JP2005120427A - Material for electric contact, and electric contact - Google Patents

Material for electric contact, and electric contact Download PDF

Info

Publication number
JP2005120427A
JP2005120427A JP2003356663A JP2003356663A JP2005120427A JP 2005120427 A JP2005120427 A JP 2005120427A JP 2003356663 A JP2003356663 A JP 2003356663A JP 2003356663 A JP2003356663 A JP 2003356663A JP 2005120427 A JP2005120427 A JP 2005120427A
Authority
JP
Japan
Prior art keywords
contact
silver
electrical contact
mass
fullerene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003356663A
Other languages
Japanese (ja)
Inventor
Shinji Takayama
晋治 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003356663A priority Critical patent/JP2005120427A/en
Publication of JP2005120427A publication Critical patent/JP2005120427A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/027Composite material containing carbon particles or fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2300/00Orthogonal indexing scheme relating to electric switches, relays, selectors or emergency protective devices covered by H01H
    • H01H2300/036Application nanoparticles, e.g. nanotubes, integrated in switch components, e.g. contacts, the switch itself being clearly of a different scale, e.g. greater than nanoscale

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material for an electric contact capable of obtaining high fine dispersion effect, less liable to consume and also having high contact reliability by adding a fine carbon grain body having a melting point higher than that of silver as a base metal and having a grain size of a nm level or a carbon fiber body, and to provide an electric contact obtained by using the material for an electric contact. <P>SOLUTION: The material for an electric contact has a composition consisting essentially of silver and comprising fullerenes or carbon nanotubes, and is produced by repeating a process of stirring the powdery mixture of silver powder and fullerenes or the like, consolidating the same by a press, and performing wire drawing or the like, thus, the hard contact material less liable to consume can be obtained. Further, the contact formed by using the material for an electric contact is made hard and less liable to consume. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、気中で使用する開閉器、遮断器の電気接点に使用する電気接点用材料及びかかる電気接点用材料を使用する電気接点に関するものである。   The present invention relates to a switch used in the air, an electrical contact material used for an electrical contact of a circuit breaker, and an electrical contact using such an electrical contact material.

従来より、気中で使用する開閉器の電気接点に使用する電気接点用材料としては、接触信頼性を確保するため、通常、電気伝導性の高い銀を主成分とする材料が用いられている。このとき、接触信頼性のみを考慮した場合、接点材料としては純銀を使用することが望ましい。しかし、純銀は、高温で軟化し易いという欠点がある。通常、接点投入時(接点をONした時)には、接点バウンスが生じ、バウンスアークが発生する。このとき、接点材料は、バウンスアークが原因で溶融、軟化する。かかるバウンス発生直後においては、接点は接触状態であるため、接触力により接点表面は押圧される結果、軟化した接点は、周辺部に広がり、接点の高さが減少する。これを解決するために、通常、接点材料母材(銀)に、母材より高融点の金属や、金属酸化物、金属炭化物等の無機粒子を均一に分散させた材料が使用される。   Conventionally, as an electrical contact material used for an electrical contact of a switch used in the air, a material mainly composed of silver having high electrical conductivity is usually used in order to ensure contact reliability. . At this time, when considering only contact reliability, it is desirable to use pure silver as the contact material. However, pure silver has the disadvantage of being easily softened at high temperatures. Normally, when a contact is turned on (when the contact is turned on), a contact bounce is generated and a bounce arc is generated. At this time, the contact material melts and softens due to the bounce arc. Immediately after the occurrence of the bounce, the contact is in a contact state, and as a result, the contact surface is pressed by the contact force, so that the softened contact spreads to the peripheral portion and the height of the contact decreases. In order to solve this problem, a material in which inorganic particles such as a metal having a melting point higher than that of the base material, a metal oxide, and a metal carbide are uniformly dispersed is usually used for the contact material base material (silver).

ここでは、母材より高融点の金属として、ニッケル、タングステン等、金属酸化物として、酸化カドミウム、酸化錫、酸化インジウム等、金属炭化物として、タングステンカーバイト等が一般的に用いられる。かかる母材に混入する無機粒子の粒子径は通常、0.1μm〜数十μm程度のものである。粒子の径が小さいほど、また均一に分散されているほど材料は硬くなり、消耗し難くなることとなる(この効果は、微細分散効果と呼ばれる。)。   Here, nickel, tungsten or the like is used as the metal having a higher melting point than the base material, cadmium oxide, tin oxide, indium oxide or the like is used as the metal oxide, and tungsten carbide or the like is used as the metal carbide. The particle size of the inorganic particles mixed in the base material is usually about 0.1 μm to several tens of μm. The smaller the diameter of the particles and the more uniformly dispersed, the harder the material and the harder it is consumed (this effect is called the fine dispersion effect).

しかしながら、従来、使用可能な高融点の無機粒子の粒子径は、上記したように、0.1μm〜数十μm程度のものが限界で、これより微細な粒子径の小さいものを得ることが困難であった。その結果、現状を超える微細分散効果を得ることができず、電気接点のかかる微細分散効果による耐消耗性の改良にも限界があった。その一方で、従来は、その粒子径が、0.1μm〜数十μm程度の無機粒子を添加して、所定の微細分散効果を得るために、高融点無機粒子成分を数質量%〜十数質量%程度と、比較的多量に添加することが必要とされる上に、かかる高融点無機粒子成分は、母材(銀)よりも一般に電気抵抗が高いため、接触信頼性が不充分となり易い傾向があった。   However, conventionally, the usable high-melting-point inorganic particles have a limit of about 0.1 μm to several tens of μm as described above, and it is difficult to obtain particles having a smaller particle size than this. Met. As a result, it is not possible to obtain a fine dispersion effect that exceeds the current level, and there is a limit to improvement of wear resistance due to the fine dispersion effect of electrical contacts. On the other hand, conventionally, in order to obtain a predetermined fine dispersion effect by adding inorganic particles having a particle size of about 0.1 μm to several tens of μm, a high melting point inorganic particle component is added from several mass% to several tens of In addition to being required to be added in a relatively large amount of about mass%, such a high-melting-point inorganic particle component generally has a higher electrical resistance than the base material (silver), so contact reliability tends to be insufficient. There was a trend.

一方、銀‐炭素系接点材料についても、例えば、特開平9−143594号公報、特開平10−195556号公報等に開示されるように、従来、多くの検討がなされているが、特に、微細分散効果による耐消耗性の改良という観点からは、充分な検討がなされたとは言い難い。
特開平9−143594号公報 特開平10−195556号公報
On the other hand, as for silver-carbon contact materials, as disclosed in, for example, JP-A-9-143594 and JP-A-10-195556, many studies have been made. From the viewpoint of improving the wear resistance by the dispersion effect, it cannot be said that sufficient studies have been made.
Japanese Patent Laid-Open No. 9-143594 JP-A-10-195556

本発明は、上記事由に鑑みてなされたもので、その目的とするところは、母材より高融点で、その粒子径がnmレベルの微細な炭素粒子体或いは炭素繊維体を添加することにより、従来より少量の添加量で、高い微細分散効果を得ることができ、消耗し難く、且つ、接触信頼性が高い電気接点用材料、及び、かかる電気接点用材料を使用する電気接点を提供することにある。   The present invention has been made in view of the above reasons, and the object is to add a fine carbon particle body or carbon fiber body having a higher melting point than that of the base material and a particle size of nm level, To provide a material for an electrical contact that can obtain a high fine dispersion effect with a smaller amount of addition than in the prior art, is not easily consumed, and has high contact reliability, and an electrical contact using such an electrical contact material. It is in.

上記課題を解決するために、請求項1に係る発明の電気接点用材料にあっては、銀を主成分とし、フラーレンを含有することを特徴とするものである。   In order to solve the above problems, the electrical contact material of the invention according to claim 1 is characterized in that it contains silver as a main component and fullerene.

請求項2に係る発明の電気接点用材料にあっては、請求項1記載の電気接点用材料において、前記フラーレンを0.001質量%〜0.5質量%含有することを特徴とするものである。   The electrical contact material of the invention according to claim 2 is characterized in that in the electrical contact material according to claim 1, the fullerene is contained in an amount of 0.001% by mass to 0.5% by mass. is there.

請求項3に係る発明の電気接点用材料にあっては、請求項1または請求項2記載の電気接点用材料において、粒子径が、0.1μm〜100μm程度であって、銀よりも高融点の無機粒子を1質量%〜20質量%分散せしめたことを特徴とするものである。   In the electrical contact material of the invention according to claim 3, in the electrical contact material according to claim 1 or 2, the particle diameter is about 0.1 μm to 100 μm, and has a higher melting point than silver. The inorganic particles are dispersed in an amount of 1% by mass to 20% by mass.

請求項4に係る発明の電気接点用材料にあっては、請求項3記載の電気接点用材料において、前記無機粒子が、金属または金属酸化物、或いは、その両者よりなることを特徴とするものである。   The electrical contact material according to claim 4 is the electrical contact material according to claim 3, wherein the inorganic particles are made of metal, metal oxide, or both. It is.

請求項5に係る発明の電気接点用材料にあっては、銀を主成分とし、カーボンナノチューブを含有することを特徴とするものである。   The electrical contact material of the invention according to claim 5 is characterized by containing silver as a main component and carbon nanotubes.

請求項6に係る発明の電気接点用材料にあっては、請求項5記載の電気接点用材料において、前記カーボンナノチューブを0.001質量%〜0.5質量%含有することを特徴とするものである。   The electrical contact material of the invention according to claim 6 is characterized in that in the electrical contact material according to claim 5, the carbon nanotube is contained in an amount of 0.001% by mass to 0.5% by mass. It is.

請求項7に係る発明の電気接点用材料にあっては、請求項5または請求項6記載の電気接点用材料において、粒子径が、0.1μm〜100μm程度であって、銀よりも高融点の無機粒子を1質量%〜20質量%分散せしめたことを特徴とするものである。   In the electrical contact material of the invention according to claim 7, in the electrical contact material according to claim 5 or 6, the particle diameter is about 0.1 μm to 100 μm and has a higher melting point than silver. The inorganic particles are dispersed in an amount of 1% by mass to 20% by mass.

請求項8に係る発明の電気接点用材料にあっては、請求項7記載の電気接点用材料において、前記無機粒子が、金属または金属酸化物、或いは、その両者よりなることを特徴とするものである。   In the electrical contact material of the invention according to claim 8, the electrical contact material according to claim 7, wherein the inorganic particles are made of metal, metal oxide, or both. It is.

請求項9に係る発明の電気接点用材料にあっては、請求項5乃至請求項8のいずれかに記載の電気接点用材料において、フラーレンを含有することを特徴とするものである。   The electrical contact material of the invention according to claim 9 is characterized in that the electrical contact material according to any one of claims 5 to 8 contains fullerene.

請求項10に係る発明の電気接点用材料にあっては、請求項9記載の電気接点用材料において、前記カーボンナノチューブ及び前記フラーレンを両者合計して0.001質量%〜0.5質量%含有することを特徴とするものである。   In the electrical contact material of the invention according to claim 10, in the electrical contact material according to claim 9, the carbon nanotube and the fullerene are both added in an amount of 0.001% by mass to 0.5% by mass. It is characterized by doing.

請求項11に係る発明の電気接点にあっては、請求項1乃至請求項10のいずれかに記載の電気接点用材料を使用することを特徴とするものである。   The electrical contact of the invention according to claim 11 is characterized by using the material for electrical contact according to any one of claims 1 to 10.

請求項12に係る発明の電気接点にあっては、接点表面側に、銀を主成分とし、フラーレンを0.001質量%〜0.5質量%含有する層を形成し、その層の厚さが0.2mm以下であることを特徴とするものである。   In the electrical contact of the invention according to claim 12, a layer containing silver as a main component and 0.001% by mass to 0.5% by mass of fullerene is formed on the contact surface side, and the thickness of the layer Is 0.2 mm or less.

請求項13に係る発明の電気接点にあっては、接点表面側に、銀を主成分とし、カーボンナノチューブを0.001質量%〜0.5質量%含有する層を形成し、その層の厚さが0.2mm以下であることを特徴とするものである。   In the electrical contact of the invention according to claim 13, a layer containing silver as a main component and 0.001% by mass to 0.5% by mass of carbon nanotubes is formed on the contact surface side, and the thickness of the layer Is 0.2 mm or less.

請求項1に係る発明の電気接点用材料にあっては、銀を主成分とし、フラーレンを含有することを特徴とするので、硬く、消耗し難い接点材料を得ることができるという優れた効果を奏する。   The electrical contact material of the invention according to claim 1 is characterized in that it contains silver as a main component and contains fullerene, so that it is possible to obtain a hard and wear-resistant contact material. Play.

請求項2に係る発明の電気接点用材料にあっては、請求項1記載の電気接点用材料において、前記フラーレンを0.001質量%〜0.5質量%含有することを特徴とするので、請求項1記載の電気接点用材料の効果に加えて、添加物であるフラーレンが最大でも0.5質量%しか混入されないので、接触信頼性が高く、接触抵抗が低い接点材料を得ることができるという優れた効果を奏する。   The electrical contact material of the invention according to claim 2 is characterized in that in the electrical contact material according to claim 1, the fullerene is contained in an amount of 0.001% by mass to 0.5% by mass. In addition to the effect of the electrical contact material according to claim 1, since the additive fullerene is mixed only by 0.5 mass% at the maximum, a contact material with high contact reliability and low contact resistance can be obtained. There is an excellent effect.

請求項3に係る発明の電気接点用材料にあっては、請求項1または請求項2記載の電気接点用材料において、粒子径が、0.1μm〜100μm程度であって、銀よりも高融点の無機粒子を1質量%〜20質量%分散せしめたことを特徴とするので、請求項1または請求項2記載の電気接点用材料の効果に加えて、高融点無機粒子の添加により、一層硬く、消耗し難い接点材料を得ることができ、また、より少量のフラーレンを使用することで、必要な硬さを得ることができるため、高価なフラーレンの使用量を少なくすることができるという優れた効果を奏する。   In the electrical contact material of the invention according to claim 3, in the electrical contact material according to claim 1 or 2, the particle diameter is about 0.1 μm to 100 μm, and has a higher melting point than silver. In addition to the effect of the electrical contact material according to claim 1 or 2, in addition to the effect of the high-melting-point inorganic particles, the inorganic particles are further hardened. It is possible to obtain a contact material that is hard to wear out, and because the necessary hardness can be obtained by using a smaller amount of fullerene, the amount of expensive fullerene used can be reduced. There is an effect.

