JP2007169701A - Material for electrical contact and its production method - Google Patents

Material for electrical contact and its production method Download PDF

Info

Publication number
JP2007169701A
JP2007169701A JP2005367749A JP2005367749A JP2007169701A JP 2007169701 A JP2007169701 A JP 2007169701A JP 2005367749 A JP2005367749 A JP 2005367749A JP 2005367749 A JP2005367749 A JP 2005367749A JP 2007169701 A JP2007169701 A JP 2007169701A
Authority
JP
Japan
Prior art keywords
powder
carbon
electrical contact
fine powder
carbon fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005367749A
Other languages
Japanese (ja)
Inventor
Noriaki Murahashi
紀昭 村橋
Koshiro Ueda
公志郎 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Material Corp
Original Assignee
Nidec Sankyo CMI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo CMI Corp filed Critical Nidec Sankyo CMI Corp
Priority to JP2005367749A priority Critical patent/JP2007169701A/en
Publication of JP2007169701A publication Critical patent/JP2007169701A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the aggregation of carbon fine powder and to obtain a satisfactory sintered state in a material for an electrical contact and its production method. <P>SOLUTION: The production method comprises: a stage (S1) where the main material essentially consisting of silver powder and carbon fine powder are mixed by mechanical alloying, so as to be composite powder; a stage (S2) where the composite powder is compacted, so as to be a compact; and a stage (S3) where the compact is sintered. In particular, as the carbon fine powder is fullerene such as carbon nanofiber is used. In this way, the carbon fine powder can be mixed into the silver powder in a state of being uniformly dispersed, thus the generation of an aggregated body in the carbon fine powder and deterioration in its state upon the sintering can be suppressed, and further, its workability after the compacting can be satisfactorily maintained as well. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば、リレーやスイッチ等に好適な電気接点用材料及びその製造方法に関する。   The present invention relates to an electrical contact material suitable for, for example, a relay or a switch, and a manufacturing method thereof.

リレー、スイッチ、電磁開閉器及びブレーカ等の電気接点には、耐溶着性や耐消耗性等の電気接点性能が要求されている。
例えば、従来、特許文献1には、硬く、消耗し難くするために、銀を主成分とし、カーボンナノチューブを含有した電気接点用材料が提案されている。この特許文献1に記載の技術では、原料となる粉末の混合工程において、銀粉とカーボンナノチューブとの混合粉をよくかき混ぜて混合粉中にカーボンナノチューブを分散させている。
Electrical contacts such as relays, switches, electromagnetic switches and breakers are required to have electrical contact performance such as welding resistance and wear resistance.
For example, conventionally, Patent Document 1 has proposed a material for electrical contacts containing silver as a main component and containing carbon nanotubes in order to be hard and hard to wear. In the technique described in Patent Document 1, in a mixing process of powder as a raw material, a mixed powder of silver powder and carbon nanotubes is well mixed to disperse carbon nanotubes in the mixed powder.

また、特許文献2には、軽負荷、中電流領域での消耗量を少なくするために、銀粉末と炭素微粉末との乾式混合粉末を圧縮成型し焼結させた電気接点材料が提案されている。この特許文献2に記載の技術では、混合を湿式で行うと炭素微粉末の凝集が起こり、均一な分散状態が得られないため、乾式で混合を行っている。また、この技術では、混合系において炭素微粉末が銀粉末の表面に付着することによって炭素微粉末の分散が起こるが、銀粉末の平均粒径が小さいほど、銀粉末の表面積が増大し、その結果炭素微粉末のより均一な分散状態が得られるとしている。   Patent Document 2 proposes an electrical contact material obtained by compression-molding and sintering a dry mixed powder of silver powder and carbon fine powder in order to reduce the consumption amount in a light load and medium current region. Yes. In the technique described in Patent Document 2, if the mixing is performed in a wet manner, carbon fine powder is aggregated and a uniform dispersion state cannot be obtained. Further, in this technique, carbon fine powder is dispersed by adhering to the surface of the silver powder in the mixed system. However, as the average particle size of the silver powder is smaller, the surface area of the silver powder is increased. As a result, a more uniform dispersion state of carbon fine powder is obtained.

特開2005−120427号公報Japanese Patent Laid-Open No. 2005-120427 特開平10−195556号公報JP-A-10-195556

上記従来の技術には、以下の課題が残されている。
特許文献1では、銀粉とカーボンナノチューブとを混合させる際に単によくかき混ぜる点のみを記載しているだけで、具体的な混合手段については特に言及していない。実際に、銀粉とカーボンナノチューブとを単にかき混ぜて混合させようとすると、特許文献2に記載されているようにカーボンナノチューブの凝集が起こり、均一に分散させることが困難である。
The following problems remain in the conventional technology.
Patent Document 1 only describes the point of stirring well when mixing silver powder and carbon nanotubes, and does not particularly mention specific mixing means. Actually, when silver powder and carbon nanotubes are simply stirred and mixed, as described in Patent Document 2, aggregation of carbon nanotubes occurs and it is difficult to uniformly disperse them.

