的には粉体の粉
砕混合と同時に合金化させる方法であり、ボール
ミル等の粉体混合装置を使用するものの、通常の
粉体混合ではボール:粉体の体積比が1:1程度
であるのに対しメカニカルアロイングでは5:1
程度と粉体量が少なく、更にメカニカルアロイン
グでは潤滑剤を使用しない等の点で、粉体の粉砕
混合のみを目的とする通常の粉体混合法と峻別さ
れている。 本発明では、かかるメカニカルアロイングを利
用することにより銀粉中に炭化物粉とグラフアイ
ト粉とを象眼状に埋め込んだ混合粉が得られ、通
常の混合法では凝集し易かつたグラフアイト粒子
もメカニカルアロイングにより全て大きさ3μm以
下となり、しかも銀中に各々独立して均一に分散
させることができる。この混合粉を加圧成形、焼
結及び再加圧して電気接点材料を製造するので、
グラフアイト粒子は3μm以下と小さくなり、しか
も合金中に独立して均一に分散する。 この様に微細で均一に分散したグラフアイト粒
子により、接点開閉時のアーク熱で大気中の酸素
と反応してCOガスとなる反応が最小限度に抑え
られ、しかも再加圧により空孔が実質的に存在し
ないので焼結合金内部までこの反応が波及しない
ので、耐消耗性が大幅に向上しアーク切れも良く
なる。従つてまた、グラフアイト不足が生じない
ので炭化物の酸化もおこりにくく、接触抵抗が低
く維持される。更に、炭化物やグラフアイトが均
一に分散されているので、銀の偏析による溶着も
なくなる。 銀と炭化物の合計量の内の炭化物の割合3〜50
重量%としたのは、50重量%を超えると接触抵抗
が増加し、3重量%未満では耐消耗性が不足する
からである。 グラフアイトの量を銀と炭化物の合計量に対し
て0.1〜10重量%としたのは、10重量%を超える
と耐消耗性の改善が見られず、アーク切れも悪く
なり、0.1重量%未満では耐溶着性と耐接触抵抗
性が悪化するからであり、好ましい範囲は1〜5
重量%である。また、合金中のグラフアイト粒子
の大きさが3μmを超えると、グラフアイトの酸化
によるCOガス化反応が起こりやすくなり、アー
ク切れが悪く、消耗量が増加して実用性に乏しく
なる。 〔実施例〕 第1表に示す割合で銀粉(平均粒径3μm)、炭
化物粉(同3μm)及びグラフアイト粉(同15μm)
を混合し、ボールミルにより潤滑剤を用いず且つ
ボール:粉体の体積比5:1の条件で100時間メ
カニカルアロイングした。但し、サンプルNo.1は
メカニカルアロイングによらず、ボールミルによ
り通常条件で湿式混合した。得られた混合粉を
2ton/cm2の圧力で型押成形し、成形体を水素雰囲
気中で温度900℃で焼結した。次に、サンプルNo.
1を除いて焼結体を3ton/cm2の圧力で再加圧して
気孔率ゼロの合金を製造した。第1表に得られた
合金中のグラフアイトの大きさ(Gr径)を合わ
せて表示した。 尚、第1表に示す組成(重量%)は、使用した
原料粉の合計量の内の各粉末の割合を示す値であ
る。
[Industrial Field of Application] The present invention relates to an electrical contact material used in switching equipment for electric circuits, and particularly to an electrical contact material made of a silver-carbide-graphite-based sintered alloy, and a method for manufacturing the same. [Prior Art] Electrical contact materials made of silver-graphite sintered alloys have the advantage of excellent welding resistance while maintaining low contact resistance, but have the disadvantage of poor wear resistance. In order to improve this wear resistance, an attempt was made to add a carbide with a high melting point, but when manufactured using the commonly used powder mixing method and sintering method, the graphite particles agglomerated. Since the particles become large and several are connected, a fine and uniform dispersion state cannot be obtained, and small pores remain in the sintered alloy, so the graphite reacts with oxygen in the atmosphere due to the arc heat when the contacts are opened and closed. It becomes CO gas and evaporates and decreases. This resulted in the formation of pores and cracks inside the alloy, conversely increasing wear and tear, and had the drawback of worsening arc breakage if the CO gasification reaction progressed more than necessary. Furthermore, as the number of times the contact is opened and closed increases, there is a shortage of graphite in the alloy, causing decomposition and oxidation of carbides, resulting in an increase in contact resistance. Furthermore, if the dispersion of graphite or carbide in the alloy is non-uniform, silver segregation may occur, which may lead to welding. [Problems to be Solved by the Invention] The present invention provides a silver-carbide-graphite electrical contact that maintains low contact resistance, has excellent welding resistance and abrasion resistance, and has good arc breakage. The purpose is to provide materials. [Means for Solving the Problems] The electrical contact material of the present invention is an alloy made by powder metallurgy, and contains at least 97 to 50% by weight of silver and a carbide of a metal of Group A, A, or A of the Periodic Table of the Elements. It consists of a sintered alloy containing 3 to 50% by weight of type 1 graphite and 0.1 to 10% by weight based on the total amount of silver and carbide, and all graphite particles in the sintered alloy have a size of It is characterized by having a diameter of 3 μm or less, being independently and uniformly dispersed, and having substantially no pores. This electrical contact material contains 97 to 50% by weight of silver powder, 3 to 50% by weight of at least one type of carbide powder of a metal of Group A, A, or A of the Periodic Table of the Elements, and based on the total amount of the silver powder and carbide powder. 0.1 to 10% by weight of graphite powder is mixed, mechanical alloying is used to reduce the size of all graphite particles to 3 μm or less, and each particle is independently and uniformly dispersed. The resulting mixed powder is pressure-molded and reduced. It can be manufactured by sintering in a neutral atmosphere or in a vacuum and then pressurizing again to substantially eliminate pores. [Operation] Mechanical alloying is generally a method of alloying powder at the same time as pulverization and mixing, and although a powder mixing device such as a ball mill is used, in normal powder mixing, the ball: powder volume While the ratio is about 1:1, mechanical alloying has a ratio of 5:1.
Mechanical alloying differs from ordinary powder mixing methods, which aim only at pulverizing and mixing powders, in that the degree and amount of powder is small, and in mechanical alloying, no lubricant is used. In the present invention, by utilizing such mechanical alloying, a mixed powder in which carbide powder and graphite powder are embedded in silver powder in an inlaid manner can be obtained. By alloying, they all have a size of 3 μm or less, and each can be independently and uniformly dispersed in silver. This mixed powder is pressure-molded, sintered, and re-pressed to produce electrical contact materials.
The graphite particles are small, less than 3 μm, and are independently and uniformly dispersed in the alloy. These fine and uniformly dispersed graphite particles minimize the reaction of oxygen in the atmosphere to form CO gas due to arc heat during contact opening/closing, and furthermore, repressurization virtually eliminates pores. Since this reaction does not spread to the inside of the sintered alloy, wear resistance is greatly improved and arc breakage is also improved. Therefore, since graphite shortage does not occur, carbide oxidation is less likely to occur, and contact resistance is maintained low. Furthermore, since carbide and graphite are uniformly dispersed, welding due to silver segregation is also eliminated. Proportion of carbide in total amount of silver and carbide 3-50
The reason why it is set at % by weight is that if it exceeds 50% by weight, the contact resistance will increase, and if it is less than 3% by weight, the abrasion resistance will be insufficient. The reason why the amount of graphite is set to 0.1 to 10% by weight based on the total amount of silver and carbide is that if it exceeds 10% by weight, no improvement in wear resistance will be seen and arc breakage will deteriorate, so if it is less than 0.1% by weight. This is because the welding resistance and contact resistance deteriorate, and the preferable range is 1 to 5.
Weight%. Furthermore, if the size of the graphite particles in the alloy exceeds 3 μm, the CO gasification reaction due to oxidation of the graphite will easily occur, the arc will not cut easily, the amount of consumption will increase, and the alloy will be impractical. [Example] Silver powder (average particle size: 3 μm), carbide powder (average particle size: 3 μm), and graphite powder (average particle size: 15 μm) in the proportions shown in Table 1.
were mixed and mechanically alloyed using a ball mill for 100 hours without using a lubricant and at a ball:powder volume ratio of 5:1. However, sample No. 1 was not mechanically alloyed, but was wet mixed using a ball mill under normal conditions. The obtained mixed powder
Embossing was carried out at a pressure of 2 ton/cm 2 , and the molded body was sintered at a temperature of 900°C in a hydrogen atmosphere. Next, sample no.
Except for No. 1, the sintered bodies were repressurized at a pressure of 3 tons/cm 2 to produce alloys with zero porosity. Table 1 also shows the size of graphite (Gr diameter) in the obtained alloy. The compositions (% by weight) shown in Table 1 are values indicating the proportion of each powder in the total amount of raw material powder used.

