JPH04147901A - Production of ag composite particles for contact material - Google Patents

Production of ag composite particles for contact material

Info

Publication number
JPH04147901A
JPH04147901A JP2270789A JP27078990A JPH04147901A JP H04147901 A JPH04147901 A JP H04147901A JP 2270789 A JP2270789 A JP 2270789A JP 27078990 A JP27078990 A JP 27078990A JP H04147901 A JPH04147901 A JP H04147901A
Authority
JP
Japan
Prior art keywords
particles
pure
drum
contact
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2270789A
Other languages
Japanese (ja)
Inventor
Masayuki Tsuji
辻 公志
Isato Inada
稲田 勇人
Munetake Sato
宗武 佐藤
Kenji Azuma
健司 東
Hiroshi Miyanami
宮南 啓
Shinji Tanimura
谷村 眞治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2270789A priority Critical patent/JPH04147901A/en
Publication of JPH04147901A publication Critical patent/JPH04147901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)

Abstract

PURPOSE:To easily produce a superior contact material by dispersing non-Ag particles for improving contact characteristics in pure Ag particles by mechanical compounding treatment and forming Ag composite particles. CONSTITUTION:Pure Ag particles 1 of 0.1-45mum mean particle size and non-Ag particles 2 such as Ni particles of 0.01-5mum mean particle size are put in a drum 21 and this drum 21 is filled with an inert gaseous atmosphere and rotated at a high speed. The particles 1, 2 are pressed against the inside 21a of the drum 21 by centrifugal force and receive high compressive strength and shear from the semicircular surface 23a of a fixed member 23 to cause compounding accompanied by the generation of heat. The non-Ag particles 2 are uniformly dispersed in the pure Ag particles 1 by 3-20wt.% and Ag composite particles 10 are obtd. as a superior contact material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば、リレー、マグネットスイッチ、ブ
レーカなど開閉機器の電気接点材料の製造に用いるAg
複合粒子を作る方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to, for example, Ag used in the manufacture of electrical contact materials for switching equipment such as relays, magnetic switches, and breakers.
Concerning a method for making composite particles.

〔従来の技術および問題点〕[Conventional technology and problems]

Ag素地接点材料には、Ag−Ni系接点材料やAg−
W系接点材料等のいわゆる焼結タイプのもの、Ag−C
d0系接点材料やAg−5nol系接点材料等のいわゆ
る内部酸化タイプのものがある。焼結タイプのAg−N
i系接点材料は耐消耗性・加工性が良好であり、Ag−
W系接点材料は大電流の断続が出来るなど特徴を持つ有
用な材料である。しかしながら、例えば、Ag−Ni接
点材料は、内部酸化タイプのAg−Cd0系接点材料や
AAg−3no系接点材料に比べ、耐溶着性が十分でな
いことから、利用は低負荷用〜中負荷用に限られる傾向
があり、耐溶着性の改善が望まれている。
Ag base contact materials include Ag-Ni contact materials and Ag-
So-called sintered type materials such as W-based contact materials, Ag-C
There are so-called internal oxidation type materials such as d0 type contact materials and Ag-5nol type contact materials. Sintered type Ag-N
The i-type contact material has good wear resistance and processability, and is suitable for Ag-
W-based contact materials are useful materials with features such as the ability to cut and break large currents. However, for example, Ag-Ni contact materials do not have sufficient welding resistance compared to internal oxidation type Ag-Cd0 type contact materials or AAg-3no type contact materials, so they are only used for low to medium loads. Therefore, it is desired to improve the welding resistance.

このAg−Ni接点材料は、従来、つぎのようにして製
造されている。
This Ag-Ni contact material has conventionally been manufactured as follows.

それぞれ別々に製造したAg粒子に接点特性強化用非A
g粒子であるNi粒子を添加混合し、圧縮成形して成形
体を得て、ついで、成形体に対し〔焼成−熱間圧縮〕を
2〜3回繰り返し施すという焼結工程を経て、焼結後、
通常、引き伸ばし工程で引き延ばすようにする。引き伸
ばし工程では、普通、焼結体を熱間押し出しした後、さ
らに伸線する。Ni粒子は引き伸ばし工程で伸線方向に
引き延ばされ、接点材料中に伸線方向に長手方向を向け
た約5n程度の平均径の繊維状で分散する。伸線した後
、短く切断し、伸線方向に対し直角の方向の断面(横断
面)を接点面として使う。すなわち、NiはAg素地中
に平均径5nの繊維状で接点面に対し交差する方向に配
向分散しているのである。
Non-A to strengthen contact characteristics is added to separately manufactured Ag particles.
Ni particles, which are g particles, are added and mixed, compression molded to obtain a molded body, and then the molded body undergoes a sintering process in which [firing-hot compression] is repeated two to three times, and then sintered. rear,
Usually, it is stretched in a stretching process. In the drawing process, the sintered body is usually hot extruded and then further wire drawn. The Ni particles are stretched in the drawing direction in the drawing process, and are dispersed in the contact material in the form of fibers with an average diameter of about 5 nm with the longitudinal direction oriented in the drawing direction. After drawing the wire, cut it into short pieces and use the cross section perpendicular to the drawing direction as the contact surface. That is, Ni is oriented and dispersed in the Ag matrix in the form of fibers with an average diameter of 5n in a direction intersecting the contact surface.