請求項4に係る発明の電気接点用材料にあっては、請求項3記載の電気接点用材料において、前記無機粒子が、金属または金属酸化物、或いは、その両者よりなることを特徴とするので、請求項3記載の電気接点用材料の効果に加えて、圧縮成形前の簡単な材料調製により、簡便に、硬く消耗し難い接点材料を得ることができるという優れた効果を奏する。   In the electrical contact material of the invention according to claim 4, in the electrical contact material according to claim 3, the inorganic particles are made of metal, metal oxide, or both. In addition to the effect of the electrical contact material according to claim 3, it is possible to easily obtain a contact material that is hard and hard to wear by simple material preparation before compression molding.

請求項5に係る発明の電気接点用材料にあっては、銀を主成分とし、カーボンナノチューブを含有することを特徴とするので、硬く、消耗し難い接点材料を得ることができるという優れた効果を奏する。   The electrical contact material of the invention according to claim 5 is characterized by comprising silver as a main component and containing carbon nanotubes, so that it is possible to obtain a contact material that is hard and hardly consumed. Play.

請求項6に係る発明の電気接点用材料にあっては、請求項5記載の電気接点用材料において、前記カーボンナノチューブを0.001質量%〜0.5質量%含有することを特徴とするので、請求項5記載の電気接点用材料の効果に加えて、添加物であるカーボンナノチューブが最大でも0.5質量%しか混入されないので、接触信頼性が高く、接触抵抗が低い接点材料を得ることができるという優れた効果を奏する。   The electrical contact material of the invention according to claim 6 is characterized in that in the electrical contact material according to claim 5, the carbon nanotube is contained in an amount of 0.001% by mass to 0.5% by mass. In addition to the effect of the electrical contact material according to claim 5, since carbon nanotubes as additives are mixed only by 0.5 mass% at the maximum, a contact material with high contact reliability and low contact resistance is obtained. There is an excellent effect of being able to.

請求項7に係る発明の電気接点用材料にあっては、請求項5または請求項6記載の電気接点用材料において、粒子径が、0.1μm〜100μm程度であって、銀よりも高融点の無機粒子を1質量%〜20質量%分散せしめたことを特徴とするので、請求項5または請求項6記載の電気接点用材料の効果に加えて、高融点無機粒子の添加により、一層硬く、消耗し難い接点材料を得ることができ、また、より少量のカーボンナノチューブを使用することで、必要な硬さを得ることができるため、高価なカーボンナノチューブの使用量を少なくすることができるという優れた効果を奏する。   In the electrical contact material of the invention according to claim 7, in the electrical contact material according to claim 5 or 6, the particle diameter is about 0.1 μm to 100 μm and has a higher melting point than silver. In addition to the effect of the electrical contact material of claim 5 or 6, in addition to the effect of the high-melting-point inorganic particles, the inorganic particles are further hardened. It is possible to obtain a contact material that is hard to wear out, and because the necessary hardness can be obtained by using a smaller amount of carbon nanotubes, the amount of expensive carbon nanotubes used can be reduced. Excellent effect.

請求項8に係る発明の電気接点用材料にあっては、請求項7記載の電気接点用材料において、前記無機粒子が、金属または金属酸化物、或いは、その両者よりなることを特徴とするので、請求項7記載の電気接点用材料の効果に加えて、圧縮成形前の簡単な材料調製により、簡便に、硬く消耗し難い接点材料を得ることができるという優れた効果を奏する。   The electrical contact material of the invention according to claim 8 is characterized in that, in the electrical contact material according to claim 7, the inorganic particles are made of metal, metal oxide, or both. In addition to the effect of the electrical contact material according to claim 7, it is possible to easily obtain a contact material that is hard and hard to wear by simple material preparation before compression molding.

請求項9〜請求項10の発明の電気接点用材料にあっては、請求項5乃至請求項8のいずれかに記載の電気接点用材料において、フラーレンを含有することを特徴とするので、請求項5乃至請求項8のいずれかに記載の電気接点用材料の効果に加えて、硬く、消耗し難い接点材料の材料設計をより高い自由度で行うことができるという優れた効果を奏する。   The electrical contact material according to any one of claims 9 to 10 is characterized in that the electrical contact material according to any one of claims 5 to 8 contains fullerene. In addition to the effect of the electrical contact material according to any one of Items 5 to 8, there is an excellent effect that the material design of the contact material that is hard and hardly consumed can be performed with a higher degree of freedom.

請求項11に係る発明の電気接点にあっては、請求項1乃至請求項10のいずれかに記載の電気接点用材料を使用することを特徴とするので、硬く、消耗し難い接点を提供できるという優れた効果を奏する。   The electrical contact of the invention according to claim 11 is characterized in that the electrical contact material according to any one of claims 1 to 10 is used, so that it is possible to provide a hard contact that is hard to wear out. There is an excellent effect.

請求項12に係る発明の電気接点にあっては、接点表面側に、銀を主成分とし、フラーレンを0.001質量%〜0.5質量%含有する層を形成し、その層の厚さが0.2mm以下であることを特徴とするので、開閉による層の剥離が少なく、消耗し難く、且つ、開閉を繰り返して接触信頼性を損なわない電気接点を提供することができるという優れた効果を奏する。   In the electrical contact of the invention according to claim 12, a layer containing silver as a main component and 0.001% by mass to 0.5% by mass of fullerene is formed on the contact surface side, and the thickness of the layer Is less than 0.2 mm, so that it is possible to provide an electrical contact that is less likely to be worn away by opening and closing, is difficult to wear, and that does not impair contact reliability by repeated opening and closing. Play.

請求項13に係る発明の電気接点にあっては、接点表面側に、銀を主成分とし、カーボンナノチューブを0.001質量%〜0.5質量%含有する層を形成し、その層の厚さが0.2mm以下であることを特徴とするので、開閉による層の剥離が少なく、消耗し難く、且つ、開閉を繰り返して接触信頼性を損なわない電気接点を提供することができるという優れた効果を奏する。   In the electrical contact of the invention according to claim 13, a layer containing silver as a main component and 0.001% by mass to 0.5% by mass of carbon nanotubes is formed on the contact surface side, and the thickness of the layer The thickness is 0.2 mm or less, so that it is possible to provide an electrical contact that is less likely to be worn away by opening and closing, is difficult to wear, and does not impair contact reliability by repeated opening and closing. There is an effect.

以下、本発明の実施形態を実施例を交えて説明する。なお、本発明の電気接点用材料、及び電気接点は、下記の実施形態或いは実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。すなわち、本発明の電気接点用材料は、銀を主成分とし、フラーレンあるいは、カーボンナノチューブ等のいわゆるカーボンナノチューブ類と呼ばれる一連の分子性炭素を含有することを特徴とするものであり、本発明の電気接点は、かかる電気接点用材料を使用するものである。   Hereinafter, embodiments of the present invention will be described with examples. The electrical contact material and electrical contact of the present invention are not limited to the following embodiments or examples, and various changes can be made without departing from the scope of the present invention. is there. That is, the electrical contact material of the present invention is characterized in that it contains silver as a main component and contains a series of molecular carbons called so-called carbon nanotubes such as fullerenes or carbon nanotubes. The electric contact uses such an electric contact material.

以下、その製造工程を図に基づいて説明する。図1は、本発明の第1の実施形態である銀を主成分とし、フラーレンを含有する電気接点用材料及び電気接点の製造工程を模式的に示す図である。   Hereinafter, the manufacturing process will be described with reference to the drawings. FIG. 1 is a diagram schematically showing a manufacturing process of a material for electrical contacts and an electrical contact containing silver as a main component and containing fullerene according to the first embodiment of the present invention.

すなわち、まず、銀粉とフラーレンの混合粉は、混合粉中にフラーレンが均一に分散するように、よくかき混ぜる。〔工程1〕
このとき、混合粉の全体量において、フラーレンの混入量は、0.001質量%〜0.5質量%程度が適当である。混入比率が少ない場合、微細分散効果が得られず、接点が固くならない不具合が生じる。また、混入比率が多い場合、接点が固くなり過ぎて、後の電気接点形成工程(切断、形状付与など)の際に、材料割れが生じる等の不具合が発生し易いからである。また、使用する銀粉の粒子径は、数μm〜数百μm程度が好適である。
That is, first, the mixed powder of silver powder and fullerene is stirred well so that fullerene is uniformly dispersed in the mixed powder. [Step 1]
At this time, about 0.001 mass%-about 0.5 mass% are suitable for the mixing amount of fullerene in the whole quantity of mixed powder. When the mixing ratio is small, the fine dispersion effect cannot be obtained, and the contact does not become hard. In addition, when the mixing ratio is large, the contact becomes too hard, and problems such as material cracking are likely to occur during the subsequent electrical contact formation process (cutting, shape provision, etc.). The particle size of the silver powder used is preferably about several μm to several hundred μm.

次に、混合した粉は、プレス機により例えば、直径100mm〜200mm程度の略円柱形状体3に押し固める。〔工程2〕
このとき、室温中で押し固めても良いし、300℃〜900℃程度の高温下で押し固めても良い。
Next, the mixed powder is pressed and solidified into, for example, a substantially cylindrical body 3 having a diameter of about 100 mm to 200 mm by a press. [Step 2]
At this time, it may be compacted at room temperature or may be compacted at a high temperature of about 300 ° C to 900 ° C.

押し固めた材料は、伸線加工することにより、徐々に細長くする。〔工程3〕
伸線加工は材料を塑性変形させることにより行う。材料は、塑性変形させると、硬くなり、断線し易くなる。従って,伸線加工途中では、適宜、アニール(焼鈍)を行う。
The pressed material is gradually elongated by drawing. [Step 3]
Drawing is performed by plastically deforming the material. When the material is plastically deformed, it becomes hard and easily breaks. Therefore, annealing (annealing) is appropriately performed during the wire drawing process.

材料が、細くなり(例えば、直径1〜5mm程度)、所定の太さの細線形状体4となったら、材料を長さ数mm程度の所定の間隔で細断し、材料片5とする。〔工程4〕
材料片5は、再び、プレスし、例えば、直径100mm〜200mm程度の略円柱形状体3に押し固める。この工程は、フラーレンの分散をより均一にするためのものである。従って、この工程が無く、工程3から直接、後述する工程5を行うものも、本発明に含まれる。
When the material becomes thin (for example, about 1 to 5 mm in diameter) and becomes a thin line-shaped body 4 having a predetermined thickness, the material is chopped at a predetermined interval of about several mm in length to form a material piece 5. [Step 4]
The material piece 5 is pressed again and pressed into a substantially cylindrical body 3 having a diameter of about 100 mm to 200 mm, for example. This step is for making the dispersion of fullerene more uniform. Therefore, what does not have this process and performs the process 5 mentioned later directly from the process 3 is also contained in this invention.

かかる本実施形態の電気接点用材料は工程3により、直径数mm程度の伸線状に形成される。この材料を数mm程度に切断し、プレスなどにより塑性変形させることにより、リベット型接点1を形成する。あるいは、かかる本実施形態の電気接点用材料をリベット状の台金(図示せず)に、冷間圧接して接点2を形成する。〔工程5〕
なお、ここでいう冷間圧接とは、常温下で、接点材料を、台金(銅などの金属)に、直接強く押し当てることにより、接合することをいう。
The electrical contact material of this embodiment is formed into a wire having a diameter of about several millimeters by Step 3. The rivet type contact 1 is formed by cutting this material into several mm and plastically deforming it with a press or the like. Alternatively, the contact 2 is formed by cold-welding the electric contact material of the present embodiment to a rivet base metal (not shown). [Step 5]
Note that the cold welding referred to here means joining at a normal temperature by pressing the contact material directly and strongly against a base metal (metal such as copper).

このように、本実施形態の電気接点用材料では、銀を主成分とし、フラーレンを含有するので、硬く、消耗し難い接点材料を得ることができることとなる。さらには、フラーレンを0.001質量%〜0.5質量%含有するようにすることにより、添加物であるフラーレンが最大でも0.5質量%しか混入されないので、相対的に、母材である銀の純度を高く維持できることとなり、接触信頼性が高く、接触抵抗が低い接点材料を得ることができることとなる。   Thus, since the electrical contact material of this embodiment is mainly composed of silver and contains fullerene, it is possible to obtain a contact material that is hard and hardly consumed. Furthermore, by containing 0.001% to 0.5% by weight of fullerene, since only 0.5% by weight of fullerene as an additive is mixed at the maximum, it is a base material relatively. Silver purity can be maintained high, and a contact material with high contact reliability and low contact resistance can be obtained.

また、本実施形態の上記電気接点用材料を使用して、上記工程5により形成した接点は、本実施形態の電気接点用材料を使用しているので、硬く、消耗し難い接点を提供できることとなる。   In addition, the contact formed by the above step 5 using the electrical contact material of the present embodiment uses the electrical contact material of the present embodiment, and therefore can provide a hard and hard-to-wear contact. Become.

一方、図2は、本発明の第2の実施形態である銀を主成分とし、銀よりも高融点の無機粒子である金属を含有し、且つ、フラーレンを含有する電気接点用材料及び電気接点の製造工程を模式的に示す図である。   On the other hand, FIG. 2 shows a second embodiment of the present invention, which is a material for electrical contacts and an electrical contact containing silver as a main component, a metal which is an inorganic particle having a higher melting point than silver, and containing fullerene. It is a figure which shows typically the manufacturing process.

ここでは、粒子径が、数μm〜数百μm程度の銀の粉と、粒子径が、0.1μm〜100μm程度、好ましくは数μm〜数十μm程度で銀より高融点の金属の粉と、フラーレンを混合した混合粉とする。銀より高融点の金属としては、ニッケル、タングステン等が例示可能である。以下、上記の実施形態と略同様にして、銀を主成分とし、高融点金属を含有し、且つ、フラーレンを含有する電気接点用材料及び電気接点が得られる。   Here, a silver powder having a particle diameter of about several μm to several hundred μm, and a metal powder having a particle diameter of about 0.1 μm to 100 μm, preferably about several μm to several tens of μm and having a melting point higher than silver. A mixed powder mixed with fullerene. Examples of metals having a higher melting point than silver include nickel and tungsten. Hereinafter, in substantially the same manner as in the above embodiment, an electrical contact material and an electrical contact containing silver as a main component, containing a refractory metal, and containing fullerene are obtained.

