JPH07133157A - Electrically conductive ceramics and its production - Google Patents
Electrically conductive ceramics and its productionInfo
- Publication number
- JPH07133157A JPH07133157A JP5273823A JP27382393A JPH07133157A JP H07133157 A JPH07133157 A JP H07133157A JP 5273823 A JP5273823 A JP 5273823A JP 27382393 A JP27382393 A JP 27382393A JP H07133157 A JPH07133157 A JP H07133157A
- Authority
- JP
- Japan
- Prior art keywords
- mixing
- nitride powder
- silicon nitride
- sintering
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、導電性セラミックス及
びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive ceramic and a method for manufacturing the same.
【0002】[0002]
【従来の技術】導電性セラミックスは、各種構造部材、
セラミックスヒーター、あるいは成形用金型の材料とし
て使用されるようになってきた。このような導電性セラ
ミックスを製造する方法として、例えば、窒化珪素粉末
に導電性付与剤と焼結助剤を混合させて焼結することに
より、導電性が向上した窒化珪素焼結体を得る方法が開
示されている(特開昭58−41771号公報)。2. Description of the Related Art Conductive ceramics are used for various structural members,
It has come to be used as a material for ceramic heaters or molding dies. As a method of producing such a conductive ceramic, for example, a method of obtaining a silicon nitride sintered body having improved conductivity by mixing silicon nitride powder with a conductivity-imparting agent and a sintering aid and sintering the mixture. Is disclosed (Japanese Patent Laid-Open No. 58-41771).
【0003】一方、窒化珪素などの焼結体は、強度や硬
度が高いことから、種々の高温構造材料として開発され
ているが、その高強度、高硬度という性質から、焼結体
やその製造プロセスにおいて、加工性がよくないという
問題が生じている。このような観点から、本来絶縁体で
ある窒化珪素焼結体を、放電加工によって精密に加工で
きるようにするために、窒化珪素と導電性付与剤と焼結
助剤の微小粉末を焼結して導電加工可能な窒化珪素焼結
体を製造する方法が開発されている(特開昭61−11
1969号公報)。On the other hand, sintered bodies such as silicon nitride have been developed as various high-temperature structural materials because of their high strength and hardness. However, because of their high strength and high hardness, the sintered bodies and their production are high. In the process, there is a problem that workability is poor. From this point of view, in order to enable precision machining of a silicon nitride sintered body, which is originally an insulator, by electrical discharge machining, fine powder of silicon nitride, a conductivity-imparting agent and a sintering aid is sintered. Has been developed to produce a silicon nitride sintered body that can be electrically processed (Japanese Patent Application Laid-Open No. 61-11).
1969).
【0004】また、金属電極と非導電性セラミックスか
らなる従来の流体センサーよりも高温強度の高いセンサ
ーを得るために、金属電極の代わりに導電性セラミック
スを用いたセラミックス複合体が開示されている(特開
昭64−9841号公報)。ここで用いられている導電
性セラミックスとしては、窒化珪素と導電性付与剤の粉
末を混合、焼結したものが例示されている。Further, in order to obtain a sensor having a high temperature strength higher than that of a conventional fluid sensor composed of a metal electrode and a non-conductive ceramic, a ceramic composite using a conductive ceramic instead of the metal electrode has been disclosed ( JP-A-64-9841). As the conductive ceramics used here, those obtained by mixing and sintering powders of silicon nitride and a conductivity-imparting agent are exemplified.
【0005】これらのように、窒化珪素、窒化チタン及
び焼結助剤の粉末を粉砕混合した後、成形して焼結する
ことにより、導電性セラミックスを製造する方法が多数
提案されている。As described above, a number of methods have been proposed for producing conductive ceramics by pulverizing and mixing powders of silicon nitride, titanium nitride and a sintering aid, molding and sintering.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、十分な
導電性を確保するために焼結体中に導電性付与剤を過剰
に導入すると、窒化珪素の高温強度や耐酸化性、焼結性
に問題を生じる。また、導電性セラミックスの製造に際
し、材料の粉砕・混合を十分に行わないと、得られる焼
結体中の導電性が均一にならず、放電加工後の加工面の
仕上がりが悪くなる。特開昭61−111969号公報
には、均一に分散させるためには、焼結前の原料粉末を
1μm以下にすべきことが示唆されてはいるが、それを
実現する具体的方法は明らかにされておらず、通常の粉
砕方法では実現が難しいのが現状である。However, if a conductivity-imparting agent is excessively introduced into the sintered body in order to secure sufficient conductivity, problems will occur in high temperature strength, oxidation resistance and sinterability of silicon nitride. Cause Further, when the conductive ceramics are manufactured, if the materials are not sufficiently pulverized and mixed, the conductivity of the obtained sintered body will not be uniform, and the finish of the machined surface after electrical discharge machining will be poor. Japanese Unexamined Patent Publication No. 61-111969 suggests that the raw material powder before sintering should be 1 μm or less in order to disperse it uniformly, but a concrete method for realizing it is obvious. It has not been done yet, and it is the current situation that it is difficult to realize with a normal crushing method.
