JP3825275B2 - Electrical contact member and its manufacturing method - Google Patents

Electrical contact member and its manufacturing method Download PDF

Info

Publication number
JP3825275B2
JP3825275B2 JP2001115083A JP2001115083A JP3825275B2 JP 3825275 B2 JP3825275 B2 JP 3825275B2 JP 2001115083 A JP2001115083 A JP 2001115083A JP 2001115083 A JP2001115083 A JP 2001115083A JP 3825275 B2 JP3825275 B2 JP 3825275B2
Authority
JP
Japan
Prior art keywords
electrical contact
metal powder
contact member
vacuum
refractory metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001115083A
Other languages
Japanese (ja)
Other versions
JP2002313196A (en
JP2002313196A5 (en
Inventor
菊池  茂
雅也 高橋
馬場  昇
将人 小林
芳友 後藤
安昭 鈴木
隆 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001115083A priority Critical patent/JP3825275B2/en
Priority to EP01121307.1A priority patent/EP1249848B1/en
Priority to US09/950,679 priority patent/US6765167B2/en
Priority to KR1020010056661A priority patent/KR20020079331A/en
Priority to CNB011330333A priority patent/CN1311492C/en
Priority to TW090122863A priority patent/TW526508B/en
Publication of JP2002313196A publication Critical patent/JP2002313196A/en
Publication of JP2002313196A5 publication Critical patent/JP2002313196A5/ja
Application granted granted Critical
Publication of JP3825275B2 publication Critical patent/JP3825275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/06Contacts characterised by the shape or structure of the contact-making surface, e.g. grooved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • H01H11/048Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by powder-metallurgical processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • H01H1/0206Contacts characterised by the material thereof specially adapted for vacuum switches containing as major components Cu and Cr

Description

【0001】
【発明の属する技術分野】
本発明は、真空遮断器、真空開閉器等に用いられる新規な電気接点部材及びその製法並びにそれを用いた真空バルブ、真空遮断器に関する。
【0002】
【従来の技術】
真空遮断器等に設置される真空バルブ内の電極構造は、一対の固定側電極及び可動側電極から成っている。上記固定側及び可動側電極の構造は、電気接点と該電気接点に連なる電極棒からなり、該電気接点の裏面にはしばしばステンレス等の板が補強板として設けられる。
【0003】
大電流、高電圧遮断用電気接点部材としては、Cr−Cuの複合金属材料が多く用いられる。
【0004】
この電気接点の製造方法は、各成分の金属粉末あるいはこれらの混合粉を所定の組成で、例えば円板等の単純形状に成形後、焼結するいわゆる粉末冶金法により製造された電気接点部材を、更に機械加工して所定形状とする。なお、電気接点には発生したアークに駆動力を与えて、アークを一箇所に停滞させずに電極の外周部へ移動させるための3本以上のスリット溝が設けられ、羽根型に分離された形状を有する。また、電気接点の中央でアークが発生して停滞しないように、電気接点の中央には凹部が設けてある。
【0005】
上述した電気接点は、高電圧、大電流を開閉遮断するために直接アークにさらされる。電気接点に要求される特性は、遮断容量が大きいこと、耐電圧値が高いこと、耐溶着性に優れることなどが挙げられるが、これらの特性を全て満足することは困難であって、一般には用途に応じて特に重要な特性を重視し、他の特性はある程度犠牲にした材料が用いられる。
【0006】
例えば、Cr−Cuの複合金属材料において、遮断容量を大きくするためには導電率が大きいことが必要であり、Cuを多くした組成とすることで対処できるが、耐電圧性能を上げる成分であるCrが減るため耐電圧値は低くなり、耐溶着性も低下する。
【0007】
【発明が解決しようとする課題】
年々、配電の高電圧化が進む中、真空遮断器あるいは真空開閉器等においても、大電流遮断と高耐電圧特性及び耐溶着性能の両立が求められるようになった。例えばCr−Cu複合金属材料を電気接点に用いる場合には、Cr量を多くすることで耐電圧値と耐溶着性を向上させることができる。しかし、Cr量を多くすると導電率は低下し、遮断性能が不十分となり、大電流遮断性能と高耐電圧特性及び耐溶着性能を両立するのは極めて困難であった。
【0008】
特開2000−235825号公報には、偏平状の耐火性金属粒子を有する電極部材の開示があるが、これは高導電性金属と耐火性金属の複合金属を接点面に溶射することにより形成したものである。しかし、溶射法では溶射ガスや大気を巻き込むため、得られた溶射膜はガス含有量が多くなり、電流遮断時のアーク加熱によりガスが放出し、このガスを介してアークが持続してしまい、遮断不能を生ずる恐れがある。また、溶射膜における耐火性金属粒子の大きさや形状の制御が困難で不規則になるため、遮断性能が不安定になる。さらに、溶射膜の形成には多くの時間を要し、生産性あるいはコストの点で問題がある。
【0009】
本発明の目的は、大電流遮断性能と高耐電圧特性及び耐溶着性能を兼ね備え、製造コストが低く、生産性に優れた電気接点部材とその製法を提供することにある。
【0010】
【課題を解決するための手段】
そこで本発明者らは、電流遮断を行なう接点面において耐電圧成分が大きな面積を占めるような材料組織を考案した。すなわち、Cr−Cu電気接点の場合には、Cr粒子が偏平板形状を成し、Cuマトリックスの中でCr粒子の偏平面が接点面に平行になるように配向させる。これにより、Cr含有量を少なくし、高導電率を維持しつつも、接点面にはCr粒子が多く露出するので、高耐電圧特性を得ることができる。また、Cr粒子とCuマトリックスとの化学的結合は弱いため、Cr粒子の偏平面に垂直方向の強度は小さくなり、耐溶着性が向上する。
【0011】
本発明の要旨は以下のとおりである。
【0012】
本発明の電気接点部材は、高導電性金属からなるマトリックス中に偏平板形状を有する耐火性金属粉が分散する組織を成し、前記耐火性金属粉は偏平面が一方向に配向し、前記耐火性金属粉の偏平面と平行な面を接点面とするものである。
【0013】
本発明に関わる偏平板形状を有する前記耐火性金属粉は、偏平面の最大長さをそれに垂直な面の最小寸法で除した値が3〜30の範囲にあるものである。
【0014】
また、本発明の電気接点部材において、偏平板形状を有する前記耐火性金属粉のうちの90重量%以上は、偏平面が接点面に対して+40°〜−40°の範囲に配向し、また75重量%以上は、偏平面が接点面に対して+20°〜−20°の範囲に配向するものである。
【0015】
本発明に関わる前記耐火性金属粉はCr、W、Mo、Ta、Nb、Be、Hf、Ir、Pt,Zr、Ti、Te、Si、Rh及びRuの中の1種叉は2種以上の混合物あるいはこれらの化合物からなり、前記高導電性金属はCu、Ag又はAuあるいはこれらを主にした合金からなるものである。
【0016】
また、前記耐火性金属粉は酸素を50〜2000ppm、Alを50〜3000ppm、Siを100〜2500ppm含むものである。
【0017】
本発明の電気接点部材は、15〜40重量%の前記耐火性金属粉と、60〜85重量%の前記高導電性金属からなるものである。
【0018】
本発明の電気接点部材において、接点面における前記耐火性金属粉が占める面積比は30〜50%、接点面と垂直な面における前記耐火性金属粉が占める面積比は14〜25%の範囲にあるものである。
【0019】
本発明の電気接点部材は、含有酸素量が2500ppm以下であり、また、接点面に垂直方向の引張り強さが150MPa以下、接点面に平行方向の引張り強さが150MPa以上であり、さらに、比抵抗は5.5μΩ・cm以下を有するものである。
【0020】
本発明の電気接点部材の製法は、前記耐火性金属粉と前記高導電性金属粉との混合粉末を、120〜500MPaで加圧成形して成形体を作製し、該成形体を真空中または不活性雰囲気中において前記高導電性金属粉の融点以下で焼結し,成形過程の加圧面と平行に接点面とするものである。
【0021】