【表】 サンプルNo.1は比較例であり、通常の混合法の
ため原料のグラフアイト粉は粉砕されるものの同
時に凝集するので、得られるグラフアイト粒子の
大きさは最大60μmになつている。 製造した合金の電気接点材料としての特性を試
験した。試験はASTM接点試験機を用い、寸法
5×5×1.5×Rのサンプルを専用治具にロウ付
けして充分に酸洗いした後、AC220V,100A及
びpf0.75の電流を通じて20000回の開閉操作をし
た後の各特性を調べた。結果を第2表に示す。
[Table] Sample No. 1 is a comparative example. Due to the normal mixing method, the graphite powder as a raw material is crushed but coagulated at the same time, so the size of the graphite particles obtained is at most 60 μm. The properties of the manufactured alloy as an electrical contact material were tested. The test was conducted using an ASTM contact testing machine, and a sample with dimensions of 5 x 5 x 1.5 x R was brazed to a special jig, thoroughly pickled, and then opened and closed 20,000 times through AC 220 V, 100 A, and a current of pf 0.75. We investigated each characteristic after The results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、低接触抵抗性を保持しながら
耐溶着性及び耐消耗性に優れ、しかも良好なアー
ク切れを具えた銀−炭化物−グラフアイト系の焼
結合金からなる電気接点材料を提供することがで
きる。
According to the present invention, there is provided an electrical contact material made of a silver-carbide-graphite-based sintered alloy that maintains low contact resistance, has excellent welding resistance and wear resistance, and has good arc breakage. can do.