また、特許文献2の技術のように、乾式で銀粉末に炭素微粉末を混合させることで、図3に示すように、銀粉末Agの表面に炭素微粉末Cがまぶされて付着した状態となり、炭素微粉末Cの凝集が湿式に比べて少なくなるが、銀粉末Agの表面に付着しきれなかった炭素微粉末Cが銀粉末Ag間で凝集体Gを形成し易くなる。この凝集体Gは、成形焼結した際に欠陥になるおそれがある。   Further, as in the technique of Patent Document 2, by mixing carbon fine powder with silver powder in a dry method, as shown in FIG. 3, carbon fine powder C is coated on the surface of silver powder Ag and adhered. Thus, the aggregation of the carbon fine powder C is less than that of the wet type, but the carbon fine powder C that cannot be adhered to the surface of the silver powder Ag is easy to form the aggregate G between the silver powder Ag. The aggregate G may become a defect when it is molded and sintered.

特に、カーボンナノチューブのような微極細な炭素微粉末の場合は、銀粉末表面での凝集体を形成し易い。このカーボンナノチューブは、通常、水系又はアルコール系などの溶液に分散した状態で供給される。これは、乾燥した状態では、カーボンナノチューブが絡まって上述した凝集体となってしまうためである。この凝集体のサイズは、例えば100μm程度である。この凝集体状態のカーボンナノチューブを従来の粉末冶金プロセスで解くことは困難であった。   In particular, in the case of a fine carbon fine powder such as a carbon nanotube, an aggregate on the surface of the silver powder is easily formed. The carbon nanotubes are usually supplied in a state of being dispersed in a water-based or alcohol-based solution. This is because in the dried state, the carbon nanotubes are entangled to form the above-mentioned aggregate. The size of the aggregate is, for example, about 100 μm. It was difficult to solve the aggregated carbon nanotubes by a conventional powder metallurgy process.

さらに、この特許文献2の技術では、炭素微粉末を銀粉末の表面に分散付着させる混合方法を採用しているが、銀粉末の表面を覆う炭素微粉末が銀の焼結(固相拡散)を妨げ、欠陥や気孔が発生し易くなり良好な焼結状態が得られないおそれがあった。そして、これらの問題は、炭素微粉末の添加量が多くなるほど顕著となり、混合した粉末の固化成形後の加工性も悪化する不都合があった。   Furthermore, the technique of Patent Document 2 employs a mixing method in which carbon fine powder is dispersed and adhered to the surface of the silver powder. The carbon fine powder covering the surface of the silver powder is sintered with silver (solid phase diffusion). As a result, defects and pores are likely to occur, and a good sintered state may not be obtained. These problems become more prominent as the amount of carbon fine powder added increases, and the workability of the mixed powder after solidification molding deteriorates.

本発明は、前述の課題に鑑みてなされたもので、炭素微粉末の凝集を抑制すると共に良好な焼結状態が得られる電気接点用材料の製造方法及びこの製法で作製された電気接点用材料を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and is a method for producing an electrical contact material that suppresses agglomeration of fine carbon powder and that provides a good sintered state, and an electrical contact material produced by this production method. The purpose is to provide.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明の電気接点用材料の製造方法は、銀粉末を主成分とする主材料と炭素微粉末とをメカニカルアロイングにより混合して複合粉末とする工程と、前記複合粉末を成形して成形体とする工程と、前記成形体を焼結する工程と、を有することを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, the method for producing an electrical contact material of the present invention includes a step of mixing a main material mainly composed of silver powder and carbon fine powder by mechanical alloying to form a composite powder, and molding the composite powder. It has the process of setting it as a molded object, and the process of sintering the said molded object.

この電気接点用材料の製造方法では、銀粉末を主成分とする主材料と炭素微粉末とをメカニカルアロイングにより混合して複合粉末とすることにより、銀粉末の内部に炭素微粉末が分散混入される。すなわち、メカニカルアロイングによるボールミル時のボールの衝突エネルギーで炭素微粉末の混入を行うので、粉末同士の機械的な折りたたみと圧延を繰り返し起こさせることで、銀粉末の表面に炭素微粉末を単に付着させるのではなく、銀粉末内部に炭素微粉末を均一分散させた状態で混入させることができる。したがって、銀粉末の表面への炭素微粉末の付着を抑制することができ、炭素微粉末の凝集体発生や焼結時の状態悪化を抑制すると共に固化成形後の加工性も良好に維持することができる。なお、銀粉末は、銀合金粉末も含むものとする。   In this method of manufacturing a material for electrical contacts, carbon fine powder is dispersed and mixed inside silver powder by mixing the main material mainly composed of silver powder and carbon fine powder by mechanical alloying to form a composite powder. Is done. In other words, carbon fine powder is mixed by the ball collision energy during ball milling by mechanical alloying, so by simply causing mechanical folding and rolling between the powders, the carbon fine powder simply adheres to the surface of the silver powder. Instead, the fine carbon powder can be mixed in the silver powder in a uniformly dispersed state. Therefore, adhesion of fine carbon powder to the surface of the silver powder can be suppressed, and agglomeration of fine carbon powder and deterioration of the state during sintering can be suppressed and workability after solidification can be maintained well. Can do. The silver powder includes silver alloy powder.

