JP2009030100A - Ag-Ni-BASED ELECTRICAL CONTACT MATERIAL AND ITS MANUFACTURING METHOD - Google Patents

Ag-Ni-BASED ELECTRICAL CONTACT MATERIAL AND ITS MANUFACTURING METHOD Download PDF

Info

Publication number
JP2009030100A
JP2009030100A JP2007194446A JP2007194446A JP2009030100A JP 2009030100 A JP2009030100 A JP 2009030100A JP 2007194446 A JP2007194446 A JP 2007194446A JP 2007194446 A JP2007194446 A JP 2007194446A JP 2009030100 A JP2009030100 A JP 2009030100A
Authority
JP
Japan
Prior art keywords
powder
contact material
electrical contact
coated
metal salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007194446A
Other languages
Japanese (ja)
Inventor
Akihiko Inaba
明彦 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Material Corp
Original Assignee
Nidec Sankyo CMI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo CMI Corp filed Critical Nidec Sankyo CMI Corp
Priority to JP2007194446A priority Critical patent/JP2009030100A/en
Publication of JP2009030100A publication Critical patent/JP2009030100A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Ag-Ni-based electrical contact material and its manufacturing method which can provide high uniform dispersion of Ag and Ni by inexpensive equipment. <P>SOLUTION: This method comprises the following steps: a step of mixing an Ni solution containing metal salt in an amount equivalent to 0.1 to 25 wt.% expressed in terms of metal Ni with an Ag powder of ≤50 μm average particle size, drying the resulting mixture, and further applying decomposition and reduction treatment at a temperature not lower than the thermal decomposition temperature of the metal salt to form an Ni-coated Ag powder; and a fine dispersion step where the Ni-coated Ag powder is subjected to mechanical alloying treatment or ball mill pulverizing and mixing treatment. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、リレー、スイッチ、電磁開閉器及びブレーカ等に好適なAg−Ni系電気接点材料及びその製造方法に関する。   The present invention relates to an Ag-Ni electric contact material suitable for, for example, a relay, a switch, an electromagnetic switch, a breaker, and the like, and a manufacturing method thereof.

リレー、スイッチ、電磁開閉器及びブレーカ等に用いられる電気接点材料としては、耐溶着性や耐消耗性等の電気接点性能が要求され、種々の材料が提案されて広く実用に供されている。この電気接点材料の一般的な製法としては、Ag(銀)粉末とNi(ニッケル)粉末とを機械的に混合した後、成形、焼結を行う粉末冶金法が知られている。しかしながら、この方法では、AgとNiとの均一分散が難しく、Niの凝集が発生して等電気的特性(耐溶着性、耐消耗性)の劣化に繋がる不都合があった。   As electrical contact materials used for relays, switches, electromagnetic switches, breakers and the like, electrical contact performance such as welding resistance and wear resistance is required, and various materials have been proposed and widely used. As a general manufacturing method of this electrical contact material, a powder metallurgy method is known in which Ag (silver) powder and Ni (nickel) powder are mechanically mixed and then molded and sintered. However, this method has a disadvantage that uniform dispersion of Ag and Ni is difficult, and Ni aggregation occurs, leading to deterioration of isoelectric characteristics (welding resistance, wear resistance).

また、機械的に混合したAg粉末とNi粉末とをメカニカルアロイング処理やボールミル粉砕混合処理する方法もあるが、この場合でもNiの延性により微細化することが困難であった。
このため、従来、特許文献1では、Ag及びNiの金属塩を含有する溶液を噴霧して得た液滴を、金属塩の熱分解温度以上で熱分解して電気接点用の粉末を形成する噴霧熱分解法が提案されている。また、特許文献2では、Ag粉末とNi粉末とをメカノケミカル反応により混合してAg粒子の表面をNi粒子で被覆した混合粉を調製し、電気接点用の粉末とする製法が提案されている。
Further, there is a method in which mechanically mixed Ag powder and Ni powder are mechanically alloyed or ball mill pulverized and mixed, but even in this case, it is difficult to reduce the size due to the ductility of Ni.
For this reason, conventionally, in Patent Document 1, droplets obtained by spraying a solution containing a metal salt of Ag and Ni are thermally decomposed at a temperature equal to or higher than the thermal decomposition temperature of the metal salt to form a powder for electrical contacts. A spray pyrolysis method has been proposed. Patent Document 2 proposes a manufacturing method in which Ag powder and Ni powder are mixed by a mechanochemical reaction to prepare a mixed powder in which the surface of Ag particles is coated with Ni particles and used as a powder for electrical contacts. .