耐溶着性を向上させるには、Niを接点面に微細に満偏
無く分散さセるd・要がある。例えば、Ag粒子とNi
粒子の両方を粒径1mに、!下の微粒子にすれば、接点
面に微細なNi粒子が局在化せず満偏なく分散するはず
であるが、実際はそうならない。微粒子を混合する段階
で微粒子が凝集して大きな2次粒子になり、結局、大き
なNi粒子として分散することになるからである。普通
1、粒径が5n以下になると粒子凝集が無視できなくな
るのである。
In order to improve the welding resistance, it is necessary to finely and uniformly disperse Ni on the contact surface. For example, Ag particles and Ni
Both particles have a particle size of 1m! If the fine particles were used at the bottom, the fine Ni particles would not be localized on the contact surface and would be evenly dispersed, but this is not actually the case. This is because the fine particles aggregate into large secondary particles at the stage of mixing the fine particles, and are eventually dispersed as large Ni particles. Normally, when the particle size becomes 5n or less, particle aggregation cannot be ignored.

粒子凝集の問題を解消するため、配合するAg、Ni全
量を一緒に熔かしたf4湯を噴霧して、Ni微粒子分散
のAg粒子を作り、これを成形・焼結することが考えら
れる。この場合、粒子凝集は解消されるけれども、Ag
  Ni系接点材料として十分なNi量の確保が難しい
。上記溶湯中でのAg中へのNiの固溶限が約6iet
%であるため、Ag粒子のNi含有量を6wt%以上の
量にすることが困難なのである。溶湯中に6wt%を超
すN i量を含ませると、得た粒子の中に非常に粒径の
大きい粗大Ni粒子が混在するようになる。AgNi溶
湯中の未固溶Niが粗大Ni粒子となって混在するので
ある。この粗大Ni粒子は、成形性・焼結性を低下させ
耐溶着性劣化を招く。
In order to solve the problem of particle aggregation, it is conceivable to spray f4 hot water in which all of the Ag and Ni to be blended are melted together to form Ag particles in which fine Ni particles are dispersed, and then to mold and sinter the Ag particles. In this case, although particle aggregation is eliminated, Ag
It is difficult to secure a sufficient amount of Ni as a Ni-based contact material. The solid solubility limit of Ni in Ag in the above molten metal is approximately 6iet.
%, it is difficult to increase the Ni content of Ag particles to 6 wt % or more. When the molten metal contains an Ni amount exceeding 6 wt%, coarse Ni particles having a very large particle size will be mixed in the obtained particles. Undissolved Ni in the AgNi molten metal becomes coarse Ni particles and is mixed therein. These coarse Ni particles reduce formability and sinterability, leading to deterioration of welding resistance.

Ag−Ni接点材料以外の焼結タイプの接点材料でも、
接点特性強化用非Ag粒子の微細化分散に関する上記問
題はある。
Even with sintered contact materials other than Ag-Ni contact materials,
The above-mentioned problems exist regarding fine dispersion of non-Ag particles for reinforcing contact characteristics.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この発明は、上記事情に鑑み、微細な接点特性強化用非
Ag粒子が十分な量でAg中に分散したAg複合粒子を
得ることのできる方法を提供することを課題とする。
In view of the above circumstances, it is an object of the present invention to provide a method capable of obtaining Ag composite particles in which a sufficient amount of fine non-Ag particles for reinforcing contact characteristics are dispersed in Ag.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するため、請求項1〜5記載の接点材料
用Ag複合粒子の製造方法では、純Ag粒子と接点特性
強化用非Ag粒子を機械的複合化処理により造粒し非A
g粒子が内部に分散したAg複合粒子を得るようにして
いる。
In order to solve the above problems, in the method for producing Ag composite particles for contact materials according to claims 1 to 5, pure Ag particles and non-Ag particles for reinforcing contact properties are granulated by mechanical compositing treatment to form non-A.
This is to obtain Ag composite particles in which g particles are dispersed.

この発明の機械的複合化処理は、例えば、請求項2のよ
うに、回転可能なドラムを備えるとともにドラム内周面
に臨む曲面を有する固定部材を備えた装置を用い、前記
ドラム内に純Ag粒子および非Ag粒子を投入した状態
でドラムを回転させて両粒子に対し圧縮・剪断を施すこ
とにより行うことができる。
For example, the mechanical compounding process of the present invention uses an apparatus including a rotatable drum and a fixing member having a curved surface facing the inner circumferential surface of the drum. This can be carried out by rotating a drum with particles and non-Ag particles charged therein to compress and shear both particles.

接点特性強化用の非Ag粒子としては、例えば、N i
、w、MOlC,WCのうちの少なくとも一つからなる
粒子が挙げられるが、これに限らない。
Examples of non-Ag particles for reinforcing contact characteristics include Ni
, w, MOIC, and WC, but are not limited thereto.

Ag複合粒子製造用の純Ag粒子および非Ag粒子の平
均粒径は、通常、請求項4のように、純Ag粒子で0.
1〜45m、非Ag粒子で0.01〜5μである。
As claimed in claim 4, the average particle size of pure Ag particles and non-Ag particles for producing Ag composite particles is usually 0.
1 to 45 m, and 0.01 to 5 μm for non-Ag particles.