Claims (1)

【特許請求の範囲】 1 銀97〜50重量%と、元素周期律表a,
a,a族金属の炭化物の少なくとも1種3〜50
重量%、及び前記銀と炭化物との合計量に対して
0.1〜10重量%のグラフアイトを含有する焼結合
金からなり、焼結合金中のグラフアイト粒子は全
て大きさが3μm以下であつて各々が独立して均一
に分散し、且つ実質的に空孔が存在しないことを
特徴とする電気接点材料。 2 銀粉97〜50重量%、元素周期律表a,
a,a族金属の炭化物粉の少なくとも1種3〜
50重量%、及び前記銀粉と炭化物粉との合計量に
対して0.1〜10重量%のグラフアイト粉を混合し、
メカニカルアロイングによりグラフアイト粒子を
全て大きさ3μm以下とし且つ各々を独立して均一
に分散させ、得られた混合粉を加圧成形し、還元
性雰囲気又は真空中で焼結した後、再加圧して実
質的に空孔をなくすことを特徴とする電気接点材
料の製造方法。
[Scope of Claims] 1 97 to 50% by weight of silver, a of the periodic table of elements,
At least one carbide of group a metal 3 to 50
% by weight, and based on the total amount of silver and carbide.
It consists of a sintered alloy containing 0.1 to 10% by weight of graphite, and all graphite particles in the sintered alloy have a size of 3 μm or less, are independently and uniformly dispersed, and are substantially empty. An electrical contact material characterized by the absence of pores. 2 Silver powder 97-50% by weight, periodic table of elements a,
At least one type of carbide powder of a, group a metal3~
50% by weight and 0.1 to 10% by weight of graphite powder based on the total amount of the silver powder and carbide powder,
All graphite particles are made to have a size of 3 μm or less by mechanical alloying, and each particle is independently and uniformly dispersed. The resulting mixed powder is pressure-molded, sintered in a reducing atmosphere or in a vacuum, and then reprocessed. A method for producing an electrical contact material, the method comprising substantially eliminating pores by pressing the material.
JP15126586A 1986-06-27 1986-06-27 Electrical contact material and its production Granted JPS637345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15126586A JPS637345A (en) 1986-06-27 1986-06-27 Electrical contact material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15126586A JPS637345A (en) 1986-06-27 1986-06-27 Electrical contact material and its production