すなわち、まず、かかる混合粉を、混合粉中にフラーレンが均一に分散するように、よくかき混ぜる。〔工程1〕
このとき、混合粉の全体量において、フラーレンの混入量は、0.001質量%〜0.5質量%程度が適当である。混入比率が少ない場合、微細分散効果が得られず、接点が固くならない不具合が生じる。また、混入比率が多い場合、接点が固くなり過ぎて、後の電気接点形成工程(切断、形状付与など)の際に、材料割れが生じる等の不具合が発生し易いからである。
That is, first, the mixed powder is well mixed so that fullerene is uniformly dispersed in the mixed powder. [Step 1]
At this time, about 0.001 mass%-about 0.5 mass% are suitable for the mixing amount of fullerene in the whole quantity of mixed powder. When the mixing ratio is small, the fine dispersion effect cannot be obtained, and the contact does not become hard. In addition, when the mixing ratio is large, the contact becomes too hard, and problems such as material cracking are likely to occur during the subsequent electrical contact formation process (cutting, shape provision, etc.).

次に、混合した粉は、プレス機により例えば、直径100mm〜200mm程度の略円柱形状体3に押し固める。〔工程2〕
このとき、室温中で押し固めても良いし、300℃〜900℃程度の高温下で押し固めても良い。
Next, the mixed powder is pressed and solidified into, for example, a substantially cylindrical body 3 having a diameter of about 100 mm to 200 mm by a press. [Step 2]
At this time, it may be compacted at room temperature or may be compacted at a high temperature of about 300 ° C to 900 ° C.

押し固めた材料は、伸線加工することにより、徐々に細長くする。〔工程3〕
伸線加工は材料を塑性変形させることにより行う。材料は、塑性変形させると、硬くなり、断線し易くなる。従って,伸線加工途中では、適宜、アニール(焼鈍)を行う。
The pressed material is gradually elongated by drawing. [Step 3]
Drawing is performed by plastically deforming the material. When the material is plastically deformed, it becomes hard and easily breaks. Therefore, annealing (annealing) is appropriately performed during the wire drawing process.

材料が、細くなり(例えば、直径1〜5mm程度)、所定の太さの細線形状体4となったら、材料を長さ数mm程度の所定の間隔で細断し、材料片5とする。〔工程4〕
材料片5は、再び、プレスし、例えば、直径100mm〜200mm程度の略円柱形状体3に押し固める。この工程は、フラーレンの分散をより均一にするためのものである。従って、この工程が無く、工程3から直接、後述する工程5を行うものも、本発明に含まれる。
When the material becomes thin (for example, about 1 to 5 mm in diameter) and becomes a thin line-shaped body 4 having a predetermined thickness, the material is chopped at a predetermined interval of about several mm in length to form a material piece 5. [Step 4]
The material piece 5 is pressed again and pressed into a substantially cylindrical body 3 having a diameter of about 100 mm to 200 mm, for example. This step is for making the dispersion of fullerene more uniform. Therefore, what does not have this process and performs the process 5 mentioned later directly from the process 3 is also contained in this invention.

かかる本実施形態の電気接点用材料は工程3により、直径数mm程度の伸線状に形成される。この材料を数mm程度に切断し、プレスなどにより塑性変形させることにより、リベット型接点1を形成する。あるいは、かかる本実施形態の電気接点用材料をリベット状の台金(図示せず)に、冷間圧接して接点2を形成する。〔工程5〕
このように、本実施形態の電気接点用材料では、粒子径が、0.1μm〜100μm程度であって、銀よりも高融点の無機粒子である金属を1質量%〜20質量%分散せしめるので、かかる高融点無機粒子の添加により、一層硬く、消耗し難い接点材料を得ることができ、また、そのため、より少量のフラーレンを使用することで、必要な硬さを得ることができるため、結果的に、高価なフラーレンの使用量を少なくすることができることとなる。さらに、添加する高融点無機粒子が金属であるので、圧縮成形前の簡単な材料調製により、簡便に、硬く消耗し難い接点材料を得ることが可能となる。
The electrical contact material of this embodiment is formed into a wire having a diameter of about several millimeters by Step 3. The rivet type contact 1 is formed by cutting this material into several mm and plastically deforming it with a press or the like. Alternatively, the contact 2 is formed by cold-welding the electric contact material of the present embodiment to a rivet base metal (not shown). [Step 5]
Thus, in the electrical contact material of this embodiment, the particle diameter is about 0.1 μm to 100 μm, and 1% by mass to 20% by mass of the metal, which is an inorganic particle having a higher melting point than silver, is dispersed. The addition of such high melting point inorganic particles makes it possible to obtain a contact material that is harder and less consumable, and therefore, by using a smaller amount of fullerene, the required hardness can be obtained. In particular, the amount of expensive fullerene used can be reduced. Furthermore, since the high-melting-point inorganic particles to be added are metals, it is possible to obtain a contact material that is hard and hard to wear easily by simple material preparation before compression molding.

また、本実施形態の上記電気接点用材料を使用して、上記工程5により形成した接点は、本実施形態の電気接点用材料を使用しているので、硬く、消耗し難い接点を提供できることとなる。   In addition, the contact formed by the above step 5 using the electrical contact material of the present embodiment uses the electrical contact material of the present embodiment, and therefore can provide a hard and hard-to-wear contact. Become.

さらに、図3は、本発明の第3の実施形態である銀を主成分とし、銀よりも高融点の無機粒子である金属酸化物を含有し、且つ、フラーレンを含有する電気接点用材料及び電気接点の製造工程を模式的に示す図である。   Further, FIG. 3 shows a third embodiment of the present invention, which is mainly composed of silver, contains a metal oxide that is an inorganic particle having a higher melting point than silver, and fullerene. It is a figure which shows the manufacturing process of an electrical contact typically.

ここでは、先ず、銀に十数質量%の銀以外の金属、例えば、カドミウム、錫、インジウム、亜鉛、銅等を含んだ合金(以下、銀を主成分とする合金と呼ぶ)を形成する。この合金の形状については、特に、限定はないものの、粒状、あるいは直径及び長さが数mm程度の円柱状、もしくは直径数ミリ程度の円盤状のものが、好適に使用可能である。   Here, first, an alloy (hereinafter referred to as an alloy containing silver as a main component) containing a metal other than tens% by mass of silver, such as cadmium, tin, indium, zinc, or copper, is formed. The shape of the alloy is not particularly limited, but a granular shape, a cylindrical shape having a diameter and a length of about several millimeters, or a disk shape having a diameter of about several millimeters can be suitably used.

次に、かかる銀を主成分とする合金を、数百℃、数気圧の酸素雰囲気中で数日間酸化する〔工程A〕。これにより、銀以外の金属が酸化され、銀に金属酸化物が混入した形態(以下、「銀−金属酸化物複合物」という。)が形成される。   Next, such an alloy containing silver as a main component is oxidized for several days in an oxygen atmosphere of several hundred degrees Celsius and several atmospheres [Step A]. Thereby, metals other than silver are oxidized, and the form (henceforth "a silver-metal oxide composite") with which the metal oxide mixed in silver is formed.

かかる銀−金属酸化物複合物に、粒子径が、数μm〜数百μm程度の銀の粉とフラーレンを混合する。以下、上記第1の実施形態と略同様にして、銀を主成分とし、金属酸化物を含有し、且つ、フラーレンを含有する電気接点用材料及び電気接点が得られる。   Silver powder and fullerene having a particle size of about several μm to several hundred μm are mixed into such a silver-metal oxide composite. Hereinafter, in substantially the same manner as in the first embodiment, an electrical contact material and an electrical contact containing silver as a main component, containing a metal oxide, and containing fullerene are obtained.

すなわち、まず、かかる混合粉を、混合粉中にフラーレンが均一に分散するように、よくかき混ぜる。〔工程1〕
このとき、混合粉の全体量において、フラーレンの混入量は、0.001質量%〜0.5質量%程度が適当である。混入比率が少ない場合、微細分散効果が得られず、接点が固くならない不具合が生じる。また、混入比率が多い場合、接点が固くなり過ぎて、後の電気接点形成工程(切断、形状付与など)の際に、材料割れが生じる等の不具合が発生し易いからである。また、使用する銀粉の粒子径は、数μm〜数百μm程度が好適である。
That is, first, the mixed powder is well mixed so that fullerene is uniformly dispersed in the mixed powder. [Step 1]
At this time, about 0.001 mass%-about 0.5 mass% are suitable for the mixing amount of fullerene in the whole quantity of mixed powder. When the mixing ratio is small, the fine dispersion effect cannot be obtained, and the contact does not become hard. In addition, when the mixing ratio is large, the contact becomes too hard, and problems such as material cracking are likely to occur during the subsequent electrical contact formation process (cutting, shape provision, etc.). The particle size of the silver powder used is preferably about several μm to several hundred μm.

次に、混合した粉は、プレス機により例えば、直径100mm〜200mm程度の略円柱形状体3に押し固める。〔工程2〕
このとき、室温中で押し固めても良いし、300℃〜900℃程度の高温下で押し固めても良い。
Next, the mixed powder is pressed and solidified into, for example, a substantially cylindrical body 3 having a diameter of about 100 mm to 200 mm by a press. [Step 2]
At this time, it may be compacted at room temperature or may be compacted at a high temperature of about 300 ° C to 900 ° C.

押し固めた材料は、伸線加工することにより、徐々に細長くする。〔工程3〕
伸線加工は材料を塑性変形させることにより行う。材料は、塑性変形させると、硬くなり、断線し易くなる。従って,伸線加工途中では、適宜、アニール(焼鈍)を行う。
The pressed material is gradually elongated by drawing. [Step 3]
Drawing is performed by plastically deforming the material. When the material is plastically deformed, it becomes hard and easily breaks. Therefore, annealing (annealing) is appropriately performed during the wire drawing process.

材料が、細くなり(例えば、直径1〜5mm程度)、所定の太さの細線形状体4となったら、材料を長さ数mm程度の所定の間隔で細断し、材料片5とする。〔工程4〕
材料片5は、再び、プレスし、例えば、直径100mm〜200mm程度の略円柱形状体3に押し固める。この工程は、フラーレンの分散をより均一にするためのものである。従って、この工程が無く、工程3から直接、後述する工程5を行うものも、本発明に含まれる。
When the material becomes thin (for example, about 1 to 5 mm in diameter) and becomes a thin line-shaped body 4 having a predetermined thickness, the material is chopped at a predetermined interval of about several mm in length to form a material piece 5. [Step 4]
The material piece 5 is pressed again and pressed into a substantially cylindrical body 3 having a diameter of about 100 mm to 200 mm, for example. This step is for making the dispersion of fullerene more uniform. Therefore, what does not have this process and performs the process 5 mentioned later directly from the process 3 is also contained in this invention.

かかる本実施形態の電気接点用材料は工程3により、直径数mm程度の伸線状に形成される。この材料を数mm程度に切断し、プレスなどにより塑性変形させることにより、リベット型接点1を形成する。あるいは、かかる本実施形態の電気接点用材料をリベット状の台金(図示せず)に、冷間圧接して接点2を形成する。〔工程5〕
このように、本実施形態の電気接点用材では、粒子径が、0.1μm〜100μm程度であって、銀よりも高融点の無機粒子である金属酸化物を1質量%〜20質量%分散せしめるので、かかる高融点無機粒子の添加により、一層硬く、消耗し難い接点材料を得ることができ、また、そのため、より少量のフラーレンを使用することで、必要な硬さを得ることができるため、結果的に、高価なフラーレンの使用量を少なくすることができることとなる。さらに、添加する高融点無機粒子が金属酸化物であるので、圧縮成形前の簡単な材料調製により、簡便に、硬く消耗し難い接点材料を得ることが可能となる。また、例えば、本実施形態において、上記銀−金属酸化物複合物に、粒子径が、数μm〜数百μm程度の銀の粉とフラーレンを混合する際に、上記金属酸化物の添加量を少なく材料設計し、その減少分を一部、銀よりも高融点の無機粒子である金属の添加で補填する等により、本実施形態、或いは、上記第2の実施形態と同様に、硬く、消耗し難い接点材料をより少量のフラーレンを使用することで得ることが可能となる。
The electrical contact material of this embodiment is formed into a wire having a diameter of about several millimeters by Step 3. The rivet type contact 1 is formed by cutting this material into several mm and plastically deforming it with a press or the like. Alternatively, the contact 2 is formed by cold-welding the electric contact material of the present embodiment to a rivet base metal (not shown). [Step 5]
Thus, in the electrical contact material of this embodiment, the particle diameter is about 0.1 μm to 100 μm, and 1% by mass to 20% by mass of the metal oxide, which is an inorganic particle having a higher melting point than silver, is dispersed. Therefore, by adding such high-melting-point inorganic particles, it is possible to obtain a contact material that is harder and less consumable, and therefore, the necessary hardness can be obtained by using a smaller amount of fullerene. As a result, the amount of expensive fullerene used can be reduced. Furthermore, since the high melting point inorganic particles to be added are metal oxides, it is possible to obtain a contact material that is hard and hard to wear easily by simple material preparation before compression molding. In addition, for example, in the present embodiment, when the silver powder and fullerene having a particle size of about several μm to several hundred μm are mixed with the silver-metal oxide composite, the amount of the metal oxide added is changed. The material is designed to be less, and the decrease is partly compensated by the addition of metal, which is an inorganic particle having a higher melting point than silver. It is possible to obtain a difficult contact material by using a smaller amount of fullerene.

一方、本実施形態の上記電気接点用材料を使用して、上記工程5により形成した接点は、本実施形態の電気接点用材料を使用しているので、硬く、消耗し難い接点を提供できることとなる。   On the other hand, the contact formed by the step 5 using the electrical contact material of the present embodiment uses the electrical contact material of the present embodiment, and therefore can provide a hard and hard-to-wear contact. Become.