特開2002−12904号公報Japanese Patent Laid-Open No. 2002-12904 特開平11−1733号公報JP-A-11-1733

上記従来の技術には、以下の課題が残されている。
すなわち、従来の特許文献1及び2の製法では、いずれも高価な湿式専用のプラント設備が必要になり、製造コストが増大してしまう不都合があった。また、これらの技術においても、まだAgとNiとの十分な均一分散性を得ることができなかった。
The following problems remain in the conventional technology.
In other words, the conventional production methods of Patent Documents 1 and 2 both require expensive wet-specific plant equipment, resulting in an increase in manufacturing cost. Moreover, even with these techniques, sufficient uniform dispersibility of Ag and Ni has not been obtained yet.

本発明は、前述の課題に鑑みてなされたもので、低コストな設備でAgとNiとの高い均一分散が得られるAg−Ni系電気接点材料及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object thereof is to provide an Ag—Ni-based electrical contact material capable of obtaining high uniform dispersion of Ag and Ni with low-cost equipment and a method for producing the same. .

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明のAg−Ni系電気接点材料の製造方法は、金属Ni換算0.1〜25wt%相当の金属塩を含むNi溶液と平均粒径50μm以下のAg粉末とを混合し乾燥させ、さらにこれを前記金属塩の熱分解温度以上で分解還元処理を施してNi被覆Ag粉末とする工程と、前記Ni被覆Ag粉末をメカニカルアロイング処理又はボールミル粉砕混合処理する微細分散工程と、を有することを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, in the method for producing an Ag—Ni-based electrical contact material of the present invention, a Ni solution containing a metal salt equivalent to 0.1 to 25 wt% in terms of metal Ni and an Ag powder having an average particle size of 50 μm or less are mixed and dried, Furthermore, it has a step of subjecting it to a decomposition-reduction treatment at a temperature equal to or higher than the thermal decomposition temperature of the metal salt to obtain a Ni-coated Ag powder, and a fine dispersion step of subjecting the Ni-coated Ag powder to a mechanical alloying treatment or ball mill pulverization mixing treatment. It is characterized by that.

このAg−Ni系電気接点材料の製造方法では、Ni溶液とAg粉末とを混合し乾燥させることで、Ag粉末表面が硝酸Niの膜で覆われたAgの膜付き粉末が得られる。この際、Ni溶液を用いるが、特許文献1のようにAg及びNiの両方の金属塩を含有する溶液を用いる場合に比べて極めて少量であると共に、混合、乾燥により膜付き粉末の状態とするため、特に湿式専用の設備を必要としない。次に、この膜付き粉末を、金属塩の熱分解温度以上で分解還元処理を施すことで、表面に微細なNi粉末が均一に付着したNi被覆Ag粉末が得られる。さらに、このNi被覆Ag粉末をメカニカルアロイング処理又はボールミル粉砕混合処理するので、表面に付着していた微細なNi粉末がAg粉末内に練り込まれて均一微細分散される。したがって、湿式専用のプラント等の高価な設備が不要であると共に、AgとNiとの高い均一分散が得られ、耐溶着性及び耐消耗性の一層の向上を図ることができる。
なお、金属Ni換算0.1〜25wt%相当の金属塩を含むNi溶液とした理由は、0.1wt%未満では所望の耐溶着性及び耐消耗性が得られず、一方、25wt%を超えると加工性に乏しくなるためである。
In this method for producing an Ag-Ni-based electrical contact material, a Ni solution and an Ag powder are mixed and dried to obtain an Ag film-coated powder whose Ag powder surface is covered with a Ni nitrate film. At this time, Ni solution is used, but it is very small compared to the case of using a solution containing both Ag and Ni metal salts as in Patent Document 1, and it is in a state of powder with film by mixing and drying. Therefore, there is no need for special wet equipment. Next, this film-coated powder is subjected to a decomposition and reduction treatment at a temperature equal to or higher than the thermal decomposition temperature of the metal salt, whereby a Ni-coated Ag powder in which fine Ni powder uniformly adheres to the surface is obtained. Furthermore, since this Ni-coated Ag powder is mechanically alloyed or ball milled and mixed, the fine Ni powder adhering to the surface is kneaded into the Ag powder and uniformly finely dispersed. Therefore, expensive equipment such as a wet-type plant is unnecessary, and a high uniform dispersion of Ag and Ni can be obtained, so that the welding resistance and the wear resistance can be further improved.
The reason why the Ni solution contains a metal salt equivalent to 0.1 to 25 wt% in terms of metallic Ni is that if it is less than 0.1 wt%, the desired welding resistance and wear resistance cannot be obtained, while it exceeds 25 wt%. This is because the processability becomes poor.