また、本発明の電気接点部材の製法は、得られた電気接点部材を成形過程と同方向に400MPa以上で加圧して緻密化するものである。
【0022】
本発明の電気接点部材の製法は、前記耐火性金属粉と前記高導電性金属粉との混合粉末を、押出し圧縮成形により連続的な板状あるいは棒状の成形体を作製し、該成形体を不活性雰囲気中において前記高導電性金属の融点以下で連続的に焼結し,押出し方向と平行な面を接点面とするものである。
【0023】
また、本発明の電気接点部材の製法は、得られた電気接点部材をさらに連続的に圧延処理し,圧延した面と平行に接点面とするもので、この圧延処理は常温あるいは前記高導電性金属の融点以下で行なうものである。
【0024】
さらに、本発明の電気接点部材の製法は、押出し方向と垂直に打抜き加工することにより所望形状を得るものである。
【0025】
本発明の電気接点部材の製法において、前記高導電性金属粉の粒径は80μm以下とするものである。
【0026】
本発明の電気接点部材は、真空バルブにおける一対の固定側電極及び可動側電極を構成する部材として用いられ、この真空バルブは真空遮断器、真空開閉器等に用いられるものである。
【0027】
本発明における真空バルブは、定格電圧(kV)と遮断電流実効値(kA)とを乗算した値yが前記真空容器外径x(mm)に基づいて以下の(1)式によって求められる値以下及び(2)式によって求められる値以上の範囲内にあるものである。
y=11.25x−525 …(1)
y=5.35x−242 …(2)
【0028】
また、本発明における電気接点は、その直径y(mm)が定格電圧(kV)と遮断電流実効値(kA)とを乗算した値x(kVA×103)に基づいて以下の(3)式によって求められる値以下及び(4)式によって求められる値以上の範囲内にあるものである。
y=0.15x+22 …(3)
y=0.077x+20 …(4)
【0029】
さらに、本発明における真空バルブは、その真空容器の外径y(mm)が前記電気接点の直径x(mm)に基づいて以下の(5)式によって求められる値以下及び(6)式によって求められる値以上の範囲内にあるものである。
y=1.26x+30 …(5)
y=1.26x+10 …(6)
【0030】
【発明の実施の形態】
本発明の電気接点部材の組織は、高導電性金属からなるマトリックス中に偏平板形状を有する耐火性金属粉が分散し、この耐火性金属粉は偏平面が一方向に配向したものである。この電気接点部材を電極に使用する場合、一方向に配向した耐火性金属粉の偏平面と平行な面を接点面として用いることが望ましい。これにより、耐火性金属含有量を増やすことなく高導電率を維持しつつも、接点面においては耐火性金属粒子が多く露出するので、高耐電圧特性を得ることができる。また、耐火性金属粒子と高導電性金属マトリックスとの化学的結合は弱いため、接点面に垂直方向の強度は小さく、電流遮断時のアーク加熱により電極が溶着した際にも剥離開極しやすくなり、耐溶着性が向上する。
【0031】
上記の偏平板形状を有する耐火性金属粉は、偏平面の最大長さをそれに垂直な面の最小寸法で除した値が3〜30の範囲にあることが望ましく、電気接点部材に含まれる耐火性金属粉のうち、90重量%以上は偏平面が接点面に対して+40°〜−40°の範囲に配向し、また75重量%以上は偏平面が接点面に対して+20°〜−20°の範囲に配向することで、大電流遮断性能と高耐電圧特性及び耐溶着性能を両立させる上記の効果を発揮することができる。
【0032】
電気接点部材を構成する耐火性金属粉はCr,W,Mo,Ta,Nb,Be,Hf,Ir,Pt,Zr,Ti,Te,Si,Rh及びRuの1種叉は2種以上の混合物あるいはこれらの化合物とし、高導電性金属はCu,AgまたはAuあるいはこれらを主にした合金とすることが望ましい。また、耐火性金属粉と高導電性金属との配合比は、耐火性金属粉を15〜40重量%、高導電性金属を60〜85重量%とすることで、遮断性能、耐電圧特性に優れ、健全な材料組織をもつ電気接点部材が得られる。
【0033】
耐火性金属粉には、酸素を50〜2000ppm、Alを50〜3000ppm、Siを100〜2500ppm含むことが望ましく、これらの成分によって遮断時に優れた消弧作用が得られ、遮断性能が向上する。なお、Al,Siはそれぞれ酸化物として存在してもよく、高融点で硬質の微細なAl,Si酸化物が均一に分散していることにより優れた耐溶着性、耐電圧特性が得られる。酸素、Al,Siそれぞれが上記の量より少ないと、Al,Si酸化物の生成量が少なくなり、性能向上に対する効果が小さい。また、上記の量より多いと、遮断時のアーク加熱により酸化物が分解した場合の発生ガス量が多くなり、耐電圧及び遮断性能が低下する。
【0034】
本発明による電気接点部材における耐火性金属粉が占める面積比は、接点面では30〜50%、接点面と垂直な面では14〜25%の範囲にあることが望ましく、これにより高導電率を維持しながら高耐電圧特性を発揮することができ、耐溶着性も向上する。
【0035】
また、この電気接点部材の含有酸素量は2500ppm以下とすることで、電流遮断時のガス放出を抑制し、ガスを介したアーク持続による遮断不能を防止することができる。
【0036】
さらに、接点面に垂直方向の引張り強さは150MPa以下、接点面に平行方向の引張り強さは150MPa以上であることで、電流遮断時のアーク加熱による溶着時に開極方向に剥離しやすくなり、耐溶着性が向上する。
【0037】
なお、電気接点部材の比抵抗は5.5μΩ・cm以下であることが望ましく、電気的特性は高導電性金属の含有量にほぼ依存するため、異方性はない。この比抵抗値を有することで、良好な遮断性能を維持することができる。
【0038】
電気接点部材の製法は、耐火性金属粉と高導電性金属粉との混合粉末を、圧力120〜500MPaで加圧成形して成形体を作製し、この成形体を真空中または不活性雰囲気中において高導電性金属粉の融点以下で焼結することが望ましい。成形圧力が120MPaより小さいと成形密度が小さくなり成形体が崩れやすく、500MPaより大きいと金型寿命が短くなり生産性も低下する。また、真空中または不活性雰囲気中において焼結することにより、健全な焼結組織と適正なガス含有量が得られる。偏平板形状の耐火性金属粉は,成形過程の加圧面に平行に配向する傾向にあるため,加圧面に平行な面を接点面として用いることが望ましく,これにより目的とする特性が得られる。
【0039】
さらに、得られた電気接点部材を成形過程と同方向に圧力400MPa以上で加圧することにより、より緻密化することができ、電極性能の安定化につながる。また,偏平板形状を有する耐火性金属粉の配向性が強まり,目的とする特性がより向上する。
【0040】
また、本発明の電気接点部材の製法は、耐火性金属粉と高導電性金属粉との混合粉末を、押出し圧縮成形によって連続的な板状あるいは棒状の成形体を作製し、この成形体を不活性雰囲気中において高導電性金属の融点以下で連続的に焼結してもよい。この方法により、低コストで生産性の高い電気接点部材の製造が可能となる。また,偏平板形状の耐火性金属粉は,押出し方向と平行に配向する傾向にあるため,押出し方向に平行な面を接点面として用いることが望ましく,これにより目的とする特性が得られる。
【0041】
得られた電気接点部材を、さらに連続的に圧延処理することにより緻密化することができ、電極性能の安定化が可能となる。この圧延処理は常温でも可能であるが、高導電性金属の融点以下の温間圧延によって、割れなどの材料欠陥を防止することができる。また,圧延により偏平板形状を有する耐火性金属粉の配向性が強まり,目的とする特性がより向上する。
【0042】
さらに、得られた電気接点部材を押出し方向に垂直に打抜き加工することによって,短時間で効率よく所望の電極形状を得ることができる。
上記の電気接点部材の原料となる高導電性金属粉の粒径は、80μm以下とすることが望ましい。高導電性金属粉の粒径がこれより大きいと、混合粉末の成形過程において、耐火性金属粉に配向性を持たせることが困難となり、目的とする材料特性が得られなくなる。
【0043】
本発明における真空バルブは、定格電圧(kV)と遮断電流実効値(kA)とを乗算した値yが前記真空容器外径x(mm)に基づいて以下の(1)式によって求められる値以下及び(2)式によって求められる値以上の範囲内にあることが好ましい。
y=11.25x−525 …(1)
y=5.35x−242 …(2)
【0044】
また、本発明における電気接点は、その直径y(mm)が定格電圧(kV)と遮断電流実効値(kA)とを乗算した値x(kVA×103)に基づいて以下の(3)式によって求められる値以下及び(4)式によって求められる値以上の範囲内にあることが好ましい。
y=0.15x+22 …(3)
y=0.077x+20 …(4)
【0045】
さらに、本発明における真空バルブは、その真空容器の外径y(mm)が前記電気接点の直径x(mm)に基づいて以下の(5)式によって求められる値以下及び(6)式によって求められる値以上の範囲内にあることが好ましい。
y=1.26x+30 …(5)
y=1.26x+10 …(6)
【0046】
又、本発明は、真空容器内に固定側電極と可動側電極とを備えた真空バルブと、該真空バルブ内の前記固定側電極と前記可動側電極との各々に前記真空バルブ外に接続された絶縁ロッドを介して前記可動側電極を駆動する開閉手段とを備えた真空遮断器において、前記真空バルブが前述に記載の真空バルブからなることを特徴とする。
以下、実施例により本発明を具体的に説明する。
【0047】
[実施例1]
本発明に関する実施例として、耐火性金属をCr、高導電性金属をCuとし、組成が25Cr−75Cuの電気接点部材を作製した。この電気接点部材の製造方法は次の通りである。
【0048】
耐火性金属であるCr粉末は、所定の隙間寸法に設定したローラー圧縮により偏平化し、偏平面の最大長さをそれに垂直な面の最小寸法で除した値(以下、アスペクト比という)が3,10,30,40(比較例)のCr偏平粉を作製した。又、別の比較例として、原料Cr粉のままを用いてアスペクト比1とした。なお、用いたCr粉末には酸素が1100ppm、Alが800ppm、Siが440ppm含まれている。
【0049】
高導電性金属であるCu粉末には,粒径が80μm以下のものと80μm以上のものを用いた。
上記のCr偏平粉とCu粉末を組合せ、表1に示す10種類の電気接点部材を作製した。
【表1】