【0007】本発明は、上記観点からなされたものであ
り、過剰な導電性付与剤を用いずに、十分な電気伝導性
を有する導電性セラミックスを提供することを課題とす
る。The present invention has been made from the above viewpoint, and an object of the present invention is to provide a conductive ceramic having sufficient electric conductivity without using an excessive conductivity-imparting agent.
【0008】[0008]
【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意検討を行った結果、従来の導電性セ
ラミックスの導電性の不均一性は、原料の粉砕混合の手
法が適切でないことに起因するのではないかとの着想に
至り、粉砕混合の手法を検討した。その結果、原料粉末
を、従来法よりも格段大きい粉砕力により粉砕混合する
ことにより、メカニカルアロイイング効果が得られ、高
い導電性を有するセラミックスが得られることを見出
し、本発明に到達した。As a result of intensive studies for solving the above-mentioned problems, the present inventor has found that the non-uniformity of the conductivity of the conventional conductive ceramics can be obtained by appropriately pulverizing and mixing raw materials. We came up with the idea that it might be due to the fact that it was not, and examined the method of pulverization and mixing. As a result, they have found that a mechanical alloying effect can be obtained and a ceramic having high conductivity can be obtained by pulverizing and mixing the raw material powder with a pulverizing force which is significantly larger than that of the conventional method, and arrived at the present invention.
【0009】すなわち本発明は、窒化珪素粉末と窒化チ
タン粉末と焼結助剤とを粉砕・混合し、この混合物を成
形した後焼結して導電性セラミックス焼結体を製造する
方法において、前記粉砕・混合する工程における粉砕力
を、窒化珪素粉末、窒化チタン粉末及び焼結助剤の総量
1kg当たり1×106 kgms-1以上とすることを特徴と
する導電性セラミックスの製造方法、及び各々の粉末粒
径が0.8μm未満の窒化珪素粉末と窒化チタン粉末と
焼結助剤とを成形、焼結して得られる導電性セラミック
スである。That is, the present invention relates to a method for producing a conductive ceramics sintered body by pulverizing and mixing silicon nitride powder, titanium nitride powder and a sintering aid, shaping the mixture, and sintering the mixture. A pulverizing force in the pulverizing / mixing step is set to 1 × 10 6 kgms −1 or more per 1 kg of the total amount of silicon nitride powder, titanium nitride powder, and sintering aid, and each method for producing conductive ceramics. Is a conductive ceramic obtained by molding and sintering a silicon nitride powder having a powder particle size of less than 0.8 μm, a titanium nitride powder, and a sintering aid.
【0010】以下、本発明を詳細に説明する。本発明に
より得られる導電性セラミックスは、窒化珪素(Si
3N4)粉末、窒化チタン(TiN)粉末及び焼結助剤を原料
とする。The present invention will be described in detail below. The conductive ceramics obtained by the present invention are silicon nitride (Si
3 N 4 ) powder, titanium nitride (TiN) powder and sintering aid are used as raw materials.
【0011】窒化珪素粉末及び窒化チタン粉末は、いず
れも粒径は特に限定されないが、粉砕・混合の効率をよ
くするためには、3μm以下であることが好ましい。ま
た、これらの焼結体全量に対する配合量は、窒化珪素粉
末は60〜90重量%、窒化チタン粉末は1〜30重量
%が好ましい。窒化チタンの含量が多くなりすぎると導
電性は向上するが、焼結体の焼結性や高温強度に問題を
生じる点で好ましくない。The particle size of each of the silicon nitride powder and the titanium nitride powder is not particularly limited, but it is preferably 3 μm or less in order to improve the efficiency of pulverization and mixing. Further, the compounding amount of these sintered bodies is preferably 60 to 90% by weight of silicon nitride powder and 1 to 30% by weight of titanium nitride powder. When the content of titanium nitride is too large, the conductivity is improved, but it is not preferable because it causes problems in sinterability and high temperature strength of the sintered body.