造粒されたAg複合粒子の適切な非Ag粒子含有量(平
均含有量でAg複合粒子全体を100wt%とする)は
、非Ag粒子の種類に応じて異なるが、通常、請求項5
のように、3〜20wt%程度である。
The appropriate content of non-Ag particles in the granulated Ag composite particles (the average content is 100 wt% for the entire Ag composite particles) varies depending on the type of non-Ag particles, but usually, as claimed in claim 5.
The content is about 3 to 20 wt%.

以下、この発明を、非Ag粒子がNi粒子である場合を
中心により具体的に説明する。
Hereinafter, the present invention will be explained more specifically, focusing on the case where the non-Ag particles are Ni particles.

Ag複合粒子作製用のNi粒子は、Ag粒子より小さく
、通常、平均粒径が0.01〜5n程度である。普通、
Ni粒子の粒径は、Ag粒子の粒径の1/10以下程度
である。5罪を超えるとNi微細化が図り難く、0.0
1罪未満だと粒子が高価なためにコストアップが問題に
なる。純Ag粒子は、平均粒径0.1〜45n程度のも
のを用いる。
Ni particles for producing Ag composite particles are smaller than Ag particles, and usually have an average particle size of about 0.01 to 5n. usually,
The particle size of the Ni particles is about 1/10 or less of the particle size of the Ag particles. If it exceeds 5 sins, it is difficult to achieve Ni fineness, and 0.0
If it is less than 1 sin, the particles are expensive, so cost increase becomes a problem. The pure Ag particles used have an average particle size of about 0.1 to 45 nm.

45nを超えると造粒困難となり、0.1罪未満だと粒
子が高価なためにコストアップが問題となってくる。
If the particle size exceeds 45n, granulation becomes difficult, and if the particle size is less than 0.1n, the particles are expensive, resulting in an increase in cost.

Ag複合粒子のNi含有量(平均含有量でAg複合粒子
全体を100kt%とする)は3〜20ivt%程度、
好ましくは6〜20wt%程度である。3wt%未満で
は接点特性作用が弱く、20wt%を超えると電気伝導
度の低下で耐溶着性が劣化するようになる。
The Ni content of the Ag composite particles (the average content is 100 kt% for the entire Ag composite particle) is about 3 to 20 ivt%,
Preferably it is about 6 to 20 wt%. If it is less than 3 wt%, the contact properties will be weak, and if it exceeds 20 wt%, the electrical conductivity will decrease and the welding resistance will deteriorate.

つぎに、Ag粒子とNi粒子の機械的複合化処理を行う
装置の説明をする。処理装置としては、第2図に示すよ
うな高速・高剪断型ミル(例えば、■ホソカワミクロン
製のメカノフュージョンシステム用オングミル)が用い
られる。
Next, an apparatus for mechanically combining Ag particles and Ni particles will be explained. As a processing device, a high-speed, high-shear type mill as shown in FIG. 2 (for example, ■Ong Mill for Mechanofusion System manufactured by Hosokawa Micron) is used.

第2図の処理装置20は、モータ(図示省略)により高
速回転可能なドラム(円筒容器)21を備え、同ドラム
21内側に固定アーム22で支持されたれたセラミック
(例えば硬質アルミナ)製半円柱状固定部材23が設け
られた構成である。
The processing device 20 in FIG. 2 includes a drum (cylindrical container) 21 that can be rotated at high speed by a motor (not shown), and a semicircular ceramic (for example, hard alumina) drum supported by a fixed arm 22 inside the drum 21. This is a configuration in which a columnar fixing member 23 is provided.

固定部材23は半円柱同曲面(曲面)23aをドラム内
面21aに臨ませた状態で固定されておりドラム21の
回転中、不動の半円柱同曲面23aの前をドラム21内
面が移動してゆく。この半円柱同曲面23aの曲率半径
はドラム内面210曲率半径よりも小さい。
The fixing member 23 is fixed with a semi-cylindrical curved surface (curved surface) 23a facing the drum inner surface 21a, and while the drum 21 is rotating, the inner surface of the drum 21 moves in front of the fixed semi-cylindrical curved surface 23a. . The radius of curvature of this semi-cylindrical curved surface 23a is smaller than the radius of curvature of the drum inner surface 210.

複合化処理を行う場合、ドラム21内に純Ag粒子およ
びNi粒子を(必要に応して加えられる媒体側用ビーズ
と一緒に)投入するとともにドラム21内を不活性ガス
雰囲気としドラム21を高速回転させる。そうすると、
第3図にみるように、純Ag粒子およびNi粒子が遠心
力でドラム内面21aに押し付けられ、ドラム21と一
緒に回転して、半円柱同曲面23aの前側領域(A−B
間)で純Ag粒子およびNi粒子が強い圧縮力、剪断力
を受は発生する熱も伴って複合化される。
When performing composite processing, pure Ag particles and Ni particles are introduced into the drum 21 (along with beads for the media side that are added as necessary), and the drum 21 is set in an inert gas atmosphere and the drum 21 is moved at high speed. Rotate. Then,
As shown in FIG. 3, pure Ag particles and Ni particles are pressed against the drum inner surface 21a by centrifugal force, rotate together with the drum 21, and rotate in the front region (A-B) of the semi-cylindrical curved surface 23a.
When the pure Ag particles and Ni particles are subjected to strong compressive force and shear force, they are combined with the generated heat.