また、本発明のAg−Ni系電気接点材料の製造方法は、前記微細分散工程で、グラファイト又はカーボンナノチューブ:0.05〜5.0wt%、タングステンカーバイド:0.05〜5.0wt%の1種以上を添加して前記メカニカルアロイング処理又は前記ボールミル粉砕混合処理を行うことを特徴とする。すなわち、このAg−Ni系電気接点材料の製造方法では、上記組成成分でグラファイト又はカーボンナノチューブ、タングステンカーバイドの1種以上を添加してメカニカルアロイング処理又はボールミル粉砕混合処理を行うので、より高い耐溶着性及び高い耐アーク性等を有する接点材料を得ることができる。
なお、グラファイト又はカーボンナノチューブを0.05〜5.0wt%の範囲に設定した理由は、0.05wt%未満では耐溶着性効果が得られず、一方、5.0wt%を超えると加工性に著しい低下が見られるためである。
また、タングステンカーバイドを0.05〜5.0wt%の範囲に設定した理由は、0.05wt%未満では耐アーク性の向上効果が得られず、一方、5.0wt%を超えると加工性に著しい低下が見られるためである。
Moreover, the manufacturing method of the Ag-Ni type electrical contact material of the present invention is the fine dispersion step in which 1 of graphite or carbon nanotubes: 0.05 to 5.0 wt%, tungsten carbide: 0.05 to 5.0 wt%. More than seeds are added to perform the mechanical alloying process or the ball mill pulverizing and mixing process. That is, in this method for producing an Ag—Ni-based electrical contact material, one or more of graphite, carbon nanotubes, and tungsten carbide are added as the above composition components, and mechanical alloying treatment or ball mill pulverization mixing treatment is performed. A contact material having weldability and high arc resistance can be obtained.
The reason why the graphite or carbon nanotube is set in the range of 0.05 to 5.0 wt% is that if the amount is less than 0.05 wt%, the welding resistance effect cannot be obtained, whereas if it exceeds 5.0 wt%, the workability is reduced. This is because a significant decrease is observed.
The reason why tungsten carbide is set in the range of 0.05 to 5.0 wt% is that if it is less than 0.05 wt%, the effect of improving arc resistance cannot be obtained, whereas if it exceeds 5.0 wt%, the workability is improved. This is because a significant decrease is observed.

本発明のAg−Ni系電気接点材料は、上記本発明のAg−Ni系電気接点材料の製造方法により作製されたことを特徴とする。すなわち、このAg−Ni系電気接点材料では、上記本発明のAg−Ni系電気接点材料の製造方法により作製されているので、AgとNiとが均一微細分散されており、優れた耐溶着性及び耐消耗性が得られる。   The Ag—Ni electric contact material of the present invention is produced by the above-described method for producing an Ag—Ni electric contact material of the present invention. That is, since this Ag—Ni-based electrical contact material is produced by the above-described method for producing an Ag—Ni-based electrical contact material of the present invention, Ag and Ni are uniformly and finely dispersed, and have excellent welding resistance. And wear resistance is obtained.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係るAg−Ni系電気接点材料の製造方法によれば、Ni溶液とAg粉末とを混合し乾燥させ、さらにこれを金属塩の熱分解温度以上で分解還元処理を施してNi被覆Ag粉末とし、さらにこれをメカニカルアロイング処理又はボールミル粉砕混合処理するので、湿式専用のプラント等の高価な設備が不要であると共に、AgとNiとの高い均一分散が得られ、耐溶着性及び耐消耗性の一層の向上を図ることができる。したがって、この製法で作製されたAg−Ni系電気接点材料によれば、微小電流及び制御電源遮断回路による電気的及び機械的磨耗を伴う開閉部において、より優れた高耐久性を得ることができる。
The present invention has the following effects.
That is, according to the method for producing an Ag—Ni-based electrical contact material according to the present invention, the Ni solution and the Ag powder are mixed and dried, and further subjected to decomposition reduction treatment at a temperature equal to or higher than the thermal decomposition temperature of the metal salt. Since it is coated Ag powder, and this is mechanically alloyed or ball mill pulverized and mixed, expensive equipment such as a wet-type plant is not required, and a high uniform dispersion of Ag and Ni is obtained, resulting in welding resistance. In addition, the wear resistance can be further improved. Therefore, according to the Ag-Ni-based electrical contact material produced by this manufacturing method, it is possible to obtain better durability in a switching part accompanied by electrical and mechanical wear due to a minute current and a control power cut-off circuit. .