Figure 0003825275
まず、Cr偏平粉とCu粉末を重量比で25:75の割合にV型混合器で混合した。次にこの混合粉を直径60mmの金型に充填し、油圧プレスにより250MPaの圧力を直径60mmの円面にかけて加圧成形した。成形体の寸法は直径60mm×厚さ12mmで、相対密度は73%であった。これを6.7×10-3Pa以下の真空中で1050℃×120分間加熱し、表1に示す電気接点部材を作製した。焼結加熱後の相対密度はいずれも97〜98%であった。
【0050】
図1は、作製した電気接点部材の組織の一例として示したもので、試料番号C(Cr粉アスペクト比:10,Cu粉粒径:80μm以下)の組織写真である。電気接点部材の円面(以下、接点面という)とそれに垂直な断面について、光学顕微鏡を用いて観察した。
【0051】
図1において、(a)は接点面と平行な面の組織、(b)は接点面と垂直な断面の組織である。(a)の接点面ではCr粒子の偏平面が比較的大きな面積を占め、また(b)の接点面に垂直な断面ではCr粒子の偏平面が接点面にほぼ平行に配向していることが確認された。これにより、偏平板形状を有するCr粉は加圧方向に垂直に配向する傾向にあり、加圧面と平行に接点面とすることで、本発明の目的とする材料組織が得られることが実証された。
【0052】
得られた10種類の電気接点部材の接点面と、それに垂直な断面を光学顕微鏡により観察し、接点面に対して±40°及び±20°の範囲に配向しているCr粒子の割合を求めた。Cr粒子の割合はそれぞれの角度範囲にあるCrの面積を画像処理により求め、含まれるすべてのCrに対する重量比として算出した。
【0053】
表1にそれぞれの角度範囲にあるCrの割合を示すが、Cuの粒径が80μm以上の場合には、Cr粉のアスペクト比が3〜40の場合に90重量%以上が+40°〜−40°の範囲に配向し、さらに75重量%以上は+20°〜−20°の範囲に配向することが確認された。
【0054】
これに対し、Cuの粒径が80μm以下の場合には、Cr粉のアスペクト比が40の場合にも+40°〜−40°の範囲のCrは90重量%に満たず、+20°〜−20°の範囲のCrも75重量%に満たないことが確認された。
以上から、偏平Cr粉末を所望方向に配向するには、Cuの粒径は80μm以下が望ましいことが証明された。
【0055】
得られた電気接点部材の接点面及びそれに垂直な断面における、Crが占める面積の割合(面積占有率)を画像処理により求めた結果を表1に併記するが、Cuの粒径が80μm以下の場合には、Cr粉のアスペクト比が3〜40の場合に接点面で30%以上、垂直断面で14〜25%の面積占有率を持つことが確認された。ただし、Cr粉のアスペクト比が40の場合(試料番号E)には、接点面におけるCrの面積占有率が50%以上となり、電極として用いた場合に相手側電極との間の接触抵抗が大きくなり、通電性能が低下するため好ましくない。従って、Cr粉のアスペクト比は3〜30が望ましい。
【0056】
なお、以上の傾向は耐火性金属がCr以外のW、Mo、Ta、Nb、Be、Hf、Ir、Pt、Zr、Ti、Te、Si、Rh及びRuの中の1種叉は2種以上の混合物あるいはこれらの化合物であり、高導電性金属がCu以外のAgまたはAuあるいはこれらを主にした合金である場合にも同様であることを確認した。
【0057】
[実施例2]
本発明に関する別の実施例として、耐火性金属をCr、高導電性金属をCuとし、Cr含有量を10重量%から45重量%まで変えて、5種類の電気接点部材を作製した。Cr粉のアスペクト比は15、Cu粉末の粒径は80μm以下とした。この電気接点部材の製造方法は、実施例1と同様である。得られた電気接点部材の焼結加熱後の相対密度はいずれも97〜98%であった。
【0058】
表2に,作製した電気接点部材の組成と共に、接点面に対して±40°及び±20°の範囲に配向しているCr粒子の割合、また接点面とそれに垂直な断面におけるCr面積占有率を示す。
【表2】
Figure 0003825275
いずれの組成においても、90重量%以上のCrが+40°〜−40°の範囲に配向し、さらに75重量%以上は+20°〜−20°の範囲に配向することが確認された。しかし、組成10Cr−Cu(試料K)では接点面のCr面積占有率が30%以下、垂直断面は14%以下となり、遮断性能と高耐電圧特性を両立させる本発明の目的を達成することが出来なくなる。また、組成45Cr−Cu(試料O)では接点面が50%以上となり、通電性能が低下するため好ましくない。従って、組成はCrが15〜40重量%、Cuが60〜85重量%が適当であることが確認された。
【0059】
なお、以上の傾向は耐火性金属がCr以外のW、Mo、Ta、Nb、Be、Hf、Ir、Pt,Zr、Ti、Te、Si、Rh及びRuの中の1種叉は2種以上の混合物あるいはこれらの化合物であり、高導電性金属がCu以外のAgまたはAuあるいはこれらを主にした合金である場合にも同様であることを確認した。
【0060】
[実施例3]
本発明に関する第3実施例として、実施例1及び実施例2で作製した電気接点部材のうち、試料番号A〜D及びL〜Nについて、接点面に対して垂直方向と平行方向の引張り強さ及び比抵抗を測定した。
【0061】
表3に、それぞれの測定結果を示した。
【表3】
Figure 0003825275
【0062】
原料粉末のままのCrを用いた試料番号Aに比べて、いずれも接点面に垂直方向の引張り強さは150MPa以下であるのに対し、平行方向の引張り強さは150MPa以上の値を示した。従って、接点面に対して垂直方向の強度が小さいことから、相手側電極と溶着した際に剥離破壊しやすく、耐溶着性が向上する。
【0063】
また、比抵抗には顕著な異方性は見られない。これは、電気的特性は組成によってほぼ支配されるため、Cr粉末が偏平形状をなしていても導電性に方向性はなく、遮断性能を従来組織と同等に維持できることを示す。
【0064】
以上から、本発明に関する電気接点部材は、接点面に対して垂直方向に比較的剥離しやすく、導電性には異方性がないことが確認された。
【0065】
[実施例4]
本発明に関する第4実施例として、実施例1及び実施例2で作製した電気接点部材のうち、試料番号A〜E及びK〜Oの部材を用いて、真空バルブに適用するための電極を作製した。
【0066】
図2は、作製した電極の構造を示す。図2において、1は電気接点、2はアークに駆動力を与えて停滞させないようにするためのスパイラル溝、3はステンレス製の補強板、4は電極棒、5はろう材である。
電極の作製方法は次の通りである。実施例1及び実施例2で作製した電気接点部材を機械加工により所望形状に加工して電気接点1を得る。電極棒4を無酸素銅で、また、補強板3をSUS304であらかじめ機械加工により作製しておき、電気接点1及び補強板3の中央孔と電極棒4の凸部とを、ろう材5を介して嵌め合わせ、また電気接点1と補強板3との間にもろう材5を載置し、これを8.2×10-4Pa以下の真空中で980℃×8分間加熱し、図2に示す電極を作製した。なお、この電極は定格電圧7.2kV、定格電流600A、定格遮断電流20kA用の真空バルブに用いられる電極である。
【0067】
[実施例5]
実施例4で作製した電極を搭載した真空バルブを作製した。真空バルブの仕様は定格電圧7.2kV、定格電流600A、定格遮断電流20kAである。
図3は、本実施例に係わる真空バルブの構造を示す。図3において、1a,1bはそれぞれ固定側電気接点、可動側電気接点、3a,3bは補強板、4a,4bはそれぞれ固定側電極棒、可動側電極棒で、これらをもってそれぞれ固定側電極6a、可動側電極6bを構成する。可動側電極6bは、遮断時の金属蒸気等の飛散を防ぐ可動側シールド8を介して可動側ホルダー12にろう付け接合される。これらは、固定側端板9a、可動側端板9b、及び絶縁筒13によって高真空にろう付け封止され、固定側電極6a及び可動側ホルダー12のネジ部をもって外部導体と接続される。絶縁筒13の内面には、遮断時の金属蒸気等の飛散を防ぐシールド7が設けられ、また、可動側端板9bと可動側ホルダー12の間には摺動部分を支えるためのガイド11が設けられる。可動側シールド8と可動側端板9bの間にはべローズ10が設けられ、真空バルブ内を真空に保ったまま可動側ホルダー12を上下させ、固定側電極6aと可動側電極6bを開閉させることが出来る。本実施例では、固定側電極6a及び可動側電極6bに、実施例4で作製した図2に示す構造の電極を用いて、図3に示す真空バルブを作製した。
【0068】
[実施例6]
実施例5で作製した真空バルブを真空遮断器に組み込んで、各種性能試験を実施した結果を表4に示す。
【表4】
Figure 0003825275
【0069】
表4におけるそれぞれの性能は、原料のままのCrを用いた従来材の組織を有する試料Aの値を1として相対比較して表した。
【0070】
試料A〜Eにおいて、Cr粉のアスペクト比が変化しても遮断性能は変わらない。これは表3に示すように比抵抗にほとんど変化が無いためである。一方、アスペクト比が大きくなるにつれて耐電圧性能は大きくなる。これは表1に示すように、接点面におけるCrの面積占有率が大きくなるためである。また、アスペクト比が大きくなるにつれて耐溶着性能も大きくなるが、これはCr面積占有率が大きいことと、表3に示すように接点面に垂直方向の引張り強さが小さくなり、剥離開離しやすいためである。ただし、Cr粉のアスペクト比が40である試料Eは、接点面におけるCr面積占有率が大きいために、電極間の接触抵抗が大きくなり、通電抵抗が大きく好ましくない。従って、Cr粉のアスペクト比は3〜30の場合に、遮断性能を維持したまま、耐電圧特性と耐溶着性能を向上させることに効果があることが実証された。
【0071】
試料K〜Oにおいて、試料Nの遮断性能は従来組織をもつ試料Aより小さく0.9であるが、定格遮断電流20kA用真空遮断器への適用は可能である。しかし、試料Oは遮断性能不足で、定格遮断電流20kA用真空遮断器への適用は困難であった。また、Cr量が少なくなると、耐電圧性能が低下し、それに伴うアーチ再発孤により遮断性能が低下し、試料Kは定格電圧7.2kVの真空遮断器への適用は困難であった。従って、Cr量は15〜40重量%が適当である。
なお、実施例1及び実施例2で作製した電気接点部材を再度金型に入れ、400,600,及び800MPaで加圧した電気接点を用い、実施例4と同様の方法で作製した電極についても同様の性能評価を行った。ここで、いずれの圧力で加圧した電気接点部材も、相対密度は98.5%以上であった。その結果、上記の結果と同様の傾向が得られ、遮断性能は更に安定化する傾向にあった。これは焼結後に再度加圧することで緻密化が進み、内部欠陥や内在ガス量が減少したためである。
【0072】
以上から、本発明に係わる電気接点部材は、遮断性能、高耐電圧特性、耐溶着性を両立させるために有益であることが実証された。
【0073】
[実施例7]
本発明に関する別の製造方法として、実施例1及び実施例2と同様の電気接点部材を作製した。図4は、本実施例の製造方法と製造装置を示す概略図である。図4において、14は原料混合粉末15を入れるための容器、16は容器14から充填された原料混合粉末15を連続的に押出し成形するための成形機、17は回転しながら原料混合粉末15を成形すると共に送り出すためのローラー、18は成形された板状の連続成形体、19は連続成形体18を不活性雰囲気中で連続して加熱焼結するためのトンネル炉、20は加熱焼結して得られた連続焼結体、21は連続焼結体20を圧延して緻密化するための圧延ローラー、22は圧延された電気接点部材、23は電気接点部材22から所望形状の電気接点24を打ち抜くための金型、25は打ち抜き加工により得られた電気接点24を連続的に搬送移動するためのベルトである。
【0074】
本実施例における成形圧力、焼結温度、焼結後の圧延時の圧力等は、実施例1及び実施例2とほぼ同様になるように設定して行った。
【0075】
本実施例で得られた電気接点部材の組織、引張り強さ、比抵抗などについて検討したところ、実施例1及び実施例2で得られた電気接点部材とほぼ同等の結果が得られた。
【0076】
従って本製造方法によれば、連続して大量の電気接点部材の製造が可能で、低コストで生産性に優れ、さらに遮断性能、高耐電圧特性、耐溶着性を両立した本発明の目的に合致した電気接点部材が得られることが確認された。
【0077】
[実施例8]
表5は、試料Bの部材を電気接点1a,1bに用いて作製した、各種定格の真空バルブの諸元を示すものである。
【表5】
Figure 0003825275
【0078】
図5は、遮断電圧電流実効値(y)と真空容器外径(x)との関係を示す線図である。遮断電圧電流実効値は遮断電圧(kV)と遮断電流実効値(kA)とを乗算したものである。図5に示すように、遮断電圧電流実効値(y)は11.25x−525と5.35x−242とで求められる値の間に入るように遮断電圧電流実効値に対して真空容器外径とするのが好ましい。
【0079】
図6は、電気接点直径(y)と遮断電圧電流実効値(x)との関係を示す線図である。遮断電圧電流実効値(x)に対して電気接点直径(y)は、0.15x+22と0.077x+20とで求められる値の間に入るように設定することが好ましい。
【0080】
図7は、真空容器外径(y)と電気接点直径(x)との関係を示す線図である。真空容器外径(y)は1.26x+30と1.26x+10とで求められる値の間に設定することが好ましい。本実施例においては、y=1.26x+19.6によって求められる値にほぼ設定されている。
【0081】
【発明の効果】
本発明による電気接点部材は、偏平板形状を有する耐火性金属粉が高導電性金属からなるマトリックスの中で接点面に平行に配向した組織を有するため、接点面における耐火性金属粉の占有面積が大きくなり、遮断性能を低下させずに、高耐電圧特性及び耐溶着性能を向上させることが出来る。
また、本発明による製法によれば、上記の材料組織をもつ電気接点部材が効率よく大量生産できるため、製造コストの低減が図れる。
【図面の簡単な説明】
【図1】 本発明の実施例1に係わる電気接点部材の組織の一例を示す写真である。
【図2】 本発明の実施例4に係わる電極の構造を示す。
【図3】 本発明の実施例5に係わる真空バルブの構造を示す。
【図4】 本発明の実施例7に係わる製造方法と製造装置を示す。
【図5】 本発明の実施例8に係わる真空バルブの遮断電圧電流実効値と真空容器外径との関係を示す。
【図6】 本発明の実施例8に係わる真空バルブの電気接点直径と遮断電圧電流実効値との関係を示す。
【図7】 本発明の実施例8に係わる真空バルブの真空容器外径と電気接点直径との関係を示す。
【符号の説明】
1…電気接点、1a…固定側電気接点、1b…可動側電気接点、2…スパイラル溝、3,3a,3b…補強板、4…電極棒、5…ろう材、6a…固定側電極、6b…可動側電極、7…シールド、8…可動側シールド、9a…固定側端板、9b…可動側端板、10…ベローズ、11…ガイド、12…可動側ホルダー、13…絶縁筒、14…容器、15…原料混合粉末、16…成形機、17…ローラー、18…連続成形体、19…トンネル炉、20…連続焼結体、21…圧延ローラー、22…電気接点部材、23…金型、24…電気接点、25…ベルト。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel electric contact member used for a vacuum circuit breaker, a vacuum switch, and the like, a manufacturing method thereof, a vacuum valve using the same, and a vacuum circuit breaker.
[0002]
[Prior art]
An electrode structure in a vacuum valve installed in a vacuum circuit breaker or the like is composed of a pair of fixed side electrodes and movable side electrodes. The structure of the fixed side and movable side electrodes includes an electrical contact and an electrode rod connected to the electrical contact, and a plate made of stainless steel or the like is often provided as a reinforcing plate on the back surface of the electrical contact.
[0003]
As an electric contact member for high current and high voltage interruption, a composite metal material of Cr—Cu is often used.
[0004]
This electrical contact manufacturing method is an electrical contact member manufactured by a so-called powder metallurgy method in which a metal powder of each component or a mixed powder thereof is molded into a simple shape such as a disk with a predetermined composition and then sintered. Further, it is machined into a predetermined shape. The electrical contact is provided with three or more slit grooves for applying a driving force to the generated arc and moving the arc to the outer periphery of the electrode without stagnation in one place, and separated into a blade shape. Has a shape. In addition, a recess is provided at the center of the electrical contact so that an arc is generated at the center of the electrical contact and does not stagnate.
[0005]
The above-described electrical contacts are directly exposed to an arc to open and close high voltage and large current. The characteristics required for electrical contacts include a large breaking capacity, a high withstand voltage value, and excellent welding resistance, but it is difficult to satisfy all of these characteristics. A material that emphasizes particularly important characteristics depending on the application and sacrifices some of the other characteristics is used.
[0006]
For example, in a composite metal material of Cr—Cu, in order to increase the breaking capacity, it is necessary that the electrical conductivity is large, and it can be dealt with by increasing the composition of Cu, but it is a component that increases the withstand voltage performance. Since Cr decreases, the withstand voltage value decreases and the welding resistance also decreases.
[0007]
[Problems to be solved by the invention]
As the distribution of voltage increases year by year, both a high current interruption, a high withstand voltage characteristic, and a welding resistance have been required for vacuum circuit breakers or vacuum switches. For example, when a Cr—Cu composite metal material is used for an electrical contact, the withstand voltage value and the welding resistance can be improved by increasing the amount of Cr. However, if the amount of Cr is increased, the conductivity is lowered, the interruption performance becomes insufficient, and it has been extremely difficult to achieve both high current interruption performance, high withstand voltage characteristics, and welding resistance.
[0008]
Japanese Patent Laid-Open No. 2000-235825 discloses an electrode member having flat refractory metal particles, which is formed by spraying a composite metal of a highly conductive metal and a refractory metal on a contact surface. Is. However, in the thermal spraying method, since the sprayed gas and the atmosphere are involved, the obtained sprayed film has a high gas content, the gas is released by arc heating at the time of interrupting the current, and the arc continues through this gas, May cause inability to shut off. Moreover, since the control of the size and shape of the refractory metal particles in the sprayed film is difficult and irregular, the blocking performance becomes unstable. Furthermore, it takes a lot of time to form the sprayed film, which is problematic in terms of productivity and cost.
[0009]
An object of the present invention is to provide an electrical contact member having both a high current interruption performance, a high withstand voltage characteristic, and a welding performance, a low manufacturing cost, and an excellent productivity, and a method for producing the electrical contact member.
[0010]
[Means for Solving the Problems]
Therefore, the present inventors have devised a material structure in which the withstand voltage component occupies a large area on the contact surface for interrupting current. That is, in the case of a Cr—Cu electrical contact, the Cr particles have a flat plate shape and are oriented in the Cu matrix so that the flat surface of the Cr particles is parallel to the contact surface. Thereby, since a large amount of Cr particles are exposed on the contact surface while reducing the Cr content and maintaining high conductivity, a high withstand voltage characteristic can be obtained. Further, since the chemical bond between the Cr particles and the Cu matrix is weak, the strength in the direction perpendicular to the uneven plane of the Cr particles is reduced, and the welding resistance is improved.
[0011]
The gist of the present invention is as follows.
[0012]