媒体用ビーズ(例えば、粒径1in前後のジルコニアビ
ーズ)を併用する場合、Ni粒子はまずビーズに付着し
てから純Ag粒子に付着することになる。このように、
Ag複合粒子は市販の処理装置で容易に製造できるので
ある。
When using media beads (for example, zirconia beads with a particle size of about 1 inch), the Ni particles first adhere to the beads and then to the pure Ag particles. in this way,
Ag composite particles can be easily produced using commercially available processing equipment.

ドラムの回転速度は500〜2000回/分程度である
。半円柱同曲面23aとドラム内面21aの間隔dは、
通常、1〜5鶴程度である。
The rotation speed of the drum is approximately 500 to 2000 times/min. The distance d between the semi-cylindrical curved surface 23a and the drum inner surface 21a is
Usually, it is about 1 to 5 cranes.

続いて、純Ag粒子とNi粒子の複合化の具体的な過程
を、図面を参照しながら説明する。
Next, a specific process for forming a composite of pure Ag particles and Ni particles will be explained with reference to the drawings.

ドラム21の回転開始に伴い、第1図(a)にみるよう
に、弱い凝集状態にあったNi粒子2・・・が1次粒子
化され、第1図(b)にみるように、純Ag粒子lに付
着し、その後、第1図(C)にみるように、Ni粒子2
が純Ag粒子1の周囲に規則正しく配列したオーダード
ミクスチャー状態となる。さらに、粒子間に作用する強
い圧縮力と剪断力および発生熱で、第1図(d)にみる
ように、純Ag粒子1の中にNi粒子2が取り込まれて
ゆく過程を経て母粒子が柔らかな純Agであるため造粒
されやすく、本格的な造粒が始まる。すなわち、第1図
(e)にみるように、Ag粒子1′同士が接着し、第1
図(f)にみるように、塑性変形・融合し、第1図(a
にみるように、Ag中にNi粒子2が分散した丸い複合
粒子10が出来る。処理時間は、通常、30〜120分
程度である。
As the drum 21 starts rotating, the Ni particles 2, which were in a weakly agglomerated state as shown in FIG. 1(a), become primary particles, and become pure particles as shown in FIG. 1(b). It adheres to the Ag particle 1, and then, as shown in FIG. 1(C), the Ni particle 2
are arranged regularly around the pure Ag particles 1, resulting in an ordered mixture state. Furthermore, due to the strong compressive force and shearing force acting between the particles, and the heat generated, as shown in Figure 1(d), the Ni particles 2 are incorporated into the pure Ag particles 1, and the mother particles are formed. Since it is soft pure Ag, it is easily granulated, and full-scale granulation begins. That is, as shown in FIG. 1(e), the Ag particles 1' adhere to each other and the first
As shown in Figure (f), plastic deformation and fusion occur, and Figure 1 (a)
As shown in the figure, round composite particles 10 are formed in which Ni particles 2 are dispersed in Ag. The processing time is usually about 30 to 120 minutes.

複合粒子中のNi粒子2は、母粒子が柔らかい純Agで
あるため内部に入り易く、しかも、比較的、当初の粒子
状態が保れ易い。
Since the base particles of the Ni particles 2 in the composite particles are soft pure Ag, they can easily enter the interior, and the original particle state can be maintained relatively easily.

以上は、Ni粒子の場合についてであるが、他のW、M
o、C,WC等の高融点非Ag粒子の場合も同様にAg
複合粒子にすることができる。なお、純Ag粒子に、種
類の異なる非Ag粒子、例えば、W粒子とMo粒子を一
緒に加え、W粒子・Mo粒子の両方が分散されたAg複
合粒子を得るようにしてもよい。
The above is about the case of Ni particles, but other W, M
Similarly, in the case of high melting point non-Ag particles such as O, C, and WC, Ag
It can be made into composite particles. Note that different types of non-Ag particles, for example, W particles and Mo particles, may be added together to pure Ag particles to obtain Ag composite particles in which both W particles and Mo particles are dispersed.

従来のAg  Ni接点材料を製造する場合、成形前に
純Ag粒子およびNi粒子をV状ミルで混合するが、粒
子は攪拌混合されるだけで複合化されるわけではなく、
混合状態を微細にみると純Ag粒子とNi粒子は個々に
分離した状態である。
When manufacturing conventional Ag Ni contact materials, pure Ag particles and Ni particles are mixed in a V-shaped mill before molding, but the particles are only stirred and mixed, not composited.
If we look at the mixed state in detail, the pure Ag particles and the Ni particles are individually separated.

つぎに、上記のようにして得たAg複合粒子を用いて焼
結タイプの接点材料を製造するときの様子を説明する。
Next, a description will be given of how a sintered type contact material is manufactured using the Ag composite particles obtained as described above.

まず、Ag複合粒子を加圧成形して成形体を作る。First, Ag composite particles are pressure-molded to produce a molded body.

つぎに、この成形体を焼結する。焼結工程では、通常、
成形体に対し〔焼成−熱間圧縮〕を施す処理を2〜3回
繰り返すことにより焼結体化する焼結した後、引き伸ば
し工程に入る。この引き伸ばし工程では、焼結体を熱間
押し出しした後さらに伸線する。引き伸ばしは、普通、
〔引き伸ばし前の断面積〕/〔引き伸ばし後の断面積〕
が150以上となるように行う。
Next, this molded body is sintered. In the sintering process, usually
The molded body is subjected to [firing-hot compression] two or three times to form a sintered body. After sintering, the stretching process begins. In this drawing step, the sintered body is hot extruded and then further wire drawn. Stretching is usually
[Cross-sectional area before stretching] / [Cross-sectional area after stretching]
is 150 or more.