また、本発明の電気接点用材料の製造方法は、前記炭素微粉末がフラーレンであることを特徴とする。すなわち、この電気接点用材料の製造方法では、炭素微粉末としてフラーレン(炭素原子からなるクラスターで、炭素の同素体)を採用するので、通常のグラファイトよりも高い硬度が得られる炭素の同素体を銀粉末内部に分散させることができ、より硬い電気接点用材料を得ることができる。   In the method for producing an electrical contact material of the present invention, the carbon fine powder is fullerene. That is, in this method for producing an electrical contact material, fullerene (a cluster of carbon atoms and carbon allotrope) is used as the carbon fine powder, so that the carbon allotrope that can obtain higher hardness than ordinary graphite is silver powder. It can be dispersed inside, and a harder material for electrical contacts can be obtained.

さらに、本発明の電気接点用材料の製造方法は、前記フラーレンがカーボンナノファイバであることを特徴とする。すなわち、この電気接点用材料の製造方法では、フラーレンとして特に繊維方向の引張強度が非常に高い強度を有すると共に非常に高い弾性力も有するカーボンナノファイバを採用するので、さらに硬く優れた耐溶着性や耐消耗性等を有する電気接点用材料を得ることができる。例えば、カーボンナノファイバとしては、カーボンナノチューブ(炭素によって作られるネットワークが単層あるいは多層の同軸管状になったフラーレンの一種)や多層カーボンナノプレート(炭素によって作られるプレートが多数積層してファイバ状になったフラーレンの一種)等が用いられる。   Furthermore, the method for producing an electrical contact material of the present invention is characterized in that the fullerene is a carbon nanofiber. That is, in this method for producing a material for electrical contacts, carbon nanofibers having a very high tensile strength in the fiber direction and a very high elastic force are adopted as fullerenes. An electrical contact material having wear resistance and the like can be obtained. For example, as carbon nanofibers, carbon nanotubes (a type of fullerene in which the network made of carbon is a single-layer or multilayer coaxial tube) and multi-layer carbon nanoplates (multiple plates made of carbon are laminated into a fiber shape) A kind of fullerene).

また、本発明の電気接点用材料の製造方法は、前記炭素微粉末を0.05〜1.0重量%含有させることを特徴とする。すなわち、電気接点用材料の製造方法では、炭素微粉末を0.05〜1.0重量%含有させることにより、電気接点性能として十分な耐溶着性、加工性及び耐消耗性を得ることができる。   Moreover, the manufacturing method of the material for electrical contacts of the present invention is characterized by containing 0.05 to 1.0% by weight of the carbon fine powder. That is, in the method for producing an electrical contact material, by including 0.05 to 1.0% by weight of carbon fine powder, sufficient welding resistance, workability and wear resistance can be obtained as electrical contact performance. .

本発明の電気接点用材料は、上記本発明の電気接点用材料の製造方法によって作製されたことを特徴とする。
また、本発明の電気接点用材料は、銀粉末を主成分とする複合粉末の成形焼結体である電気接点用材料であって、前記銀粉末の内部に炭素微粉末が分散混入されていることを特徴とする。
これらの電気接点用材料では、銀粉末の内部に炭素微粉末が均一に分散混入されて成形焼結されているので、欠陥や気孔の発生が抑制された良好な焼結状態が得られ、より硬く、優れた耐溶着性や耐消耗性等の電気接点性能を有している。
The electrical contact material of the present invention is produced by the above-described method for producing an electrical contact material of the present invention.
The material for electrical contacts of the present invention is a material for electrical contacts which is a composite sintered compact of a composite powder mainly composed of silver powder, in which fine carbon powder is dispersed and mixed inside the silver powder. It is characterized by that.
In these electrical contact materials, since fine carbon powder is uniformly dispersed and molded and sintered inside the silver powder, a good sintered state in which generation of defects and pores is suppressed is obtained. It is hard and has excellent electrical contact performance such as welding resistance and wear resistance.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係る電気接点用材料の製造方法によれば、メカニカルアロイングによって銀粉末と炭素微粉末との混合を行うので、銀粉末内部に炭素微粉末を均一分散させた状態で混入させることができ、炭素微粉末の凝集体発生や焼結時の状態悪化を抑制すると共に固化成形後の加工性も良好に維持することができる。したがって、この製法によって作製された本発明の電気接点用材料によれば、良好な焼結状態が得られ、硬く優れた耐溶着性や耐消耗性等の電気接点性能を有し、リレー、スイッチ、電磁開閉器及びブレーカ等に好適な電気接点を得ることができる。
The present invention has the following effects.
That is, according to the method for producing a material for electrical contacts according to the present invention, since silver powder and carbon fine powder are mixed by mechanical alloying, carbon fine powder is mixed in a state of being uniformly dispersed in silver powder. It is possible to suppress the generation of aggregates of carbon fine powder and deterioration of the state at the time of sintering, and also maintain good workability after solidification molding. Therefore, according to the electrical contact material of the present invention produced by this manufacturing method, a good sintered state is obtained, and it has electrical contact performance such as hard and excellent welding resistance and wear resistance. Electrical contacts suitable for electromagnetic switches and breakers can be obtained.