図4は、本発明の第4の実施形態である銀を主成分とし、カーボンナノチューブを含有する電気接点用材料及び電気接点の製造工程を模式的に示す図である。   FIG. 4 is a diagram schematically showing a manufacturing process of an electrical contact material and an electrical contact containing silver as a main component and containing carbon nanotubes according to a fourth embodiment of the present invention.

すなわち、まず、銀粉とカーボンナノチューブの混合粉は、混合粉中にカーボンナノチューブが均一に分散するように、よくかき混ぜる。〔工程1〕
このとき、混合粉の全体量において、カーボンナノチューブの混入量は、0.001質量%〜0.5質量%程度が適当である。混入比率が少ない場合、微細分散効果が得られず、接点が固くならない不具合が生じる。また、混入比率が多い場合、接点が固くなり過ぎて、後の電気接点形成工程(切断、形状付与など)の際に、材料割れが生じる等の不具合が発生し易いからである。
That is, first, the mixed powder of silver powder and carbon nanotubes is stirred well so that the carbon nanotubes are uniformly dispersed in the mixed powder. [Step 1]
At this time, about 0.001 mass%-about 0.5 mass% are suitable for the mixing amount of a carbon nanotube in the whole quantity of mixed powder. When the mixing ratio is small, the fine dispersion effect cannot be obtained, and the contact does not become hard. In addition, when the mixing ratio is large, the contact becomes too hard, and problems such as material cracking are likely to occur during the subsequent electrical contact formation process (cutting, shape provision, etc.).

次に、混合した粉は、プレス機により例えば、直径100mm〜200mm程度の略円柱形状体3に押し固める。〔工程2〕
このとき、室温中で押し固めても良いし、300℃〜900℃程度の高温下で押し固めても良い。
Next, the mixed powder is pressed and solidified into, for example, a substantially cylindrical body 3 having a diameter of about 100 mm to 200 mm by a press. [Step 2]
At this time, it may be compacted at room temperature or may be compacted at a high temperature of about 300 ° C to 900 ° C.

押し固めた材料は、伸線加工することにより、徐々に細長くする。〔工程3〕
伸線加工は材料を塑性変形させることにより行う。材料は、塑性変形させると、硬くなり、断線し易くなる。従って,伸線加工途中では、適宜、アニール(焼鈍)を行う。
The pressed material is gradually elongated by drawing. [Step 3]
Drawing is performed by plastically deforming the material. When the material is plastically deformed, it becomes hard and easily breaks. Therefore, annealing (annealing) is appropriately performed during the wire drawing process.

材料が、細くなり(例えば、直径1〜5mm程度)、所定の太さの細線形状体4となったら、材料を長さ数mm程度の所定の間隔で細断し、材料片5とする。〔工程4〕
材料片5は、再び、プレスし、例えば、直径100mm〜200mm程度の略円柱形状体3に押し固める。この工程は、カーボンナノチューブの分散をより均一にするためのものである。従って、この工程が無く、工程3から直接、後述する工程5を行うものも、本発明に含まれる。
When the material becomes thin (for example, about 1 to 5 mm in diameter) and becomes a thin line-shaped body 4 having a predetermined thickness, the material is chopped at a predetermined interval of about several mm in length to form a material piece 5. [Step 4]
The material piece 5 is pressed again and pressed into a substantially cylindrical body 3 having a diameter of about 100 mm to 200 mm, for example. This step is for making the dispersion of the carbon nanotubes more uniform. Therefore, what does not have this process and performs the process 5 mentioned later directly from the process 3 is also contained in this invention.

かかる本実施形態の電気接点用材料は工程3により、直径数mm程度の伸線状に形成される。この材料を数mm程度に切断し、プレスなどにより塑性変形させることにより、リベット型接点1を形成する。あるいは、かかる本実施形態の電気接点用材料をリベット状の台金(図示せず)に、冷間圧接して接点2を形成する。〔工程5〕
なお、カーボンナノチューブとは、主に、炭素と炭素がsp2混成軌道により結合した炭素六員環の網目状構造が丸まってチューブ状となっている炭素多面体(その末端は閉口している)構造を有する分子状炭素である。なお、異径のチューブ接合部や末端の閉口部においては、炭素五員環や炭素七員環となっている場合もあり。また、生成条件等により末端が開口しているものも存在する。さらに、カーボンナノチューブ類で球状の構造を取るもの、例えばC60、C70等が、上記したフラーレン類に該当する。
The electrical contact material of this embodiment is formed into a wire having a diameter of about several millimeters by Step 3. The rivet type contact 1 is formed by cutting this material into several mm and plastically deforming it with a press or the like. Alternatively, the contact 2 is formed by cold-welding the electric contact material of the present embodiment to a rivet base metal (not shown). [Step 5]
Carbon nanotubes are mainly carbon polyhedron structures (the ends of which are closed) in which a network structure of carbon six-membered rings in which carbon and carbon are bonded by sp 2 hybrid orbits is rounded into a tube shape. It is molecular carbon having In addition, in the tube joint part and terminal closing part of a different diameter, it may be a carbon five-membered ring or a carbon seven-membered ring. In addition, there are some which are open at the end depending on the generation conditions. Further, carbon nanotubes having a spherical structure, such as C 60 and C 70 , correspond to the above-mentioned fullerenes.

上記したように、本実施形態の電気接点用材では、銀を主成分とし、カーボンナノチューブを含有するので、硬く、消耗し難い接点材料を得ることができることとなる。さらには、カーボンナノチューブを0.001質量%〜0.5質量%含有するようにすることにより、添加物であるカーボンナノチューブが最大でも0.5質量%しか混入されないので、相対的に、母材である銀の純度を高く維持できることとなり、接触信頼性が高く、接触抵抗が低い接点材料を得ることができることとなる。   As described above, since the electrical contact material of the present embodiment contains silver as a main component and contains carbon nanotubes, a contact material that is hard and hardly consumed can be obtained. Furthermore, since carbon nanotubes as additives are mixed in at most 0.5% by mass by containing carbon nanotubes in an amount of 0.001% to 0.5% by mass, the base material is relatively Therefore, it is possible to obtain a contact material with high contact reliability and low contact resistance.

また、本実施形態の上記電気接点用材料を使用して、上記工程5により形成した接点は、本実施形態の電気接点用材料を使用しているので、硬く、消耗し難い接点を提供できることとなる。   In addition, the contact formed by the above step 5 using the electrical contact material of the present embodiment uses the electrical contact material of the present embodiment, and therefore can provide a hard and hard-to-wear contact. Become.

一方、図5は、本発明の第5の実施形態である銀を主成分とし、銀よりも高融点の無機粒子である金属を含有し、且つ、カーボンナノチューブを含有する電気接点用材料及び電気接点の製造工程を模式的に示す図である。   On the other hand, FIG. 5 shows a fifth embodiment of the present invention, which is a material for electrical contacts and an electrical material containing silver as a main component, a metal which is an inorganic particle having a higher melting point than silver, and containing carbon nanotubes. It is a figure which shows the manufacturing process of a contact typically.

ここでは、粒子径が、数μm〜数百μm程度の銀の粉と、粒子径が、0.1μm〜100μm程度、好ましくは数μm〜数十μm程度で銀より高融点の金属の粉と、カーボンナノチューブを混合した混合粉とする。銀より高融点の金属としては、ニッケル、タングツテン等が例示可能である。以下、上記の実施形態と略同様にして、銀を主成分とし、高融点金属を含有し、且つ、カーボンナノチューブを含有する電気接点用材料及び電気接点が得られる。   Here, a silver powder having a particle diameter of about several μm to several hundred μm, and a metal powder having a particle diameter of about 0.1 μm to 100 μm, preferably about several μm to several tens of μm and having a melting point higher than silver. A mixed powder in which carbon nanotubes are mixed is used. Examples of the metal having a higher melting point than silver include nickel and tungsten. Hereinafter, in substantially the same manner as in the above embodiment, an electrical contact material and an electrical contact containing silver as a main component, containing a refractory metal, and containing carbon nanotubes are obtained.

すなわち、まず、かかる混合粉を、混合粉中にカーボンナノチューブが均一に分散するように、よくかき混ぜる。〔工程1〕
このとき、混合粉の全体量において、カーボンナノチューブの混入量は、0.001質量%〜0.5質量%程度が適当である。混入比率が少ない場合、微細分散効果が得られず、接点が固くならない不具合が生じる。また、混入比率が多い場合、接点が固くなり過ぎて、後の電気接点形成工程(切断、形状付与など)の際に、材料割れが生じる等の不具合が発生し易いからである。
That is, first, the mixed powder is well mixed so that the carbon nanotubes are uniformly dispersed in the mixed powder. [Step 1]
At this time, about 0.001 mass%-about 0.5 mass% are suitable for the mixing amount of a carbon nanotube in the whole quantity of mixed powder. When the mixing ratio is small, the fine dispersion effect cannot be obtained, and the contact does not become hard. In addition, when the mixing ratio is large, the contact becomes too hard, and problems such as material cracking are likely to occur during the subsequent electrical contact formation process (cutting, shape provision, etc.).

次に、混合した粉は、プレス機により例えば、直径100mm〜200mm程度の略円柱形状体3に押し固める。〔工程2〕
このとき、室温中で押し固めても良いし、300℃〜900℃程度の高温下で押し固めても良い。
Next, the mixed powder is pressed and solidified into, for example, a substantially cylindrical body 3 having a diameter of about 100 mm to 200 mm by a press. [Step 2]
At this time, it may be compacted at room temperature or may be compacted at a high temperature of about 300 ° C to 900 ° C.

押し固めた材料は、伸線加工することにより、徐々に細長くする。〔工程3〕
伸線加工は材料を塑性変形させることにより行う。材料は、塑性変形させると、硬くなり、断線し易くなる。従って,伸線加工途中では、適宜、アニール(焼鈍)を行う。
The pressed material is gradually elongated by drawing. [Step 3]
Drawing is performed by plastically deforming the material. When the material is plastically deformed, it becomes hard and easily breaks. Therefore, annealing (annealing) is appropriately performed during the wire drawing process.

材料が、細くなり(例えば、直径1〜5mm程度)、所定の太さの細線形状体4となったら、材料を長さ数mm程度の所定の間隔で細断し、材料片5とする。〔工程4〕
材料片5は、再び、プレスし、例えば、直径100mm〜200mm程度の略円柱形状体3に押し固める。この工程は、カーボンナノチューブの分散をより均一にするためのものである。従って、この工程が無く、工程3から直接、後述する工程5を行うものも、本発明に含まれる。
When the material becomes thin (for example, about 1 to 5 mm in diameter) and becomes a thin line-shaped body 4 having a predetermined thickness, the material is chopped at a predetermined interval of about several mm in length to form a material piece 5. [Step 4]
The material piece 5 is pressed again and pressed into a substantially cylindrical body 3 having a diameter of about 100 mm to 200 mm, for example. This step is for making the dispersion of the carbon nanotubes more uniform. Therefore, what does not have this process and performs the process 5 mentioned later directly from the process 3 is also contained in this invention.

かかる本実施形態の電気接点用材料は工程3により、直径数mm程度の伸線状に形成される。この材料を数mm程度に切断し、プレスなどにより塑性変形させることにより、リベット型接点1を形成する。あるいは、かかる本実施形態の電気接点用材料をリベット状の台金(図示せず)に、冷間圧接して接点2を形成する。〔工程5〕
このように、本実施形態の電気接点用材料では、粒子径が、0.1μm〜100μm程度であって、銀よりも高融点の無機粒子である金属酸化物を1質量%〜20質量%分散せしめるので、かかる高融点無機粒子の添加により、一層硬く、消耗し難い接点材料を得ることができ、また、そのため、より少量のカーボンナノチューブを使用することで、必要な硬さを得ることができるため、結果的に、高価なカーボンナノチューブの使用量を少なくすることができることとなる。さらに、添加する高融点無機粒子が金属酸化物であるので、圧縮成形前の簡単な材料調製により、簡便に、硬く消耗し難い接点材料を得ることが可能となる。
The electrical contact material of this embodiment is formed into a wire having a diameter of about several millimeters by Step 3. The rivet type contact 1 is formed by cutting this material into several mm and plastically deforming it with a press or the like. Alternatively, the contact 2 is formed by cold-welding the electric contact material of the present embodiment to a rivet base metal (not shown). [Step 5]
Thus, in the electrical contact material of this embodiment, the particle diameter is about 0.1 μm to 100 μm, and the metal oxide, which is inorganic particles having a melting point higher than silver, is dispersed by 1% by mass to 20% by mass. Therefore, by adding such high melting point inorganic particles, it is possible to obtain a contact material that is harder and less consumable, and therefore, the required hardness can be obtained by using a smaller amount of carbon nanotubes. As a result, the amount of expensive carbon nanotubes used can be reduced. Furthermore, since the high melting point inorganic particles to be added are metal oxides, it is possible to obtain a contact material that is hard and hard to wear easily by simple material preparation before compression molding.

また、本実施形態の上記電気接点用材料を使用して、上記工程5により形成した接点は、本実施形態の電気接点用材料を使用しているので、硬く、消耗し難い接点を提供できることとなる。   In addition, the contact formed by the above step 5 using the electrical contact material of the present embodiment uses the electrical contact material of the present embodiment, and therefore can provide a hard and hard-to-wear contact. Become.

図6は、本発明の第6の実施形態である銀を主成分とし、銀よりも高融点の無機粒子である金属酸化物を含有し、且つ、カーボンナノチューブを含有する電気接点用材料及び電気接点の製造工程を模式的に示す図である。   FIG. 6 shows a sixth embodiment of the present invention, a material for electrical contacts and an electrical contact material containing silver as a main component, a metal oxide which is an inorganic particle having a higher melting point than silver, and containing carbon nanotubes. It is a figure which shows the manufacturing process of a contact typically.

ここでは、先ず、銀に十数質量%の銀以外の金属、例えば、カドミウム、錫、インジウム、亜鉛、銅等を含んだ合金(以下、銀を主成分とする合金と呼ぶ)を形成する。この合金の形状については、特に、限定はないものの、粒状、あるいは直径及び長さが数mm程度の円柱状、もしくは直径数ミリ程度の円盤状のものが、好適に使用可能である。   Here, first, an alloy (hereinafter referred to as an alloy containing silver as a main component) containing a metal other than tens% by mass of silver, such as cadmium, tin, indium, zinc, or copper, is formed. The shape of the alloy is not particularly limited, but a granular shape, a cylindrical shape having a diameter and a length of about several millimeters, or a disk shape having a diameter of about several millimeters can be suitably used.