Publications (2)

Publication Number Publication Date
JPS637345A JPS637345A (en) 1988-01-13
JPH0470380B2 true JPH0470380B2 (en) 1992-11-10

Family

ID=15514882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15126586A Granted JPS637345A (en) 1986-06-27 1986-06-27 Electrical contact material and its production

Country Status (1)

Country Link
JP (1) JPS637345A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134039A (en) * 1988-04-11 1992-07-28 Leach & Garner Company Metal articles having a plurality of ultrafine particles dispersed therein
JPH04147901A (en) * 1990-10-09 1992-05-21 Matsushita Electric Works Ltd Production of ag composite particles for contact material
US5339682A (en) * 1991-04-02 1994-08-23 Honda Giken Kogyo Kabushiki Kaisha Apparatus and method of testing anti-lock brake system
CN102362326B (en) * 2009-03-24 2015-03-25 联合材料公司 Electrical contact material
EP2587507B1 (en) * 2010-06-22 2015-12-09 A.L.M.T. Corp. Electrical contact material
CN109243872A (en) * 2018-09-21 2019-01-18 靖江市海源有色金属材料有限公司 A kind of silver graphite base electric contact and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495521A (en) * 1972-05-04 1974-01-18
JPS4930434A (en) * 1972-07-20 1974-03-18
JPS5038094A (en) * 1973-08-12 1975-04-09
JPS5074797A (en) * 1973-11-07 1975-06-19
JPS5154292A (en) * 1974-11-07 1976-05-13 Nippon Tungsten

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495521A (en) * 1972-05-04 1974-01-18
JPS4930434A (en) * 1972-07-20 1974-03-18
JPS5038094A (en) * 1973-08-12 1975-04-09
JPS5074797A (en) * 1973-11-07 1975-06-19
JPS5154292A (en) * 1974-11-07 1976-05-13 Nippon Tungsten

Also Published As

Publication number Publication date
JPS637345A (en) 1988-01-13

Similar Documents

Publication Publication Date Title
AU598815B2 (en) Circuit breaker contact containing silver and graphite fibers
Wang et al. The preparation and the properties of microcrystalline and nanocrystalline CuCr contact materials
US2470034A (en) Electric contact formed of a ruthenium composition
CN109500391A (en) A kind of preparation method of high ductility silver zinc oxide contact material
CN112620640A (en) Preparation method of AgNi electrical contact material based on recycling of AgC scrap
CN104362015B (en) Preparation method of copper-tungsten contact material
JPH04228531A (en) Contact material and its manufacture
CN112553499B (en) CuCrZr/WC composite material, preparation method and application thereof
JPH0470380B2 (en)
US3576619A (en) Method for making alloy powders
Desforges Sintered materials for electrical contacts
US4450135A (en) Method of making electrical contacts
CN109593981A (en) A kind of preparation method for the sliver oxidized tin contactor materials improving ingot blank agglutinating property
CN109609794A (en) A kind of preparation method of high ductility sliver oxidized tin contactor materials
US2818633A (en) Electrical contact
US2189755A (en) Metal composition
JPH0813065A (en) Sintered material for electrical contact and production thereof
JPS6383240A (en) Electric contact material and its production
JP3094018B1 (en) Method for producing Fe-Cu composite powder
Tracey The Properties and Some Applications of Carbonyl-Nickel Powders
JPS62284030A (en) Electric contact point material and its production
JPH10195556A (en) Production of electric contact material
JPH06102813B2 (en) Electric contact material and manufacturing method thereof
JPS6379925A (en) Electric contact material and its production
JPS6342340A (en) Electric contact material and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term