N4粒子は、引き伸ばし工程で伸線方向に細長く引き伸
ばされる。
The N4 particles are elongated in the drawing direction in the drawing process.

伸線した後、伸線方向と直角の方向に寸断し、その切断
面を接点面にする。普通、切断してから、リベット加工
を施し電気接点にすることが多いNi粒子を用いた接点
材料の場合、Ag素地中にNiが繊維状で接点面(切断
面)に対し交差する方向に配向分散し、接点面には繊維
状Niがドツト状に露出する。繊維状N1の平均径は、
当初のNi粒子の粒径・引き伸ばしの程度で決まるが1
g未満であることが好ましい。
After drawing the wire, it is cut into pieces in a direction perpendicular to the drawing direction, and the cut surfaces are used as contact surfaces. In the case of contact materials using Ni particles, which are usually cut and then riveted to make electrical contacts, the Ni is fibrous in the Ag base and oriented in a direction that intersects the contact surface (cut surface). The fibrous Ni is dispersed and exposed in the form of dots on the contact surface. The average diameter of fibrous N1 is
It is determined by the particle size of the initial Ni particles and the degree of stretching.
It is preferable that it is less than g.

〔作   用〕[For production]

この発明のAg複合粒子では十分な量の接点特性強化用
非Ag粒子が分散している。これは、非Ag粒子材料を
Ag中に溶解させるのではなく機械的複合化処理により
分散させるため、非Ag粒子材料のAgに対する固溶限
に起因する制限を受けないからである。
In the Ag composite particles of the present invention, a sufficient amount of non-Ag particles for reinforcing contact characteristics are dispersed. This is because the non-Ag particle material is not dissolved in Ag, but is dispersed by mechanical compositing treatment, and therefore is not subject to limitations due to the solid solubility limit of the non-Ag particle material with respect to Ag.

Ag複合粒子中では非Ag粒子が凝集せずに散らばって
存在するため、1次粒径の小さい非Ag粒子を用いるこ
とで微細化が容易に図れる。
Since non-Ag particles exist scattered in the Ag composite particles without agglomerating, miniaturization can be easily achieved by using non-Ag particles with a small primary particle size.

このように、個々のAg複合粒子に十分な量で微細な接
点特性強化用非Ag粒子が予め分かち与えられているた
め、同Ag複合粒子を用いて製造された接点材料中でも
微細な非Ag粒子が十分な量で溝部無く分散し、例えば
、Ag−Ni系接点材料では耐溶着性が向上する。
In this way, since a sufficient amount of fine non-Ag particles for reinforcing contact characteristics is distributed to each Ag composite particle in advance, fine non-Ag particles are distributed even in contact materials manufactured using the same Ag composite particles. is dispersed in a sufficient amount without grooves, and, for example, in Ag-Ni contact materials, the welding resistance is improved.

機械的複合化処理を、回転可能なドラムを備えるととも
にドラム内周面に臨む曲面を有する固定部材を備えた装
置を用い、前記ドラム内に純Ag粒子および非Ag粒子
を投入した状態でドラムを回転させて両粒子に対し圧縮
・剪断を施すことで行えば、優れた接点材料が作れるA
g複合粒子を容易に製造することができる。
The mechanical compounding process is carried out using a device equipped with a rotatable drum and a fixing member having a curved surface facing the inner peripheral surface of the drum, with pure Ag particles and non-Ag particles placed in the drum. A: Excellent contact materials can be made by rotating and compressing and shearing both particles.
g composite particles can be easily produced.

[実 施 例〕 以下、この発明の詳細な説明する。この発明は下記の実
施例に限らない。
[Example] The present invention will be described in detail below. This invention is not limited to the following embodiments.

一実施例1− まず、平均粒径0.5μの純Ag粒子および平均粒径0
.02μのNi粒子を全量(全純Ag粒子と全Ni粒子
の合計を100wt%とする)でみてNi含有量が15
wt%になるように秤量し、前述の高速・高剪断型ミル
にて機械的複合化処理しAg複合粒子を得た。なお、機
械的複合化処理の際、ドラム内をArガス雰囲気とし媒
体剤として平均粒径約1flのジルコニアビーズを使い
、5500秒処理を行うようにした。
Example 1 - First, pure Ag particles with an average particle size of 0.5μ and an average particle size of 0.
.. The Ni content is 15% based on the total amount of 02μ Ni particles (the sum of all pure Ag particles and all Ni particles is 100wt%).
The particles were weighed so as to be % by weight and mechanically composited using the above-mentioned high-speed, high-shear mill to obtain Ag composite particles. In addition, during the mechanical composite treatment, the inside of the drum was made into an Ar gas atmosphere, zirconia beads with an average particle size of about 1 fl were used as a medium, and the treatment was performed for 5500 seconds.