次に、かかる銀を主成分とする合金を、数百℃、数気圧の酸素雰囲気中で数日間酸化する〔工程A〕。これにより、銀以外の金属が酸化され、銀に金属酸化物が混入した形態(以下、「銀−金属酸化物複合物」という。)が形成される。   Next, such an alloy containing silver as a main component is oxidized for several days in an oxygen atmosphere of several hundred degrees Celsius and several atmospheres [Step A]. Thereby, metals other than silver are oxidized, and the form (henceforth "a silver-metal oxide composite") with which the metal oxide mixed in silver is formed.

かかる銀−金属酸化物複合物に、粒子径が、数μm〜数百μm程度の銀の粉とカーボンナノチューブを混合する。以下、上記第1の実施形態と略同様にして、銀を主成分とし、金属酸化物を含有し、且つ、カーボンナノチューブを含有する電気接点用材料及び電気接点が得られる。   Silver powder having a particle size of about several μm to several hundred μm and a carbon nanotube are mixed into the silver-metal oxide composite. Hereinafter, in substantially the same manner as in the first embodiment, an electrical contact material and an electrical contact containing silver as a main component, containing a metal oxide, and containing carbon nanotubes are obtained.

すなわち、まず、かかる混合粉を、混合粉中にカーボンナノチューブが均一に分散するように、よくかき混ぜる。〔工程1〕
このとき、混合粉の全体量において、カーボンナノチューブの混入量は、0.001質量%〜0.5質量%程度が適当である。混入比率が少ない場合、微細分散効果が得られず、接点が固くならない不具合が生じる。また、混入比率が多い場合、接点が固くなり過ぎて、後の電気接点形成工程(切断、形状付与など)の際に、材料割れが生じる等の不具合が発生し易いからである。
That is, first, the mixed powder is well mixed so that the carbon nanotubes are uniformly dispersed in the mixed powder. [Step 1]
At this time, about 0.001 mass%-about 0.5 mass% are suitable for the mixing amount of a carbon nanotube in the whole quantity of mixed powder. When the mixing ratio is small, the fine dispersion effect cannot be obtained, and the contact does not become hard. In addition, when the mixing ratio is large, the contact becomes too hard, and problems such as material cracking are likely to occur during the subsequent electrical contact formation process (cutting, shape provision, etc.).

次に、混合した粉は、プレス機により例えば、直径100mm〜200mm程度の略円柱形状体3に押し固める。〔工程2〕
このとき、室温中で押し固めても良いし、300℃〜900℃程度の高温下で押し固めても良い。
Next, the mixed powder is pressed and solidified into, for example, a substantially cylindrical body 3 having a diameter of about 100 mm to 200 mm by a press. [Step 2]
At this time, it may be compacted at room temperature or may be compacted at a high temperature of about 300 ° C to 900 ° C.

押し固めた材料は、伸線加工することにより、徐々に細長くする。〔工程3〕
伸線加工は材料を塑性変形させることにより行う。材料は、塑性変形させると、硬くなり、断線し易くなる。従って,伸線加工途中では、適宜、アニール(焼鈍)を行う。
The pressed material is gradually elongated by drawing. [Step 3]
Drawing is performed by plastically deforming the material. When the material is plastically deformed, it becomes hard and easily breaks. Therefore, annealing (annealing) is appropriately performed during the wire drawing process.

材料が、細くなり(例えば、直径1〜5mm程度)、所定の太さの細線形状体4となったら、材料を長さ数mm程度の所定の間隔で細断し、材料片5とする。〔工程4〕
材料片5は、再び、プレスし、例えば、直径100mm〜200mm程度の略円柱形状体3に押し固める。この工程は、カーボンナノチューブの分散をより均一にするためのものである。従って、この工程が無く、工程3から直接、後述する工程5を行うものも、本発明に含まれる。
When the material becomes thin (for example, about 1 to 5 mm in diameter) and becomes a thin line-shaped body 4 having a predetermined thickness, the material is chopped at a predetermined interval of about several mm in length to form a material piece 5. [Step 4]
The material piece 5 is pressed again and pressed into a substantially cylindrical body 3 having a diameter of about 100 mm to 200 mm, for example. This step is for making the dispersion of the carbon nanotubes more uniform. Therefore, what does not have this process and performs the process 5 mentioned later directly from the process 3 is also contained in this invention.

かかる本実施形態の電気接点用材料は工程3により、直径数mm程度の伸線状に形成される。この材料を数mm程度に切断し、プレスなどにより塑性変形させることにより、リベット型接点1を形成する。あるいは、かかる本実施形態の電気接点用材料をリベット状の台金(図示せず)に、冷間圧接して接点2を形成する。〔工程5〕
このように、本実施形態の電気接点用材料では、粒子径が、0.1μm〜100μm程度であって、銀よりも高融点の無機粒子である金属酸化物を1質量%〜20質量%分散せしめるので、かかる高融点無機粒子の添加により、一層硬く、消耗し難い接点材料を得ることができ、また、そのため、より少量のカーボンナノチューブを使用することで、必要な硬さを得ることができるため、結果的に、高価なカーボンナノチューブの使用量を少なくすることができることとなる。さらに、添加する高融点無機粒子が金属酸化物であるので、圧縮成形前の簡単な材料調製により、簡便に、硬く消耗し難い接点材料を得ることが可能となる。また、例えば、本実施形態において、上記銀−金属酸化物複合物に、粒子径が、数μm〜数百μm程度の銀の粉とカーボンナノチューブを混合する際に、上記金属酸化物の添加量を少なく材料設計し、その減少分を一部、銀よりも高融点の無機粒子である金属の添加で補填する等により、本実施形態、或いは、上記第2の実施形態と同様に、硬く、消耗し難い接点材料をより少量のカーボンナノチューブを使用することで得ることが可能となる。
The electrical contact material of this embodiment is formed into a wire having a diameter of about several millimeters by Step 3. The rivet type contact 1 is formed by cutting this material into several mm and plastically deforming it with a press or the like. Alternatively, the contact 2 is formed by cold-welding the electric contact material of the present embodiment to a rivet base metal (not shown). [Step 5]
Thus, in the electrical contact material of this embodiment, the particle diameter is about 0.1 μm to 100 μm, and the metal oxide, which is inorganic particles having a melting point higher than silver, is dispersed by 1% by mass to 20% by mass. Therefore, by adding such high melting point inorganic particles, it is possible to obtain a contact material that is harder and less consumable, and therefore, the required hardness can be obtained by using a smaller amount of carbon nanotubes. As a result, the amount of expensive carbon nanotubes used can be reduced. Furthermore, since the high melting point inorganic particles to be added are metal oxides, it is possible to obtain a contact material that is hard and hard to wear easily by simple material preparation before compression molding. In addition, for example, in the present embodiment, when the silver-metal oxide composite is mixed with silver powder having a particle diameter of about several μm to several hundred μm and carbon nanotubes, the amount of the metal oxide added In the present embodiment, or in the same way as in the second embodiment, the decrease is partially designed to compensate for the decrease by adding a metal that is an inorganic particle having a higher melting point than silver. It becomes possible to obtain a contact material which is not easily consumed by using a smaller amount of carbon nanotubes.

また、本実施形態の上記電気接点用材料を使用して、上記工程5により形成した接点は、本実施形態の電気接点用材料を使用しているので、硬く、消耗し難い接点を提供できることとなる。   In addition, the contact formed by the above step 5 using the electrical contact material of the present embodiment uses the electrical contact material of the present embodiment, and therefore can provide a hard and hard-to-wear contact. Become.

図7は、本発明の第7の実施形態である銀を主成分とし、カーボンナノチューブ及びフラーレンを含有する電気接点用材料及び電気接点の製造工程を模式的に示す図である。   FIG. 7 is a diagram schematically showing an electrical contact material containing silver as a main component and containing carbon nanotubes and fullerenes and the electrical contact manufacturing process according to the seventh embodiment of the present invention.

すなわち、まず、銀粉とカーボンナノチューブ及びフラーレンの混合粉は、混合粉中にカーボンナノチューブ及びフラーレンが均一に分散するように、よくかき混ぜる。〔工程1〕
このとき、混合粉の全体量において、カーボンナノチューブ及びフラーレンの混入量は、両者合計して、0.001質量%〜0.5質量%程度が適当である。混入比率が少ない場合、微細分散効果が得られず、接点が固くならない不具合が生じる。また、混入比率が多い場合、接点が固くなり過ぎて、後の電気接点形成工程(切断、形状付与など)の際に、材料割れが生じる等の不具合が発生し易いからである。
That is, first, a mixed powder of silver powder, carbon nanotubes, and fullerenes is thoroughly mixed so that the carbon nanotubes and fullerenes are uniformly dispersed in the mixed powder. [Step 1]
At this time, in the total amount of the mixed powder, the mixing amount of the carbon nanotubes and fullerenes is appropriately about 0.001% by mass to 0.5% by mass in total. When the mixing ratio is small, the fine dispersion effect cannot be obtained, and the contact does not become hard. In addition, when the mixing ratio is large, the contact becomes too hard, and problems such as material cracking are likely to occur during the subsequent electrical contact formation process (cutting, shape provision, etc.).

次に、混合した粉は、プレス機により例えば、直径100mm〜200mm程度の略円柱形状体3に押し固める。〔工程2〕
このとき、室温中で押し固めても良いし、300℃〜900℃程度の高温下で押し固めても良い。
Next, the mixed powder is pressed and solidified into, for example, a substantially cylindrical body 3 having a diameter of about 100 mm to 200 mm by a press. [Step 2]
At this time, it may be compacted at room temperature or may be compacted at a high temperature of about 300 ° C to 900 ° C.

押し固めた材料は、伸線加工することにより、徐々に細長くする。〔工程3〕
伸線加工は材料を塑性変形させることにより行う。材料は、塑性変形させると、硬くなり、断線し易くなる。従って,伸線加工途中では、適宜、アニール(焼鈍)を行う。
The pressed material is gradually elongated by drawing. [Step 3]
Drawing is performed by plastically deforming the material. When the material is plastically deformed, it becomes hard and easily breaks. Therefore, annealing (annealing) is appropriately performed during the wire drawing process.

材料が、細くなり(例えば、直径1〜5mm程度)、所定の太さの細線形状体4となったら、材料を長さ数mm程度の所定の間隔で細断し、材料片5とする。〔工程4〕
材料片5は、再び、プレスし、例えば、直径100mm〜200mm程度の略円柱形状体3に押し固める。この工程は、カーボンナノチューブ及びフラーレンの分散をより均一にするためのものである。従って、この工程が無く、工程3から直接、後述する工程5を行うものも、本発明に含まれる。
When the material becomes thin (for example, about 1 to 5 mm in diameter) and becomes a thin line-shaped body 4 having a predetermined thickness, the material is chopped at a predetermined interval of about several mm in length to form a material piece 5. [Step 4]
The material piece 5 is pressed again and pressed into a substantially cylindrical body 3 having a diameter of about 100 mm to 200 mm, for example. This step is for making the dispersion of carbon nanotubes and fullerenes more uniform. Therefore, what does not have this process and performs the process 5 mentioned later directly from the process 3 is also contained in this invention.

かかる本実施形態の電気接点用材料は工程3により、直径数mm程度の伸線状に形成される。この材料を数mm程度に切断し、プレスなどにより塑性変形させることにより、リベット型接点1を形成する。あるいは、かかる本実施形態の電気接点用材料をリベット状の台金(図示せず)に、冷間圧接して接点2を形成する。〔工程5〕
このように、本実施形態の電気接点用材料では、カーボンナノチューブ及びフラーレンを含有するので、硬く、消耗し難い接点材料の材料設計をより高い自由度で行うことが可能となる。また、本実施形態は、上記第4の実施形態において、添加するカーボンナノチューブを一部フラーレンで置換した実施形態に該当するが、同様にして、上記第4または第5の実施形態においても、添加するカーボンナノチューブを一部フラーレンで置換した実施形態も当然に可能であり、この場合においても、硬く、消耗し難い接点材料の材料設計をより高い自由度で行うことが可能となる。
The electrical contact material of this embodiment is formed into a wire having a diameter of about several millimeters by Step 3. The rivet type contact 1 is formed by cutting this material into several mm and plastically deforming it with a press or the like. Alternatively, the contact 2 is formed by cold-welding the electric contact material of the present embodiment to a rivet base metal (not shown). [Step 5]
As described above, since the electrical contact material of the present embodiment contains carbon nanotubes and fullerenes, it is possible to design the material of the contact material that is hard and difficult to wear with a higher degree of freedom. In addition, this embodiment corresponds to an embodiment in which the carbon nanotubes to be added are partially substituted with fullerenes in the fourth embodiment. Similarly, in the fourth or fifth embodiment, the addition is performed in the fourth or fifth embodiment. Naturally, an embodiment in which carbon nanotubes to be partially substituted with fullerenes is possible, and even in this case, it is possible to design the contact material that is hard and hard to wear with a higher degree of freedom.

また、本実施形態の上記電気接点用材料を使用して、上記工程5により形成した接点は、本実施形態の電気接点用材料を使用しているので、硬く、消耗し難い接点を提供できることとなる。   In addition, the contact formed by the above step 5 using the electrical contact material of the present embodiment uses the electrical contact material of the present embodiment, and therefore can provide a hard and hard-to-wear contact. Become.

なお、上記各実施形態の接点を形成する工程(工程5)においては、図8に示すようなものも可能である。図8は、上記各実施形態の接点を形成する上記と異なる工程の概略を示すもので、(a)は、電気接点用材料の細線形状体4の斜視図、(b)は、電気接点用材料の材料片6と端子7との嵌合状態を示す斜視図、(c)は、端子7の穴部8に挿入された電気接点用材料の材料片6が、押圧される直前の様子を示す断面図、(d)は、端子7への接続が完了した接点23を示す断面図である。   In the step of forming the contact point in each of the above embodiments (step 5), the one shown in FIG. 8 is also possible. FIG. 8 shows an outline of a different process from that for forming the contact of each of the above embodiments. (A) is a perspective view of the fine wire-shaped body 4 of the material for electrical contact, and (b) is for the electrical contact. The perspective view which shows the fitting state of the material piece 6 of material and the terminal 7, (c) is a state just before the material piece 6 of the material for electrical contacts inserted in the hole 8 of the terminal 7 is pressed. FIG. 4D is a cross-sectional view showing the contact 23 that has been connected to the terminal 7.