以下、本発明に係るAg−Ni系電気接点材料及びその製造方法の一実施形態を、図1及び図2を参照しながら説明する。   Hereinafter, an embodiment of an Ag—Ni-based electrical contact material and a method for producing the same according to the present invention will be described with reference to FIGS. 1 and 2.

本実施形態のAg−Ni系電気接点材料の製造方法は、金属Ni換算0.1〜25wt%相当の金属塩を含むNi溶液と平均粒径50μm以下のAg粉末とを混合し乾燥させ、さらにこれを金属塩の熱分解温度以上で分解還元処理を施してNi被覆Ag粉末とする工程と、Ni被覆Ag粉末をメカニカルアロイング処理又はボールミル粉砕混合処理する微細分散工程と、を有する。
また、上記微細分散工程において、グラファイト又はカーボンナノチューブ:0.05〜5.0wt%、タングステンカーバイド:0.05〜5.0wt%の1種以上を添加してメカニカルアロイング処理又はボールミル粉砕混合処理を行っても良い。
The manufacturing method of the Ag-Ni system electrical contact material of this embodiment mixes and dry Ni solution containing the metal salt equivalent to 0.1-25 wt% of metal Ni, and Ag powder with an average particle diameter of 50 micrometers or less, It has a step of subjecting this to a decomposition and reduction treatment at a temperature equal to or higher than the thermal decomposition temperature of the metal salt to form a Ni-coated Ag powder, and a fine dispersion step of subjecting the Ni-coated Ag powder to a mechanical alloying treatment or ball mill pulverization and mixing treatment.
Further, in the fine dispersion step, one or more of graphite or carbon nanotubes: 0.05 to 5.0 wt%, tungsten carbide: 0.05 to 5.0 wt% is added, and mechanical alloying treatment or ball mill pulverization mixing treatment is performed. May be performed.

上記Ni溶液としては、例えば硝酸Ni六水和物(Ni(NO3)2・6H2O)が好ましいが、硫酸ニッケル系、塩化ニッケル系、酢酸ニッケル系、硫酸アンモニウム系、クエン酸系、臭化ニッケル系、蓚酸ニッケル系、金属アルコラート系、アセトニトリル系、アミド硫酸系等の他の金属塩水溶液を採用しても構わない。
上記Ni溶液とAg粉末との混合は、万能混練機又はボールミルなどを用いて行う。
The Ni solution is preferably, for example, Ni nitrate hexahydrate (Ni (NO 3) 2 .6H 2 O), but nickel sulfate, nickel chloride, nickel acetate, ammonium sulfate, citric acid, nickel bromide, Other metal salt aqueous solutions such as nickel oxalate, metal alcoholate, acetonitrile, and amidosulfuric acid may be used.
The Ni solution and Ag powder are mixed using a universal kneader or a ball mill.

このAg−Ni系電気接点材料の製造方法では、Ni溶液とAg粉末とを混合し乾燥させることで、Ag粉末表面が硝酸Niの膜で覆われた膜付き粉末が得られる。この際、Ni溶液を用いるが、Ag及びNiの両方の金属塩を含有する溶液を用いる従来技術に比べて極めて少量であると共に、混合、乾燥により膜付き粉末の状態とするため、特に湿式専用の設備を必要としない。次に、この膜付き粉末を、金属塩の熱分解温度以上で分解還元処理を施すことで、表面に微細なNi粉末が均一に付着したNi被覆Ag粉末が得られる。   In this method for producing an Ag—Ni-based electrical contact material, Ni powder and Ag powder are mixed and dried to obtain a powder with a film in which the surface of the Ag powder is covered with a film of Ni nitrate. At this time, Ni solution is used, but it is very small compared to the prior art using a solution containing both Ag and Ni metal salts, and it is in a powdered state by mixing and drying. No need for equipment. Next, this film-coated powder is subjected to a decomposition and reduction treatment at a temperature equal to or higher than the thermal decomposition temperature of the metal salt, whereby a Ni-coated Ag powder in which fine Ni powder uniformly adheres to the surface is obtained.