得られたAg複合粒子の粒子断面(金属組織)を第4.
5図に示す。第4.5図は、走査型電子顕微鏡による写
真であって、第4図は2次電子線(SEM像)写真、第
5図は特性X線(N i Kα像)写真である。特に、
第5図をみると、白いNi部分が非常に微細で溝部なく
多量に分散していることが良く分かる。
The particle cross section (metallic structure) of the obtained Ag composite particles is shown in Section 4.
It is shown in Figure 5. FIG. 4.5 is a photograph taken by a scanning electron microscope, and FIG. 4 is a secondary electron beam (SEM image) photograph, and FIG. 5 is a characteristic X-ray (N i Kα image) photograph. especially,
Looking at FIG. 5, it is clearly seen that the white Ni portions are very fine and are widely dispersed without grooves.

つぎに、このAg複合粒子を使って接点材料を得た。Next, a contact material was obtained using the Ag composite particles.

まず、Ag複合粒子を加圧成形し成形体を得たついで、
焼成−熱間圧縮を3回繰り返し焼結体を得た。なお、1
回目の焼成は真空雰囲気、2・3回目の焼成は窒素雰囲
気で行った。
First, Ag composite particles were pressure-molded to obtain a compact, and then
Firing and hot compression were repeated three times to obtain a sintered body. In addition, 1
The first firing was performed in a vacuum atmosphere, and the second and third firings were performed in a nitrogen atmosphere.

続いて、焼結体を予め加熱し金型を使って熱間押し出し
して延ばした後、さらに伸線した。伸線後、伸線方向と
直角の方向に寸断してからリベット加工を施し、接点性
能評価用のりベント接点を得た。
Subsequently, the sintered body was preheated and hot-extruded using a mold to be stretched, and then wire-drawn. After wire drawing, the wire was cut into pieces in a direction perpendicular to the wire drawing direction and then riveted to obtain a glue bent contact for contact performance evaluation.

一実施例2 平均粒径5μの純Ag粒子および平均粒径0.2μのN
i粒子を全量でみてNi含有量が10wt%になるよう
に秤量した他は、実施例1と同様にして接点性能評価用
のリベット接点を得た。
Example 2 Pure Ag particles with an average particle size of 5μ and N with an average particle size of 0.2μ
A rivet contact for contact performance evaluation was obtained in the same manner as in Example 1, except that the total amount of i particles was weighed so that the Ni content was 10 wt%.

一実施例3 平均粒径5μの純Ag粒子および平均粒径0.02nの
Ni粒子を全量でみてNi含有量が6wt%になるよう
に秤量した他は、実施例1と同様にして接点性能評価用
のリベット接点を得た。
Example 3 Contact performance was measured in the same manner as in Example 1, except that pure Ag particles with an average particle size of 5μ and Ni particles with an average particle size of 0.02n were weighed so that the Ni content was 6 wt%. A rivet contact was obtained for evaluation.

一実施例4− 平均粒径0.1 nの純Ag粒子および平均粒径0゜O
1μのNi粒子を全量でみてNi含有量が3ivt%に
なるように秤量した他は、実施例1と同様にして接点性
能評価用のりベント接点を得た。
Example 4 - Pure Ag particles with an average particle size of 0.1 n and an average particle size of 0°O
A glue-bent contact for contact performance evaluation was obtained in the same manner as in Example 1, except that 1 μm Ni particles were weighed so that the total Ni content was 3 ivt%.

一実施例5 平均粒径45nの純Ag粒子および平均粒径5nのNi
粒子を全量でみてNi含有量が20wt%になるように
秤量した他は、実施例1と同様にして接点性能評価用の
りベット接点を得た。
Example 5 Pure Ag particles with an average particle size of 45n and Ni with an average particle size of 5n
A glue bed contact for contact performance evaluation was obtained in the same manner as in Example 1, except that the particles were weighed so that the total Ni content was 20 wt%.

一実施例6 平均粒径5nの純Ag粒子および平均粒径0.2nのW
粒子を全量でみてW含有量が15wt%になるように秤
量した他は、実施例1と同様にして接点性能評価用のり
ヘット接点を得た。
Example 6 Pure Ag particles with an average particle size of 5n and W with an average particle size of 0.2n
A glue head contact for contact performance evaluation was obtained in the same manner as in Example 1, except that the total amount of particles was weighed so that the W content was 15 wt%.

一実施例7− 平均粒径5−の純Ag粒子および平均粒径0.2nのM
o粒子を全量でみてMo含有量が10wt%になるよう
に秤量した他は、実施例1と同様にして接点性能評価用
のりベット接点を得た。
Example 7 - Pure Ag particles with an average particle size of 5- and M with an average particle size of 0.2n
A glue bed contact for contact performance evaluation was obtained in the same manner as in Example 1, except that the Mo particles were weighed so that the total Mo content was 10 wt%.

一実施例8 平均粒径5nの純Ag粒子および平均粒径0.21のC
粒子を全量でみてC含有量が20wt%になるように秤
量した他は、実施例1と同様にして接点性能評価用のり
ヘット接点を得た。
Example 8 Pure Ag particles with an average particle size of 5n and C with an average particle size of 0.21
A glue head contact for contact performance evaluation was obtained in the same manner as in Example 1, except that the total amount of particles was weighed so that the C content was 20 wt%.

一実施例9 平均粒径5nの純Ag粒子および平均粒径0.2nのW
C粒子を全量でみてWC含有量が6wt%になるように
秤量した他は、実施例1と同様にして接点性能評価用の
りベット接点を得た。
Example 9 Pure Ag particles with an average particle size of 5n and W with an average particle size of 0.2n
A glue bed contact for contact performance evaluation was obtained in the same manner as in Example 1, except that the C particles were weighed so that the WC content was 6 wt%.