すなわち、工程3で細線形状体4に形成された接点材料(図8(a))をナイフ等により、短く切断し、材料片6とする。材料片6は、端子7の穴部8に挿入される(図8(b))。端子7は、導電性の材料で形成され、通常は純銅もしくは銅合金が用いられる。穴部8に挿入された材料片6は、ポンチ9、下台10により挟まれ、押圧される(図8(c))。ポンチ9が材料片6を押す面には、略椀形状の凹部11が形成されており、押圧するに従って、材料片6は凹部11に入り込む。穴部8の下台側には、テーパ部12が設けられており、押圧するに従って、材料片6は変形し、テーパ部12内に入り込む。ポンチ9の下面13が端子7に到達したら、押圧を開放する。上記により、接点材料の材料片6は、端子7にかしめられ、接点(電気接点)23となり、接点形状の付与と共に、端子7への接続が完了することとなる(図8(d))。このような工程によれば、接点材料に接点形状を付与すると同時に、端子7への接点接合を容易に行うことができるので、簡単で経済的に有利な端子部の形成が可能となる。   That is, the contact material (FIG. 8A) formed on the thin line-shaped body 4 in step 3 is cut short with a knife or the like to obtain a material piece 6. The piece of material 6 is inserted into the hole 8 of the terminal 7 (FIG. 8B). The terminal 7 is made of a conductive material, and pure copper or a copper alloy is usually used. The material piece 6 inserted into the hole 8 is sandwiched and pressed by the punch 9 and the lower base 10 (FIG. 8C). A substantially bowl-shaped recess 11 is formed on the surface of the punch 9 that presses the material piece 6, and the material piece 6 enters the recess 11 as it is pressed. A tapered portion 12 is provided on the lower base side of the hole portion 8, and the material piece 6 is deformed and enters the tapered portion 12 as it is pressed. When the lower surface 13 of the punch 9 reaches the terminal 7, the pressing is released. As described above, the material piece 6 of the contact material is caulked to the terminal 7 to become the contact (electrical contact) 23, and the connection to the terminal 7 is completed together with the application of the contact shape (FIG. 8D). According to such a process, since the contact shape can be imparted to the contact material and at the same time the contact bonding to the terminal 7 can be easily performed, it is possible to form a simple and economically advantageous terminal portion.

また、上記各実施形態において、カーボンナノチューブを使用した場合には、伸線加工等により繊維状のカーボンナノチューブが、伸線方向に配向することも期待され、この場合には、図9(a)、(b)に示すように、カーボンナノチューブ繊維24の方向が、例えば、接点1、或いは、接点2の接点表面に対して略垂直になることとなる。その結果、銀より融点が高いカーボンナノチューブが、接点表面に対して略垂直になるような配置が達成され、より耐消耗特性に優れた接点材料が形成され得る。   In each of the above embodiments, when carbon nanotubes are used, it is also expected that the fibrous carbon nanotubes are oriented in the wire drawing direction by wire drawing or the like. In this case, FIG. , (B), the direction of the carbon nanotube fiber 24 is substantially perpendicular to the contact surface of the contact 1 or the contact 2, for example. As a result, the carbon nanotube having a melting point higher than that of silver can be arranged so as to be substantially perpendicular to the contact surface, and a contact material with more excellent wear resistance can be formed.

一方、本発明の電気接点材料は、接点表面層としても使用することができる。以下、これについて説明する。図10は、本発明の第8の実施形態を示すもので、本発明の電気接点材料を、接点表面層としても使用する実施形態である。すなわち、粒子径が数μm〜数百μm程度の銀の粉と、フラーレンを混合する。全体の重量に対し、フラーレンの混入比率は、0.001質量%〜0.5質量%程度とする。〔工程1〕
この混合粉をプレスし、例えば厚さ10mmの板材を形成する。〔工程2〕
一方、上記第3の実施形態で説明した銀−金属酸化物複合物をプレスし、例えば厚さ100mmのブロックを形成する。〔工程2〕
次に、上記した銀−フラーレン板材と、銀−金属酸化物複合物ブロックと、純銀板(例えば厚さ10mm)を、銀−金属酸化物複合物ブロックが中間になるように重ねる。〔工程B〕
次に、数百℃の温度雰囲気中での圧延(熱間圧延)や室温中での圧延(冷間圧延)を行う。圧延は、例えば、厚さが1.2mmになるまで繰り返す。〔工程C〕
この結果、フラーレンを0.001質量%〜0.5質量%含有する接点表面層の厚さは、0.2mm程度となる。もちろん、上記工程Bにおける銀−フラーレン板材と、銀−金属酸化物複合物ブロックの厚さの比を調整することにより、これより接点表面層の厚さを薄くできることはいうまでもない。
On the other hand, the electrical contact material of the present invention can also be used as a contact surface layer. This will be described below. FIG. 10 shows an eighth embodiment of the present invention, in which the electrical contact material of the present invention is also used as a contact surface layer. That is, fullerene is mixed with silver powder having a particle size of about several μm to several hundred μm. The mixing ratio of fullerene is about 0.001% by mass to 0.5% by mass with respect to the total weight. [Step 1]
This mixed powder is pressed to form, for example, a plate material having a thickness of 10 mm. [Step 2]
On the other hand, the silver-metal oxide composite described in the third embodiment is pressed to form, for example, a block having a thickness of 100 mm. [Step 2]
Next, the above-described silver-fullerene plate material, the silver-metal oxide composite block, and the pure silver plate (for example, 10 mm in thickness) are stacked so that the silver-metal oxide composite block is in the middle. [Process B]
Next, rolling in a temperature atmosphere of several hundred degrees Celsius (hot rolling) and rolling at room temperature (cold rolling) are performed. The rolling is repeated until the thickness becomes 1.2 mm, for example. [Process C]
As a result, the thickness of the contact surface layer containing 0.001% by mass to 0.5% by mass of fullerene is about 0.2 mm. Of course, it is needless to say that the thickness of the contact surface layer can be made thinner by adjusting the ratio of the thickness of the silver-fullerene plate material and the silver-metal oxide composite block in the step B.

圧延が完了したら、例えば5×5mm角に切り出し、板状接点14とする。〔工程D〕
次に、板状接点14の純銀層である接合層16の表面と、銅等で形成される端子(図示せず)の間で、ロウ付けや抵抗溶接などで接合を行う〔工程E〕。
接点材料に純銀層である接合層16を形成したのは、ロウ付けや抵抗溶接を行い易くするためであり、接合層16がないものも本発明に含まれる。
When the rolling is completed, for example, it is cut into 5 × 5 mm squares to form plate contacts 14. [Process D]
Next, joining is performed by brazing, resistance welding, or the like between the surface of the joining layer 16 that is a pure silver layer of the plate-like contact 14 and a terminal (not shown) formed of copper or the like [Step E].
The reason why the bonding layer 16, which is a pure silver layer, is formed on the contact material is to facilitate brazing and resistance welding, and those without the bonding layer 16 are also included in the present invention.

銀を主成分とし、フラーレンを含む接点表面層15は、従来の純銀めっき層に比べ、接触抵抗が同程度で、強度が強く、消耗し難い特徴を有する。従って、開閉を繰り返して接触信頼性を損なわない電気接点を提供することができる。また、フレーレンは接点表面層15のみに含まれるので、高価なフラーレンの使用量を少量に抑え、安価な接点を形成できることとなる。   The contact surface layer 15 containing silver as a main component and containing fullerene has the characteristics that the contact resistance is about the same as that of a conventional pure silver plating layer, the strength is high, and it is difficult to wear out. Therefore, it is possible to provide an electrical contact that does not impair contact reliability by repeatedly opening and closing. Further, since the fullerene is contained only in the contact surface layer 15, the amount of expensive fullerene used can be suppressed to a small amount and an inexpensive contact can be formed.

本実施形態では、接合層16を純銀層としたが、接合層16を銀−フラーレン層とする実施形態も当然に可能である。すなわち、この場合、板状接点14は、銀−フラーレン層、銀−金属酸化物複合物層、銀−フラーレン層のサンドイッチ構造で形成される。従って、この構成では、接合の際、裏表を考慮することなく、接合を行うことができることとなる。   In the present embodiment, the bonding layer 16 is a pure silver layer, but an embodiment in which the bonding layer 16 is a silver-fullerene layer is naturally possible. That is, in this case, the plate contact 14 is formed with a sandwich structure of a silver-fullerene layer, a silver-metal oxide composite layer, and a silver-fullerene layer. Therefore, in this configuration, the joining can be performed without considering the front and back sides at the time of joining.

このように、本実施形態の電気接点では、銀を主成分とし、フラーレンを0.001質量%〜0.5質量%含有する層を形成し、その層の厚さが0.2mm以下であることを特徴とするので、開閉による層の剥離が少なく、消耗し難く、且つ、開閉を繰り返して接触信頼性を損なわない電気接点を提供しうることとなる。また、フラーレンを接点表面層のみに含有するので、フラーレンは使用量が少量で足り、安価な接点を提供しうることとなる。   Thus, in the electrical contact of the present embodiment, a layer containing silver as a main component and containing 0.001% by mass to 0.5% by mass of fullerene is formed, and the thickness of the layer is 0.2 mm or less. Therefore, it is possible to provide an electrical contact that is less likely to be worn away by opening and closing, is not easily consumed, and does not impair contact reliability by repeated opening and closing. In addition, since fullerene is contained only in the contact surface layer, the amount of fullerene used is small, and an inexpensive contact can be provided.

なお、上記第8の実施形態と同様に、サンドイッチ構造を有する板状接点14のさらに異なる実施形態である本発明の第9の実施形態を図11に示す。この実施形態では、中間層17が、銀と、銀より高融点の金属が混合した層で構成されるものである。   As in the eighth embodiment, FIG. 11 shows a ninth embodiment of the present invention which is a further different embodiment of the plate contact 14 having a sandwich structure. In this embodiment, the intermediate layer 17 is composed of a layer in which silver and a metal having a higher melting point than silver are mixed.

一方、図12は、本発明の第10の実施形態を示すもので、本実施形態も本発明の電気接点材料を、接点表面層としても使用するものである。すなわち、粒子径が数μm〜数百μm程度の銀の粉と、カーボンナノチューブを混合する。全体の重量に対し、カーボンナノチューブの混入比率は、0.001質量%〜0.5質量%程度とする。〔工程1〕
この混合粉をプレスし、例えば厚さ10mmの板材を形成する。〔工程2〕
一方、上記第3の実施形態で説明した銀−金属酸化物複合物をプレスし、例えば厚さ100mmのブロックを形成する。〔工程2〕
次に、上記した銀−カーボンナノチューブ板材と、銀−金属酸化物複合物ブロックと、純銀板(例えば厚さ10mm)を、銀−金属酸化物複合物ブロックが中間になるように重ねる。〔工程B〕
次に、数百℃の温度雰囲気中での圧延(熱間圧延)や室温中での圧延(冷間圧延)を行う。圧延は、例えば、厚さが1.2mm程度になるまで繰り返す。〔工程C〕
この結果、カーボンナノチューブを0.001質量%〜0.5質量%含有する接点表面層の厚さは、0.2mm程度となる。もちろん、上記工程Bにおける銀−カーボンナノチューブ板材と、銀−金属酸化物複合物ブロックの厚さの比を調整することにより、これより接点表面層の厚さを薄くできることはいうまでもない。
On the other hand, FIG. 12 shows a tenth embodiment of the present invention. This embodiment also uses the electrical contact material of the present invention as a contact surface layer. That is, a silver powder having a particle diameter of about several μm to several hundred μm and a carbon nanotube are mixed. The mixing ratio of carbon nanotubes is about 0.001% by mass to 0.5% by mass with respect to the total weight. [Step 1]
This mixed powder is pressed to form, for example, a plate material having a thickness of 10 mm. [Step 2]
On the other hand, the silver-metal oxide composite described in the third embodiment is pressed to form, for example, a block having a thickness of 100 mm. [Step 2]
Next, the above-mentioned silver-carbon nanotube plate material, the silver-metal oxide composite block, and the pure silver plate (for example, 10 mm in thickness) are stacked so that the silver-metal oxide composite block is in the middle. [Process B]
Next, rolling in a temperature atmosphere of several hundred degrees Celsius (hot rolling) and rolling at room temperature (cold rolling) are performed. The rolling is repeated until, for example, the thickness is about 1.2 mm. [Process C]
As a result, the thickness of the contact surface layer containing 0.001% to 0.5% by mass of carbon nanotubes is about 0.2 mm. Of course, it is needless to say that the thickness of the contact surface layer can be made thinner by adjusting the ratio of the thickness of the silver-carbon nanotube plate material and the silver-metal oxide composite block in the step B.

圧延が完了したら、例えば5×5mm角に切り出し、板状接点14とする。〔工程D〕
次に、板状接点14の純銀層である接合層16の表面と、銅等で形成される端子(図示せず)の間で、ロウ付けや抵抗溶接などで接合を行う〔工程E〕。
接点材料に純銀層である接合層16を形成したのは、ロウ付けや抵抗溶接を行い易くするためであり、接合層16がないものも本発明に含まれる。
When the rolling is completed, for example, it is cut into 5 × 5 mm squares to form plate contacts 14. [Process D]
Next, joining is performed by brazing, resistance welding, or the like between the surface of the joining layer 16 that is a pure silver layer of the plate-like contact 14 and a terminal (not shown) formed of copper or the like [Step E].
The reason why the bonding layer 16, which is a pure silver layer, is formed on the contact material is to facilitate brazing and resistance welding, and those without the bonding layer 16 are also included in the present invention.