The electrical contact member of the present invention has a structure in which a refractory metal powder having a flat plate shape is dispersed in a matrix made of a highly conductive metal, and the refractory metal powder has a flat plane oriented in one direction, A surface parallel to the flat surface of the refractory metal powder is used as the contact surface.
[0013]
In the refractory metal powder having the flat plate shape according to the present invention, a value obtained by dividing the maximum length of the flat surface by the minimum dimension of the surface perpendicular thereto is in the range of 3 to 30.
[0014]
In the electrical contact member of the present invention, 90% by weight or more of the refractory metal powder having a flat plate shape has a flat plane oriented in a range of + 40 ° to −40 ° with respect to the contact surface. In the case of 75% by weight or more, the flat plane is oriented in the range of + 20 ° to −20 ° with respect to the contact surface.
[0015]
The refractory metal powder according to the present invention is one or more of Cr, W, Mo, Ta, Nb, Be, Hf, Ir, Pt, Zr, Ti, Te, Si, Rh and Ru. It consists of a mixture or a compound thereof, and the highly conductive metal is composed of Cu, Ag or Au or an alloy mainly composed of these.
[0016]
The refractory metal powder contains 50 to 2000 ppm of oxygen, 50 to 3000 ppm of Al, and 100 to 2500 ppm of Si.
[0017]
The electrical contact member of the present invention comprises 15 to 40% by weight of the refractory metal powder and 60 to 85% by weight of the highly conductive metal.
[0018]
In the electrical contact member of the present invention, the area ratio of the refractory metal powder in the contact surface is 30 to 50%, and the area ratio of the refractory metal powder in the plane perpendicular to the contact surface is in the range of 14 to 25%. There is something.
[0019]
The electrical contact member of the present invention has an oxygen content of 2500 ppm or less, a tensile strength in a direction perpendicular to the contact surface of 150 MPa or less, a tensile strength in a direction parallel to the contact surface of 150 MPa or more, and The resistance is 5.5 μΩ · cm or less.
[0020]
The method for producing an electrical contact member of the present invention is to produce a molded body by pressing the mixed powder of the refractory metal powder and the highly conductive metal powder at 120 to 500 MPa, and the molded body in vacuum or Sintering is performed at a temperature equal to or lower than the melting point of the highly conductive metal powder in an inert atmosphere, and the contact surface is formed in parallel with the pressing surface in the molding process.
[0021]
Moreover, the manufacturing method of the electrical contact member of this invention pressurizes the obtained electrical contact member in the same direction as a shaping | molding process at 400 Mpa or more, and densifies.
[0022]
The method for producing an electrical contact member of the present invention is to produce a continuous plate-shaped or rod-shaped molded body by extruding and compressing a mixed powder of the refractory metal powder and the highly conductive metal powder. Sintering is continuously performed in an inert atmosphere at a temperature equal to or lower than the melting point of the highly conductive metal, and a surface parallel to the extrusion direction is used as a contact surface.
[0023]
Further, the method for producing an electrical contact member of the present invention is a method in which the obtained electrical contact member is further continuously rolled to form a contact surface parallel to the rolled surface. It is performed below the melting point of the metal.
[0024]
Furthermore, the manufacturing method of the electrical contact member of the present invention is to obtain a desired shape by punching perpendicularly to the extrusion direction.
[0025]
In the method for producing an electrical contact member of the present invention, the highly conductive metal powder has a particle size of 80 μm or less.
[0026]
The electric contact member of the present invention is used as a member constituting a pair of fixed side electrode and movable side electrode in a vacuum valve, and this vacuum valve is used for a vacuum circuit breaker, a vacuum switch and the like.
[0027]
In the vacuum valve according to the present invention, a value y obtained by multiplying the rated voltage (kV) and the breaking current effective value (kA) is not more than a value obtained by the following equation (1) based on the vacuum vessel outer diameter x (mm). And it exists in the range beyond the value calculated | required by (2) Formula.
y = 11.25x−525 (1)
y = 5.35x-242 (2)
[0028]
In the electrical contact according to the present invention, the diameter y (mm) is a value x (kVA × 10) obtained by multiplying the rated voltage (kV) and the breaking current effective value (kA).Three) Based on the following formula (3) or less and the value obtained by formula (4) or more.
y = 0.15x + 22 (3)
y = 0.077x + 20 (4)
[0029]
Furthermore, the vacuum valve in the present invention is obtained by the following equation (5) and the value obtained by the following equation (5) based on the outer diameter y (mm) of the vacuum vessel based on the diameter x (mm) of the electrical contact. It is within a range that is greater than or equal to the value obtained.
y = 1.26x + 30 (5)
y = 1.26x + 10 (6)
[0030]
DETAILED DESCRIPTION OF THE INVENTION
In the structure of the electrical contact member of the present invention, a refractory metal powder having a flat plate shape is dispersed in a matrix made of a highly conductive metal, and the refractory metal powder has a flat plane oriented in one direction. When this electrical contact member is used for an electrode, it is desirable to use a surface parallel to the flat surface of the refractory metal powder oriented in one direction as the contact surface. Thereby, while maintaining high conductivity without increasing the refractory metal content, a large amount of refractory metal particles are exposed on the contact surface, so that a high withstand voltage characteristic can be obtained. In addition, since the chemical bond between the refractory metal particles and the highly conductive metal matrix is weak, the strength in the direction perpendicular to the contact surface is small, and it is easy to peel off and open even when the electrode is welded by arc heating during current interruption. Thus, the welding resistance is improved.
[0031]
The refractory metal powder having the above-described flat plate shape preferably has a value obtained by dividing the maximum length of the flat plane by the minimum dimension of the plane perpendicular thereto within a range of 3 to 30, and the refractory metal contained in the electrical contact member Of the conductive metal powder, 90% by weight or more has a flat plane oriented in the range of + 40 ° to −40 ° with respect to the contact surface, and 75% by weight or more has a flat surface of + 20 ° to −20 with respect to the contact surface. By orienting in the range of °, the above-described effect of achieving both a large current interruption performance, a high withstand voltage characteristic, and a welding resistance performance can be exhibited.
[0032]
The refractory metal powder constituting the electrical contact member is one or a mixture of Cr, W, Mo, Ta, Nb, Be, Hf, Ir, Pt, Zr, Ti, Te, Si, Rh and Ru. Alternatively, these compounds are used, and the highly conductive metal is preferably Cu, Ag, Au, or an alloy mainly composed of these. Moreover, the blending ratio of the refractory metal powder and the highly conductive metal is such that the refractory metal powder is 15 to 40% by weight and the highly conductive metal is 60 to 85% by weight, so that the breaking performance and the withstand voltage characteristics are improved. An electrical contact member having an excellent and sound material structure can be obtained.
[0033]
The refractory metal powder preferably contains 50 to 2000 ppm of oxygen, 50 to 3000 ppm of Al, and 100 to 2500 ppm of Si, and these components provide an excellent arc extinguishing action at the time of interruption and improve the interruption performance. Al and Si may exist as oxides respectively, and excellent welding resistance and voltage resistance characteristics can be obtained by uniformly dispersing hard fine Al and Si oxides having a high melting point. If each of oxygen, Al, and Si is less than the above amounts, the amount of Al and Si oxide generated is reduced, and the effect on performance improvement is small. On the other hand, when the amount is larger than the above amount, the amount of gas generated when the oxide is decomposed by arc heating at the time of interruption increases, and the withstand voltage and the interruption performance deteriorate.
[0034]
The area ratio occupied by the refractory metal powder in the electrical contact member according to the present invention is preferably in the range of 30 to 50% on the contact surface and in the range of 14 to 25% on the surface perpendicular to the contact surface. High withstand voltage characteristics can be exhibited while maintaining the resistance to welding.
[0035]
In addition, by setting the oxygen content of the electrical contact member to 2500 ppm or less, it is possible to suppress gas release at the time of current interruption and to prevent interruption due to arc continuation through the gas.
[0036]
Furthermore, the tensile strength in the direction perpendicular to the contact surface is 150 MPa or less, and the tensile strength in the direction parallel to the contact surface is 150 MPa or more, so that it is easy to peel in the opening direction at the time of welding by arc heating during current interruption, Improved welding resistance.
[0037]
Note that the specific resistance of the electrical contact member is desirably 5.5 μΩ · cm or less, and the electrical characteristics substantially depend on the content of the highly conductive metal, so that there is no anisotropy. By having this specific resistance value, good blocking performance can be maintained.
[0038]
The electrical contact member is produced by pressing a mixed powder of a refractory metal powder and a highly conductive metal powder at a pressure of 120 to 500 MPa to produce a molded body, and then the molded body in a vacuum or in an inert atmosphere. It is desirable to sinter at or below the melting point of the highly conductive metal powder. If the molding pressure is less than 120 MPa, the molding density becomes small and the molded body tends to collapse, and if it exceeds 500 MPa, the mold life is shortened and the productivity is also lowered. Further, by sintering in vacuum or in an inert atmosphere, a sound sintered structure and an appropriate gas content can be obtained. Since the flat plate-shaped refractory metal powder tends to be oriented parallel to the pressing surface in the forming process, it is desirable to use a surface parallel to the pressing surface as the contact surface, thereby obtaining the desired characteristics.
[0039]
Furthermore, by pressurizing the obtained electrical contact member in the same direction as the molding process at a pressure of 400 MPa or more, it can be further densified, leading to stabilization of electrode performance. In addition, the orientation of the refractory metal powder having a flat plate shape is enhanced, and the intended characteristics are further improved.
[0040]
In addition, the method for producing the electrical contact member of the present invention is to produce a continuous plate-shaped or rod-shaped molded body by extrusion compression molding a mixed powder of a refractory metal powder and a highly conductive metal powder. You may sinter continuously in the inert atmosphere below the melting point of a highly conductive metal. This method makes it possible to manufacture an electrical contact member with low cost and high productivity. In addition, the flat plate-shaped refractory metal powder tends to be oriented parallel to the extrusion direction, and therefore, it is desirable to use a plane parallel to the extrusion direction as the contact surface, thereby obtaining the desired characteristics.