さらに、このNi被覆Ag粉末をメカニカルアロイング処理又はボールミル粉砕混合処理するので、表面に付着していた微細なNi粉末がAg粉末内に練り込まれて均一微細分散される。したがって、湿式専用のプラント等の高価な設備が不要であると共に、AgとNiとの高い均一分散が得られ、耐溶着性及び耐消耗性の一層の向上を図ることができる。
また、上記組成成分でグラファイト又はカーボンナノチューブ、タングステンカーバイドの1種以上を添加してメカニカルアロイング処理又はボールミル粉砕混合処理を行うので、より高い耐溶着性及び高い耐アーク性等を有する接点材料を得ることができる。
このように作製された上記粉末を成形し、焼結することで、AgとNiとが高均一分散されたAg−Ni系電気接点材料を得ることができる。
Furthermore, since this Ni-coated Ag powder is mechanically alloyed or ball milled and mixed, the fine Ni powder adhering to the surface is kneaded into the Ag powder and uniformly finely dispersed. Therefore, expensive equipment such as a wet-type plant is unnecessary, and a high uniform dispersion of Ag and Ni can be obtained, so that the welding resistance and the wear resistance can be further improved.
Further, since one or more of graphite, carbon nanotube, and tungsten carbide is added as the above composition component and mechanical alloying treatment or ball mill pulverization mixing treatment is performed, a contact material having higher welding resistance, high arc resistance, etc. Obtainable.
By molding and sintering the powder thus produced, an Ag-Ni electric contact material in which Ag and Ni are highly uniformly dispersed can be obtained.

次に、本発明に係るAg−Ni系電気接点材料の製造方法により、実際にAg−Ni系電気接点材料を作製して評価した結果について、説明する。   Next, the results of actually producing and evaluating an Ag—Ni electrical contact material by the method for producing an Ag—Ni electrical contact material according to the present invention will be described.

本発明に係るAg−Ni系電気接点材料の実施例を、以下の工程で作製した。
まず、50μm以下の粒度のAg粉末と金属塩としての硝酸Niを金属Niとして、以下の表1に示す割合になるように配合した。このとき、硝酸Niは水溶液として添加する。次に、万能混合機にて上記配合のAg粉末及び硝酸Ni水溶液をスラリー状から粉末になるまで撹拌混合し乾燥して膜付き粉末とする。さらに、この膜付き粉末を水素雰囲気中にて450℃、2時間保持する分解還元処理を行い、硝酸Niの熱分解を行うことで、Ni被覆Ag粉末とする。
An example of an Ag—Ni-based electrical contact material according to the present invention was produced by the following steps.
First, Ag powder having a particle size of 50 μm or less and Ni nitrate as a metal salt were used as metal Ni so as to have a ratio shown in Table 1 below. At this time, Ni nitrate is added as an aqueous solution. Next, Ag powder and Ni nitrate aqueous solution of the above blending are stirred and mixed until they change from slurry to powder in a universal mixer and dried to form a powder with a film. Further, the film-coated powder is subjected to a decomposition and reduction treatment that is held at 450 ° C. for 2 hours in a hydrogen atmosphere to thermally decompose Ni nitrate, thereby obtaining Ni-coated Ag powder.

次に、上記分解還元処理後のNi被覆Ag粉末を、φ10mmの超硬ボールを投入したボールミルにて24時間粉砕混合処理を行う。なお、ボールミル粉砕混合処理の代わりにメカニカルアロイング処理を施しても構わない。
さらに、上記粉砕混合処理を行った粉末を、20KN/mm2で金型成形し、φ70×50mmの成形体を得る。
Next, the Ni-coated Ag powder after the above-described decomposition reduction treatment is pulverized and mixed for 24 hours in a ball mill into which φ10 mm carbide balls are put. In addition, you may perform a mechanical alloying process instead of a ball mill grinding | pulverization mixing process.
Further, the powder that has been subjected to the above pulverization and mixing treatment is die-molded at 20 KN / mm 2 to obtain a molded body of φ70 × 50 mm.