−比較例1− 平均粒径2Onの純Ag粒子と平均粒径5nのNi粒子
とを混合し成形体を得た後は、実施例1と同様にして接
点材料を得た。なお、Ni含有量は10wt%である。
- Comparative Example 1 - A contact material was obtained in the same manner as in Example 1 after a molded body was obtained by mixing pure Ag particles with an average particle size of 2On and Ni particles with an average particle size of 5N. Note that the Ni content is 10 wt%.

実施例1〜5および比較例工、2のリベット接点につい
て、ASTM試験により耐溶着特性、消耗特性を調べた
(号ンプル数N=3)。試験条件は下記の通りである。
The welding resistance and wear characteristics of the rivet contacts of Examples 1 to 5 and Comparative Examples 2 and 2 were examined by ASTM tests (number of samples N=3). The test conditions are as follows.

試験結果を第1表に示す。The test results are shown in Table 1.

負  荷:     抵抗負荷 電  圧:        100V 電   流=         40A開閉回数:  
    5万回 第 表 第1表にみるように、実施例の接点材料は、良好な耐消
耗性を持ちながら比較例のものよりも耐溶着性に格段に
優れるものになっている。微細な接点特性強化用非Ag
粒子を十分な量で溝部無く分散させられた結果が接点性
能に反映されていることが良く分かる。
Load: Resistive load Voltage: 100V Current = 40A Number of switching:
50,000 cycles As shown in Table 1, the contact materials of the examples have good abrasion resistance and are much better in welding resistance than those of the comparative examples. Non-Ag for strengthening fine contact characteristics
It can be clearly seen that the contact performance is reflected in the fact that the particles are dispersed in a sufficient amount without any grooves.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、この発明の製造方法によれば、微
細な接点特性強化用非Ag粒子を十分な量で予め分散さ
せたAg複合粒子が得られ、その結果、このAg複合粒
子を用い、微細な接点特性強化用非Ag粒子が十分な量
で溝部無く分散した優れた接点材料を容易に製造するこ
とができる。
As described above, according to the manufacturing method of the present invention, it is possible to obtain Ag composite particles in which a sufficient amount of fine non-Ag particles for reinforcing contact properties are dispersed in advance, and as a result, when these Ag composite particles are used, , it is possible to easily produce an excellent contact material in which a sufficient amount of fine non-Ag particles for reinforcing contact characteristics are dispersed without grooves.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の方法の一例でAg複合粒子を製造
するときの様子を順を追ってあられす説明図、第2図は
、この発明の方法の実施に使う機械的複合化処理装置の
要部構成をあられす概略断面図、第3図は、同装置の機
械的複合化処理中の状態をあられす説明図、第4図およ
び第5図は、実施例1のAg複合粒子断面の金属組織を
あられす電子顕微鏡写真である。 ■・・・純Ag粒子、2・・・Ni微粒子(非Ag粒子
)10・・・Ag複合粒子  20・・・機械的複合化
処理装置  21・・・ドラム  21a・・・ドラム
内面23・・・固定部材  23a・・・半円柱同曲面
(曲面代理人 弁理士  松 本 武 彦 第2図
Fig. 1 is an explanatory diagram showing step by step the process of producing Ag composite particles as an example of the method of the present invention, and Fig. 2 is a diagram of the mechanical composite processing equipment used to carry out the method of the present invention. FIG. 3 is an explanatory diagram showing the state of the device during mechanical composite processing, and FIGS. 4 and 5 are cross-sectional views of the Ag composite particles of Example 1. This is an electron micrograph showing the metal structure. ■...Pure Ag particles, 2...Ni fine particles (non-Ag particles) 10...Ag composite particles 20...Mechanical composite processing device 21...Drum 21a...Drum inner surface 23...・Fixing member 23a... Semi-cylindrical curved surface (Curved surface agent Patent attorney Takehiko Matsumoto Figure 2)

Claims (1)

【特許請求の範囲】 1 純Ag粒子と接点特性強化用非Ag粒子を機械的複
合化処理により造粒し非Ag粒子が内部に分散したAg
複合粒子を得るようにする接点材料用Ag複合粒子の製
造方法。 2 機械的複合化処理は、回転可能なドラムを備えると
ともにドラム内周面に臨む曲面を有する固定部材を備え
た装置を用い、前記ドラム内に純Ag粒子および非Ag
粒子を投入した状態でドラムを回転させて両粒子に対し
圧縮・剪断を施すことにより行う請求項1記載の接点材
料用Ag複合粒子の製造方法。 3 非Ag粒子がNi、W、Mo、C、WCのうちの少
なくとも一つからなる請求項1または2記載の接点材料
用Ag複合粒子の製造方法。 4 純Ag粒子の平均粒径が0.1〜45μm、非Ag
粒子の平均粒径が0.01〜5μmである請求項1から
3までのいずれかに記載の接点材料用Ag複合粒子の製
造方法。 5 造粒されたAg複合粒子の非Ag粒子含有量が3〜
20wt%である請求項1から4までのいずれかに記載
の接点材料用Ag複合粒子の製造方法。
[Claims] 1. Ag in which pure Ag particles and non-Ag particles for reinforcing contact characteristics are granulated by mechanical compositing treatment and non-Ag particles are dispersed inside.
A method for producing Ag composite particles for contact materials to obtain composite particles. 2. The mechanical compounding process uses a device equipped with a rotatable drum and a fixed member having a curved surface facing the inner peripheral surface of the drum, and pure Ag particles and non-Ag particles are placed in the drum.
2. The method for producing Ag composite particles for contact materials according to claim 1, which is carried out by rotating a drum with the particles charged therein to apply compression and shear to both particles. 3. The method for producing Ag composite particles for contact materials according to claim 1 or 2, wherein the non-Ag particles are made of at least one of Ni, W, Mo, C, and WC. 4 The average particle size of pure Ag particles is 0.1 to 45 μm, non-Ag
The method for producing Ag composite particles for contact materials according to any one of claims 1 to 3, wherein the particles have an average particle diameter of 0.01 to 5 μm. 5 The non-Ag particle content of the granulated Ag composite particles is 3~
The method for producing Ag composite particles for contact materials according to any one of claims 1 to 4, wherein the content is 20 wt%.
JP2270789A 1990-10-09 1990-10-09 Production of ag composite particles for contact material Pending JPH04147901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2270789A JPH04147901A (en) 1990-10-09 1990-10-09 Production of ag composite particles for contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2270789A JPH04147901A (en) 1990-10-09 1990-10-09 Production of ag composite particles for contact material