以下、本発明に係る電気接点用材料の製造方法及びこの製法で作製された電気接点用材料の一実施形態を、図1及び図2を参照しながら説明する。   Hereinafter, an embodiment of a method for producing an electrical contact material according to the present invention and an electrical contact material produced by the production method will be described with reference to FIGS. 1 and 2.

本実施形態の電気接点用材料の製造方法は、図1及び図2に示すように、まず銀粉末Agを主成分とする主材料と炭素微粉末Cとをメカニカルアロイングにより混合して複合粉末とする(S1)。上記炭素微粉末Cとしては、フラーレンを用いることが好ましく、特にフラーレンの一種であるカーボンナノファイバを使用することが望ましい。カーボンナノファイバとしては、単層又は多層のカーボンナノチューブ又は多層カーボンナノプレートを用いる。   As shown in FIGS. 1 and 2, the manufacturing method of the electrical contact material of the present embodiment is a composite powder obtained by first mixing a main material mainly composed of silver powder Ag and carbon fine powder C by mechanical alloying. (S1). As the carbon fine powder C, fullerene is preferably used, and it is particularly desirable to use carbon nanofiber which is a kind of fullerene. As the carbon nanofiber, a single-walled or multilayered carbon nanotube or a multilayered carbon nanoplate is used.

多層カーボンナノチューブのサイズとしては、例えば直径15〜20nm、長さ0.1〜10μmのものを使用し、多層カーボンナノプレートのサイズとしては、例えば直径20〜100nm、長さ0.1〜1μmのものを使用する。なお、銀粉末Agのサイズは、例えば10〜60μm程度である。   As the size of the multi-walled carbon nanotube, for example, one having a diameter of 15 to 20 nm and a length of 0.1 to 10 μm is used. As the size of the multi-walled carbon nanoplate, for example, a diameter of 20 to 100 nm and a length of 0.1 to 1 μm is used. Use things. In addition, the size of silver powder Ag is about 10-60 micrometers, for example.

また、炭素微粉末Cは、0.05〜1.0重量%の範囲内で含有させる。炭素微粉末Cの添加量をこの範囲に設定しているのは、0.05重量%未満では十分な耐溶着性などの電気接点性能が得られず、1.0重量%を超えると加工が困難になると共に耐消耗性などの電気接点性能が得られないためである。   Carbon fine powder C is contained in the range of 0.05 to 1.0% by weight. The reason why the amount of carbon fine powder C added is set in this range is that if it is less than 0.05% by weight, electrical contact performance such as sufficient welding resistance cannot be obtained, and if it exceeds 1.0% by weight, the processing is performed. This is because it becomes difficult and electrical contact performance such as wear resistance cannot be obtained.

このメカニカルアロイングされた複合粉末は、図2に示すように、銀粉末Agの内部に炭素微粉末Cが分散混入された状態となる。すなわち、メカニカルアロイングによるボールミル時のボールの衝突エネルギーで炭素微粉末Cの混入を行うので、粉末同士の機械的な折りたたみと圧延を繰り返し起こさせることで、銀粉末Agの表面に炭素微粉末Cを単に付着させるのではなく、銀粉末Ag内部に炭素微粉末Cを均一分散させた状態で混入させることができる。なお、この銀粉末Agは、銀合金粉末であっても構わない。また、メカニカルアロイングを行う装置としては、アトライタ装置、振動ミル又は遊星式ボールミル装置などを用いる。   As shown in FIG. 2, the mechanically alloyed composite powder is in a state in which the carbon fine powder C is dispersed and mixed in the silver powder Ag. That is, since the carbon fine powder C is mixed by the collision energy of the ball at the time of ball milling by mechanical alloying, the carbon fine powder C is formed on the surface of the silver powder Ag by repeatedly causing mechanical folding and rolling of the powders. The carbon fine powder C can be mixed in a state of being uniformly dispersed in the silver powder Ag. The silver powder Ag may be a silver alloy powder. As an apparatus for performing mechanical alloying, an attritor apparatus, a vibration mill, a planetary ball mill apparatus, or the like is used.

メカニカルアロイングで用いるボールは、例えばステンレス鋼製、超硬合金製などの直径1〜10mm程度のものを使用する。また、メカニカルアロイングの処理時間は、例えば10〜30時間に設定する。さらに、処理に際しては、適当な粉砕助剤(アルコール系など)を添加してもよい。特に、炭素微粉末Cとして多層カーボンナノチューブを使用する場合は、イソプロピルアルコールなどを用いた分散溶液の状態で処理容器に投入する。この場合の分散溶媒は、メカニカルアロイングのための粉砕助剤として機能する。なお、粉砕助剤を使用した場合は、メカニカルアロイング処理後に粉末の乾燥を行う。   The balls used for mechanical alloying are, for example, those having a diameter of about 1 to 10 mm made of stainless steel or cemented carbide. Moreover, the processing time of mechanical alloying is set to 10 to 30 hours, for example. Furthermore, an appropriate grinding aid (such as an alcohol) may be added during the treatment. In particular, when multi-walled carbon nanotubes are used as the carbon fine powder C, they are put into a processing vessel in a dispersion solution using isopropyl alcohol or the like. The dispersion solvent in this case functions as a grinding aid for mechanical alloying. When a grinding aid is used, the powder is dried after mechanical alloying.