[0041]
The obtained electrical contact member can be further densified by continuously rolling, and the electrode performance can be stabilized. Although this rolling treatment is possible even at room temperature, material defects such as cracks can be prevented by warm rolling below the melting point of the highly conductive metal. In addition, the orientation of the refractory metal powder having a flat plate shape is strengthened by rolling, and the intended characteristics are further improved.
[0042]
Furthermore, by punching the obtained electrical contact member perpendicularly to the extrusion direction, a desired electrode shape can be efficiently obtained in a short time.
The particle size of the highly conductive metal powder used as the raw material for the electrical contact member is desirably 80 μm or less. If the particle size of the highly conductive metal powder is larger than this, it will be difficult to impart orientation to the refractory metal powder in the process of forming the mixed powder, and the desired material properties will not be obtained.
[0043]
In the vacuum valve according to the present invention, a value y obtained by multiplying the rated voltage (kV) and the breaking current effective value (kA) is not more than a value obtained by the following equation (1) based on the vacuum vessel outer diameter x (mm). And it is preferable that it exists in the range beyond the value calculated | required by (2) Formula.
y = 11.25x−525 (1)
y = 5.35x-242 (2)
[0044]
In the electrical contact according to the present invention, the diameter y (mm) is a value x (kVA × 10) obtained by multiplying the rated voltage (kV) and the breaking current effective value (kA).Three) Based on the following formula (3) or less and the value obtained by formula (4) or more.
y = 0.15x + 22 (3)
y = 0.077x + 20 (4)
[0045]
Furthermore, the vacuum valve in the present invention is obtained by the following equation (5) and the value obtained by the following equation (5) based on the outer diameter y (mm) of the vacuum vessel based on the diameter x (mm) of the electrical contact. It is preferable to be within a range that is greater than or equal to the value obtained.
y = 1.26x + 30 (5)
y = 1.26x + 10 (6)
[0046]
  The present invention also provides a vacuum valve having a fixed side electrode and a movable side electrode in a vacuum vessel, and the fixed side electrode and the movable side electrode in the vacuum valve are connected to the outside of the vacuum valve. A vacuum circuit breaker comprising an opening / closing means for driving the movable electrode via an insulating rod, wherein the vacuum valve is the vacuum valve described above.
  Hereinafter, the present invention will be described specifically by way of examples.
[0047]
[Example 1]
As an example relating to the present invention, an electrical contact member having a composition of 25Cr-75Cu with a refractory metal of Cr and a highly conductive metal of Cu was prepared. The manufacturing method of this electrical contact member is as follows.
[0048]
The Cr powder, which is a refractory metal, is flattened by roller compression set to a predetermined gap size, and the value obtained by dividing the maximum length of the flat surface by the minimum size of the surface perpendicular thereto (hereinafter referred to as the aspect ratio) is 3, Cr flat powder of 10, 30, 40 (comparative example) was produced. As another comparative example, the raw material Cr powder was used as it was, and the aspect ratio was set to 1. Note that the Cr powder used contained 1100 ppm of oxygen, 800 ppm of Al, and 440 ppm of Si.
[0049]
The Cu powder, which is a highly conductive metal, had a particle size of 80 μm or less and 80 μm or more.
Ten kinds of electrical contact members shown in Table 1 were prepared by combining the above Cr flat powder and Cu powder.
[Table 1]
Figure 0003825275
First, Cr flat powder and Cu powder were mixed by a V-type mixer at a weight ratio of 25:75. Next, this mixed powder was filled in a metal mold having a diameter of 60 mm, and press-molded by applying a pressure of 250 MPa on a circular surface having a diameter of 60 mm by a hydraulic press. The size of the molded body was 60 mm in diameter × 12 mm in thickness, and the relative density was 73%. This is 6.7 × 10-3Heating was performed at 1050 ° C. for 120 minutes in a vacuum of Pa or lower to produce the electrical contact members shown in Table 1. The relative density after sintering heating was 97 to 98% in all cases.
[0050]
FIG. 1 shows an example of the structure of the produced electrical contact member, and is a structure photograph of sample number C (Cr powder aspect ratio: 10, Cu powder particle size: 80 μm or less). A circular surface of the electrical contact member (hereinafter referred to as contact surface) and a cross section perpendicular thereto were observed using an optical microscope.
[0051]
In FIG. 1, (a) is a structure of a plane parallel to the contact surface, and (b) is a structure of a cross section perpendicular to the contact surface. The uneven plane of the Cr particles occupies a relatively large area on the contact surface of (a), and the uneven plane of the Cr particles is oriented substantially parallel to the contact surface in the cross section perpendicular to the contact surface of (b). confirmed. As a result, Cr powder having a flat plate shape tends to be oriented perpendicularly to the pressing direction, and it is proved that the material structure intended by the present invention can be obtained by making the contact surface parallel to the pressing surface. It was.
[0052]
The contact surfaces of the obtained 10 types of electrical contact members and the cross section perpendicular thereto are observed with an optical microscope, and the ratio of Cr particles oriented in the range of ± 40 ° and ± 20 ° with respect to the contact surfaces is obtained. It was. The ratio of Cr particles was calculated by calculating the area of Cr in each angle range by image processing and calculating the weight ratio with respect to all the Cr contained.
[0053]
Table 1 shows the ratio of Cr in each angle range. When the particle size of Cu is 80 μm or more, 90 wt% or more is + 40 ° to −40 when the aspect ratio of Cr powder is 3 to 40 It was confirmed that the film was oriented in the range of °, and 75% by weight or more was oriented in the range of + 20 ° to −20 °.
[0054]
On the other hand, when the particle size of Cu is 80 μm or less, even when the aspect ratio of Cr powder is 40, Cr in the range of + 40 ° to −40 ° is less than 90% by weight, and + 20 ° to −20. It was confirmed that Cr in the range of ° was less than 75% by weight.
From the above, in order to orient the flat Cr powder in the desired direction, it was proved that the particle size of Cu is desirably 80 μm or less.
[0055]
The results of obtaining the ratio of the area occupied by Cr (area occupancy) in the contact surface and the cross section perpendicular to the contact surface of the obtained electrical contact member are shown together in Table 1, and the grain size of Cu is 80 μm or less. In this case, when the aspect ratio of the Cr powder was 3 to 40, it was confirmed that the contact area had an area occupancy of 30% or more and a vertical section of 14 to 25%. However, when the aspect ratio of the Cr powder is 40 (sample number E), the area occupation ratio of Cr on the contact surface is 50% or more, and when used as an electrode, the contact resistance with the counterpart electrode is large. This is not preferable because the energization performance decreases. Therefore, the aspect ratio of Cr powder is desirably 3 to 30.
[0056]
In addition, the above-mentioned tendency is 1 type or 2 types or more in W, Mo, Ta, Nb, Be, Hf, Ir, Pt, Zr, Ti, Te, Si, Rh, and Ru whose refractory metals are other than Cr. It was confirmed that the same was true when the highly conductive metal was Ag or Au other than Cu or an alloy mainly composed of these.
[0057]
[Example 2]
As another example relating to the present invention, five types of electrical contact members were prepared by changing the Cr content from 10 wt% to 45 wt%, with Cr as the refractory metal and Cu as the highly conductive metal. The aspect ratio of Cr powder was 15, and the particle size of Cu powder was 80 μm or less. The manufacturing method of the electrical contact member is the same as that of the first embodiment. The relative density after sintering and heating of the obtained electrical contact member was 97 to 98%.
[0058]
Table 2 shows the proportion of Cr particles oriented in the range of ± 40 ° and ± 20 ° with respect to the contact surface, as well as the composition of the produced electrical contact member, and the Cr area occupation ratio in the cross section perpendicular to the contact surface Indicates.
[Table 2]
Figure 0003825275
In any composition, it was confirmed that 90% by weight or more of Cr was oriented in the range of + 40 ° to −40 °, and 75% by weight or more was oriented in the range of + 20 ° to −20 °. However, with the composition 10Cr—Cu (sample K), the Cr area occupancy of the contact surface is 30% or less and the vertical cross section is 14% or less, thereby achieving the object of the present invention that achieves both breaking performance and high withstand voltage characteristics. It becomes impossible. Further, the composition 45Cr—Cu (sample O) is not preferable because the contact surface is 50% or more, and the energization performance is lowered. Therefore, it was confirmed that the composition of Cr was 15 to 40% by weight and Cu was 60 to 85% by weight.
[0059]
In addition, the above-mentioned tendency is 1 type or 2 types or more in W, Mo, Ta, Nb, Be, Hf, Ir, Pt, Zr, Ti, Te, Si, Rh, and Ru whose refractory metals are other than Cr. It was confirmed that the same was true when the highly conductive metal was Ag or Au other than Cu or an alloy mainly composed of these.
[0060]
[Example 3]
As a third example relating to the present invention, among the electrical contact members produced in Example 1 and Example 2, for sample numbers A to D and L to N, the tensile strength in the direction perpendicular to and parallel to the contact surface And the specific resistance was measured.
[0061]
Table 3 shows the measurement results.
[Table 3]
Figure 0003825275
[0062]
Compared with sample number A using Cr as raw material powder, the tensile strength in the direction perpendicular to the contact surface was 150 MPa or less in all cases, while the tensile strength in the parallel direction showed a value of 150 MPa or more. . Therefore, since the strength in the direction perpendicular to the contact surface is small, it is easy to peel and break when welded to the counterpart electrode, and the welding resistance is improved.
[0063]
Further, no significant anisotropy is observed in the specific resistance. This indicates that, since the electrical characteristics are almost governed by the composition, the conductivity is not directional even when the Cr powder has a flat shape, and the interruption performance can be maintained at the same level as that of the conventional structure.
[0064]
From the above, it was confirmed that the electrical contact member according to the present invention is relatively easily peeled off in the direction perpendicular to the contact surface, and there is no anisotropy in conductivity.
[0065]
[Example 4]
As a fourth embodiment relating to the present invention, an electrode to be applied to a vacuum valve is manufactured using the members of sample numbers A to E and K to O among the electrical contact members manufactured in Embodiments 1 and 2. did.
[0066]
FIG. 2 shows the structure of the fabricated electrode. In FIG. 2, 1 is an electrical contact, 2 is a spiral groove for applying a driving force to the arc so as not to stagnate, 3 is a stainless steel reinforcing plate, 4 is an electrode rod, and 5 is a brazing material.