次に、この成形体を水素雰囲気中で750℃、2時間の焼結を行って焼結体とした後、さらに、この焼結体を70KN/mm2でコイニングし、緻密化を図る。この緻密化したものを800℃に加熱後、熱間押し出し機にてφ5mmに押し出し伸線加工を施し、φ1.9mmの線を得る。そして、伸線したものをヘッダー加工によりφ3×1mm〜φ2×2mmのリベット接点とし、本発明の実施例とした。   Next, this molded body is sintered at 750 ° C. for 2 hours in a hydrogen atmosphere to obtain a sintered body, and then the sintered body is coined at 70 KN / mm 2 for densification. This densified material is heated to 800 ° C. and then subjected to a wire drawing process of φ5 mm with a hot extruder to obtain a wire of φ1.9 mm. And what was drawn was made into the rivet contact of (phi) 3 * 1mm-(phi) 2 * 2mm by header processing, and it was set as the Example of this invention.

なお、本発明の別の実施例として、分解還元処理後のNi被覆Ag粉末の粉砕時に、Gr(グラファイト)又はWC(タングステンカーバイド)を以下の表2に示す割合になるように同時添加し、上記粉砕混合処理を施す以外は上記実施例と同様の処理を行ってリベット接点とし、別の実施例とした。   As another example of the present invention, Gr (graphite) or WC (tungsten carbide) was added at the same time as shown in Table 2 below when pulverizing Ni-coated Ag powder after decomposition and reduction treatment, Except for the pulverization and mixing process, the same process as in the above example was performed to obtain a rivet contact, which was another example.

さらに、比較例として、以下の表3に示す割合になるように配合したAg粉末(平均粒径50μmのもの)とNi粉末とを用意し、V型混合機を用いて一般的な混合処理を行ったものも作製した。この混合処理では、混合時間を3時間とした。また、混合処理後は、上記実施例と同様の金型成形、焼結及びコイニング、押し出し、伸線加工、ヘッダー加工を行って表3の試料13〜18の電気接点材料とした。   Further, as a comparative example, Ag powder (with an average particle size of 50 μm) and Ni powder blended so as to have the ratio shown in Table 3 below are prepared, and a general mixing process is performed using a V-type mixer. What was done was also made. In this mixing process, the mixing time was 3 hours. In addition, after the mixing treatment, the same mold forming, sintering and coining, extrusion, wire drawing, and header processing as in the above example were performed to obtain the electrical contact materials of Samples 13 to 18 in Table 3.

上記実施例及び比較例の試験として、上記リベット接点としたものをASTM(American Society for Testing and Materials:米国材料試験協会) 電気接点試験機用の台金にかしめて電気試験を行った。この電気試験の条件は、AC210V、抵抗負荷20A、1秒ON/4秒OFF、接点接触力40gf、接点開離力40gf及び開閉目標試験回数1万回とした。
そして、この電気試験における評価として、電気試験による耐久回数と開閉試験前後の重量差である接点消耗重量(消耗量)とを調べた。これらの評価結果も表1〜表3に示す。
As a test of the above-mentioned Examples and Comparative Examples, an electrical test was performed by caulking a rivet contact with a base for an ASTM (American Society for Testing and Materials) electrical contact tester. The conditions of this electrical test were AC210V, resistance load 20A, 1 second ON / 4 seconds OFF, contact contact force 40 gf, contact opening force 40 gf, and opening / closing target test number 10,000 times.
As the evaluation in this electrical test, the number of times of durability in the electrical test and the contact consumption weight (consumption amount), which is the weight difference before and after the switching test, were examined. These evaluation results are also shown in Tables 1 to 3.

上記試験結果からわかるように、表1に示す本発明の実施例では、同様の組成成分の従来例に比べて高い耐久回数が得られていると共に少ない接点消耗重量となっている。また、グラファイト又はタングステンカーバイドを添加した実施例では、添加しない実施例に比べてより高い耐久回数が得られている。   As can be seen from the above test results, in the examples of the present invention shown in Table 1, the number of times of durability is higher and the contact consumption weight is lower than in the conventional example having the same composition component. Moreover, in the Example which added the graphite or the tungsten carbide, the durability frequency higher than the Example which does not add is obtained.

なお、本発明の技術範囲は上記実施形態及び上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the spirit of the present invention.

本発明に係るAg−Ni系電気接点材料及びその製造方法の一実施形態に於ける断面拡大写真(1000倍)である。It is a cross-sectional enlarged photograph (1000 times) in one Embodiment of the Ag-Ni type electrical contact material which concerns on this invention, and its manufacturing method. 本発明に係るAg−Ni系電気接点材料及びその製造方法の従来例に於ける断面拡大写真(1000倍)である。It is a cross-sectional enlarged photograph (1000 times) in the prior art example of the Ag-Ni type electrical contact material which concerns on this invention, and its manufacturing method.