銀を主成分とし、カーボンナノチューブを含む接点表面層15は、従来の純銀めっき層に比べ、接触抵抗が同程度で、強度が強く、消耗し難い特徴を有する。従って、開閉を繰り返して接触信頼性を損なわない電気接点を提供することができる。また、フレーレンは接点表面層15のみに含まれるので、高価なカーボンナノチューブの使用量を少量に抑え、安価な接点を形成できることとなる。   The contact surface layer 15 containing silver as a main component and containing carbon nanotubes has the characteristics that the contact resistance is about the same as that of a conventional pure silver plating layer, the strength is high, and it is difficult to wear out. Therefore, it is possible to provide an electrical contact that does not impair contact reliability by repeatedly opening and closing. In addition, since fullerene is contained only in the contact surface layer 15, the amount of expensive carbon nanotubes used can be suppressed to a small amount, and an inexpensive contact can be formed.

本実施形態では、接合層16を純銀層としたが、接合層16を銀−カーボンナノチューブ層とする実施形態も当然に可能である。すなわち、この場合、板状接点14は、銀−カーボンナノチューブ層、銀−金属酸化物複合物層、銀−カーボンナノチューブ層のサンドイッチ構造で形成される。従って、この構成では、接合の際、裏表を考慮することなく、接合を行うことができることとなる。   In the present embodiment, the bonding layer 16 is a pure silver layer, but an embodiment in which the bonding layer 16 is a silver-carbon nanotube layer is naturally possible. That is, in this case, the plate contact 14 is formed of a sandwich structure of a silver-carbon nanotube layer, a silver-metal oxide composite layer, and a silver-carbon nanotube layer. Therefore, in this configuration, the joining can be performed without considering the front and back sides at the time of joining.

このように、本実施形態の電気接点では、銀を主成分とし、カーボンナノチューブを0.001質量%〜0.5質量%含有する層を形成し、その層の厚さが0.2mm以下であるので、開閉による層の剥離が少なく、消耗し難く、且つ、開閉を繰り返して接触信頼性を損なわない電気接点を提供しうることとなる。また、カーボンナノチューブを接点表面層のみに含有するので、カーボンナノチューブは使用量が少量で足り、安価な接点を提供しうることとなる。   Thus, in the electrical contact of the present embodiment, a layer containing silver as a main component and containing 0.001% by mass to 0.5% by mass of the carbon nanotube is formed, and the thickness of the layer is 0.2 mm or less. Therefore, it is possible to provide an electrical contact that is less likely to be depleted due to opening and closing, is not easily consumed, and does not impair contact reliability by repeated opening and closing. In addition, since carbon nanotubes are contained only in the contact surface layer, the carbon nanotubes can be used in a small amount and can provide inexpensive contacts.

以下、本発明に係る電気接点用材料及び電気接点の性能評価を実施例によって具体的に説明する。
(実施例1)
〔消耗量に関する実験〕
<試験条件>
1.図13に示すような開閉器19に、接点18を組み込み、試験回路22に通電試験を行なった。
2.負荷20:ランプ1500W、電源21:電圧100Vとし、開閉頻度は、2秒間ONの後、20秒間OFFとし、10000回の開閉を行なった。
<開閉器19の仕様>
開極距離:約2mm、ON時の接点の接触力:150gfとした。
<接点部18の形状>
固定接点18a、可動接点18bとも、頭径(φ):2.5mm、高さ(h):0.7mm、表面球R30mm(図14)
<接点の種類>
・接点A:Ag 90質量%+Ni 10質量%
・接点B:Ag 90質量%+CdO 10質量%
・接点C:Ag 89.9質量%+Ni 10質量%+フラーレン 0.1質量%
・接点D:Ag 89.9質量%+CdO 10質量%+フラーレン 0.1質 量%
・接点E:Ag 89.9質量%+Ni 10質量%+カーボンナノチューブ 0.1質量%
・接点F:Ag 89.9質量%+CdO 10質量%+カーボンナノチューブ 0.1質量%
・接点G:Ag 89.8質量%+Ni 10質量%+フラーレン 0.1質量%+カーボンナノチューブ 0.1質量%
・接点H:Ag 89.8質量%+CdO 10質量%+フラーレン 0.1質量%+カーボンナノチューブ 0.1質量%
(2)実験結果
開閉試験前後で、接点をつき合わせた時の高さ〔H〕(図14(b))を測定し、その差から高さ消耗量を算出した。結果は、下記のようになった。
・接点A:1.0mm〜1.2mm
・接点B:0.7mm〜0.8mm
・接点C:0.8mm〜0.9mm
・接点D:0.5mm〜0.7mm
・接点E:0.7mm〜0.9mm
・接点F:0.5mm〜0.6mm
・接点G:0.7mm〜0.8mm
・接点H0.4mm〜0.5mm
(実施例2)
〔接触信頼性に関する実験〕
<試験条件>
1.図13に示すような開閉器19に、接点18を組み込み、試験回路22に通電試験を行なった。
2.負荷20:ランプ1500W、電源21:電圧100Vとし、開閉頻度は、2秒間ONの後、20秒間OFFとし、10000回の開閉を行なった。1000回ごとに接触抵抗の測定を行なった。(即ち、接触抵抗の測定は、10回行なった。)
<開閉器19の仕様>
開極距離:約2mm、ON時の接点の接触力:150gfとした。
<接点部18の形状>
固定接点18a、可動接点18bとも、頭径(φ):2.5mm、高さ(h):0.7mm、表面球R30mm(図14)
<接点の種類>
・接点I:Ag 90質量%+SnO2 10質量%(表面に純銀めっき〔めっき厚0.08mm〕)
・接点J:Ag 質量90%+SnO2 10質量%(表面にめっき層1〔めっ き厚0.08mm〕)、めっき層1の成分は、Ag+フラーレン0.1%
・接点K:Ag 90質量%+SnO2 10質量%(表面にめっき層2〔めっ き厚0.08mm〕)、めっき層2の成分は、Ag+カーボンナノチューブ0 .1%
(2)実験結果
接触抵抗の測定値は、下記であった。
・接点G:最小値:1mΩ〜最大値:10mΩ〔10回の平均値:4.3mΩ〕
・接点H:最小値:1mΩ〜最大値:5mΩ 〔10回の平均値:2.2mΩ〕
・接点I:最小値:1mΩ〜最大値:5mΩ 〔10回の平均値:2.3mΩ〕
上記の実施例1の評価結果より、フラーレンを含有するもの(接点C、接点D)、カーボンナノチューブを含有するもの(接点E、接点F)、フラーレン及びカーボンナノチューブを含有するもの(接点G、接点H)は、フラーレン、カーボンナノチューブを含有しないもの(接点A、接点B)よりも消耗が少ないことが判った。また、実施例2の評価結果より、フラーレンを含有するもの(接点H)、カーボンナノチューブを含有するもの(接点I)は、フラーレン、カーボンナノチューブを含有しないもの(接点G)よりも接触抵抗の測定値が小さく、接触信頼性が高いことが判った。
Hereinafter, the performance evaluation of the electrical contact material and electrical contact according to the present invention will be specifically described with reference to examples.
(Example 1)
[Experiment on consumption]
<Test conditions>
1. A contact 18 was incorporated in a switch 19 as shown in FIG. 13, and an energization test was performed on the test circuit 22.
2. Load 20: lamp 1500 W, power supply 21: voltage 100 V, switching frequency was ON for 2 seconds, then OFF for 20 seconds, and opened and closed 10,000 times.
<Specifications of switch 19>
Opening distance: about 2 mm, contact force at ON contact: 150 gf.
<Shape of contact part 18>
Both the fixed contact 18a and the movable contact 18b have a head diameter (φ): 2.5 mm, a height (h): 0.7 mm, and a surface sphere R30 mm (FIG. 14).
<Contact type>
Contact A: Ag 90% by mass + Ni 10% by mass
Contact B: Ag 90% by mass + CdO 10% by mass
Contact C: Ag 89.9% by mass + Ni 10% by mass + fullerene 0.1% by mass
Contact D: Ag 89.9 mass% + CdO 10 mass% + fullerene 0.1 mass%
Contact E: Ag 89.9% by mass + Ni 10% by mass + carbon nanotube 0.1% by mass
Contact F: Ag 89.9% by mass + CdO 10% by mass + carbon nanotube 0.1% by mass
Contact G: Ag 89.8% by mass + Ni 10% by mass + fullerene 0.1% by mass + carbon nanotube 0.1% by mass
Contact H: Ag 89.8% by mass + CdO 10% by mass + fullerene 0.1% by mass + carbon nanotube 0.1% by mass
(2) Experimental results Before and after the switching test, the height [H] (FIG. 14B) when the contacts were brought together was measured, and the height consumption was calculated from the difference. The result was as follows.
・ Contact A: 1.0 mm to 1.2 mm
・ Contact B: 0.7mm to 0.8mm
・ Contact C: 0.8mm to 0.9mm
・ Contact D: 0.5mm to 0.7mm
・ Contact E: 0.7mm to 0.9mm
・ Contact F: 0.5mm to 0.6mm
・ Contact G: 0.7mm to 0.8mm
・ Contact H0.4mm ~ 0.5mm
(Example 2)
[Experiments on contact reliability]
<Test conditions>
1. A contact 18 was incorporated in a switch 19 as shown in FIG. 13, and an energization test was performed on the test circuit 22.
2. Load 20: lamp 1500 W, power supply 21: voltage 100 V, switching frequency was ON for 2 seconds, then OFF for 20 seconds, and opened and closed 10,000 times. The contact resistance was measured every 1000 times. (That is, the contact resistance was measured 10 times.)
<Specifications of switch 19>
Opening distance: about 2 mm, contact force at ON contact: 150 gf.
<Shape of contact part 18>
Both the fixed contact 18a and the movable contact 18b have a head diameter (φ): 2.5 mm, a height (h): 0.7 mm, and a surface sphere R30 mm (FIG. 14).
<Contact type>
Contact I: Ag 90 mass% + SnO 2 10 mass% (pure silver plating on the surface [plating thickness 0.08 mm])
Contact J: Ag mass 90% + SnO 2 10 mass% (plating layer 1 [plating thickness 0.08 mm] on the surface), plating layer 1 is composed of Ag + fullerene 0.1%
Contact K: Ag 90% by mass + SnO 2 10% by mass (plating layer 2 [plating thickness 0.08 mm] on the surface), plating layer 2 is composed of Ag + carbon nanotubes 0. 1%
(2) Experimental results The measured values of contact resistance were as follows.
Contact G: Minimum value: 1 mΩ to maximum value: 10 mΩ [average value of 10 times: 4.3 mΩ]
・ Contact H: Minimum value: 1 mΩ to Maximum value: 5 mΩ [Average of 10 times: 2.2 mΩ]
Contact I: Minimum value: 1 mΩ to Maximum value: 5 mΩ [Average value of 10 times: 2.3 mΩ]
From the evaluation results of Example 1 above, those containing fullerene (contact C, contact D), those containing carbon nanotubes (contact E, contact F), those containing fullerene and carbon nanotubes (contact G, contact) H) was found to be less consumed than those not containing fullerene and carbon nanotubes (contact point A and contact point B). In addition, from the evaluation results of Example 2, those containing fullerene (contact H) and those containing carbon nanotubes (contact I) were measured for contact resistance more than those containing fullerene and carbon nanotubes (contact G). It was found that the value was small and the contact reliability was high.

以上、本発明の電気接点用材料では、銀を主成分とし、フラーレン、或いは、カーボンナノチューブを含有するので、硬く、消耗し難い接点材料を得ることができることが判った。また、本発明の上記電気接点用材料を使用して形成した接点は、硬く、消耗し難い接点となることが判った。   As described above, since the electrical contact material of the present invention contains silver as a main component and contains fullerene or carbon nanotube, it has been found that a contact material that is hard and hardly consumed can be obtained. Further, it has been found that the contact formed using the above-mentioned electrical contact material of the present invention is a hard and hard to wear contact.

本発明の第1の実施形態である電気接点用材料及び電気接点の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the material for electrical contacts which is the 1st Embodiment of this invention, and an electrical contact. 本発明の第2の実施形態である電気接点用材料及び電気接点の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the material for electrical contacts which is the 2nd Embodiment of this invention, and an electrical contact. 本発明の第3の実施形態である電気接点用材料及び電気接点の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the material for electrical contacts which is the 3rd Embodiment of this invention, and an electrical contact. 本発明の第4の実施形態である電気接点用材料及び電気接点の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the material for electrical contacts which is the 4th Embodiment of this invention, and an electrical contact. 本発明の第5の実施形態である電気接点用材料及び電気接点の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the material for electrical contacts which is the 5th Embodiment of this invention, and an electrical contact. 本発明の第6の実施形態である電気接点用材料及び電気接点の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the material for electrical contacts which is the 6th Embodiment of this invention, and an electrical contact. 本発明の第7の実施形態である電気接点用材料及び電気接点の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the material for electrical contacts which is the 7th Embodiment of this invention, and an electrical contact. 上記各実施形態の接点を形成する上記と異なる工程の概略を示すもので、(a)は、電気接点用材料の細線形状体の斜視図、(b)は、電気接点用材料の材料片と端子との嵌合状態を示す斜視図、(c)は、端子の穴部に挿入された電気接点用材料の材料片が、押圧される直前の様子を示す断面図、(d)は、端子への接続が完了した電気接点を示す断面図である。The outline of the process different from the above which forms the contact of each said embodiment is shown, (a) is a perspective view of the fine wire-shaped body of the material for electrical contacts, (b) is the material piece of the material for electrical contacts, The perspective view which shows a fitting state with a terminal, (c) is sectional drawing which shows a mode just before the material piece of the material for electrical contacts inserted in the hole of the terminal is pressed, (d) is a terminal It is sectional drawing which shows the electrical contact which the connection to is completed. 本発明のカーボンナノチューブを使用した電気接点の内部を模式的に示すもので、(a)は、リベット型接点1の断面図、(b)は、接点2の断面図である。The inside of the electrical contact using the carbon nanotube of this invention is shown typically, (a) is sectional drawing of the rivet type | mold contact 1, (b) is sectional drawing of the contact 2. FIG. 本発明の第8の実施形態を示すもので、本発明の電気接点材料を、接点表面層として使用する電気接点の製造工程を模式的に示す図である。The 8th Embodiment of this invention is shown and it is a figure which shows typically the manufacturing process of the electrical contact which uses the electrical contact material of this invention as a contact surface layer. 本発明の第9の実施形態を示すもので、本発明の電気接点材料を、接点表面層として使用する電気接点の製造工程を模式的に示す図である。The 9th Embodiment of this invention is shown and it is a figure which shows typically the manufacturing process of the electrical contact which uses the electrical contact material of this invention as a contact surface layer. 本発明の第10の実施形態を示すもので、本発明の電気接点材料を、接点表面層として使用する電気接点の製造工程を模式的に示す図である。The 10th Embodiment of this invention is shown and it is a figure which shows typically the manufacturing process of the electrical contact which uses the electrical contact material of this invention as a contact surface layer. 電気接点用材料及び電気接点の性能評価に使用した試験回路22の概略を示す図である。It is a figure which shows the outline of the test circuit 22 used for the performance evaluation of the material for electrical contacts, and the electrical contact. 性能評価に使用した接点18の概略を示すもので、(a)は、接点18の概略形状を示す断面図、(b)は、開閉器19の固定接点18aと可動接点18bの接触の状態を示す断面図である。The outline of the contact 18 used for performance evaluation is shown, (a) is a sectional view showing the outline shape of the contact 18, (b) is the contact state of the fixed contact 18 a and the movable contact 18 b of the switch 19. It is sectional drawing shown.