The method for producing the electrode is as follows. The electrical contact member produced in Example 1 and Example 2 is processed into a desired shape by machining to obtain the electrical contact 1. The electrode rod 4 is made of oxygen-free copper, and the reinforcing plate 3 is previously machined by SUS304, and the electric contact 1 and the central hole of the reinforcing plate 3 and the convex portion of the electrode rod 4 are connected to the brazing material 5. And the brazing material 5 is placed between the electrical contact 1 and the reinforcing plate 3, and this is 8.2 × 10.-FourThe electrode shown in FIG. 2 was produced by heating at 980 ° C. for 8 minutes in a vacuum of Pa or lower. This electrode is used for a vacuum valve for a rated voltage of 7.2 kV, a rated current of 600 A, and a rated breaking current of 20 kA.
[0067]
[Example 5]
A vacuum valve on which the electrode produced in Example 4 was mounted was produced. The specifications of the vacuum valve are a rated voltage of 7.2 kV, a rated current of 600 A, and a rated breaking current of 20 kA.
FIG. 3 shows the structure of the vacuum valve according to this embodiment. In FIG. 3, 1a and 1b are fixed-side electrical contacts, movable-side electrical contacts, 3a and 3b are reinforcing plates, 4a and 4b are fixed-side electrode rods and movable-side electrode rods, respectively, and these are respectively fixed-side electrodes 6a, The movable electrode 6b is configured. The movable side electrode 6b is brazed and joined to the movable side holder 12 via a movable side shield 8 that prevents scattering of metal vapor or the like at the time of interruption. These are brazed and sealed to a high vacuum by the fixed side end plate 9a, the movable side end plate 9b, and the insulating cylinder 13, and are connected to the external conductor through the screw portions of the fixed side electrode 6a and the movable side holder 12. A shield 7 is provided on the inner surface of the insulating cylinder 13 to prevent scattering of metal vapor or the like at the time of interruption, and a guide 11 for supporting a sliding portion is provided between the movable side end plate 9b and the movable side holder 12. Provided. A bellows 10 is provided between the movable side shield 8 and the movable side end plate 9b, and the movable side holder 12 is moved up and down while keeping the inside of the vacuum valve in a vacuum, thereby opening and closing the fixed side electrode 6a and the movable side electrode 6b. I can do it. In this example, the vacuum valve shown in FIG. 3 was manufactured using the electrode having the structure shown in FIG. 2 manufactured in Example 4 as the fixed side electrode 6a and the movable side electrode 6b.
[0068]
[Example 6]
Table 4 shows the results of various performance tests conducted by incorporating the vacuum valve produced in Example 5 into a vacuum circuit breaker.
[Table 4]
Figure 0003825275
[0069]
The respective performances in Table 4 are represented by relative comparison with the value of Sample A having the structure of the conventional material using the raw material Cr as 1.
[0070]
In Samples A to E, the blocking performance does not change even if the aspect ratio of the Cr powder changes. This is because there is almost no change in the specific resistance as shown in Table 3. On the other hand, the withstand voltage performance increases as the aspect ratio increases. This is because, as shown in Table 1, the area occupation ratio of Cr on the contact surface is increased. Also, as the aspect ratio increases, the welding resistance performance also increases. This is because the Cr area occupancy is large, and as shown in Table 3, the tensile strength in the direction perpendicular to the contact surface is reduced, and peeling and separation are easy to occur. Because. However, the sample E in which the aspect ratio of the Cr powder is 40 is not preferable because the contact area between the electrodes increases because the Cr area occupation ratio on the contact surface is large, and the energization resistance is large. Therefore, when the aspect ratio of the Cr powder is 3 to 30, it was proved that there is an effect in improving the withstand voltage characteristics and the welding resistance performance while maintaining the interruption performance.
[0071]
In samples K to O, the breaking performance of sample N is 0.9, which is smaller than that of sample A having a conventional structure, but can be applied to a vacuum breaker for a rated breaking current of 20 kA. However, the sample O had insufficient breaking performance and was difficult to apply to a vacuum breaker for a rated breaking current of 20 kA. Further, when the Cr amount is reduced, the withstand voltage performance is lowered, and the breaking performance is lowered due to the reoccurrence of the arch accompanying therewith, and it was difficult to apply the sample K to a vacuum circuit breaker having a rated voltage of 7.2 kV. Accordingly, the Cr content is suitably 15 to 40% by weight.
In addition, about the electrode produced by the method similar to Example 4 using the electrical contact member which put the electric contact member produced in Example 1 and Example 2 into a metal mold again, and was pressurized with 400, 600, and 800 MPa. A similar performance evaluation was performed. Here, the electric contact member pressurized at any pressure had a relative density of 98.5% or more. As a result, the same tendency as the above results was obtained, and the shutoff performance tended to be further stabilized. This is because densification progressed by pressurizing again after sintering, and internal defects and the amount of internal gas decreased.
[0072]
From the above, it has been demonstrated that the electrical contact member according to the present invention is useful for achieving both breaking performance, high withstand voltage characteristics, and welding resistance.
[0073]
[Example 7]
As another manufacturing method relating to the present invention, electrical contact members similar to those in Example 1 and Example 2 were produced. FIG. 4 is a schematic view showing the manufacturing method and manufacturing apparatus of the present embodiment. In FIG. 4, 14 is a container for containing the raw material mixed powder 15, 16 is a molding machine for continuously extruding the raw material mixed powder 15 filled from the container 14, and 17 is the raw material mixed powder 15 while rotating. Roller for molding and feeding, 18 is a formed plate-shaped continuous molded body, 19 is a tunnel furnace for continuously heating and sintering the continuous molded body 18 in an inert atmosphere, and 20 is heated and sintered. The obtained continuous sintered body, 21 is a rolling roller for rolling and densifying the continuous sintered body 20, 22 is a rolled electrical contact member, and 23 is an electrical contact 24 having a desired shape from the electrical contact member 22. A die 25 for punching out a belt 25 is a belt for continuously conveying and moving the electrical contacts 24 obtained by punching.
[0074]
The molding pressure, sintering temperature, pressure during rolling after sintering, and the like in this example were set so as to be substantially the same as in Example 1 and Example 2.
[0075]
When the structure, tensile strength, specific resistance, and the like of the electrical contact member obtained in this example were examined, results almost the same as those obtained in Example 1 and Example 2 were obtained.
[0076]
Therefore, according to this manufacturing method, it is possible to continuously manufacture a large amount of electrical contact members, which is low in cost and excellent in productivity, and further achieves the object of the present invention that achieves both breaking performance, high withstand voltage characteristics, and welding resistance. It was confirmed that a matching electrical contact member was obtained.
[0077]
[Example 8]
Table 5 shows the specifications of vacuum valves of various ratings prepared using the members of Sample B as electrical contacts 1a and 1b.
[Table 5]
Figure 0003825275
[0078]
FIG. 5 is a diagram illustrating the relationship between the effective value of the breaking voltage current (y) and the outer diameter (x) of the vacuum vessel. The cut-off voltage current effective value is obtained by multiplying the cut-off voltage (kV) by the cut-off current effective value (kA). As shown in FIG. 5, the outer diameter of the vacuum vessel with respect to the effective value of the cut-off voltage current so that the effective value of the cut-off voltage current (y) falls between the values obtained by 11.25x-525 and 5.35x-242. Is preferable.
[0079]
FIG. 6 is a diagram showing the relationship between the electrical contact diameter (y) and the breaking voltage current effective value (x). The electrical contact diameter (y) is preferably set so as to fall between values obtained by 0.15x + 22 and 0.077x + 20 with respect to the breaking voltage current effective value (x).
[0080]
FIG. 7 is a diagram showing the relationship between the vacuum vessel outer diameter (y) and the electrical contact diameter (x). The outer diameter (y) of the vacuum vessel is preferably set between values obtained by 1.26x + 30 and 1.26x + 10. In the present embodiment, it is almost set to a value obtained by y = 1.26x + 19.6.
[0081]
【The invention's effect】
The electrical contact member according to the present invention has a structure in which the refractory metal powder having a flat plate shape is oriented parallel to the contact surface in a matrix made of a highly conductive metal, so that the area occupied by the refractory metal powder on the contact surface is Thus, the high withstand voltage characteristic and the welding resistance can be improved without reducing the breaking performance.
In addition, according to the manufacturing method of the present invention, the electrical contact member having the above material structure can be efficiently mass-produced, so that the manufacturing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a photograph showing an example of the structure of an electrical contact member according to Example 1 of the present invention.
FIG. 2 shows the structure of an electrode according to Example 4 of the present invention.
FIG. 3 shows the structure of a vacuum valve according to Example 5 of the present invention.
FIG. 4 shows a manufacturing method and a manufacturing apparatus according to Embodiment 7 of the present invention.
FIG. 5 shows the relationship between the effective value of the cutoff voltage current of the vacuum valve and the outer diameter of the vacuum container according to Example 8 of the present invention.
FIG. 6 shows a relationship between a diameter of an electric contact of a vacuum valve according to Example 8 of the present invention and an effective value of breaking voltage current.
FIG. 7 shows the relationship between the outer diameter of a vacuum vessel and the diameter of an electrical contact of a vacuum valve according to Example 8 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electrical contact, 1a ... Fixed side electrical contact, 1b ... Movable side electrical contact, 2 ... Spiral groove, 3, 3a, 3b ... Reinforcement plate, 4 ... Electrode rod, 5 ... Brazing material, 6a ... Fixed side electrode, 6b ... movable side electrode, 7 ... shield, 8 ... movable side shield, 9a ... fixed side end plate, 9b ... movable side end plate, 10 ... bellows, 11 ... guide, 12 ... movable side holder, 13 ... insulating cylinder, 14 ... Container, 15 ... Raw material mixed powder, 16 ... Molding machine, 17 ... Roller, 18 ... Continuous molded body, 19 ... Tunnel furnace, 20 ... Continuous sintered body, 21 ... Rolling roller, 22 ... Electric contact member, 23 ... Mold 24 ... electrical contacts, 25 ... belt.