Claims (3)

金属Ni換算0.1〜25wt%相当の金属塩を含むNi溶液と平均粒径50μm以下のAg粉末とを混合し乾燥させ、さらにこれを前記金属塩の熱分解温度以上で分解還元処理を施してNi被覆Ag粉末とする工程と、
前記Ni被覆Ag粉末をメカニカルアロイング処理又はボールミル粉砕混合処理する微細分散工程と、を有することを特徴とするAg−Ni系電気接点材料の製造方法。
A Ni solution containing a metal salt equivalent to 0.1 to 25 wt% in terms of metallic Ni and an Ag powder having an average particle size of 50 μm or less are mixed and dried, and further subjected to decomposition and reduction treatment at a temperature equal to or higher than the thermal decomposition temperature of the metal salt. And Ni-coated Ag powder,
And a fine dispersion step in which the Ni-coated Ag powder is mechanically alloyed or ball milled and mixed.
請求項1に記載のAg−Ni系電気接点材料の製造方法において、
前記微細分散工程で、グラファイト又はカーボンナノチューブ:0.05〜5.0wt%、
タングステンカーバイド:0.05〜5.0wt%
の1種以上を添加して前記メカニカルアロイング処理又は前記ボールミル粉砕混合処理を行うことを特徴とするAg−Ni系電気接点材料の製造方法。
In the manufacturing method of the Ag-Ni type electric contact material according to claim 1,
In the fine dispersion step, graphite or carbon nanotubes: 0.05 to 5.0 wt%,
Tungsten carbide: 0.05-5.0 wt%
A method for producing an Ag—Ni-based electrical contact material, wherein the mechanical alloying treatment or the ball mill pulverization mixing treatment is performed by adding one or more of the above.
請求項1又は2に記載のAg−Ni系電気接点材料の製造方法により作製されたことを特徴とするAg−Ni系電気接点材料。   An Ag-Ni-based electrical contact material produced by the method for producing an Ag-Ni-based electrical contact material according to claim 1 or 2.
JP2007194446A 2007-07-26 2007-07-26 Ag-Ni-BASED ELECTRICAL CONTACT MATERIAL AND ITS MANUFACTURING METHOD Pending JP2009030100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007194446A JP2009030100A (en) 2007-07-26 2007-07-26 Ag-Ni-BASED ELECTRICAL CONTACT MATERIAL AND ITS MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007194446A JP2009030100A (en) 2007-07-26 2007-07-26 Ag-Ni-BASED ELECTRICAL CONTACT MATERIAL AND ITS MANUFACTURING METHOD

Publications (1)

Publication Number Publication Date
JP2009030100A true JP2009030100A (en) 2009-02-12