次に、メカニカルアロイングされた複合粉末を用いて、金型成形又は静水圧成形などの公知の粉末成形方法により圧粉成形して成形体とする(S2)。さらに、この成形体を非酸化性の雰囲気中において焼結を行って成形焼結体(電気接点用材料)とする(S3)。この焼結方法としては、真空焼結、常圧焼結、加圧焼結などの公知の焼結方法を用いる。   Next, using the mechanically alloyed composite powder, a compact is formed by compacting by a known powder molding method such as mold molding or isostatic pressing (S2). Further, this molded body is sintered in a non-oxidizing atmosphere to form a molded sintered body (electric contact material) (S3). As this sintering method, a known sintering method such as vacuum sintering, atmospheric pressure sintering, pressure sintering or the like is used.

この成形焼結体を電気接点とする形態としては、以下のものがある。
(1)成形焼結体のままの状態で接点とする。
(2)成形焼結体にコイニング加工や切削加工を施して所定形状の接点とする(S4)。
(3)成形焼結体に押出・伸線加工を施して線材として後、ヘッダ加工によりリベット形状の接点とする(S4)。
(4)成形焼結体に圧延加工を施して板材とした後、切断又は抜き加工により所定形状の接点とする(S4)。
Examples of the form using the molded sintered body as an electrical contact include the following.
(1) A contact is made in the state of the molded sintered body.
(2) The shaped sintered body is subjected to coining or cutting to obtain a contact having a predetermined shape (S4).
(3) Extrusion and wire drawing are performed on the molded sintered body to form a wire, and then a rivet-shaped contact is formed by header processing (S4).
(4) After rolling the formed sintered body to obtain a plate material, a contact having a predetermined shape is obtained by cutting or punching (S4).

このように本実施形態では、銀粉末Agを主成分とする主材料と炭素微粉末Cとをメカニカルアロイングにより混合して複合粉末とすることにより、銀粉末Ag内部に炭素微粉末Cを均一分散させた状態で混入させることができる。したがって、銀粉末Agの表面への炭素微粉末Cの付着を抑制することができ、炭素微粉末Cの凝集体発生や焼結時の状態悪化を抑制すると共に固化成形後の加工性も良好に維持することができる。したがって、この製法によって作製された電気接点用材料によれば、良好な焼結状態が得られ、硬く優れた耐溶着性や耐消耗性等の電気接点性能を有することができる。   As described above, in this embodiment, the main material mainly composed of silver powder Ag and the carbon fine powder C are mixed by mechanical alloying to form a composite powder, whereby the carbon fine powder C is uniformly distributed inside the silver powder Ag. It can be mixed in a dispersed state. Therefore, the adhesion of the carbon fine powder C to the surface of the silver powder Ag can be suppressed, and the generation of aggregates of the carbon fine powder C and the deterioration of the state at the time of sintering are suppressed, and the workability after solidification molding is also good. Can be maintained. Therefore, according to the electrical contact material produced by this manufacturing method, a good sintered state can be obtained, and the electrical contact performance such as hard and excellent welding resistance and wear resistance can be obtained.

また、炭素微粉末Cとしてフラーレン、特に繊維方向の引張強度が非常に高い強度を有すると共に非常に高い弾性力も有するカーボンナノファイバを採用するので、さらに硬く優れた耐溶着性や耐消耗性等を有する電気接点用材料を得ることができる。
さらに、炭素微粉末Cを0.05〜1.0重量%含有させることにより、電気接点性能として十分な耐溶着性、耐消耗性及び加工性を得ることができる。
In addition, fullerene as carbon fine powder C, especially carbon nanofibers with very high tensile strength in the fiber direction and very high elasticity, is used, so it is harder and has better welding resistance and wear resistance. The material for electrical contacts having can be obtained.
Further, by containing 0.05 to 1.0% by weight of carbon fine powder C, sufficient welding resistance, wear resistance and workability can be obtained as electrical contact performance.

次に、本発明に係る電気接点用材料の製造方法を、実施例により具体的に説明する。
まず、炭素微粉末Cとして多層カーボンナノチューブを分散したイソプロピルアルコール溶液及び250メッシュ以下の粒度の銀粉末Agを用意し、これらを表1に示す割合に成るように配合した。
Next, the method for producing the electrical contact material according to the present invention will be described in detail with reference to examples.
First, an isopropyl alcohol solution in which multi-walled carbon nanotubes were dispersed and silver powder Ag having a particle size of 250 mesh or less were prepared as carbon fine powder C, and these were blended so as to have the ratio shown in Table 1.