Claims (16)

高導電性金属からなるマトリックス中に偏平板形状を有する耐火性金属粉が分散する組織を成し、前記耐火性金属粉は偏平面が一方向に配向し、前記耐火性金属粉の偏平面と平行な面を接点面とすることを特徴とする電気接点部材。  The refractory metal powder having a flat plate shape is dispersed in a matrix made of a highly conductive metal, the refractory metal powder has a flat plane oriented in one direction, and the flat surface of the refractory metal powder and An electric contact member characterized in that a parallel surface is used as a contact surface. 請求項1において、偏平板形状を有する耐火性金属粉は、偏平面の最大長さをそれに垂直な面の最小寸法で除した値が3〜30であることを特徴とする電気接点部材。  2. The electrical contact member according to claim 1, wherein the refractory metal powder having a flat plate shape has a value obtained by dividing the maximum length of the flat plane by the minimum dimension of the plane perpendicular thereto, from 3 to 30. 請求項1又は2において、偏平板形状を有する耐火性金属粉のうちの90重量%以上が、偏平面が接点面に対して+40°〜−40°の範囲に配向することを特徴とする電気接点部材。  3. The electricity according to claim 1, wherein 90% by weight or more of the refractory metal powder having a flat plate shape has a flat plane oriented in a range of + 40 ° to −40 ° with respect to the contact surface. Contact member. 請求項1〜3のいずれかにおいて、偏平板形状を有する耐火性金属粉はCr、W、Mo、Ta、Nb、Be、Hf、Ir、Pt、Zr、Ti、Te、Si、Rh及びRuの中の1種叉は2種以上の混合物あるいはこれらの化合物からなり、高導電性金属はCu、Ag又はAuあるいはこれらを主にした合金からなることを特徴とする電気接点部材。  In any one of Claims 1-3, the refractory metal powder which has a flat-plate shape is Cr, W, Mo, Ta, Nb, Be, Hf, Ir, Pt, Zr, Ti, Te, Si, Rh, and Ru. An electrical contact member comprising one kind or a mixture of two or more kinds thereof or a compound thereof, wherein the highly conductive metal comprises Cu, Ag, Au, or an alloy mainly composed of these. 請求項1〜3のいずれかにおいて、偏平板形状を有する耐火性金属粉は酸素を50〜2000ppm、Alを50〜3000ppm、Siを100〜2500ppm含むことを特徴とする電気接点部材。  4. The electrical contact member according to claim 1, wherein the refractory metal powder having a flat plate shape contains 50 to 2000 ppm of oxygen, 50 to 3000 ppm of Al, and 100 to 2500 ppm of Si. 15〜40重量%の偏平板形状を有する耐火性金属粉と、60〜85重量%の高導電性金属からなる請求項1〜5に記載の電気接点部材。  The electrical contact member according to claim 1, comprising a refractory metal powder having a flat plate shape of 15 to 40% by weight and a highly conductive metal of 60 to 85% by weight. 接点面における偏平板形状を有する耐火性金属粉が占める面積比は30〜50%、接点面と垂直な面における偏平板形状を有する耐火性金属粉が占める面積比は14〜25%であることを特徴とする請求項1〜6に記載の電気接点部材。  The area ratio of the refractory metal powder having the flat plate shape on the contact surface is 30 to 50%, and the area ratio of the refractory metal powder having the flat plate shape on the surface perpendicular to the contact surface is 14 to 25%. The electrical contact member according to claim 1, wherein: 請求項1〜7のいずれかにおいて、前記偏平板形状を有する耐火性金属粉は含有酸素量が2500ppm以下であることを特徴とする電気接点部材。  The electrical contact member according to claim 1, wherein the refractory metal powder having the flat plate shape has an oxygen content of 2500 ppm or less. 偏平板形状を有する耐火性金属粉と高導電性金属粉との混合粉末を、120〜500MPaで加圧成形して成形体を作製し、該成形体を真空中又は不活性雰囲気中において前記高導電性金属粉の融点以下で焼結し、成形過程の加圧面と平行に接点面とすることを特徴とする電気接点部材の製法。  A mixed powder of a refractory metal powder having a flat plate shape and a highly conductive metal powder is pressure-molded at 120 to 500 MPa to produce a molded body, and the molded body is placed in a vacuum or in an inert atmosphere with the above high A method for producing an electrical contact member, characterized in that sintering is performed at a temperature equal to or lower than the melting point of the conductive metal powder, and the contact surface is formed in parallel with the pressing surface in the molding process. 偏平板形状を有する耐火性金属粉と高導電性金属粉との混合粉末を、押出し圧縮成形により連続的な板状あるいは棒状の成形体を作製し、該成形体を不活性雰囲気中において前記高導電性金属粉の融点以下で連続的に焼結し、押出し方向と平行な面を接点面とすることを特徴とする電気接点部材の製法。  A mixed plate of a refractory metal powder having a flat plate shape and a highly conductive metal powder is produced by extrusion compression molding to produce a continuous plate-like or rod-like molded body, and the molded body is placed in the inert atmosphere in the above-mentioned high A process for producing an electrical contact member, characterized in that it is continuously sintered below the melting point of the conductive metal powder, and a surface parallel to the extrusion direction is used as a contact surface. 請求項9又は10において、高導電性金属粉の粒径は80μm以下であることを特徴とする電気接点部材の製法。  The method for producing an electrical contact member according to claim 9 or 10, wherein the particle size of the highly conductive metal powder is 80 µm or less. 真空容器内に固定側電極と可動側電極とを備えた真空バルブにおいて、前記固定側電極及び前記可動側電極に請求項1〜8に記載の電気接点部材を使用したことを特徴とする真空バルブ。  A vacuum valve comprising a fixed electrode and a movable electrode in a vacuum vessel, wherein the electric contact member according to claim 1 is used for the fixed electrode and the movable electrode. . 真空容器内に固定側電極と可動側電極とを備えた真空バルブにおいて、前記両電極は請求項1〜8に記載の電気接点部材を使用した電気接点と、それに連なる電極棒からなり、前記真空容器は円筒であり、定格電圧(kV)と遮断電流実効値(kA)とを乗算した値yが前記真空容器外径x(mm)に基づいて以下の(1)式によって求められる値以下及び(2)式によって求められる値以上の範囲内にあることを特徴とする真空バルブ。
y=11.25x−525 …(1)
y=5.35x−242 …(2)
In a vacuum valve provided with a fixed side electrode and a movable side electrode in a vacuum vessel, the both electrodes comprise an electrical contact using the electrical contact member according to claim 1 and an electrode rod connected to the electrical contact, and the vacuum The container is a cylinder, and a value y obtained by multiplying the rated voltage (kV) and the effective breaking current (kA) is equal to or less than a value obtained by the following equation (1) based on the outer diameter x (mm) of the vacuum container. (2) A vacuum valve characterized by being in a range equal to or greater than a value obtained by the equation.
y = 11.25x−525 (1)
y = 5.35x-242 (2)
真空容器内に固定側電極と可動側電極とを備えた真空バルブにおいて、前記両電極は請求項1〜8のいずれかに記載の電気接点部材を使用した電気接点と、それに連なる電極棒からなり、前記電気接点の直径y(mm)は定格電圧(kV)と遮断電流実効値(kA)とを乗算した値x(kVA×103)に基づいて以下の(3)式によって求められる値以下及び(4)式によって求められる値以上の範囲内にあることを特徴とする真空バルブ。
y=0.15x+22 …(3)
y=0.077x+20 …(4)
In the vacuum valve provided with the fixed side electrode and the movable side electrode in the vacuum vessel, the both electrodes are composed of an electrical contact using the electrical contact member according to any one of claims 1 to 8 and an electrode rod connected thereto. The diameter y (mm) of the electrical contact is equal to or less than the value obtained by the following equation (3) based on a value x (kVA × 10 3 ) obtained by multiplying the rated voltage (kV) and the effective value of the breaking current (kA). And a vacuum valve characterized by being in a range equal to or greater than a value obtained by the equation (4).
y = 0.15x + 22 (3)
y = 0.077x + 20 (4)
真空容器内に固定側電極と可動側電極とを備えた真空バルブにおいて、前記両電極は請求項1〜8のいずれかに記載の電気接点部材を使用した電気接点と、それに連なる電極棒からなり、前記真空容器は円筒であり、該真空容器の外径y(mm)は前記電気接点の直径x(mm)に基づいて以下の(5)式によって求められる値
以下及び(6)式によって求められる値以上の範囲内にあることを特徴とする真空バルブ及びそれを用いた真空遮断器。
y=1.26x+30 …(5)
y=1.26x+10 …(6)
In the vacuum valve provided with the fixed side electrode and the movable side electrode in the vacuum vessel, the both electrodes are composed of an electrical contact using the electrical contact member according to any one of claims 1 to 8 and an electrode rod connected thereto. The vacuum vessel is a cylinder, and the outer diameter y (mm) of the vacuum vessel is obtained from the value obtained by the following equation (5) based on the diameter x (mm) of the electrical contact and by the equation (6). A vacuum valve and a vacuum circuit breaker using the same, characterized by being in a range that is greater than or equal to a value to be obtained.
y = 1.26x + 30 (5)
y = 1.26x + 10 (6)
真空容器内に固定側電極と可動側電極とを備えた真空バルブと、該真空バルブ内の前記固定側電極と前記可動側電極との各々に前記真空バルブ外に接続された絶縁ロッドを介して前記可動側電極を駆動する開閉手段とを備えた真空遮断器において、前記真空バルブが請求項13〜15のいずれかに記載の真空バルブからなることを特徴とする真空遮断器。  Via a vacuum valve having a fixed side electrode and a movable side electrode in a vacuum vessel, and an insulating rod connected to the outside of the vacuum valve to each of the fixed side electrode and the movable side electrode in the vacuum valve The vacuum circuit breaker provided with the opening-closing means which drives the said movable side electrode, The said vacuum valve consists of a vacuum valve in any one of Claims 13-15, The vacuum circuit breaker characterized by the above-mentioned.
JP2001115083A 2001-04-13 2001-04-13 Electrical contact member and its manufacturing method Expired - Fee Related JP3825275B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001115083A JP3825275B2 (en) 2001-04-13 2001-04-13 Electrical contact member and its manufacturing method
EP01121307.1A EP1249848B1 (en) 2001-04-13 2001-09-05 Electric contact and manufacturing method thereof
US09/950,679 US6765167B2 (en) 2001-04-13 2001-09-13 Electric contact member and production method thereof
CNB011330333A CN1311492C (en) 2001-04-13 2001-09-14 Electric contact unit and manufacturing method thereof
KR1020010056661A KR20020079331A (en) 2001-04-13 2001-09-14 Electric contact member and production method thereof
TW090122863A TW526508B (en) 2001-04-13 2001-09-14 Electric contact member and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001115083A JP3825275B2 (en) 2001-04-13 2001-04-13 Electrical contact member and its manufacturing method