【0012】焼結助剤としては、Y2O3、Al2O3、M
gO、ZnO2、SiO2等が挙げられる。これらは、原
料全量に対し、0.01〜10重量%の範囲で配合する
ことが好ましく、1種又は2種以上の任意の混合物とし
て用いてもよい。As sintering aids, Y 2 O 3 , Al 2 O 3 and M are used.
Examples thereof include gO, ZnO 2 , and SiO 2 . These are preferably blended in the range of 0.01 to 10% by weight with respect to the total amount of raw materials, and may be used as one kind or as an arbitrary mixture of two or more kinds.
【0013】本発明においては、上記の原料を、1×1
06 Kgms-1/Kg 以上の粉砕力で、好ましくは20時間
以上粉砕・混合し、この混合物を成形した後焼結する。
上記条件で粉砕・混合することにより、各原料粉末の粒
径を十分に小さく、例えば0.8μm未満に粉砕するこ
とができ、さらに、それらを均一に分散、混合させるこ
とができる。その結果、成形、焼結して得られる焼結体
中で、導電性粒子相互の接触確率を増加させるマトリッ
クス粒子(Si3N4)の表面層や結晶粒界に、導電性粒
子を反応させることができる。すなわち、メカニカルア
ロイイング効果により、Si3N4結晶格子中に窒化チタ
ンが入ることによって、高い分散性が得られると推定さ
れる。In the present invention, 1 × 1 of the above raw material is used.
The mixture is pulverized and mixed with a pulverizing force of 0 6 Kgms -1 / Kg or more, preferably for 20 hours or more, and the mixture is molded and then sintered.
By crushing and mixing under the above conditions, the particle diameter of each raw material powder can be made sufficiently small, for example, can be crushed to less than 0.8 μm, and further, they can be uniformly dispersed and mixed. As a result, in the sintered body obtained by molding and sintering, the conductive particles are caused to react with the surface layer and the grain boundaries of the matrix particles (Si 3 N 4 ) that increase the contact probability between the conductive particles. be able to. That is, it is presumed that high dispersibility can be obtained by the inclusion of titanium nitride in the Si 3 N 4 crystal lattice due to the mechanical alloying effect.
【0014】原料を上記条件で粉砕・混合するには、例
えば遊星ボールミルを用いる方法が挙げられる。遊星ボ
ールミルによる粉砕力は、次式により表される。In order to pulverize and mix the raw materials under the above conditions, for example, a method using a planetary ball mill can be mentioned. The crushing force by the planetary ball mill is expressed by the following equation.
【0015】[0015]
【数1】 粉砕力=(1/W)×n×(m/d)×v2×t W=処理量[kg] , t=粉砕・混合時間
[秒] n=ボール数 , v=ボールの速度[m/
s] m=ボールの質量[kg] , =(d×π×回転数)
/60 d=ミルの直径[m]## EQU1 ## Crushing force = (1 / W) × n × (m / d) × v 2 × t W = processed amount [kg], t = crushing / mixing time [sec] n = number of balls, v = balls Speed [m /
s] m = ball mass [kg], = (d × π × rotational speed)
/ 60 d = mill diameter [m]
【0016】例えば、内径75mmの遊星ボールミルに
200gの原料と、直径10mmの窒化珪素製ボールを
50個を入れ、800rpmで粉砕・混合した場合に
は、2.9×106 Kgm・S-1/Kg程度の粉砕力が得られ
る。この際、原料はエタノールに懸濁させて粉砕・混合
することが好ましい。また、粉砕・混合する時間は、原
料粒子の粒径を0.8μm未満程度に小さくし、十分な
均一分散性を得るためには、20時間以上が好ましい。For example, when 200 g of the raw material and 50 pieces of silicon nitride balls having a diameter of 10 mm are put into a planetary ball mill having an inner diameter of 75 mm and crushed and mixed at 800 rpm, 2.9 × 10 6 Kgm · S −1 A crushing force of about / Kg can be obtained. At this time, it is preferable that the raw material be suspended in ethanol and pulverized and mixed. The time for pulverizing and mixing is preferably 20 hours or more in order to reduce the particle size of the raw material particles to less than about 0.8 μm and obtain sufficient uniform dispersibility.
【0017】次に、上記のようにして得られた粉砕・混
合物を、好ましくは100℃で10時間以上乾燥させ
る。続いて上記乾燥物を成形し、焼結させる。成形方法
としては、CIP(冷間静水圧プレス成形)、鋳込み成
形等が、焼結方法としては、HIP(熱間静水圧プレ
ス)、ホットプレス、反応焼結、高圧ガス反応焼結、超
高圧焼結等が挙げられる。HIP焼結する場合の条件と
しては、18気圧の窒素ガス雰囲気下で、1800℃、
60分が挙げられる。Next, the pulverized / mixed material obtained as described above is dried, preferably at 100 ° C. for 10 hours or more. Subsequently, the dried product is molded and sintered. The molding method is CIP (cold isostatic pressing), cast molding, etc., and the sintering method is HIP (hot isostatic pressing), hot pressing, reaction sintering, high pressure gas reaction sintering, ultra high pressure. Sintering etc. are mentioned. The conditions for HIP sintering are 1800 ° C. under a nitrogen gas atmosphere of 18 atm.
60 minutes can be mentioned.
【0018】[0018]
【実施例】以下に、本発明の実施例を説明する。表1に
示すように、窒化珪素粉末(平均粒径3μm)及び窒化
チタン粉末(平均粒径3μm)の含有量を変えて導電性
セラミックスを製造した。尚、焼結助剤として、5重量
%のY2O3、Al2O3(混合物比1:2)を用いた。EXAMPLES Examples of the present invention will be described below. As shown in Table 1, conductive ceramics were manufactured by changing the contents of silicon nitride powder (average particle size 3 μm) and titanium nitride powder (average particle size 3 μm). As the sintering aid, 5% by weight of Y 2 O 3 and Al 2 O 3 (mixture ratio 1: 2) was used.
【0019】原料混合物200gをエタノール50ml
に懸濁させ、この懸濁液を遊星ボールミル(セイシン企
業製;ミル内径:75mm;深さ:65mm)に、直径
10mm、窒化珪素製のボール50個とともに入れ、8
00rpmで40時間、粉砕・混合した。このときの粉
砕力は、2.9×106 Kgm・S-1/Kg であり、粉砕・混
合後の混合物粒子の平均粒径は0.75μmであった。200 g of the raw material mixture is mixed with 50 ml of ethanol.
And suspend the suspension in a planetary ball mill (manufactured by Seishin Enterprises; mill inner diameter: 75 mm; depth: 65 mm) together with 50 balls of 10 mm in diameter and made of silicon nitride.
The mixture was crushed and mixed at 00 rpm for 40 hours. The crushing force at this time was 2.9 × 10 6 Kgm · S −1 / Kg, and the average particle size of the mixture particles after crushing / mixing was 0.75 μm.
【0020】上記の粉砕・混合物を100℃で12時間
乾燥させてエタノールを除去した後、CIP成形し、さ
らに1800℃で60分間、18気圧の窒素雰囲気下で
HIP焼結した。焼結体の比抵抗(室温)を四端子法で
測定した結果、及び放電加工特性を測定した結果を表1
に示す。尚、放電加工特性は、下記の基準により評価し
た。The crushed mixture was dried at 100 ° C. for 12 hours to remove ethanol, then CIP molded, and further HIP sintered at 1800 ° C. for 60 minutes under a nitrogen atmosphere of 18 atm. Table 1 shows the results of measuring the specific resistance (room temperature) of the sintered body by the four-terminal method and the results of measuring the electrical discharge machining characteristics.
Shown in. The electrical discharge machining characteristics were evaluated according to the following criteria.
【0021】A : 放電加工性が良好である B : 加工はできるが仕上げ面、仕上がりが悪く、安定
性に劣る C : 放電加工が不能であるA: EDM is good B: Machining is possible, but the finished surface and finish are poor and the stability is poor C: EDM is impossible
【0022】[0022]
【表1】 [Table 1]
【0023】上記で得られた焼結体のX線回折(XR
D)による解析を行った。原料懸濁液の粉砕・混合時間
に対する、得られた焼結体のTiN(200)面から計
算した格子定数の変化を図1に示す。この結果から、格
子定数は、本発明の条件下での粉砕・混合時間を長くす
ることによって次第に大きくなることを示している。す
なわち、所定の強さで粉砕・混合を行うことによって、
結晶構造が変化し、メカニカルアロイングの効果によ
り、分子・原子レベルでの混合が実現することを表して
いる。X-ray diffraction (XR) of the sintered body obtained above
The analysis according to D) was performed. FIG. 1 shows the change in the lattice constant calculated from the TiN (200) plane of the obtained sintered body with respect to the grinding and mixing time of the raw material suspension. From this result, it is shown that the lattice constant is gradually increased by increasing the grinding / mixing time under the conditions of the present invention. That is, by crushing and mixing with a predetermined strength,
It shows that the crystal structure changes and that the mixing at the molecular and atomic level is realized by the effect of mechanical alloying.
【0024】[0024]
【比較例1】上記実施例と同じ原料を用い、粉砕・混合
の条件を変えてセラミックスを製造した。原料の粉砕・
混合は、上記の遊星ボールミルと同じサイズのボールミ
ル(セイシン企業製)を用い、同様に種類とサイズが同
じボールを同数用い、原料を40時間粉砕・混合した。
このときの粉砕力は、6.5×104 Kgm・S-1/Kg であ
り、粉砕・混合後の混合物粒子の平均粒径は1.53μ
mであった。Comparative Example 1 Using the same raw material as in the above example, ceramics were manufactured by changing the conditions of crushing and mixing. Crushing of raw materials
For the mixing, a ball mill (manufactured by Seishin Enterprise Co., Ltd.) having the same size as the above-mentioned planetary ball mill was used, and similarly, the same number of balls having the same kind and size were used, and the raw materials were ground and mixed for 40 hours.
The crushing force at this time was 6.5 × 10 4 Kgm · S −1 / Kg, and the average particle size of the mixture particles after crushing / mixing was 1.53 μm.
It was m.
【0025】得られた粉砕・混合物を、100℃で12
時間乾燥させてエタノールを除去した後、CIP成形
し、さらに1800℃で60分間、250Kg/cm2
の条件でホットプレス焼結を行った。焼結体の比抵抗
(室温)、放電加工特性を上記と同様に測定した結果を
表2に示す。The resulting pulverized mixture is heated to 100 ° C. for 12 hours.
After drying for an hour to remove ethanol, CIP molding is performed, and further at 1800 ° C. for 60 minutes at 250 Kg / cm 2.
The hot press sintering was performed under the conditions. Table 2 shows the results of measuring the specific resistance (room temperature) and the electric discharge machining characteristics of the sintered body in the same manner as above.
【0026】[0026]
【表2】 [Table 2]
【0027】[0027]
【比較例2】表3に示した配合比の窒化珪素(平均粒径
1.2μm)及び窒化チタン(平均粒径1.1μm)
と、実施例と同じ焼結助剤を用い、比較例1と同様の粉
砕・混合条件、及び成形、焼結方法でセラミックスを製
造した。得られたセラミックスの焼結体の比抵抗(室
温)、放電加工特性を上記と同様に測定した結果を表3
に示す。尚、粉砕・混合後の混合物粒子の平均粒径は
0.85μmであった。Comparative Example 2 Silicon nitride (average particle size 1.2 μm) and titanium nitride (average particle size 1.1 μm) having the compounding ratios shown in Table 3
Then, using the same sintering aid as that of the example, ceramics were manufactured under the same pulverization / mixing conditions, molding and sintering methods as in Comparative Example 1. The specific resistance (room temperature) and the electric discharge machining characteristics of the obtained ceramic sintered body were measured in the same manner as above, and the results are shown in Table 3.
Shown in. The average particle size of the mixture particles after pulverization and mixing was 0.85 μm.
【0028】[0028]
【表3】 [Table 3]
【0029】上記実施例及び各比較例の結果から、原料
粉末の粉砕・混合を1×106 Kgms -1/Kg 以上の粉砕
力で行うことにより、図1に示す分子レベルでの混合が
実現され、そのため窒化珪素と窒化チタンの接触面積が
従来の方法と比較して大きくなり、比抵抗の小さい、導
電性に優れたセラミックスが得られることがわかる。ま
た、比較例3に用いた原料粉末は、実施例1に用いた原
料粉末の半分以下の粒径であるが、通常の粉砕・混合で
は焼結体は十分な導電性は得られず、本発明において一
定以上の粉砕力で原料を粉砕・混合することにより、良
好な導電性セラミックスが得られることを示している。From the results of the above Examples and Comparative Examples, the raw materials
1 × 10 for powder crushing and mixing6 Kgms -1Crushed over / Kg
By force, the mixing at the molecular level shown in Figure 1
Is realized, and therefore the contact area between silicon nitride and titanium nitride is
Compared with the conventional method, it has a large specific resistance and low conductivity.
It can be seen that ceramics having excellent electrical properties can be obtained. Well
The raw material powder used in Comparative Example 3 was the same as the raw material powder used in Example 1.
The particle size is less than half that of the raw powder, but with normal crushing and mixing
In the present invention, since the sintered body does not have sufficient conductivity,
By crushing and mixing the raw materials with a crushing power above a certain level,
It shows that a good conductive ceramic can be obtained.
【0030】[0030]
【発明の効果】本発明により、過剰な導電性付与剤を用
いずに、十分な電気伝導性を有する導電性セラミックス
が得られる。According to the present invention, conductive ceramics having sufficient electric conductivity can be obtained without using an excessive conductivity-imparting agent.
【図1】 原料懸濁液の粉砕・混合時間に対する、得ら
れた焼結体のTiN(200)面から計算した格子定数
の変化を示す図。FIG. 1 is a diagram showing a change in lattice constant calculated from a TiN (200) plane of an obtained sintered body with respect to a pulverization / mixing time of a raw material suspension.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田村 聡 千葉県袖ヶ浦市上泉1660番地出光マテリア ル株式会社内 (72)発明者 上杉 隆 東京都千代田区丸の内3丁目1番1号出光 マテリアル株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Tamura Idemitsu Material Co., Ltd. 1660 Uezumi, Sodegaura, Chiba Prefecture (72) Inventor Takashi Uesugi 3-1-1 Marunouchi, Chiyoda-ku, Tokyo Idemitsu Material Co., Ltd. Within
Claims (3)
剤とを粉砕・混合し、この混合物を成形した後焼結して
導電性セラミックス焼結体を製造する方法において、 前記粉砕・混合する工程における粉砕力を、窒化珪素粉
末、窒化チタン粉末及び焼結助剤の総量1kg当たり1
×106 kgms-1以上とすることを特徴とする導電性セラ
ミックスの製造方法。1. A method for producing a conductive ceramics sintered body by pulverizing and mixing silicon nitride powder, titanium nitride powder and a sintering aid, molding the mixture, and then sintering the mixture, wherein the pulverizing and mixing is performed. The crushing force in the step of applying is 1 per 1 kg of the total amount of silicon nitride powder, titanium nitride powder and sintering aid.
A method for producing a conductive ceramic, characterized in that it is not less than × 10 6 kgms −1 .
gO、ZnO2、SiO2から選ばれることを特徴とする
請求項1記載の導電性セラミックスの製造方法。2. The sintering aid is Y 2 O 3 , Al 2 O 3 , M.
The method for producing a conductive ceramic according to claim 1, wherein the method is selected from gO, ZnO 2 , and SiO 2 .
珪素粉末と窒化チタン粉末と焼結助剤とを成形、焼結し
て得られる導電性セラミックス。3. A conductive ceramic obtained by molding and sintering a silicon nitride powder, a titanium nitride powder, and a sintering aid each having a powder particle size of less than 0.8 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5273823A JPH07133157A (en) | 1993-11-01 | 1993-11-01 | Electrically conductive ceramics and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5273823A JPH07133157A (en) | 1993-11-01 | 1993-11-01 | Electrically conductive ceramics and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07133157A true JPH07133157A (en) | 1995-05-23 |
Family
ID=17533059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5273823A Pending JPH07133157A (en) | 1993-11-01 | 1993-11-01 | Electrically conductive ceramics and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07133157A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002057197A1 (en) * | 2001-01-22 | 2002-07-25 | Sumitomo Electric Industries, Ltd. | Electroconductive silicon nitride based composite sintered body and method for preparation thereof |
WO2002085812A1 (en) * | 2001-04-20 | 2002-10-31 | Sumitomo Electric Industries, Ltd. | Silicon nitride based composite sintered product and method for production thereof |
JP2009143759A (en) * | 2007-12-13 | 2009-07-02 | Dainippon Printing Co Ltd | Raw material powder of evaporation source material for ion plating, evaporation source material for ion plating and its manufacturing method and gas barrier sheet and its manufacturing method |
JP2009280832A (en) * | 2008-05-19 | 2009-12-03 | Dainippon Printing Co Ltd | Raw powder for ion plating evaporation source material, ion plating evaporation source material and method for producing the same, gas barrier sheet and method for producing the same |
-
1993
- 1993-11-01 JP JP5273823A patent/JPH07133157A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002057197A1 (en) * | 2001-01-22 | 2002-07-25 | Sumitomo Electric Industries, Ltd. | Electroconductive silicon nitride based composite sintered body and method for preparation thereof |
US7132061B2 (en) | 2001-01-22 | 2006-11-07 | Sumitomo Electric Industries, Ltd. | Electroconductive silicon nitride based composite sintered body and method for preparation thereof |
WO2002085812A1 (en) * | 2001-04-20 | 2002-10-31 | Sumitomo Electric Industries, Ltd. | Silicon nitride based composite sintered product and method for production thereof |
US6844282B2 (en) | 2001-04-20 | 2005-01-18 | Sumitomo Electric Industries, Ltd. | Silicon nitride based composite sintered product and method for production thereof |
US7008893B2 (en) | 2001-04-20 | 2006-03-07 | Sumitomo Electric Industries, Ltd. | Silicon nitride-based composite sintered body and producing method thereof |
JP2009143759A (en) * | 2007-12-13 | 2009-07-02 | Dainippon Printing Co Ltd | Raw material powder of evaporation source material for ion plating, evaporation source material for ion plating and its manufacturing method and gas barrier sheet and its manufacturing method |
JP2009280832A (en) * | 2008-05-19 | 2009-12-03 | Dainippon Printing Co Ltd | Raw powder for ion plating evaporation source material, ion plating evaporation source material and method for producing the same, gas barrier sheet and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01230478A (en) | Homogeneous sintered silicon nitride and production thereof | |
JP4691891B2 (en) | C-SiC sintered body and manufacturing method thereof | |
JPH08109422A (en) | Production of alumina dispersion strengthened copper | |
JP3458587B2 (en) | Thermoelectric conversion material and its manufacturing method | |
JPH07133157A (en) | Electrically conductive ceramics and its production | |
Ravi et al. | The microstructure and hardness of silicon carbide synthesized by plasma pressure compaction | |
JP3125851B2 (en) | Manufacturing method of alumina dispersion strengthened copper | |
JP2539018B2 (en) | Al Lower 2 O Lower 3 Base ceramics | |
JP3035615B1 (en) | Metal short wire dispersed thermoelectric material and method for producing the same | |
JPH06302866A (en) | Thermoelectric conversion material and manufacture thereof | |
JPH09321347A (en) | Thermoelectric conversion material and manufacture thereof | |
JP2003221280A (en) | Electroconductive silicon nitride-based composite sintered body and method for producing the same | |
JPH08283882A (en) | Production of fine wire for producing ag-tin oxide-base electrical contact | |
JP2861383B2 (en) | Silicide target and method for manufacturing the same | |
JP2905878B1 (en) | Manufacturing method of composite thermoelectric material | |
JP2004292176A (en) | Combined ceramic and and method of manufacturing the same | |
JPH06120568A (en) | Manufacture of thermoelectric converting material | |
JPH06169110A (en) | Manufacture of thermoelectric conversion material | |
JP7171973B1 (en) | Method for producing silicon nitride powder, slurry, and silicon nitride sintered body | |
KR20000025229A (en) | Preparation method of thermoelectric material by mechanical grinding | |
JPH0598369A (en) | Production of sintered hard alloy | |
JPH0681076A (en) | Production of betafesi2 | |
JPH03166329A (en) | Oxide dispersion reinforced cu-zr alloy and its manufacture | |
JP2544017B2 (en) | Method for producing copper powder for powder metallurgy | |
JPH07268404A (en) | Method for modifying hydrodehydrogenated titanium pulverized powder for injection molding and production of injection-molded titanium sintered body |