Figure 2007169701
Figure 2007169701

上記配合の銀粉末及び多層カーボンナノチューブを、アトライタ装置によってメカニカルアロイング処理して複合粉末とした。この処理では、直径5mmの超硬合金製のボールを使用し、処理時間は12時間とした。
次に、メカニカルアロイング処理した複合粉末を圧力200MPaで金型成形し、直径10mmの円柱状成形体とした。そして、この円柱状成形体を真空中で900℃1時間の焼結を行って焼結体とした後、さらに、この焼結体を圧力500MPaでコイニングし、緻密化を図って表1の試料1〜6の電気接点用材料とした。
The silver powder and multi-walled carbon nanotubes of the above blend were mechanically alloyed with an attritor device to obtain a composite powder. In this treatment, a ball made of cemented carbide having a diameter of 5 mm was used, and the treatment time was 12 hours.
Next, the mechanically alloyed composite powder was molded with a pressure of 200 MPa to obtain a cylindrical molded body having a diameter of 10 mm. The cylindrical shaped body was sintered in a vacuum at 900 ° C. for 1 hour to obtain a sintered body, and further, the sintered body was coined at a pressure of 500 MPa for densification, and the samples shown in Table 1 were used. It was set as the material for electrical contacts of 1-6.

また、別の実施例として、表2に示す割合に配合した銀粉末Ag(250メッシュ以下のもの)と炭素微粉末Cとしての多層カーボンナノプレートとを用意し、上記実施例と同様に、メカニカルアロイング処理、金型成形、焼結及びコイニングを行って表2の試料7〜12の電気接点用材料とした。なお、このメカニカルアロイング処理では、粉砕助剤としてイソプロピルアルコールを粉末重量の1%加えて処理を行った。   As another example, silver powder Ag (250 mesh or less) blended in the proportions shown in Table 2 and a multilayer carbon nanoplate as carbon fine powder C were prepared. The materials for electrical contacts of Samples 7 to 12 in Table 2 were obtained by performing alloying treatment, mold forming, sintering and coining. In this mechanical alloying treatment, isopropyl alcohol was added as a grinding aid at 1% of the powder weight, and the treatment was performed.

Figure 2007169701
Figure 2007169701

なお、比較例として、表3に示す割合に配合した銀粉末Ag(メッシュ250以下のもの)と炭素微粉末Cとしての多層カーボンナノプレートとを用意し、V型混合機を用いて一般的な混合処理を行ったものも作製した。この混合処理では、混合時間を5時間とした。また、混合処理後は、上記実施例と同様の金型成形、焼結及びコイニングを行って表3の試料13〜18の電気接点用材料とした。   As a comparative example, silver powder Ag (mesh 250 or less) blended in the proportions shown in Table 3 and multi-layer carbon nanoplates as carbon fine powder C were prepared, and a general type using a V-type mixer A mixture-treated product was also produced. In this mixing process, the mixing time was 5 hours. In addition, after the mixing treatment, the same mold forming, sintering and coining as in the above example were performed to obtain the electrical contact materials of Samples 13 to 18 in Table 3.

Figure 2007169701
Figure 2007169701

このように作製した上記実施例及び比較例の電気接点用材料を切削加工することで、頭部径4mm、頭部厚1mm、足部径2mm、足部長2mmのリベット接点(電気接点)を作製した。
上記実施例及び比較例の試験として、上記リベット接点としたものをASTM(American Society for Testing and Materials:米国材料試験協会) 電気接点試験機用の台金にかしめて電気試験を行った。
この電気試験の条件は、AC210V、抵抗負荷20A、1秒ON/4秒OFF、接触力40gf、開離力40gf及び開閉試験回数3万回とした。
そして、この電気試験における評価として、電気試験による累積溶着回数と開閉試験前後の重量差である接点消耗重量とを調べた。
The rivet contact (electrical contact) having a head diameter of 4 mm, a head thickness of 1 mm, a foot diameter of 2 mm, and a foot length of 2 mm is manufactured by cutting the electrical contact materials of the above-described examples and comparative examples. did.
As a test of the above-mentioned Examples and Comparative Examples, an electrical test was performed by caulking a rivet contact with a base for an ASTM (American Society for Testing and Materials) electrical contact tester.
The conditions for this electrical test were AC210V, resistance load 20A, 1 second ON / 4 seconds OFF, contact force 40 gf, opening force 40 gf, and open / close test number of times 30,000.
As an evaluation in this electrical test, the cumulative number of weldings by electrical test and the contact consumption weight, which is the weight difference before and after the switching test, were examined.

表1〜3に示すように、メカニカルアロイング処理を行った複合粉末による本実施例では、従来の一般的な混合処理を行った比較例に対して、累積溶着回数及び接点消耗重量が両方とも大幅に低減されており、耐溶着性及び耐消耗性のいずれも明らかに優れていることがわかる。   As shown in Tables 1 to 3, in the present example using the composite powder subjected to mechanical alloying treatment, both the cumulative number of welding times and the contact consumption weight are both compared to the comparative example in which the conventional general mixing treatment was performed. It can be seen that both the resistance to welding and the wear resistance are clearly superior.

なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では、上述したように炭素微粉末Cとしてカーボンナノチューブやカーボンナノプレートのカーボンナノファイバを採用することが好ましいが、通常のグラファイト等の他の炭素微粉末を用いても構わない。また、フラーレンとして球状の構造を有するC60やC70等のクラスターを用いても構わない。
また、炭素微粉末Cの他に、Cu、Ni及びFe等の金属粉末、又は、Sn、Zn及びCu等の酸化物の粉末を一種以上、適宜混合しても構わない。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above embodiment, it is preferable to employ carbon nanotubes or carbon nanofibers such as carbon nanoplates as the carbon fine powder C as described above, but other carbon fine powders such as ordinary graphite may be used. . Further, it may be used clusters such as C 60 and C 70 having a spherical structure as fullerenes.
In addition to the carbon fine powder C, one or more metal powders such as Cu, Ni and Fe, or oxide powders such as Sn, Zn and Cu may be appropriately mixed.

本発明に係る一実施形態の電気接点用材料の製造方法及びこの製法により作製した電気接点用材料において、電気接点用材料の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the electrical contact material in the manufacturing method of the electrical contact material of one Embodiment which concerns on this invention, and the electrical contact material produced by this manufacturing method. 本実施形態の電気接点用材料を示す概略的な断面図である。It is a schematic sectional drawing which shows the material for electrical contacts of this embodiment. 本発明に係る従来例の電気接点用材料を示す概略的な断面図である。It is a schematic sectional drawing which shows the material for electrical contacts of the prior art example which concerns on this invention.

符号の説明Explanation of symbols

Ag…銀粉末、C…炭素微粉末、G…凝集体
Ag ... silver powder, C ... carbon fine powder, G ... aggregate

Claims (6)

銀粉末を主成分とする主材料と炭素微粉末とをメカニカルアロイングにより混合して複合粉末とする工程と、
前記複合粉末を成形して成形体とする工程と、
前記成形体を焼結する工程と、を有することを特徴とする電気接点用材料の製造方法。
A process of mixing a main material mainly composed of silver powder and fine carbon powder by mechanical alloying to form a composite powder;
Forming the composite powder into a molded body;
And a step of sintering the molded body. A method for producing an electrical contact material.
請求項1に記載の電気接点用材料の製造方法において、
前記炭素微粉末がフラーレンであることを特徴とする電気接点用材料の製造方法。
In the manufacturing method of the material for electrical contacts of Claim 1,
The method for producing an electrical contact material, wherein the carbon fine powder is fullerene.
請求項2に記載の電気接点用材料の製造方法において、
前記フラーレンがカーボンナノファイバであることを特徴とする電気接点用材料の製造方法。
In the manufacturing method of the material for electrical contacts according to claim 2,
The method for producing a material for electrical contacts, wherein the fullerene is a carbon nanofiber.
請求項1から3のいずれか一項に記載の電気接点用材料の製造方法において、
前記炭素微粉末を0.05〜1.0重量%含有させることを特徴とする電気接点用材料の製造方法。
In the manufacturing method of the material for electric contacts according to any one of claims 1 to 3,
A method for producing an electrical contact material, comprising 0.05 to 1.0% by weight of the carbon fine powder.
請求項1から4のいずれか一項に記載の電気接点用材料の製造方法によって作製されたことを特徴とする電気接点用材料。   An electrical contact material produced by the electrical contact material manufacturing method according to any one of claims 1 to 4. 銀粉末を主成分とする複合粉末の成形焼結体である電気接点用材料であって、
前記銀粉末の内部に炭素微粉末が分散混入されていることを特徴とする電気接点用材料。
A material for electrical contacts which is a molded sintered body of composite powder mainly composed of silver powder,
A material for electrical contacts, wherein fine carbon powder is dispersed and mixed in the silver powder.
JP2005367749A 2005-12-21 2005-12-21 Material for electrical contact and its production method Pending JP2007169701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005367749A JP2007169701A (en) 2005-12-21 2005-12-21 Material for electrical contact and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005367749A JP2007169701A (en) 2005-12-21 2005-12-21 Material for electrical contact and its production method

Publications (1)

Publication Number Publication Date
JP2007169701A true JP2007169701A (en) 2007-07-05

Family

ID=38296643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005367749A Pending JP2007169701A (en) 2005-12-21 2005-12-21 Material for electrical contact and its production method

Country Status (1)