Family

ID=40400921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007194446A Pending JP2009030100A (en) 2007-07-26 2007-07-26 Ag-Ni-BASED ELECTRICAL CONTACT MATERIAL AND ITS MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP2009030100A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102607A (en) * 2007-10-05 2009-05-14 Yushi Seihin Kk Gold coloring pigment and method for manufacturing the same
CN103710564A (en) * 2013-12-30 2014-04-09 桂林电器科学研究院有限公司 Preparation method of additive-containing AgNi electrical contact material
JP2015105439A (en) * 2013-11-29 2015-06-08 エルエス産電株式会社Lsis Co., Ltd. Electrical contact material and method for producing the same
CN104835656A (en) * 2014-02-12 2015-08-12 日本钨合金株式会社 Electric contact material, electric contact pair, and circuit breaker
KR20170032261A (en) * 2015-05-22 2017-03-22 엘에스산전 주식회사 METHOD FOR ELECTRICAL CONTACT MATERIALS INCLUDING AG PLATED CNTs
US10210965B2 (en) 2015-05-22 2019-02-19 Lsis Co., Ltd. Method for electrical contact materials including Ag plated CNTs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121252A (en) * 1983-11-30 1985-06-28 Matsushita Electric Works Ltd Manufacture of electrical contact material
JPS6112840A (en) * 1984-06-27 1986-01-21 Fukuda Kinzoku Hakufun Kogyo Kk Manufacure of dispersion strengthening alloy
JPH0813065A (en) * 1994-07-05 1996-01-16 Sumitomo Metal Mining Co Ltd Sintered material for electrical contact and production thereof
JP2007169701A (en) * 2005-12-21 2007-07-05 Mitsubishi Material Cmi Kk Material for electrical contact and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121252A (en) * 1983-11-30 1985-06-28 Matsushita Electric Works Ltd Manufacture of electrical contact material
JPS6112840A (en) * 1984-06-27 1986-01-21 Fukuda Kinzoku Hakufun Kogyo Kk Manufacure of dispersion strengthening alloy
JPH0813065A (en) * 1994-07-05 1996-01-16 Sumitomo Metal Mining Co Ltd Sintered material for electrical contact and production thereof
JP2007169701A (en) * 2005-12-21 2007-07-05 Mitsubishi Material Cmi Kk Material for electrical contact and its production method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102607A (en) * 2007-10-05 2009-05-14 Yushi Seihin Kk Gold coloring pigment and method for manufacturing the same
JP2015105439A (en) * 2013-11-29 2015-06-08 エルエス産電株式会社Lsis Co., Ltd. Electrical contact material and method for producing the same
KR101609028B1 (en) 2013-11-29 2016-04-05 엘에스산전 주식회사 Electrical contact materials and method for preparing the same
US9570207B2 (en) 2013-11-29 2017-02-14 Lsis Co., Ltd. Electrical contact materials and method for preparing the same
CN103710564A (en) * 2013-12-30 2014-04-09 桂林电器科学研究院有限公司 Preparation method of additive-containing AgNi electrical contact material
CN104835656A (en) * 2014-02-12 2015-08-12 日本钨合金株式会社 Electric contact material, electric contact pair, and circuit breaker
JP2015151557A (en) * 2014-02-12 2015-08-24 日本タングステン株式会社 Electric-contact material, electric-contact pair and circuit-breaker
KR20170032261A (en) * 2015-05-22 2017-03-22 엘에스산전 주식회사 METHOD FOR ELECTRICAL CONTACT MATERIALS INCLUDING AG PLATED CNTs
US10210965B2 (en) 2015-05-22 2019-02-19 Lsis Co., Ltd. Method for electrical contact materials including Ag plated CNTs
KR102258336B1 (en) * 2015-05-22 2021-05-31 엘에스일렉트릭(주) METHOD FOR ELECTRICAL CONTACT MATERIALS INCLUDING AG PLATED CNTs

Similar Documents

Publication Publication Date Title
JP6126066B2 (en) Electrical contact material and manufacturing method thereof
JP2009030100A (en) Ag-Ni-BASED ELECTRICAL CONTACT MATERIAL AND ITS MANUFACTURING METHOD
KR20160069447A (en) Metal powder, method of fabricating the same, and method of fabricating molded article using the same
US2470034A (en) Electric contact formed of a ruthenium composition
CN106086495B (en) Cupric oxide doped siller tin oxide composite and preparation method thereof
JP2007169701A (en) Material for electrical contact and its production method
WO2014136617A1 (en) Electrical contact and breaker
JPH0896643A (en) Electric contact point material
JP2015125935A (en) Electric contact material, and method for manufacturing the same
JPH04228531A (en) Contact material and its manufacture
JP2008125320A (en) Metal graphite material, manufacturing method therefor and brush for dc motor using metal graphite material
US10553370B2 (en) Methods of making light-weight, low-resistivity transfer materials
KR101850011B1 (en) Electrical contact materials with high radiating properties and arc-resistivity using silver-silver coated carbon nanotube composites and its manufacturing method
JP2017179579A (en) Ag-Ni-METAL OXIDE-BASED ELECTRICAL CONTACT MATERIAL, MANUFACTURING METHOD THEREFOR, CIRCUIT BREAKER AND ELECTROMAGNETIC CONTACT DEVICE
CN105761956A (en) Contact material, vacuum arc-extinguishing chamber contact and manufacturing method thereof
CN108659506A (en) A kind of nanometer of cuprous sulfide composite electromagnetic shield materials and preparation method thereof
KR102297806B1 (en) Manufacturing method of Ta-Cu alloy and Ta-Cu alloy using thereof
JP2005120427A (en) Material for electric contact, and electric contact
CN112779436A (en) AgNi electrical contact material and preparation method thereof
CN102347158A (en) Processing technique for high-power hard copper-tungsten-iron (Cu-W-Fe) compound electrical contact
WO2012039207A1 (en) Electric contact material
JPH01180901A (en) Silver nickel composite powder for electric contact material and manufacture thereof
JPH10195556A (en) Production of electric contact material
JPH111733A (en) Ag-ni electric contact point material and its manufacture
KR101505250B1 (en) Partially alloyed iron powder and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605