Publications (1)

Publication Number Publication Date
JPH04147901A true JPH04147901A (en) 1992-05-21

Family

ID=17491025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2270789A Pending JPH04147901A (en) 1990-10-09 1990-10-09 Production of ag composite particles for contact material

Country Status (1)

Country Link
JP (1) JPH04147901A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028356A (en) * 2003-06-17 2005-02-03 Hosokawa Funtai Gijutsu Kenkyusho:Kk Method for producing composite particle and composite particle produced by the same
WO2019181650A1 (en) * 2018-03-19 2019-09-26 日本電産株式会社 Electrical contact powder, electrical contact material, electrical contact, and method for producing electrical contact powder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763648A (en) * 1980-10-02 1982-04-17 Tanaka Kikinzoku Kogyo Kk Manufacture of ag-ni composite electrical contact material
JPS62284030A (en) * 1986-06-02 1987-12-09 Sumitomo Electric Ind Ltd Electric contact point material and its production
JPS637345A (en) * 1986-06-27 1988-01-13 Sumitomo Electric Ind Ltd Electrical contact material and its production
JPH0259039A (en) * 1988-08-25 1990-02-28 Hosokawa Micron Corp Preparation of raw material of inclination function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763648A (en) * 1980-10-02 1982-04-17 Tanaka Kikinzoku Kogyo Kk Manufacture of ag-ni composite electrical contact material
JPS62284030A (en) * 1986-06-02 1987-12-09 Sumitomo Electric Ind Ltd Electric contact point material and its production
JPS637345A (en) * 1986-06-27 1988-01-13 Sumitomo Electric Ind Ltd Electrical contact material and its production
JPH0259039A (en) * 1988-08-25 1990-02-28 Hosokawa Micron Corp Preparation of raw material of inclination function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028356A (en) * 2003-06-17 2005-02-03 Hosokawa Funtai Gijutsu Kenkyusho:Kk Method for producing composite particle and composite particle produced by the same
WO2019181650A1 (en) * 2018-03-19 2019-09-26 日本電産株式会社 Electrical contact powder, electrical contact material, electrical contact, and method for producing electrical contact powder

Similar Documents

Publication Publication Date Title
Ma et al. Nanometric Si3N4 particulate-reinforced aluminum composite
JP2007169701A (en) Material for electrical contact and its production method
JP3825275B2 (en) Electrical contact member and its manufacturing method
EP0020760B1 (en) Method of preparing an electrical contact
JPH0791608B2 (en) Contact material and manufacturing method thereof
Stobrawa et al. Dispersion–strengthened nanocrystalline copper
JPH04147901A (en) Production of ag composite particles for contact material
US5763105A (en) Sintered contact material, method for preparing it, and corresponding contact facings
JPS61147827A (en) Ag-ni electrical contact material and its manufacture
JP3203442B2 (en) Composite thermal spray material, thermal spray coating and method for producing the same
WO1994024327A1 (en) Tungsten-base electrode material
KR100408647B1 (en) Manufacturing Process of alloyed and composite nano-metal powder of a high degree of purity
JPH01180901A (en) Silver nickel composite powder for electric contact material and manufacture thereof
JP2613966B2 (en) Manufacturing method of contact material
JPS63171275A (en) Spot welding electrode and manufacture thereof
JPH10195556A (en) Production of electric contact material
US6001149A (en) Process for producing a shaped article from contact material based on silver, contact material and shaped article
JPH04107232A (en) Contact material and its manufacture
Satoh et al. Application of a powder coating method to dispersion of fine Ni powders into Ag Ni alloy matrix
Chang et al. Novel method for preparation of silver-tin oxide electrical contacts
JP3106609B2 (en) Manufacturing method of electrode material
JP3067317B2 (en) Manufacturing method of electrode material
RU2706013C2 (en) Nanocomposite materials based on metal pseudoalloys for contacts of switches of powerful electrical networks with high physical and mechanical properties
JPH07133157A (en) Electrically conductive ceramics and its production
JPH08143988A (en) Production of electrical contact material