Country Link
JP (1) JP2007169701A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030100A (en) * 2007-07-26 2009-02-12 Mitsubishi Material Cmi Kk Ag-Ni-BASED ELECTRICAL CONTACT MATERIAL AND ITS MANUFACTURING METHOD
JP2010508432A (en) * 2006-10-31 2010-03-18 アルカン テヒノロギー ウント メーニッジメント リミテッド Materials containing carbon nanotubes, methods for producing these materials, and use of these materials
WO2010109777A1 (en) 2009-03-24 2010-09-30 株式会社アライドマテリアル Electrical contact material
JP2011106030A (en) * 2009-11-17 2011-06-02 Siemens Ag Method of synthesis of fulleride of metal nano-cluster and material comprising fulleride of metal nano-cluster
CN104681312A (en) * 2013-11-29 2015-06-03 Ls产电株式会社 Electrical Contact Materials And Method For Preparing The Same
JP2015148009A (en) * 2014-01-10 2015-08-20 丸祥電器株式会社 Spherical composite silver fine particle containing extra-fine carbon fiber and manufacturing method therefor
KR20150103569A (en) * 2014-03-03 2015-09-11 희성금속 주식회사 Silver-carbon based electrical contact material for circuit breaker and method for preparing thereof
CN111647829A (en) * 2020-05-28 2020-09-11 西安工程大学 Preparation method of whisker particle hybrid reinforced silver tin oxide electric contact alloy

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010508432A (en) * 2006-10-31 2010-03-18 アルカン テヒノロギー ウント メーニッジメント リミテッド Materials containing carbon nanotubes, methods for producing these materials, and use of these materials
JP2009030100A (en) * 2007-07-26 2009-02-12 Mitsubishi Material Cmi Kk Ag-Ni-BASED ELECTRICAL CONTACT MATERIAL AND ITS MANUFACTURING METHOD
WO2010109777A1 (en) 2009-03-24 2010-09-30 株式会社アライドマテリアル Electrical contact material
JP2011106030A (en) * 2009-11-17 2011-06-02 Siemens Ag Method of synthesis of fulleride of metal nano-cluster and material comprising fulleride of metal nano-cluster
CN104681312A (en) * 2013-11-29 2015-06-03 Ls产电株式会社 Electrical Contact Materials And Method For Preparing The Same
EP2879145A1 (en) * 2013-11-29 2015-06-03 LSIS Co., Ltd. Electrical contact materials and method for preparing the same
JP2015105439A (en) * 2013-11-29 2015-06-08 エルエス産電株式会社Lsis Co., Ltd. Electrical contact material and method for producing the same
US9570207B2 (en) 2013-11-29 2017-02-14 Lsis Co., Ltd. Electrical contact materials and method for preparing the same
JP2015148009A (en) * 2014-01-10 2015-08-20 丸祥電器株式会社 Spherical composite silver fine particle containing extra-fine carbon fiber and manufacturing method therefor
KR20150103569A (en) * 2014-03-03 2015-09-11 희성금속 주식회사 Silver-carbon based electrical contact material for circuit breaker and method for preparing thereof
CN111647829A (en) * 2020-05-28 2020-09-11 西安工程大学 Preparation method of whisker particle hybrid reinforced silver tin oxide electric contact alloy

Similar Documents

Publication Publication Date Title
JP6126066B2 (en) Electrical contact material and manufacturing method thereof
JP2007169701A (en) Material for electrical contact and its production method
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
JP5614708B2 (en) Manufacturing method of electrode material for vacuum circuit breaker and electrode material for vacuum circuit breaker
JP5904308B2 (en) Method for producing electrode material
JP5861807B1 (en) Method for producing electrode material
WO2015133264A1 (en) Alloy
JP5077660B2 (en) COATING COMPOSITION FOR PRODUCING METAL POWDER COMPOSITE, METAL COMPOSITE MANUFACTURED BY THE METAL POWDER COMPOSITE, METAL LAMINATE COMPOSITE, AND METHOD FOR PRODUCING THEM
US6432157B1 (en) Method for preparing Ag-ZnO electric contact material and electric contact material produced thereby
JP4410066B2 (en) Manufacturing method of electrical contact material
Kang et al. Achieving highly dispersed nanofibres at high loading in carbon nanofibre–metal composites
JP4579348B1 (en) Electrical contact material
JPWO2011162106A1 (en) Electrical contact material
JP2009030100A (en) Ag-Ni-BASED ELECTRICAL CONTACT MATERIAL AND ITS MANUFACTURING METHOD
WO2019181649A1 (en) Electrical contact powder, electrical contact material, electrical contact, and method for producing electrical contact powder
KR101850011B1 (en) Electrical contact materials with high radiating properties and arc-resistivity using silver-silver coated carbon nanotube composites and its manufacturing method
JPH11269579A (en) Silver-tungsten/wc base sintered type electric contact material and its production
JP2005120427A (en) Material for electric contact, and electric contact
JP5134166B2 (en) Electrical contact material
JPH10195556A (en) Production of electric contact material
CN112779436A (en) AgNi electrical contact material and preparation method thereof
KR20170070471A (en) Fabrication Method of Ag-Ni-C Composite Clad Strip for Electrical Contact Materials of Magnetic Connector
Koti et al. Hardness and electrical conductivity of uncoated and silver coated carbon nanotubes reinforced copper nanocomposites
JPH0813065A (en) Sintered material for electrical contact and production thereof
JPWO2011162107A1 (en) Electrical contact material