符号の説明Explanation of symbols

1 リベット型接点
2 接点
3 略円柱形状体
4 細線形状体
5 材料片
6 材料片
7 端子
8 穴部(端子7)
9 ポンチ
10 下台
11 凹部(ポンチ9)
12 テーパ部(穴部8)
13 下面(ポンチ9)
14 板状接点
15 接点表面層(板状接点14)
16 接合層(板状接点14)
17 中間層(板状接点14)
18 接点(開閉器19)
18a 固定接点(開閉器19)
18b 可動接点(開閉器19)
19 開閉器(試験回路22)
20 負荷(試験回路22)
21 電源(試験回路22)
22 試験回路
23 接点
24 カーボンナノチューブ繊維
DESCRIPTION OF SYMBOLS 1 Rivet type contact 2 Contact 3 Substantially cylindrical body 4 Fine wire body 5 Material piece 6 Material piece 7 Terminal 8 Hole (terminal 7)
9 Punch 10 Lower stand 11 Recess (Punch 9)
12 Taper (hole 8)
13 Bottom (punch 9)
14 Plate contact 15 Contact surface layer (plate contact 14)
16 Joining layer (plate contact 14)
17 Intermediate layer (plate contact 14)
18 contacts (switch 19)
18a Fixed contact (switch 19)
18b Movable contact (switch 19)
19 Switch (Test circuit 22)
20 load (test circuit 22)
21 Power supply (test circuit 22)
22 Test Circuit 23 Contact 24 Carbon Nanotube Fiber

Claims (13)

銀を主成分とし、フラーレンを含有することを特徴とする電気接点用材料。   A material for electrical contacts, comprising silver as a main component and fullerene. 前記フラーレンを0.001質量%〜0.5質量%含有することを特徴とする請求項1記載の電気接点用材料。   The electric contact material according to claim 1, wherein the fullerene is contained in an amount of 0.001% to 0.5% by mass. 粒子径が、0.1μm〜100μm程度であって、銀よりも高融点の無機粒子を1質量%〜20質量%分散せしめたことを特徴とする請求項1または請求項2記載の電気接点用材料。   3. The electrical contact according to claim 1 or 2, wherein inorganic particles having a particle diameter of about 0.1 μm to 100 μm and having a melting point higher than that of silver are dispersed in an amount of 1% by mass to 20% by mass. material. 前記無機粒子が、金属または金属酸化物、或いは、その両者よりなることを特徴とする請求項3記載の電気接点用材料。   The electrical contact material according to claim 3, wherein the inorganic particles are made of a metal, a metal oxide, or both. 銀を主成分とし、カーボンナノチューブを含有することを特徴とする電気接点用材料。   An electrical contact material comprising silver as a main component and carbon nanotubes. 前記カーボンナノチューブを0.001質量%〜0.5質量%含有することを特徴とする請求項5記載の電気接点用材料。   The electrical contact material according to claim 5, wherein the carbon nanotube is contained in an amount of 0.001% to 0.5% by mass. 粒子径が、0.1μm〜100μm程度であって、銀よりも高融点の無機粒子を1質量%〜20質量%分散せしめたことを特徴とする請求項5または請求項6記載の電気接点用材料。   7. The electric contact according to claim 5, wherein the particle diameter is about 0.1 μm to 100 μm, and inorganic particles having a melting point higher than that of silver are dispersed in an amount of 1% by mass to 20% by mass. material. 前記無機粒子が、金属または金属酸化物、或いは、その両者よりなることを特徴とする請求項7記載の電気接点用材料。   The electrical contact material according to claim 7, wherein the inorganic particles are made of metal, metal oxide, or both. フラーレンを含有することを特徴とする請求項5乃至請求項8のいずれかに記載の電気接点用材料。   The electrical contact material according to claim 5, comprising fullerene. 前記カーボンナノチューブ及び前記フラーレンを両者合計して0.001質量%〜0.5質量%含有することを特徴とする請求項9記載の電気接点用材料。   10. The material for an electrical contact according to claim 9, wherein the carbon nanotube and the fullerene are contained in a total amount of 0.001% by mass to 0.5% by mass. 請求項1乃至請求項10のいずれかに記載の電気接点用材料を使用することを特徴とする電気接点。   An electrical contact using the electrical contact material according to any one of claims 1 to 10. 接点表面側に、銀を主成分とし、フラーレンを0.001質量%〜0.5質量%含有する層を形成し、その層の厚さが0.2mm以下であることを特徴とする電気接点。   An electrical contact characterized in that a layer containing silver as a main component and containing 0.001% by mass to 0.5% by mass of fullerene is formed on the contact surface side, and the thickness of the layer is 0.2 mm or less. . 接点表面側に、銀を主成分とし、カーボンナノチューブを0.001質量%〜0.5質量%含有する層を形成し、その層の厚さが0.2mm以下であることを特徴とする電気接点。   A layer containing silver as a main component and containing 0.001% to 0.5% by mass of carbon nanotubes is formed on the contact surface side, and the thickness of the layer is 0.2 mm or less. contact.
JP2003356663A 2003-10-16 2003-10-16 Material for electric contact, and electric contact Withdrawn JP2005120427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003356663A JP2005120427A (en) 2003-10-16 2003-10-16 Material for electric contact, and electric contact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003356663A JP2005120427A (en) 2003-10-16 2003-10-16 Material for electric contact, and electric contact

Publications (1)

Publication Number Publication Date
JP2005120427A true JP2005120427A (en) 2005-05-12

Family

ID=34613839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003356663A Withdrawn JP2005120427A (en) 2003-10-16 2003-10-16 Material for electric contact, and electric contact

Country Status (1)

Country Link
JP (1) JP2005120427A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006048845A3 (en) * 2004-11-04 2006-08-03 Koninkl Philips Electronics Nv Carbon nanotube-based conductive connections for integrated circuit devices
WO2007144332A1 (en) * 2006-06-16 2007-12-21 Siemens Aktiengesellschaft Electrical switching contact for a vacuum circuit breaker with nickel/carbon nanotube layer
WO2010109777A1 (en) * 2009-03-24 2010-09-30 株式会社アライドマテリアル Electrical contact material
EP2879145A1 (en) * 2013-11-29 2015-06-03 LSIS Co., Ltd. Electrical contact materials and method for preparing the same
JP2018129273A (en) * 2017-02-10 2018-08-16 本田技研工業株式会社 Conductive material, electric machine comprising conductive material, and method of producing conductive material
WO2019117364A1 (en) * 2017-12-13 2019-06-20 엘티메탈 주식회사 Silver-carbon-metal-based nano-composite particles, preparation method therefor and electrical contact material comprising same
KR20190070734A (en) * 2017-12-13 2019-06-21 엘티메탈 주식회사 Silver-carbon nano composite particles, method for preparation thereof, and electric contact material comprising the same
WO2019176891A1 (en) * 2018-03-16 2019-09-19 田中貴金属工業株式会社 Dc high voltage relay and contact material for dc high voltage relay

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006048845A3 (en) * 2004-11-04 2006-08-03 Koninkl Philips Electronics Nv Carbon nanotube-based conductive connections for integrated circuit devices
US8680677B2 (en) 2004-11-04 2014-03-25 Nxp B.V. Carbon nanotube-based conductive connections for integrated circuit devices
WO2007144332A1 (en) * 2006-06-16 2007-12-21 Siemens Aktiengesellschaft Electrical switching contact for a vacuum circuit breaker with nickel/carbon nanotube layer
WO2010109777A1 (en) * 2009-03-24 2010-09-30 株式会社アライドマテリアル Electrical contact material
JP4579348B1 (en) * 2009-03-24 2010-11-10 株式会社アライドマテリアル Electrical contact material
EP2879145A1 (en) * 2013-11-29 2015-06-03 LSIS Co., Ltd. Electrical contact materials and method for preparing the same
CN104681312A (en) * 2013-11-29 2015-06-03 Ls产电株式会社 Electrical Contact Materials And Method For Preparing The Same
JP2015105439A (en) * 2013-11-29 2015-06-08 エルエス産電株式会社Lsis Co., Ltd. Electrical contact material and method for producing the same
US9570207B2 (en) 2013-11-29 2017-02-14 Lsis Co., Ltd. Electrical contact materials and method for preparing the same
JP2018129273A (en) * 2017-02-10 2018-08-16 本田技研工業株式会社 Conductive material, electric machine comprising conductive material, and method of producing conductive material
KR20190070733A (en) * 2017-12-13 2019-06-21 엘티메탈 주식회사 Ag-CARBON-METAL-BASED NANO COMPOSITE PARTICLE AND MANUFACTURING METHOD THEREOF AND ELECTRIC CONTACT MATERIAL COMPRISING THE SAME
KR102311541B1 (en) * 2017-12-13 2021-10-13 엘티메탈 주식회사 Silver-carbon nano composite particles, method for preparation thereof, and electric contact material comprising the same
WO2019117364A1 (en) * 2017-12-13 2019-06-20 엘티메탈 주식회사 Silver-carbon-metal-based nano-composite particles, preparation method therefor and electrical contact material comprising same
KR102311533B1 (en) * 2017-12-13 2021-10-13 엘티메탈 주식회사 Ag-CARBON-METAL-BASED NANO COMPOSITE PARTICLE AND MANUFACTURING METHOD THEREOF AND ELECTRIC CONTACT MATERIAL COMPRISING THE SAME
KR20190070734A (en) * 2017-12-13 2019-06-21 엘티메탈 주식회사 Silver-carbon nano composite particles, method for preparation thereof, and electric contact material comprising the same
KR20200103099A (en) * 2018-03-16 2020-09-01 다나카 기킨조쿠 고교 가부시키가이샤 Contact material for DC high voltage relay and DC high voltage relay
JPWO2019176891A1 (en) * 2018-03-16 2021-04-15 田中貴金属工業株式会社 Contact materials for DC high voltage relays and DC high voltage relays
CN111868864A (en) * 2018-03-16 2020-10-30 田中贵金属工业株式会社 DC high-voltage relay and contact material for DC high-voltage relay
WO2019176891A1 (en) * 2018-03-16 2019-09-19 田中貴金属工業株式会社 Dc high voltage relay and contact material for dc high voltage relay
TWI748168B (en) * 2018-03-16 2021-12-01 日商田中貴金屬工業股份有限公司 Dc high voltage relay and contact material for dc high voltage relay
US11309141B2 (en) 2018-03-16 2022-04-19 Tanaka Kikinzoku Kogyo K.K. DC high voltage relay and contact material for DC high-voltage relay
KR102475806B1 (en) 2018-03-16 2022-12-09 다나카 기킨조쿠 고교 가부시키가이샤 Contact materials for DC high-voltage relays and DC high-voltage relays
KR20230003260A (en) * 2018-03-16 2023-01-05 다나카 기킨조쿠 고교 가부시키가이샤 Dc high voltage relay and contact material for dc high voltage relay
JP7230001B2 (en) 2018-03-16 2023-02-28 田中貴金属工業株式会社 DC high voltage relays and contact materials for DC high voltage relays
CN111868864B (en) * 2018-03-16 2023-02-28 田中贵金属工业株式会社 DC high-voltage relay and contact material for DC high-voltage relay
KR102638007B1 (en) 2018-03-16 2024-02-20 다나카 기킨조쿠 고교 가부시키가이샤 Dc high voltage relay and contact material for dc high voltage relay

Similar Documents

Publication Publication Date Title
JP6126066B2 (en) Electrical contact material and manufacturing method thereof
JPWO2009041246A1 (en) Contact member manufacturing method, contact member and switch
WO2011045943A1 (en) Electrical contact for relay, and manufacturing method thereof
WO2014178155A1 (en) Rivet contact and method for producing same
JP2005120427A (en) Material for electric contact, and electric contact
JP4579348B1 (en) Electrical contact material
JP2007169701A (en) Material for electrical contact and its production method
JP2009030100A (en) Ag-Ni-BASED ELECTRICAL CONTACT MATERIAL AND ITS MANUFACTURING METHOD
Braumann et al. The influence of manufacturing process, metal oxide content, and additives on the switching behaviour of Ag/SnO/sub 2/in relays
JP4129304B2 (en) Contact material for vacuum circuit breaker, manufacturing method thereof, and vacuum circuit breaker
JP4994144B2 (en) Silver-oxide based electrical contact materials
JP5134166B2 (en) Electrical contact material
US6746551B2 (en) Make break contact material comprising ag-ni based alloy having ni metal particles dispersed and relay using the same
JPH10162704A (en) Thermal fuse
JP2001351451A (en) Contact element material and contact element
JPH0813065A (en) Sintered material for electrical contact and production thereof
TWI478190B (en) Silver stainless steel electric contact materials
JPS5914212A (en) Electric contact material
Hu Powder Metallurgy Electrical Contact Materials
JP2005166341A (en) Electric contact made of internal silver oxide/oxide system material for downsized electromagnetic relay with high conductivity
KR20040010044A (en) Thermal Fuse
JPH0313691B2 (en)
JP4389561B2 (en) Electrical contacts made of internal silver oxide-oxide material for miniaturized electromagnetic relays with high conductivity
JPS58100646A (en) Electrical contact material
JPS60121243A (en) Electrical contact material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070614