Publications (3)

Publication Number Publication Date
JP2002313196A JP2002313196A (en) 2002-10-25
JP2002313196A5 JP2002313196A5 (en) 2005-04-07
JP3825275B2 true JP3825275B2 (en) 2006-09-27

Family

ID=18966041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001115083A Expired - Fee Related JP3825275B2 (en) 2001-04-13 2001-04-13 Electrical contact member and its manufacturing method

Country Status (6)

Country Link
US (1) US6765167B2 (en)
EP (1) EP1249848B1 (en)
JP (1) JP3825275B2 (en)
KR (1) KR20020079331A (en)
CN (1) CN1311492C (en)
TW (1) TW526508B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2081200A2 (en) 2008-01-21 2009-07-22 Hitachi, Ltd. Electrical contact for vacuum valve

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200425192A (en) * 2003-01-09 2004-11-16 Hitachi Ltd Electrode for vacuum interrupter, vacuum interrupter using the same and vacuum circuit-breaker
JP2005135778A (en) * 2003-10-31 2005-05-26 Hitachi Ltd Electric contact and its manufacturing method, electrode for vacuum bulb, vacuum bulb using it, and vacuum interrupter
KR20050052868A (en) * 2003-12-01 2005-06-07 희성금속 주식회사 Electric contact processing method
JP4455066B2 (en) * 2004-01-08 2010-04-21 株式会社日立製作所 Electrical contact member, method of manufacturing the same, vacuum valve and vacuum circuit breaker using the same
JP4759987B2 (en) * 2004-11-15 2011-08-31 株式会社日立製作所 Electrode and electrical contact and its manufacturing method
JP4667032B2 (en) * 2004-12-10 2011-04-06 三菱電機株式会社 Vacuum valve
AT13963U1 (en) * 2012-06-01 2015-01-15 Plansee Powertech Ag Contact component and method for its production
JP6050994B2 (en) * 2012-09-14 2016-12-21 株式会社日立製作所 Electrical contacts, electrical contact manufacturing methods, electrodes, vacuum valves, vacuum switchgear
US11304528B2 (en) 2012-09-20 2022-04-19 Steelcase Inc. Chair assembly with upholstery covering
US11229294B2 (en) 2012-09-20 2022-01-25 Steelcase Inc. Chair assembly with upholstery covering
US8998339B2 (en) 2012-09-20 2015-04-07 Steelcase Inc. Chair assembly with upholstery covering
JP6840140B2 (en) * 2016-05-23 2021-03-10 田中貴金属工業株式会社 Clad material for electrical contacts and method for manufacturing the clad material
KR102004298B1 (en) * 2017-12-07 2019-07-26 한국생산기술연구원 Method of Ta-Cu alloy for electric contact materials and Ta-Cu alloy for electric contact materials using the same
US11694864B2 (en) * 2020-09-30 2023-07-04 Eaton Intelligent Power Limited Vacuum interrupter with trap for running cathode tracks

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190753A (en) * 1978-04-13 1980-02-26 Westinghouse Electric Corp. High-density high-conductivity electrical contact material for vacuum interrupters and method of manufacture
CN1061165A (en) * 1987-04-20 1992-05-20 标准石油公司 The catalyst system of alkane ammoxidation
JP2505837B2 (en) 1987-12-24 1996-06-12 キヤノン株式会社 Image forming method using insulating magnetic developer and reversal developing method
DE58905069D1 (en) * 1989-05-31 1993-09-02 Siemens Ag METHOD FOR PRODUCING A CUCR CONTACT MATERIAL FOR VACUUM PROTECTORS AND RELATED CONTACT MATERIAL.
JP2908071B2 (en) * 1991-06-21 1999-06-21 株式会社東芝 Contact material for vacuum valve
DE19602812C1 (en) * 1996-01-26 1997-07-31 Siemens Ag Method for producing a shaped piece from a silver-based contact material and shaped piece
DE19822469A1 (en) * 1997-05-22 1998-11-26 Hitachi Ltd Vacuum switch tube composite material production
JPH1125814A (en) * 1997-07-03 1999-01-29 Hitachi Ltd Vacuum circuit breaker, and vacuum valve and electrical contact used for it
JPH11167847A (en) * 1997-09-19 1999-06-22 Hitachi Ltd Vacuum circuit breaker and vacuum bule for vacuum circuit breaker and electrode of vacuum bulb
US6248969B1 (en) * 1997-09-19 2001-06-19 Hitachi, Ltd. Vacuum circuit breaker, and vacuum bulb and vacuum bulb electrode used therefor
KR19990045259A (en) * 1997-11-14 1999-06-25 가나이 쓰도무 Vacuum circuit breakers and vacuum valves and electrodes thereof
JP3428416B2 (en) * 1998-02-12 2003-07-22 株式会社日立製作所 Vacuum circuit breaker, vacuum valve and electric contact used therefor, and manufacturing method
KR100332513B1 (en) * 1998-08-21 2002-04-13 니시무로 타이죠 Contact material for vacuum valve and method for fabricating the same
JP2000235825A (en) * 1999-02-16 2000-08-29 Hitachi Ltd Electrode member for vacuum circuit-breaker and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2081200A2 (en) 2008-01-21 2009-07-22 Hitachi, Ltd. Electrical contact for vacuum valve
US8426754B2 (en) 2008-01-21 2013-04-23 Hitachi, Ltd. Electrical contact for vacuum valve

Also Published As

Publication number Publication date
KR20020079331A (en) 2002-10-19
CN1311492C (en) 2007-04-18
US20030010752A1 (en) 2003-01-16
CN1381857A (en) 2002-11-27
EP1249848B1 (en) 2013-12-18
JP2002313196A (en) 2002-10-25
US6765167B2 (en) 2004-07-20
TW526508B (en) 2003-04-01
EP1249848A3 (en) 2004-12-22
EP1249848A2 (en) 2002-10-16

Similar Documents

Publication Publication Date Title
JP3825275B2 (en) Electrical contact member and its manufacturing method
US20020144977A1 (en) Electrode of a vacuum valve, a producing method thereof, a vacuum valve, a vacuum circuit-breaker and a contact point of the electrode
EP1528581B1 (en) Electrical contact, method of manufacturing the same, electrode for vacuum interrupter, and vacuum circuit breaker
JP3789304B2 (en) Method for producing Ag-ZnO-based electrical contact material and electrical contact material thereof
WO2018142709A1 (en) Method for manufacturing electrode material, and electrode material
JP2908071B2 (en) Contact material for vacuum valve
JP5310272B2 (en) Electrode contact member for vacuum circuit breaker and method for manufacturing electrode contact member for vacuum circuit breaker
US10086433B2 (en) Process for producing electrode material, and electrode material
JP2003147407A (en) Electric contact, its manufacturing method, and vacuum valve and vacuum circuit breaker using the same
EP3187287A1 (en) Method for manufacturing electrode material and electrode material
JPH05217473A (en) Manufacture of electrode material
JPH07320608A (en) Manufacture of contact material
JPH0729446A (en) Manufacture of electrode for vacuum interrupter
JP3191382B2 (en) Electrode materials for vacuum interrupters
JPH1150177A (en) Contact material for vacuum circuit breaker, its production and vacuum circuit breaker
JP6381860B1 (en) Contact material, manufacturing method thereof and vacuum valve
JP3067317B2 (en) Manufacturing method of electrode material
JP4619821B2 (en) Contact material and vacuum valve
JPH1040761A (en) Contact material for vacuum circuit breaker, its manufacture, and vacuum circuit breaker
JP2004076141A (en) Vacuum valve used for vacuum interrupter, and manufacturing method of electric contact
JP2016065281A (en) Manufacturing method of electrode material and electrode material
JPH07278703A (en) Electrode material for vacuum interrupter
JPH05242773A (en) Vacuum interrupter electrode material
JPH10216877A (en) Manufacture of contact material for switching device
JPH05298957A (en) Manufacture of vacuum interrupter electrode

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees