JP2009270130A - Silver powder or silver alloy powder, method for producing shaped article of silver or silver alloy, and shaped article of silver or silver alloy - Google Patents

Silver powder or silver alloy powder, method for producing shaped article of silver or silver alloy, and shaped article of silver or silver alloy Download PDF

Info

Publication number
JP2009270130A
JP2009270130A JP2008118717A JP2008118717A JP2009270130A JP 2009270130 A JP2009270130 A JP 2009270130A JP 2008118717 A JP2008118717 A JP 2008118717A JP 2008118717 A JP2008118717 A JP 2008118717A JP 2009270130 A JP2009270130 A JP 2009270130A
Authority
JP
Japan
Prior art keywords
silver
powder
silver powder
particle size
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008118717A
Other languages
Japanese (ja)
Inventor
Tomohiro Onishi
智広 大西
Yasuhiro Waki
康弘 和気
Tomoaki Kasukawa
知昭 粕川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aida Chemical Industries Co Ltd
Original Assignee
Aida Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aida Chemical Industries Co Ltd filed Critical Aida Chemical Industries Co Ltd
Priority to JP2008118717A priority Critical patent/JP2009270130A/en
Publication of JP2009270130A publication Critical patent/JP2009270130A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silver powder which can be sintered by laser beam with laser density lower than that in the conventional case in laser sintering, to provide an inexpensive silver powder which can be uniformly swept with high powder fluidity, and to provide a sintered compact (silver shaped article) of high quality by solving problems that it is conventionally difficult to sufficiently perform a sintering due to high reflectivity to laser beam and high thermal conductivity after sintering when silver powder is sintered by a laser sintering method, and the strength of a sintered compact is made insufficient. <P>SOLUTION: The surface of silver powder is sulfurized, thus the surface of the silver powder is made into dark brown, so as to increase the absorption rate of laser beam and to promote sintering. Further, the grain size distribution of the silver powder is controlled in such a manner the average grain size is regulated 10 to 100 μm, the cumulative value in the volume on the gain size distribution is made higher than 1 μm in the cumulative value of 10% and is made lower than 200 μm in the cumulative value of 90%, thus powder fluidity suitable for laser sintering is given. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、レーザー焼結によって立体造形物を製作する際に用いる銀粉末または銀合金粉末、さらにはその銀粉末または銀合金粉末を用いた銀または銀合金の造形体の製造方法並びにその銀または銀合金の造形体に関するものである。   The present invention relates to a silver powder or silver alloy powder used for producing a three-dimensional structure by laser sintering, a method for producing a silver or silver alloy shaped body using the silver powder or silver alloy powder, and the silver or silver alloy powder. The present invention relates to a silver alloy shaped body.

CADデータから直接、立体造形物を製作する技術として、いわゆる高速試作製造が知られている。この高速試作製造の一法に、粉末を一層ごとに掃き均して、レーザーで目的部分のみを焼結させて立体造形物を作っていく選択的レーザー焼結(Selective Laser Sintering、以下SLSと略記)という方法がある。   As a technique for producing a three-dimensional object directly from CAD data, so-called high-speed trial manufacture is known. In this high-speed prototype manufacturing method, selective laser sintering (hereinafter abbreviated as SLS), in which the powder is swept and layered one by one and only the target part is sintered with a laser to create a three-dimensional modeled object. ).

選択的レーザー焼結装置の仕組みを、具体的に図9を用いて説明する。図9の右側の粉体供給室170に粉末110を入れる。粉体供給室170の垂直稼動機構150により、粉末は、押し上げられ、スキージングブレード120によって左側のレーザー焼結室180へ水平に掃き均し、所定の厚さの粒子層を形成する。この粉末層の厚さは、調整可能であり、例えば20〜50μmとすることができる(図9の粒子層h)。
一方、レーザー光源100より照射されたレーザー光を、レーザー光走査装置130によって、レーザー焼結室180の特定位置に導き、敷かれている粉末層の特定部分に照射することで、レーザー焼結室180の特定部分の粉末110を焼結又は溶融させる。
照射が終わると、レーザー焼結室180の垂直稼動機構160が粒子層hの高さだけ下に下がる。再び、粉体供給室170の垂直稼動機構150により、粉体供給室170の粉末は、粒子層hの高さだけ押し上げられ、スキージングブレード120によって左側へ水平に掃き均される。
The mechanism of the selective laser sintering apparatus will be specifically described with reference to FIG. The powder 110 is put into the powder supply chamber 170 on the right side of FIG. The powder is pushed up by the vertical operation mechanism 150 of the powder supply chamber 170 and is swept horizontally by the squeezing blade 120 to the left laser sintering chamber 180 to form a particle layer having a predetermined thickness. The thickness of the powder layer can be adjusted, and can be, for example, 20 to 50 μm (particle layer h in FIG. 9).
On the other hand, the laser beam irradiated from the laser light source 100 is guided to a specific position of the laser sintering chamber 180 by the laser beam scanning device 130 and irradiated to a specific portion of the powder layer that is laid down, thereby the laser sintering chamber. 180 specific portions of powder 110 are sintered or melted.
When the irradiation is finished, the vertical operation mechanism 160 of the laser sintering chamber 180 is lowered by the height of the particle layer h. Again, the vertical operation mechanism 150 of the powder supply chamber 170 pushes up the powder in the powder supply chamber 170 by the height of the particle layer h and sweeps it horizontally to the left by the squeezing blade 120.

この単位焼結工程を繰り返すことで、レーザー焼結室180の上面に粉末110を掃き均して形成した粒子層の特定部分を焼結または溶融させ、その焼結または溶融させた層を積層していくことにより、立体的な造形物を形成していく。なお、一層ごとに、レーザー照射する走査パターンは、事前に装置に入力した3次元CADデータによって与えられる。   By repeating this unit sintering step, a specific portion of the particle layer formed by sweeping and smoothing the powder 110 on the upper surface of the laser sintering chamber 180 is sintered or melted, and the sintered or melted layer is laminated. By doing so, a three-dimensional shaped object is formed. Note that the scanning pattern for laser irradiation for each layer is given by three-dimensional CAD data input to the apparatus in advance.

近年、選択的レーザー焼結は、レーザー技術の向上に伴い、プラスチックの造形を中心として、急速に発展してきている。
選択的レーザー焼結で造形できる材料は、樹脂だけでなく、セラミックや一部の金属にまで広がっている。選択的レーザー焼結で造形できる金属材料としては、鉄系材料、ニッケル系材料、ブロンズ系材料、ステンレス、コバルトクロム、チタンなどがある。また、高エネルギー密度のレーザー光を照射できる装置、例えばCONCEPT Laser社製の装置名M3Liner、MCP-HEK社製の装置名Realizer、EOS社製の装置名EOSINT M270などでは、上記金属粉末を用いて、高い焼結性や溶融性を有する立体造形物を造形できるようになってきている(例えば、非特許文献1、2参照)。
kruth et al,binding mechanism in selective laser sinterring and selective laser melting,proc.15th solid freeform fabrication symposium,2004,cf.chapter4. edson costa santos et al,rapid manufacturing of metal components by laser forming,international journal of machine tools & manufacture46(2006)1459-1468,cf.p1463 table3.
In recent years, selective laser sintering has been rapidly developed with the improvement of laser technology, focusing on plastic molding.
Materials that can be shaped by selective laser sintering extend not only to resins but also to ceramics and some metals. Examples of metal materials that can be formed by selective laser sintering include iron-based materials, nickel-based materials, bronze-based materials, stainless steel, cobalt chromium, and titanium. In addition, in devices capable of irradiating laser beams with high energy density, such as the device name M3Liner manufactured by CONCEPT Laser, the device name Realizer manufactured by MCP-HEK, and the device name EOSINT M270 manufactured by EOS, the above metal powder is used. A three-dimensional model having high sinterability and meltability can be modeled (for example, see Non-Patent Documents 1 and 2).
kruth et al, binding mechanism in selective laser sinterring and selective laser melting, proc.15th solid freeform fabrication symposium, 2004, cf.chapter 4. edson costa santos et al, rapid manufacturing of metal components by laser forming, international journal of machine tools & manufacture46 (2006) 1459-1468, cf.p1463 table3.

しかしながら、発明者は、後述する比較例1〜比較例3の如く、銀粉末を用いて選択的レーザー焼結を試みたが、銀の焼結品は得られなかった。
レーザー焼結によって銀粉末が焼結しなかった理由として、銀は、極めて低い光の吸収率(波長10〜1μmにおいて約1%の吸収率)しかないこと、また、造形時、銀粉末の焼結が進行するにつれて銀本来の高い熱伝導率(0℃において428[W/mK])により、吸収されたレーザーエネルギーのうち銀焼結体から脱熱する熱量が大きくなっていくことなどが挙げられる。
However, the inventors tried selective laser sintering using silver powder as in Comparative Examples 1 to 3 to be described later, but no silver sintered product was obtained.
The reason why the silver powder was not sintered by laser sintering is that silver has an extremely low light absorptivity (about 1% at a wavelength of 10 to 1 μm), and the silver powder was sintered during modeling. As the crystallization progresses, the amount of heat removed from the silver sintered body in the absorbed laser energy increases due to the high thermal conductivity inherent in silver (428 [W / mK] at 0 ° C). It is done.

このため、銀粉末をレーザー焼結によって造形し焼結品又は溶融物を得るためには、レーザー光が粉末表面に当たるときのエネルギー密度を極めて高いものにしなければならない。極めて高いエネルギー密度のレーザー光を発するためには、選択的レーザー焼結装置におけるレーザー光源の高い性能が要求され、使用できる装置も限定されると共に、設備費等のコスト面においても問題が生ずる。
また、レーザー焼結に用いられる銀粉末の粒度分布が適切でない等の理由により粉体流動性が悪いとスキージングブレード120によって銀粉末を均一に掃き均すことができず、立体造形物を作製することが困難である。
For this reason, in order to form silver powder by laser sintering to obtain a sintered product or a melt, the energy density when the laser light hits the powder surface must be extremely high. In order to emit a laser beam having an extremely high energy density, a high performance of the laser light source in the selective laser sintering apparatus is required, the apparatus that can be used is limited, and there are problems in terms of costs such as equipment costs.
In addition, if the powder flowability is poor because the particle size distribution of the silver powder used for laser sintering is not appropriate, the squeegee blade 120 cannot uniformly sweep the silver powder and produce a three-dimensional model. Difficult to do.

そこで本発明の第1の目的は、レーザー焼結において、従来に比して低いエネルギー密度のレーザー光で焼結することが出来る銀粉末を提供とすることにある。
さらに本発明の第2の目的は、レーザー焼結において、安価で粉体流動性が高く均一な粒子層に掃き均すことが出来る銀粉末を提供し、高品質な焼結体(銀造形体)を提供することにある。
Accordingly, a first object of the present invention is to provide a silver powder that can be sintered by laser light having a lower energy density than conventional laser sintering.
Furthermore, a second object of the present invention is to provide a silver powder that can be swept into a uniform particle layer at a low price and with high powder flowability in laser sintering. ) To provide.

本発明者は前記課題を解決すべく、鋭意研究の結果、銀粉末または銀合金粉末の表面を硫化させて黒みを付けると、従来に比して低いエネルギー密度のレーザー光で焼結させることが出来ることを見出し、本発明に到達したものである。
すなわち、上記問題点を解決するための本発明の請求項1に係わる銀粉末または銀合金粉末は、レーザー焼結によって銀造形物を作るための銀粉末または銀合金粉末であって、表面を硫化させたことを特徴とする。
かような請求項1の銀粉末または銀合金粉末によれば、従来に比して低いエネルギー密度のレーザー光で焼結することが出来る。しかも、硫化させられて表面が黒みを帯びた銀または銀合金の粉末は、焼結または溶融すると、その焼結または溶融部分から硫黄分が揮散して元の銀または銀合金の色に戻る。
As a result of diligent research, the present inventor can sinter the surface of silver powder or silver alloy powder with a laser beam having a lower energy density than before when the surface of the silver powder or silver alloy powder is blackened. The inventors have found out what can be done and have reached the present invention.
That is, the silver powder or silver alloy powder according to claim 1 of the present invention for solving the above problems is a silver powder or silver alloy powder for making a silver shaped article by laser sintering, and the surface is sulfided. It was made to be characterized.
According to the silver powder or the silver alloy powder of the first aspect, it is possible to sinter with a laser beam having a lower energy density than in the past. In addition, when the powder of silver or silver alloy that has been sulfided and has a black surface is sintered or melted, the sulfur content is volatilized from the sintered or melted portion and returns to the original silver or silver alloy color.

上記問題点を解決するための本発明の請求項2に係わる銀粉末または銀合金粉末は、平均粒径が10〜100μmであって、少なくとも粒子表面を硫化させたことを特徴とする。
かような構成によっても、該銀粉末または銀合金は、従来に比して低いエネルギー密度のレーザー光で焼結することが出来ると共に、すぐれた粉体流動性を有することになり、選択的レーザー焼結装置において所定の厚さに掃き均すことが出来、レーザー焼結によって造形し焼結品又は溶融物を得ることが出来る。しかも、硫化させられて表面が黒みを帯びた銀または銀合金の粉末は、焼結または溶融すると、その焼結または溶融部分から硫黄分が揮散して元の銀または銀合金の色に戻る。
The silver powder or silver alloy powder according to claim 2 of the present invention for solving the above problems has an average particle diameter of 10 to 100 μm and is characterized in that at least the particle surface is sulfided.
Even with such a configuration, the silver powder or silver alloy can be sintered with a laser beam having a lower energy density than conventional ones, and has excellent powder flowability. It can be swept and smoothed to a predetermined thickness in a sintering apparatus, and can be shaped by laser sintering to obtain a sintered product or a melt. In addition, when the powder of silver or silver alloy that has been sulfided and has a black surface is sintered or melted, the sulfur content is volatilized from the sintered or melted portion and returns to the original silver or silver alloy color.

このような請求項1乃至請求項2における本発明の銀粉末または銀合金粉末とは、少なくとも表面を硫化させた銀粉末または銀合金粉末であって、内部には硫化されない銀部分または銀合金部分を有する粉末と定義される。
硫化された層の表面からの硫化層厚さは、レーザー焼結によって造形する造形物の目的によって適宜選択すればよい。
また、本発明に係わる平均粒径とは、中位径、中径、メディアン径、メジアン径または50%粒子径とも言い、通常D50で表示されるもので、累積曲線の50%に対応する粒径を意味する。具体的には3本のレーザー散乱光検出機構を持つレーザー回折式粒度分布測定装置(マイクロトラック社製)を用い、測定条件を[粒子透過性:反射]と[真球/非球形:非球形]としたときに測定される粒度分布のD50の値とする。
The silver powder or silver alloy powder of the present invention according to claim 1 or 2 is a silver powder or silver alloy powder having at least a surface sulfided, and a silver part or silver alloy part that is not sulfided inside. Is defined as a powder having
What is necessary is just to select suitably the sulfide layer thickness from the surface of the sulfided layer according to the objective of the molded article modeled by laser sintering.
The average particle diameter according to the present invention is also called a median diameter, a medium diameter, a median diameter, a median diameter, or a 50% particle diameter, and is usually represented by D50, and corresponds to 50% of a cumulative curve. Means diameter. Specifically, using a laser diffraction particle size distribution measuring device (manufactured by Microtrac) having three laser scattered light detection mechanisms, the measurement conditions are [particle permeability: reflection] and [true sphere / non-spherical: non-spherical]. ] Is the value of D50 of the particle size distribution measured.

さらに、上述した本発明における好ましい実施形態を述べると、本発明の請求項3に係わる銀粉末または銀合金粉末は、上記した請求項1または請求項2において、前記銀粉末または銀合金粉末は、平均粒径が10〜100μmであって、粒度分布における粒径の小さい方からの体積累積値が累積値10%において1μmより大きく、累積値90%において200μmより小さい粒度分布を有することを特徴とする。
さらに好ましくは、前記銀粉末は、平均粒径が20〜70μmであって、粒度分布おける粒径の小さい方からの体積累積値が累積値10%において5μmより大きく、累積値90%において150μmより小さい粒度分布を有するものとする。
本発明の請求項3に係わる銀粉末または銀合金粉末は、篩い分級等によって上記粒度分布にすることにより、選択的レーザー焼結に適した粉体流動性を有し、選択的レーザー焼結装置において所定の厚さの粒子層に掃き均すことが出来、レーザー焼結によって造形し焼結品又は溶融物を得ることが出来る。
Further, a preferred embodiment of the present invention described above will be described. The silver powder or silver alloy powder according to claim 3 of the present invention is the above-described claim 1 or 2, wherein the silver powder or silver alloy powder is: The average particle size is 10 to 100 μm, and the volume cumulative value from the smaller particle size in the particle size distribution has a particle size distribution larger than 1 μm at a cumulative value of 10% and smaller than 200 μm at a cumulative value of 90%. To do.
More preferably, the silver powder has an average particle size of 20 to 70 μm, and the volume cumulative value from the smaller particle size in the particle size distribution is larger than 5 μm at a cumulative value of 10%, and from 150 μm at a cumulative value of 90%. It shall have a small particle size distribution.
The silver powder or silver alloy powder according to claim 3 of the present invention has powder flowability suitable for selective laser sintering by making the above particle size distribution by sieving classification or the like, and a selective laser sintering apparatus. Can be swept into a particle layer of a predetermined thickness and shaped by laser sintering to obtain a sintered product or a melt.

なお、上記請求項3における本発明の粒度分布おける体積累積値10%の粒径と体積累積値90%の粒径とは、3本のレーザー散乱光検出機構を持つレーザー回折式粒度分布測定装置(マイクロトラック社製)を用い、測定条件を[粒子透過性:反射]と[真球/非球形:非球形]としたときに測定される粒度分布におけるD10とD90の粒径値を意味する。   In the above particle size distribution according to the third aspect of the present invention, the particle size distribution with a volume cumulative value of 10% and the particle size with a volume cumulative value of 90% are a laser diffraction particle size distribution measuring device having three laser scattered light detection mechanisms. This means the particle size values of D10 and D90 in the particle size distribution measured when the measurement conditions are [particle permeability: reflection] and [true sphere / non-sphere: non-sphere]. .

本発明の請求項4に係わる銀または銀合金の造形体の製造方法は、請求項1から請求項3のいずれか1項に記載の銀粉末または銀合金粉末にレーザー光をあてて焼結または溶融させ造形物を形成することを特徴とする。
本発明の請求項4に係わる銀または銀合の造形体の製造方法は、レーザー焼結において、銀粉末または銀合金粉末を硫化処理することによって、焼結が促進され、従来に比して低いエネルギー密度のレーザー光で焼結することが出来る。
照射したレーザー光が粉末表面に当たるときのエネルギー密度が同一であっても、銀粉末または銀合金粉末を硫化処理することによって、焼結が促進され、造形物の密度が上がる。また、硫化して表面が黒みを帯びた銀または銀合金の粉末は、焼結または溶融すると、その焼結または溶融部分から硫黄分が揮散して元の銀または銀合金の色に戻る。
According to a fourth aspect of the present invention, there is provided a method for producing a shaped body of silver or a silver alloy by applying a laser beam to the silver powder or silver alloy powder according to any one of the first to third aspects. Melting to form a shaped article.
In the method for producing a silver or silver alloy shaped body according to claim 4 of the present invention, sintering is promoted by sulfiding silver powder or silver alloy powder in laser sintering, which is lower than conventional methods. It can be sintered with energy density laser light.
Even if the energy density when the irradiated laser light hits the powder surface is the same, sintering is promoted by increasing the density of the shaped object by subjecting the silver powder or silver alloy powder to sulfidation. In addition, when a silver or silver alloy powder that is sulfurized and has a blackened surface is sintered or melted, the sulfur content is volatilized from the sintered or melted portion to return to the original silver or silver alloy color.

本発明の請求項5に係わる銀または銀合金の造形体は、請求項4記載の方法により製造したことを特徴とする。
請求項5に係わる本発明においては、銀粉末または銀合金粉末が硫化処理されているので、焼結が促進され、従来に比して低いエネルギー密度のレーザー光で焼結して銀または銀合金の造形体を得ることが出来る。
照射したレーザー光が粉末表面に当たるときのエネルギー密度が同一であっても、銀粉末または銀合金粉末を硫化処理されているので、焼結が促進され、密度が高い造形物が得られる。また、硫化させられて表面が黒みを帯びた銀または銀合金の粉末は、焼結または溶融すると、その焼結または溶融部分から硫黄分が揮散するので、表面が本来の銀または銀合金の色の造形物が得られる。
A shaped body of silver or a silver alloy according to claim 5 of the present invention is manufactured by the method according to claim 4.
In the present invention according to claim 5, since the silver powder or silver alloy powder is sulfurized, the sintering is promoted, and the silver or silver alloy is sintered with a laser beam having a lower energy density than in the prior art. Can be obtained.
Even if the energy density when the irradiated laser light hits the powder surface is the same, since the silver powder or the silver alloy powder is sulfurized, sintering is promoted and a shaped article with a high density is obtained. In addition, when a silver or silver alloy powder that is sulfurized and has a blackened surface is sintered or melted, sulfur content is volatilized from the sintered or melted portion, so that the surface is the color of the original silver or silver alloy. A shaped object can be obtained.

本発明によれば、表面を硫化させた銀粉末または銀合金粉末に、レーザー光を照射すると、レーザー光の吸収率が向上し焼結が促進する。このために、従来に比して低いエネルギー密度のレーザー光で焼結することが出来、照射したレーザー光が粉末表面に当たるときのエネルギー密度が同一であっても、密度が高い造形物が得られるという効果を奏する。しかも、硫化させられて表面が黒みを帯びた銀または銀合金の粉末は、焼結または溶融すると、その焼結または溶融部分から硫黄分が揮散して、表面が元の銀または銀合金の色に戻るという効果を奏する。   According to the present invention, when laser light is irradiated onto silver powder or silver alloy powder whose surface has been sulfided, the laser light absorption rate is improved and sintering is promoted. For this reason, it is possible to sinter with a laser beam having a lower energy density than in the past, and even if the energy density when the irradiated laser beam hits the powder surface is the same, a shaped article having a higher density can be obtained. There is an effect. Moreover, when the silver or silver alloy powder that has been sulfided and has a black surface is sintered or melted, sulfur content is volatilized from the sintered or melted portion, and the surface is the color of the original silver or silver alloy. The effect is to return to.

本発明の銀粉末または銀合金粉末は、平均粒径が10〜100μmのものが好ましく使用できる。さらには、本発明に係わる銀粉末または銀合金粉末は、平均粒径が10〜100μmであって、粒度分布おける粒径の小さい方からの体積累積値が累積値10%において1μmより大きく、好ましくは1〜70μmの範囲であり、累積値90%において200μmより小さい、好ましくは30〜200μmの範囲である粒度分布を有するものを使用するのがよい。   The silver powder or silver alloy powder of the present invention preferably has an average particle size of 10 to 100 μm. Furthermore, the silver powder or silver alloy powder according to the present invention has an average particle size of 10 to 100 μm, and the volume cumulative value from the smaller particle size in the particle size distribution is preferably larger than 1 μm at a cumulative value of 10%. Is in the range of 1 to 70 μm, and those having a particle size distribution that is smaller than 200 μm, preferably in the range of 30 to 200 μm at a cumulative value of 90%, should be used.

上記平均粒径とは、中位径、中径、メディアン径、メジアン径または50%粒子径とも言い、通常D50で表示されるもので、累積曲線の50%に対応する粒径を意味し、具体的には3本のレーザー散乱光検出機構を持つレーザー回折式粒度分布測定装置(マイクロトラック社製)を用い、測定条件を[粒子透過性:反射]と[真球/非球形:非球形]としたときに測定される粒度分布のD50の値である。
また、上記粒度分布における体積累積値10%および体積累積値90%の粒径とは、この測定された粒度分布のD10とD90の粒径値である。
The average particle diameter is also referred to as a median diameter, a medium diameter, a median diameter, a median diameter, or a 50% particle diameter, and is usually represented by D50, and means a particle diameter corresponding to 50% of a cumulative curve. Specifically, a laser diffraction particle size distribution measuring device (manufactured by Microtrac) having three laser scattered light detection mechanisms is used, and the measurement conditions are [particle permeability: reflection] and [true / non-spherical: non-spherical]. ] Is the value of D50 of the particle size distribution measured when.
In addition, the particle size of 10% and 90% of the particle size distribution in the particle size distribution is a particle size value of D10 and D90 of the measured particle size distribution.

より好ましくは、本発明に係わる銀粉末または銀合金粉末は、平均粒径が20〜70μmであって、粒度分布おける粒径の小さい方からの体積累積値が累積値10%において5μmより大きく、好ましくは5〜50μmの範囲であり、累積値90%において150μmより小さい、好ましくは30〜150μmの範囲である粒度分布を有するものを使用するのがよい。
さらにより好ましくは、本発明に係わる銀粉末または銀合金粉末は、平均粒径が20〜55μmであって、粒度分布おける粒径の小さい方からの体積累積値が累積値10%において5μmより大きく、好ましくは5〜40μmの範囲であり、累積値90%において70μmより小さい、好ましくは30〜70μmの範囲である粒度分布を有するものを使用するのがよい。
More preferably, the silver powder or silver alloy powder according to the present invention has an average particle size of 20 to 70 μm, and the volume cumulative value from the smaller particle size in the particle size distribution is larger than 5 μm at a cumulative value of 10%, It is preferable to use one having a particle size distribution in the range of 5 to 50 μm, and having a cumulative value of 90%, which is smaller than 150 μm, preferably in the range of 30 to 150 μm.
Even more preferably, the silver powder or silver alloy powder according to the present invention has an average particle size of 20 to 55 μm, and the volume cumulative value from the smaller particle size in the particle size distribution is larger than 5 μm at a cumulative value of 10%. It is preferable to use one having a particle size distribution that is in the range of 5 to 40 μm and is smaller than 70 μm, preferably in the range of 30 to 70 μm at a cumulative value of 90%.

上記粒度分布を有する銀粉末または銀合金粉末は、選択的レーザー焼結に適した粉体流動性が与えられる。このときの銀粉末または銀合金粉末は、ガスアトマイズ法や熱分解法等で製造された球形粉が好ましく使用される。同一粒径の場合、水アトマイズ法や粉砕法により製造される不定形粉よりもこの球形粉の方が流動性がよい。
一方、水アトマイズ法や粉砕法により製造される不定形粉は、銀粉末または銀合金粉末の製造コストが下げられるという利点がある。また、レーザー焼結による造形密度は、不定形粉の方が、高密度になる傾向にあることが知られている。しかし、不定形粉の場合は、選択的レーザー焼結に適した粉体流動性を確保するために、篩い分級等により、上述の粒度分布からより狭い粒度分布になるように調整し、レーザー焼結に適した粉体流動性を確保することが好ましい。
The silver powder or silver alloy powder having the above particle size distribution is provided with powder flowability suitable for selective laser sintering. As the silver powder or silver alloy powder at this time, a spherical powder produced by a gas atomizing method or a thermal decomposition method is preferably used. In the case of the same particle size, the spherical powder has better fluidity than the amorphous powder produced by the water atomization method or the pulverization method.
On the other hand, the amorphous powder produced by the water atomization method or the pulverization method has an advantage that the production cost of the silver powder or the silver alloy powder can be reduced. Further, it is known that the molding density by laser sintering tends to be higher in the case of the irregular powder. However, in the case of irregular shaped powder, in order to ensure powder flowability suitable for selective laser sintering, the particle size distribution is adjusted to a narrower particle size distribution by sieving classification or the like, and laser sintering is performed. It is preferable to ensure the powder fluidity suitable for the setting.

すなわち、本発明に係わる銀粉末または銀合金粉末が、水アトマイズ法や粉砕法による不定形粉の場合においては、平均粒径が40〜100μmであって、粒度分布おける粒径の小さい方からの体積累積値が累積値10%において20μmより大きく、累積値90%において200μmより小さい粒度分布を有するものを使用するのがよい。   That is, when the silver powder or silver alloy powder according to the present invention is an amorphous powder by a water atomization method or a pulverization method, the average particle size is 40 to 100 μm, and the particle size distribution is from the smaller particle size distribution. It is preferable to use one having a particle size distribution in which the volume cumulative value is larger than 20 μm at a cumulative value of 10% and smaller than 200 μm at a cumulative value of 90%.

より好ましくは、本発明に係わる銀粉末または銀合金粉末が不定形粉の場合においては、平均粒径が46〜70μmであって、粒度分布おける粒径の小さい方からの体積累積値が累積値10%において20μmより大きく、好ましくは20〜50μmの範囲であり、累積値90%において150μmより小さい、好ましくは50〜150μmの範囲である粒度分布を有するものを使用するのがよい。
さらにより好ましくは、本発明に係わる銀粉末または銀合金粉末が不定形粉の場合においては、平均粒径が46〜55μmであって、粒度分布おける粒径の小さい方からの体積累積値が累積値10%において30μmより大きく、好ましくは30〜40μmの範囲であり、累積値90%におて70μmより小さい、好ましくは60〜70μmの範囲である粒度分布を有するものを使用するのがよい。
More preferably, in the case where the silver powder or silver alloy powder according to the present invention is an amorphous powder, the average particle diameter is 46 to 70 μm, and the volume cumulative value from the smaller particle diameter in the particle size distribution is the cumulative value. It is preferable to use those having a particle size distribution that is larger than 20 μm at 10%, preferably 20 to 50 μm, and smaller than 150 μm, preferably 50 to 150 μm at a cumulative value of 90%.
Even more preferably, in the case where the silver powder or silver alloy powder according to the present invention is an amorphous powder, the average particle diameter is 46 to 55 μm, and the volume cumulative value from the smaller particle diameter in the particle size distribution is accumulated. It is preferable to use one having a particle size distribution that is larger than 30 μm at a value of 10%, preferably in the range of 30 to 40 μm, and smaller than 70 μm, preferably in a range of 60 to 70 μm at a cumulative value of 90%.

いずれにしても、本発明に係わる銀粉末または銀合金粉末は、篩い分級することによって、10〜100μmを平均粒径として、粒度分布おける粒径の小さい方からの体積累積値が累積値10%において1μmより大きく、累積値90%において200μmより小さい粒度分布を有するものから適宜選択することにより、選択的レーザー焼結に適した粉体流動性を確保することが出来る。これによりレーザー焼結に適した所定厚さhの、銀粉末の粒子層(図9参照)を均一に掃き均すことができる。   In any case, the silver powder or silver alloy powder according to the present invention is classified by sieving so that the average particle size is 10 to 100 μm, and the volume cumulative value from the smaller particle size in the particle size distribution is 10% cumulative value. Is suitably selected from those having a particle size distribution larger than 1 μm and smaller than 200 μm at a cumulative value of 90%, it is possible to ensure powder flowability suitable for selective laser sintering. As a result, a silver powder particle layer (see FIG. 9) having a predetermined thickness h suitable for laser sintering can be uniformly swept.

上述のように分級した銀粉末または銀合金粉末に対して、硫化処理を施し、表面を黒褐色にすることで、レーザー光の吸収率を上げる。
銀または銀合金の硫化は、次の化学反応式によって進行し、この反応式に従う方法ならばいかなる方法であってもよく、銀粉末が硫化され表面が黒褐色となればよい。
The silver powder or silver alloy powder classified as described above is subjected to sulfurization treatment to make the surface blackish brown, thereby increasing the absorption rate of laser light.
Sulfurization of silver or a silver alloy proceeds according to the following chemical reaction formula, and any method may be used as long as it conforms to this reaction formula, and it is sufficient that the silver powder is sulfided and the surface becomes black brown.

2Ag + S2- → AgS 2Ag + S 2- → Ag 2 S

この場合、銀または銀合金を硫化させるイオウイオン(S2−)が存在する溶液であれば何でも良いが、例えば、硫化アンモニウム水溶液や硫黄を主成分とする商品名「六一○ハップ」(武藤鉦製薬株式会社製)の希釈液に銀粉末または銀合金粉末を浸漬させることで、少なくとも表面を硫化させた銀粉末または銀合金粉末が得られる。この銀粉末または銀合金粉末の内部には硫化されない銀部分または銀合金部分を有する。硫化された層の表面からの硫化層厚さは、レーザー焼結によって造形する造形物の目的によって適宜選択すればよい。 In this case, any solution containing sulfur ions (S 2− ) that sulfidize silver or a silver alloy may be used. For example, the trade name “Rokuichi ○ Happ” (Muto), which is mainly composed of an aqueous solution of ammonium sulfide or sulfur. By immersing the silver powder or the silver alloy powder in a dilute solution (manufactured by Sakai Pharmaceutical Co., Ltd.), a silver powder or a silver alloy powder having at least the surface sulfided is obtained. This silver powder or silver alloy powder has a silver portion or silver alloy portion that is not sulfided. What is necessary is just to select suitably the sulfide layer thickness from the surface of the sulfided layer according to the objective of the molded article modeled by laser sintering.

なお、商品名「六一○ハップ」は、硫黄202.5g、生石灰67.5g、カゼイン0.12g、硫化カリ0.15gを常水729.73gに加熱溶解し常温の比重をボーメー約30度に濃縮し濾過したものであり、1kg中の硫黄の絶対量は160〜195gを含んでいる。   The product name “Rokuichi Happ” is 202.5 g of sulfur, 67.5 g of quicklime, 0.12 g of casein and 0.15 g of potassium sulfide in 729.73 g of normal water, and the specific gravity at room temperature is about 30 degrees Baume The absolute amount of sulfur in 1 kg contains 160 to 195 g.

硫化膜の膜厚、すなわち銀粉末または銀合金粉末の重量に対する硫黄成分の重量割合は、商品名「六一○ハップ」の濃度と浸漬時間に伴って増加する。その硫黄成分量は、熱重量測定・示差熱分析(Thermo Gravimetry-Differential Thermal Analysis、以下「TG-DTA」と略記する。)を用いて計測できる。銀粉末または銀合金粉末と、表面を硫化させた銀粉末または銀合金粉末とを、0〜800℃の範囲でTG-DTA測定すると、800℃では、硫黄成分は気化しているので、TGデータの800℃での両者の重量差は硫黄成分の重量とみなせる訳である。   The film thickness of the sulfide film, that is, the weight ratio of the sulfur component to the weight of the silver powder or the silver alloy powder increases with the concentration of the trade name “Rokuichi Happ” and the immersion time. The amount of sulfur component can be measured using thermogravimetry / differential thermal analysis (hereinafter abbreviated as “TG-DTA”). TG-DTA measurement of silver powder or silver alloy powder and silver powder or silver alloy powder whose surface is sulfided in the range of 0 to 800 ° C shows that the sulfur component is vaporized at 800 ° C. The difference in weight between the two at 800 ° C. can be regarded as the weight of the sulfur component.

例えば、商品名「六一○ハップ」を水で5倍希釈した液に対して、10分〜60分の範囲で浸漬した場合は、上記、硫黄成分量は銀に対して1%(重量%)未満であり、微量である。このため、レーザー焼結を行うと、その焼結または溶融部分から硫黄分が揮散して、造形物の表面が元の銀または銀合金の色に戻る。
そのほかの硫化方法としては、例えば、硫化水素と酸素によって、次反応から作る方法などが挙げられる。
For example, when the product name “Rokuichi Happ” is diluted 5 times with water and immersed in a range of 10 minutes to 60 minutes, the amount of sulfur component is 1% (% by weight) with respect to silver. ) Less than a minute amount. For this reason, when laser sintering is performed, sulfur content is volatilized from the sintered or melted portion, and the surface of the shaped object returns to the original silver or silver alloy color.
As another sulfurization method, for example, a method of producing from the next reaction with hydrogen sulfide and oxygen can be cited.

2Ag+H2S → Ag2S+H2 2Ag + H 2 S → Ag 2 S + H 2

本発明に係わる銀粉末または銀合金粉末の組成については、不可避不純物を含む純銀、数%から数十%程度の他元素を含む銀合金も対象であり、表面を硫化することができれば適宜採用することができ、その例としては、次のものを挙げることが出来る。
・電気接点用
(60〜97%Ag−3〜40%Cu)、
(90%Ag-10%Au)
・銀ろう
(49〜50%Ag−14.5〜16.5%Cu,14.5〜18.5%Zn,17〜19%Cd,0.15%未満Pb+Fe)、
(49〜51%Ag−14.5〜16.5%Cu,13.5〜17.5%Zn,15〜17%Cd,2.5〜3.5%Ni,0.15%未満Pb+Fe)、
(49〜51%Ag−33〜35%Cu,14〜18%Zn,0.15%未満Pb+Fe)、
(55〜57%Ag−21〜23%Cu,15〜19%Zn,4.5〜5.5%Sn,0.15%未満Pb+Fe)、
(71〜73%Ag−27〜29%Cu,0.15%未満Pb+Fe)
・装飾用
(95〜80%Ag−5〜20%Cu)
・歯科用
(75%Ag−25%Pd)、
(65%Ag−25%Pd,10%Cu)、
(58%Ag−22%Pd,10%Au,10%Cu)、
(67.5%Ag−22.5%Pd,10%Au)、
(65%Ag−25%Pd,10%Au)
As for the composition of the silver powder or silver alloy powder according to the present invention, pure silver containing unavoidable impurities and silver alloys containing about several to several tens of percent of other elements are also targeted, and are appropriately adopted if the surface can be sulfided. Examples include the following.
-For electrical contacts (60-97% Ag-3-40% Cu),
(90% Ag-10% Au)
-Silver solder (49-50% Ag-14.5-16.5% Cu, 14.5-18.5% Zn, 17-19% Cd, less than 0.15% Pb + Fe),
(49-51% Ag-14.5-16.5% Cu, 13.5-17.5% Zn, 15-17% Cd, 2.5-3.5% Ni, less than 0.15% Pb + Fe) ,
(49-51% Ag-33-35% Cu, 14-18% Zn, less than 0.15% Pb + Fe),
(55-57% Ag-21-21% Cu, 15-19% Zn, 4.5-5.5% Sn, less than 0.15% Pb + Fe),
(71-73% Ag-27-29% Cu, less than 0.15% Pb + Fe)
・ Decoration (95-80% Ag-5-20% Cu)
・ Dental (75% Ag-25% Pd),
(65% Ag-25% Pd, 10% Cu),
(58% Ag-22% Pd, 10% Au, 10% Cu),
(67.5% Ag-22.5% Pd, 10% Au),
(65% Ag-25% Pd, 10% Au)

ところで、選択的レーザー焼結において、照射したレーザー光が粉末表面に当たるときのエネルギー密度Eρ[J/mm]は、一般に以下の式で決定できる。
ここで、Pはレーザー出力[W]、r[mm]はビーム径の半径、v[mm/s]はレーザー光の走査速度である。この式は、単位面積あたりに投入されるレーザー光の強度と装置の制御因子(P,r,v)を関係付けている。(1)式によって決定されたエネルギー密度を持つレーザー光は、目標の粉末と相互作用し、吸収率分だけ、熱エネルギーに置き換えられる。この熱が粉末を焼結または溶融させる。
By the way, in the selective laser sintering, the energy density Eρ [J / mm 2 ] when the irradiated laser light hits the powder surface can be generally determined by the following equation.
Here, P is the laser output [W], r [mm] is the radius of the beam diameter, and v [mm / s] is the scanning speed of the laser beam. This equation relates the intensity of the laser beam input per unit area to the control factors (P, r, v) of the apparatus. The laser beam having the energy density determined by the equation (1) interacts with the target powder and is replaced with thermal energy by the absorption rate. This heat causes the powder to sinter or melt.

Eρ=(P/πr)・(2r/v) (1) Eρ = (P / πr 2 ) · (2r / v) (1)

本発明に係わる表面を硫化させた銀粉末または銀合金粉末を使用して選択的レーザー焼結を行う場合の造形可能な装置としては、CONCEPT Laser社製の装置名M3Liner、MCP-HEK社製の装置名Realizer、EOS社製の装置名EOSINT M270などが挙げられる。ただし、各装置の運転条件としては、表面を硫化させた銀粉末または銀合金粉末へのレーザー光の投入エネルギー密度Eρ[J/mm]が、Eρ=50[J/mm]以上であることが望ましい。 In the case of performing selective laser sintering using silver powder or silver alloy powder whose surface is sulfurized according to the present invention, the apparatus that can be shaped is M3Liner manufactured by CONCEPT Laser, manufactured by MCP-HEK. Examples include the device name Realizer and the device name EOSINT M270 manufactured by EOS. However, the operating condition of each apparatus is that the energy density Eρ [J / mm 2 ] of laser light applied to the silver powder or silver alloy powder whose surface is sulfided is Eρ = 50 [J / mm 2 ] or more. It is desirable.

〔実施例1〕
水アトマイズ法で原料銀粉末を製造した。その粒度分布は広く、D50=27.50μmとし、D10=11.02μm、D90=91.26μmという粒度分布を有している。
図1は、この粉末をレーザー回折式粒度分布測定装置(マイクロトラック社製 型式MT3300EX−VSR)で測定条件を[粒子透過性:反射]と[真球/非球形:非球形]としたときの測定結果の粒度分布である。
[Example 1]
Raw material silver powder was produced by the water atomization method. The particle size distribution is wide, with D50 = 27.50 μm, D10 = 11.02 μm, and D90 = 91.26 μm.
FIG. 1 shows the measurement conditions of this powder with a laser diffraction type particle size distribution measuring device (Model MT3300EX-VSR, manufactured by Microtrac Co., Ltd.) with the measurement conditions of [particle permeability: reflection] and [true sphere / non-sphere: non-sphere]. It is a particle size distribution of a measurement result.

この原料銀粉末をメッシュ200(75μm相当)とメッシュ440(32μm相当)を用いた篩い分級により、分級された銀粉末(以下、「分級銀粉末」という。)を得た。この分級銀粉末のSEM像(走査型電子顕微鏡[Scanning Electron Micrscope]の像)を図2に示す。この分級銀粉末はD50=50μmとしてD10=37μm、D90=62μmであるような粒度分布を有する。
図3は、この粉末を上記レーザー回折式粒度分布測定装置で測定した結果である。この分級銀粉末は、上記のように粒度調整したことで、粉体流動性が高まり、SLS装置のスキージングに適合する銀粉末となった。
This raw silver powder was classified by sieving using a mesh 200 (equivalent to 75 μm) and a mesh 440 (equivalent to 32 μm) to obtain a classified silver powder (hereinafter referred to as “classified silver powder”). FIG. 2 shows an SEM image (scanning electron microscope image) of this classified silver powder. This classified silver powder has a particle size distribution such that D50 = 50 μm, D10 = 37 μm, and D90 = 62 μm.
FIG. 3 shows the results of measuring this powder with the laser diffraction particle size distribution analyzer. By adjusting the particle size as described above, the classified silver powder was improved in powder fluidity and became a silver powder suitable for squeezing of the SLS apparatus.

次いで、この分級銀粉末に対して硫化処理を行った。具体的には、前記商品名「六一○ハップ」を水で5倍希釈したものに、硫化銀粉末を30分浸漬し、これをろ過し、ろ過器上で水洗いして、60℃で乾燥させた。   Subsequently, the classified silver powder was subjected to sulfurization treatment. Specifically, the silver sulfide powder is immersed for 30 minutes in the product name “Rokuichi Happ” diluted 5 times with water, filtered, washed with water on a filter, and dried at 60 ° C. I let you.

この硫化処理を行って表面が黒くなった分級銀粉末の硫黄成分量を、熱重量測定・示差熱分析(Thermo Gravimetry-Differential Thermal Analysis、以下「TG-DTA」と略記する。)により測定した。具体的には、ブルカー・エイエックスエス株式会社製のTG-DTA2010SAを使用し、前記硫化処理前の分級銀粉末と前記硫化処理を行った後の分級銀粉末とを0〜800℃の範囲でTG-DTAを行い、800℃での各々のTGデータを元に、(硫化処理後の分級銀粉末の熱減量分0.13%)から(硫化処理前の分級銀粉末の熱減量分0.06%)を差引くことによって、表面を硫化させた分級銀粉末の硫黄成分量が0.07%(重量%)と測定された。   The amount of sulfur component of the classified silver powder whose surface was blackened by this sulfidation treatment was measured by thermogravimetry and differential thermal analysis (hereinafter abbreviated as “TG-DTA”). Specifically, TG-DTA2010SA manufactured by Bruker AXS Co., Ltd. is used, and the classified silver powder before the sulfiding treatment and the classified silver powder after the sulfiding treatment are in a range of 0 to 800 ° C. TG-DTA was performed, and based on the respective TG data at 800 ° C., (the heat loss of the classified silver powder after sulfidation treatment: 0.13%) to (the heat loss of the classified silver powder before sulfidation treatment: 0.1%) By subtracting (06%), the amount of sulfur component of the classified silver powder whose surface was sulfided was measured to be 0.07% (% by weight).

この表面を硫化させた分級銀粉末をSLS装置(EOS社製 EOSINT M250Xtended)を用いて造形した。このときのレーザー出力は240[W]で、レーザー光のエネルギー密度は、約14[J/mm]である。この表面を硫化させた分級銀粉末は、粉体流動性は高く、均一に掃き均すことができた。掃き均された粉末に上記条件のレーザー光を照射すると、この銀粉末は焼結した。出来上がった造形物は、脆くはあるが形を保っていた。図4は、この造形物のSEM像である。上述のように硫黄成分は極めて微量なため、レーザー照射後の造形物の表面は、元の銀の色に戻っていた。 The classified silver powder having the surface sulfided was shaped using an SLS apparatus (EOSINT M250Xtended manufactured by EOS). The laser output at this time is 240 [W], and the energy density of the laser beam is about 14 [J / mm 2 ]. The classified silver powder having the surface sulfided had high powder flowability and could be uniformly swept. When the swept and averaged powder was irradiated with laser light under the above conditions, the silver powder was sintered. The finished model was fragile but kept its shape. FIG. 4 is an SEM image of this shaped object. As described above, since the sulfur component is extremely small, the surface of the shaped article after laser irradiation has returned to the original silver color.

[比較例1]
実施例1の硫化処理前の分級銀粉末を実施例1のSLS装置を用いてレーザー焼結を試みた。このときのレーザー出力は240[W]で、レーザー光のエネルギー密度は、約14[J/mm]である。
その結果、実施例1の分級銀粉末は、粉末形状及び粒度分布が実施例1の場合と共通しているために硫化銀粉末の流動性は高く、この銀粉末の粒子層を均一に掃き均すことができた。一方、掃き均された粉末に上記条件のレーザー光を照射すると、この分級銀粉末は一応焼結したが、表面が硫化していないことに起因して焼結が不十分であり出来上がった造形物は、実施例1に比して極めて脆いものであり、造形物を手で持つと崩れた。
[Comparative Example 1]
Laser sintering of the classified silver powder before sulfiding treatment of Example 1 was attempted using the SLS apparatus of Example 1. The laser output at this time is 240 [W], and the energy density of the laser beam is about 14 [J / mm 2 ].
As a result, since the classified silver powder of Example 1 has the same powder shape and particle size distribution as in Example 1, the flowability of the silver sulfide powder is high, and the particle layer of this silver powder is uniformly swept. I was able to. On the other hand, when the swept and averaged powder was irradiated with laser light under the above conditions, this classified silver powder was sintered for the time being, but the resulting molded product was insufficiently sintered due to the fact that the surface was not sulfided. Was extremely brittle compared to Example 1, and collapsed when the model was held by hand.

[比較例2]
水アトマイズ法によって銀粉末を製造した。粉末の形状は不定形で、粒径はD50=8μm、D10=4μm、D90=19μmという粒度分布で構成されている。この粉末の流動性は、実施例1の場合と対比して平均粒径が小さく粒度分布も広いことに起因して、極めて低いものであった。
図5にこの銀粉末のSEM像を示す。また図6にこの銀粉末の粒度分布を示す。この銀粉末を篩い分級せずに、実施例1のSLS装置を用いて造形を試みたが、この銀粉末は流動性が悪く、銀粉末の粒子層を均一に掃き均すことができなかったので、途中で断念した。
[Comparative Example 2]
Silver powder was produced by the water atomization method. The shape of the powder is irregular, and the particle size is constituted by a particle size distribution of D50 = 8 μm, D10 = 4 μm, and D90 = 19 μm. The fluidity of this powder was extremely low due to the fact that the average particle size was small and the particle size distribution was wide as compared with Example 1.
FIG. 5 shows an SEM image of this silver powder. FIG. 6 shows the particle size distribution of the silver powder. Although modeling was attempted using the SLS apparatus of Example 1 without sieving and classifying the silver powder, the silver powder was poor in fluidity and could not uniformly sweep the particle layer of the silver powder. So I gave up on the way.

[比較例3]
化学還元によって銀粉末を作製した。粉末の形状は不定形で、粒径はD50=1μm、D10=0.6μm、D90=1.5μmという粒度分布で構成されている。この粉末の流動性は、実施例1の場合と対比して平均粒径が小さいことに起因して、低かった。図7にこの銀粉末のSEM像を示す。また図8にこの銀粉末の粒度分布を示す。
[Comparative Example 3]
Silver powder was prepared by chemical reduction. The shape of the powder is irregular, and the particle size is composed of a particle size distribution of D50 = 1 μm, D10 = 0.6 μm, and D90 = 1.5 μm. The fluidity of this powder was low due to the small average particle size as compared with Example 1. FIG. 7 shows an SEM image of this silver powder. FIG. 8 shows the particle size distribution of the silver powder.

この銀粉末を篩い分級せずに次の処理を行った。すなわち。この銀粉末は流動性が悪かったため、流動性を高めるために表面改質した。この表面改質にはオレイン酸の希釈溶液を使用した。具体的には、オレイン酸をメチルアルコールで0.1%に希釈し、これに比較銀粉末2を10分浸漬した。その後、ろ過し、60℃で乾燥させた。この表面改質により銀粉末の流動性は向上し、選択的レーザー焼結に適切な流動性を確保できた。
この表面改質銀粉末を実施例1のSLS装置を用いて造形を試みた。このときのレーザー出力は240[W]で、レーザー光のエネルギー密度は、約14[J/mm]である。
その結果、銀粉末の粒子層を均一に掃き均すことができた。しかし、レーザー光を照射すると、微小な銀粉末が舞い上がり白煙を生じ、表面が硫化していないことに起因して焼結させることができなかった。
The silver powder was subjected to the following treatment without classification. That is. Since this silver powder had poor fluidity, it was surface-modified to improve fluidity. A dilute solution of oleic acid was used for this surface modification. Specifically, oleic acid was diluted to 0.1% with methyl alcohol, and comparative silver powder 2 was immersed in this for 10 minutes. Then, it filtered and dried at 60 degreeC. This surface modification improved the fluidity of the silver powder and ensured fluidity suitable for selective laser sintering.
The surface-modified silver powder was attempted to be shaped using the SLS apparatus of Example 1. The laser output at this time is 240 [W], and the energy density of the laser beam is about 14 [J / mm 2 ].
As a result, it was possible to uniformly sweep and level the particle layer of the silver powder. However, when irradiated with laser light, the fine silver powder soared to produce white smoke and could not be sintered because the surface was not sulfided.

[実施例2]
実施例1の表面を硫化させた分級銀粉末をSLS装置(EOS社製 EOSINT M270)を用いて造形した。このときのレーザー出力は200[W]で、レーザー光のエネルギー密度は、51[J/mm]である。
その結果、表面を硫化させた分級銀粉末は粒子層を均一に掃き均すことができると共に、実施例1より焼結がより良好になされた。これは、レーザー光のエネルギー密度を大きくしても、銀粉末の表面が硫化して黒みを帯びていることに起因して、レーザー光のエネルギーの吸収率が高いためと考えられる。
[Example 2]
The classified silver powder with the surface of Example 1 having a sulfurized surface was shaped using an SLS apparatus (EOSINT M270 manufactured by EOS). At this time, the laser output is 200 [W], and the energy density of the laser beam is 51 [J / mm 2 ].
As a result, the classified silver powder whose surface was sulfided was able to sweep the particle layer uniformly and was sintered better than Example 1. This is presumably because even if the energy density of the laser beam is increased, the absorption rate of the laser beam energy is high because the surface of the silver powder is sulfided and blackish.

[比較例4]
実施例1の硫化処理前の分級銀粉末をSLS装置(EOS社製 EOSINT M270)を用いて造形した。このときのレーザー出力は200[W]で、レーザー光のエネルギー密度は、51[J/mm]である。
その結果、表面を硫化させた分級銀粉末は粒子層を均一に掃き均すことができた。しかし、焼結・溶融性においては、銀粉末の表面が硫化していないことに起因して、レーザー光のエネルギーの吸収率が低く、実施例2より多孔質であり、強度も弱かった。
[Comparative Example 4]
The classified silver powder before sulfiding treatment in Example 1 was shaped using an SLS apparatus (EOSINT M270 manufactured by EOS). At this time, the laser output is 200 [W], and the energy density of the laser beam is 51 [J / mm 2 ].
As a result, the classified silver powder whose surface was sulfided was able to uniformly sweep the particle layer. However, in terms of sintering and melting properties, the surface of the silver powder was not sulfided, so the laser light energy absorption rate was lower, porous than Example 2, and lower in strength.

実施例1の原料銀粉末の粒度分布Particle size distribution of raw material silver powder of Example 1 実施例1の分級銀粉末のSEM像SEM image of classified silver powder of Example 1 実施例1の分級銀粉末の粒度分布Particle size distribution of the classified silver powder of Example 1 実施例1の造形物のSEM像SEM image of the shaped object of Example 1 比較例2の銀粉末のSEM像SEM image of silver powder of Comparative Example 2 比較例2の銀粉末の粒度分布Particle size distribution of the silver powder of Comparative Example 2 比較例3の銀粉末のSEM像SEM image of silver powder of Comparative Example 3 比較例3の銀粉末の粒度分布Particle size distribution of the silver powder of Comparative Example 3 選択的レーザー焼結装置の原理図Principle diagram of selective laser sintering equipment

符号の説明Explanation of symbols

100 レーザー光源
110 原料粉末
120 スキージングブレード(へら)
130 レーザー光走査装置
140 立体造形物
150 垂直稼動機構
160 垂直稼動機構
170 粉末供給室
180 レーザー焼結室
h 粒子層
100 Laser light source 110 Raw material powder 120 Squeegee blade
DESCRIPTION OF SYMBOLS 130 Laser beam scanning device 140 Three-dimensional molded object 150 Vertical operation mechanism 160 Vertical operation mechanism 170 Powder supply chamber 180 Laser sintering chamber h Particle layer

Claims (5)

レーザー焼結によって銀造形物を作るための銀粉末または銀合金粉末であって、表面を硫化させたことを特徴とする銀粉末または銀合金粉末。   A silver powder or silver alloy powder for producing a silver shaped article by laser sintering, wherein the surface is sulfided. 平均粒径が10〜100μmであって、粒子表面を硫化させたことを特徴とする銀粉末または銀合金粉末。   A silver powder or a silver alloy powder having an average particle diameter of 10 to 100 μm and having a particle surface sulfided. 前記銀粉末または銀合金粉末は、平均粒径が10〜100μmであって、粒度分布における粒径の小さい方からの体積累積値10%の粒径が1μmより大きく、体積累積値90%の粒径が200μmより小さい粒度分布を有することを特徴とする請求項1または請求項2に記載の銀粉末または銀合金粉末。   The silver powder or silver alloy powder has an average particle diameter of 10 to 100 μm, a particle having a volume cumulative value of 10% from a smaller particle diameter in the particle size distribution is larger than 1 μm, and a volume cumulative value of 90%. 3. The silver powder or silver alloy powder according to claim 1, wherein the silver powder has a particle size distribution smaller than 200 μm. 請求項1から請求項3のいずれか1項に記載の銀粉末または銀合金粉末にレーザー光をあてて焼結または溶融させ造形物を形成することを特徴とする銀または銀合金の造形体の製造方法。   A silver or silver alloy shaped body formed by applying laser light to the silver powder or silver alloy powder according to any one of claims 1 to 3 to sinter or melt to form a shaped article. Production method. 請求項4に記載の製造方法により製造したことを特徴とする銀または銀合金の造形体。   A shaped body of silver or a silver alloy produced by the production method according to claim 4.
JP2008118717A 2008-04-30 2008-04-30 Silver powder or silver alloy powder, method for producing shaped article of silver or silver alloy, and shaped article of silver or silver alloy Pending JP2009270130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008118717A JP2009270130A (en) 2008-04-30 2008-04-30 Silver powder or silver alloy powder, method for producing shaped article of silver or silver alloy, and shaped article of silver or silver alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008118717A JP2009270130A (en) 2008-04-30 2008-04-30 Silver powder or silver alloy powder, method for producing shaped article of silver or silver alloy, and shaped article of silver or silver alloy

Publications (1)

Publication Number Publication Date
JP2009270130A true JP2009270130A (en) 2009-11-19

Family

ID=41436952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008118717A Pending JP2009270130A (en) 2008-04-30 2008-04-30 Silver powder or silver alloy powder, method for producing shaped article of silver or silver alloy, and shaped article of silver or silver alloy

Country Status (1)

Country Link
JP (1) JP2009270130A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046820A (en) * 2010-04-09 2012-03-08 Mitsubishi Materials Corp Method for producing sintered silver-copper alloy body and sintered silver-copper alloy body produced by the method
WO2012176831A1 (en) * 2011-06-21 2012-12-27 住友金属鉱山株式会社 Silver dust and manufacturing method thereof
WO2013128416A2 (en) 2012-03-02 2013-09-06 Legor Group S.P.A. Silver-based alloy powder for manufacturing of 3-dimensional metal objects
KR20140051936A (en) * 2011-07-08 2014-05-02 푸락 바이오켐 비.브이. Active formulation for use in feed products
JP2014164970A (en) * 2013-02-24 2014-09-08 Furukawa Electric Co Ltd:The Terminal, terminal material and production method therefor and method of manufacturing terminal using the same
JP2015076611A (en) * 2013-10-07 2015-04-20 ザ・ボーイング・カンパニーTheBoeing Company Ecological method for constructing circuit boards
CN105764634A (en) * 2013-07-04 2016-07-13 斯内克马公司 Process for additive manufacturing of parts by melting or sintering particles of powder(s) using a high-energy beam with powders adapted to the targeted process/material pair
JP2017141505A (en) * 2016-02-09 2017-08-17 株式会社ジェイテクト Apparatus for manufacturing molded article and method for manufacturing molded article
US20170252854A1 (en) * 2016-03-07 2017-09-07 Haraeus Deutschland Gmbh & Co. Kg Noble-metal powder and the use thereof for producing components
WO2018043349A1 (en) * 2016-09-02 2018-03-08 パナソニックIpマネジメント株式会社 Method for manufacturing three-dimensional molding
WO2018062527A1 (en) * 2016-09-29 2018-04-05 Jx金属株式会社 Surface treatment metal powder for laser sintering
JP2018115372A (en) * 2017-01-18 2018-07-26 三菱重工業株式会社 Metal powder for lamination molding, manufacturing method therefor, and inspection method
CN110167698A (en) * 2017-02-08 2019-08-23 贺利氏添加剂生产有限公司 For the powder in increasing material manufacturing method
WO2019225589A1 (en) * 2018-05-23 2019-11-28 古河電気工業株式会社 Copper-based powder, surface-coated copper-based powder and mixed powder thereof, laminated article and method for producing same, and various metallic components
CN111699061A (en) * 2018-03-01 2020-09-22 三菱综合材料株式会社 Copper alloy powder having excellent laser absorptivity
CN112166004A (en) * 2018-05-30 2021-01-01 株式会社东芝 Metal powder for 3D printer, molded object, and method for producing molded object
DE112019007353T5 (en) 2019-05-23 2022-02-10 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. LAMINATED BODY MOLDING METHOD AND LAMINATED BODY MOLDING APPARATUS
US11621544B1 (en) 2022-01-14 2023-04-04 Federal-Mogul Ignition Gmbh Spark plug electrode and method of manufacturing the same
WO2023204032A1 (en) * 2022-04-20 2023-10-26 株式会社神戸製鋼所 Water-atomized powder and additive manufacturing method
US11831130B2 (en) 2022-03-29 2023-11-28 Federal-Mogul Ignition Gmbh Spark plug, spark plug electrode, and method of manufacturing the same
US11870222B2 (en) 2021-05-04 2024-01-09 Federal-Mogul Ignition Gmbh Spark plug electrode and method of manufacturing the same
US11901705B2 (en) 2021-07-22 2024-02-13 Federal-Mogul Ignition Gmbh Electrode tip assembly for a spark plug and method of manufacturing the same
JP7465244B2 (en) 2017-03-01 2024-04-10 ヴァイアヴィ・ソリューションズ・インコーポレイテッド Lamellar particles and method for producing same

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122083A (en) * 2010-04-09 2012-06-28 Mitsubishi Materials Corp Clayish composition for forming sintered silver-copper alloy body, powder for clayish composition for forming sintered silver-copper alloy body and method for manufacturing clayish composition for forming sintered silver-copper alloy body
JP2012046820A (en) * 2010-04-09 2012-03-08 Mitsubishi Materials Corp Method for producing sintered silver-copper alloy body and sintered silver-copper alloy body produced by the method
US9399254B2 (en) 2010-04-09 2016-07-26 Mitsubishi Materials Corporation Clayish composition for forming sintered silver alloy body, powder for clayish composition for forming sintered silver alloy body, method for manufacturing clayish composition for forming sintered silver alloy body, sintered silver alloy body, and method for manufacturing sintered silver alloy body
WO2012176831A1 (en) * 2011-06-21 2012-12-27 住友金属鉱山株式会社 Silver dust and manufacturing method thereof
JP5278627B2 (en) * 2011-06-21 2013-09-04 住友金属鉱山株式会社 Silver powder and method for producing the same
JPWO2012176831A1 (en) * 2011-06-21 2015-02-23 住友金属鉱山株式会社 Silver powder and method for producing the same
US9849105B2 (en) 2011-07-08 2017-12-26 Purac Biochem Bv Active formulation for use in feed products
KR20140051936A (en) * 2011-07-08 2014-05-02 푸락 바이오켐 비.브이. Active formulation for use in feed products
JP2014520518A (en) * 2011-07-08 2014-08-25 ピュラック バイオケム ビー. ブイ. Active composition for use in feed products
KR102196004B1 (en) 2011-07-08 2020-12-31 푸락 바이오켐 비.브이. Active formulation for use in feed products
WO2013128416A2 (en) 2012-03-02 2013-09-06 Legor Group S.P.A. Silver-based alloy powder for manufacturing of 3-dimensional metal objects
JP2014164970A (en) * 2013-02-24 2014-09-08 Furukawa Electric Co Ltd:The Terminal, terminal material and production method therefor and method of manufacturing terminal using the same
JP2016532773A (en) * 2013-07-04 2016-10-20 サフラン エアークラフト エンジンズ Additional manufacturing method for parts by melting or sintering powder particles using high energy beam and powder suitable for target method / material combination
CN105764634A (en) * 2013-07-04 2016-07-13 斯内克马公司 Process for additive manufacturing of parts by melting or sintering particles of powder(s) using a high-energy beam with powders adapted to the targeted process/material pair
CN105764634B (en) * 2013-07-04 2019-07-23 斯内克马公司 Using goal approach/material pair powder is suitable for, by being superimposed the method for manufacturing component with high energy beam melting or sintered powder grains
US10710156B2 (en) 2013-07-04 2020-07-14 Safran Aircraft Engines Process for additive manufacturing of parts by melting or sintering particles of powder(s) using a high-energy beam with powders adapted to the targeted process/material pair
JP2015076611A (en) * 2013-10-07 2015-04-20 ザ・ボーイング・カンパニーTheBoeing Company Ecological method for constructing circuit boards
JP2017141505A (en) * 2016-02-09 2017-08-17 株式会社ジェイテクト Apparatus for manufacturing molded article and method for manufacturing molded article
US10744590B2 (en) 2016-03-07 2020-08-18 Haraeus Deutschland Gmbh & Co. Kg Noble-metal powder and the use thereof for producing components
EP3216545B2 (en) 2016-03-07 2022-09-28 Heraeus Deutschland GmbH & Co. KG Precious metal based powder and its use in the preparation of components
JP2018009240A (en) * 2016-03-07 2018-01-18 ヘレウス ドイチュラント ゲーエムベーハー ウント カンパニー カーゲー Noble metal powder and use thereof for manufacturing component
CN107159876B (en) * 2016-03-07 2019-11-19 德国贺利氏有限两合公司 Noble metal powder and its purposes in manufacture component
CN107159876A (en) * 2016-03-07 2017-09-15 德国贺利氏有限两合公司 Noble metal powder and its manufacture part in purposes
EP3216545B1 (en) 2016-03-07 2019-05-08 Heraeus Deutschland GmbH & Co. KG Precious metal based powder and its use in the preparation of components
EP3216545A1 (en) * 2016-03-07 2017-09-13 Heraeus Deutschland GmbH & Co. KG Precious metal based powder and its use in the preparation of components
US20170252854A1 (en) * 2016-03-07 2017-09-07 Haraeus Deutschland Gmbh & Co. Kg Noble-metal powder and the use thereof for producing components
WO2018043349A1 (en) * 2016-09-02 2018-03-08 パナソニックIpマネジメント株式会社 Method for manufacturing three-dimensional molding
JPWO2018062527A1 (en) * 2016-09-29 2019-06-24 Jx金属株式会社 Surface-treated metal powder for laser sintering
WO2018062527A1 (en) * 2016-09-29 2018-04-05 Jx金属株式会社 Surface treatment metal powder for laser sintering
JP7079237B2 (en) 2016-09-29 2022-06-01 Jx金属株式会社 Surface-treated metal powder for laser sintering
TWI655042B (en) * 2016-09-29 2019-04-01 日商Jx金屬股份有限公司 Method for manufacturing surface-treated metal powder, laser sintered body, and method for manufacturing surface-treated metal powder for laser sintering
CN109641269A (en) * 2016-09-29 2019-04-16 Jx金属株式会社 It is laser sintered to use surface-treated metal powder
JP2020073727A (en) * 2016-09-29 2020-05-14 Jx金属株式会社 Surface-treated metal powder for laser sintering
JP2018115372A (en) * 2017-01-18 2018-07-26 三菱重工業株式会社 Metal powder for lamination molding, manufacturing method therefor, and inspection method
KR102419052B1 (en) 2017-02-08 2022-07-07 헤레우스 어디티브 매뉴팩츄어링 게엠베하 Powders for use in additive manufacturing processes
JP2020505504A (en) * 2017-02-08 2020-02-20 ヘレウス アディティブ マニュファクチュアリング ゲーエムベーハー Powder for use in additive manufacturing processes
JP2021185266A (en) * 2017-02-08 2021-12-09 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー Powder for use in additional production process
KR20190109456A (en) * 2017-02-08 2019-09-25 헤레우스 어디티브 매뉴팩츄어링 게엠베하 Powders for use in additive manufacturing processes
JP7126504B2 (en) 2017-02-08 2022-08-26 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー Powders for use in additive manufacturing processes
CN110167698B (en) * 2017-02-08 2022-05-24 贺利氏添加剂生产有限公司 Powder for use in additive manufacturing methods
CN110167698A (en) * 2017-02-08 2019-08-23 贺利氏添加剂生产有限公司 For the powder in increasing material manufacturing method
JP7465244B2 (en) 2017-03-01 2024-04-10 ヴァイアヴィ・ソリューションズ・インコーポレイテッド Lamellar particles and method for producing same
CN111699061A (en) * 2018-03-01 2020-09-22 三菱综合材料株式会社 Copper alloy powder having excellent laser absorptivity
WO2019225589A1 (en) * 2018-05-23 2019-11-28 古河電気工業株式会社 Copper-based powder, surface-coated copper-based powder and mixed powder thereof, laminated article and method for producing same, and various metallic components
JPWO2019230806A1 (en) * 2018-05-30 2021-07-15 株式会社東芝 Metal powder for 3D printers, shaped objects, and methods for manufacturing shaped objects
EP3812064A4 (en) * 2018-05-30 2022-02-09 Kabushiki Kaisha Toshiba Metal powder for 3d printers, shaped article, and method for producing shaped article
JP7374892B2 (en) 2018-05-30 2023-11-07 株式会社東芝 Metal powder for 3D printers and method for producing shaped objects
CN112166004A (en) * 2018-05-30 2021-01-01 株式会社东芝 Metal powder for 3D printer, molded object, and method for producing molded object
DE112019007353T5 (en) 2019-05-23 2022-02-10 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. LAMINATED BODY MOLDING METHOD AND LAMINATED BODY MOLDING APPARATUS
US11870222B2 (en) 2021-05-04 2024-01-09 Federal-Mogul Ignition Gmbh Spark plug electrode and method of manufacturing the same
US11901705B2 (en) 2021-07-22 2024-02-13 Federal-Mogul Ignition Gmbh Electrode tip assembly for a spark plug and method of manufacturing the same
US11621544B1 (en) 2022-01-14 2023-04-04 Federal-Mogul Ignition Gmbh Spark plug electrode and method of manufacturing the same
US11777281B2 (en) 2022-01-14 2023-10-03 Federal-Mogul Ignition Gmbh Spark plug electrode and method of manufacturing the same
US11831130B2 (en) 2022-03-29 2023-11-28 Federal-Mogul Ignition Gmbh Spark plug, spark plug electrode, and method of manufacturing the same
WO2023204032A1 (en) * 2022-04-20 2023-10-26 株式会社神戸製鋼所 Water-atomized powder and additive manufacturing method

Similar Documents

Publication Publication Date Title
JP2009270130A (en) Silver powder or silver alloy powder, method for producing shaped article of silver or silver alloy, and shaped article of silver or silver alloy
JP7377324B2 (en) Copper powder, method for manufacturing a stereolithographic object using the same, and stereolithographic object using copper
Zhang et al. Laser synthesis and processing of colloids: fundamentals and applications
KR102173257B1 (en) Copper powder and its manufacturing method, and the manufacturing method of a three-dimensional sculpture
JP7195710B2 (en) Copper alloy particles, surface-coated copper-based particles and mixed particles
JP7039126B2 (en) Copper powder and its manufacturing method
CN108393492A (en) A method of shaping complexity NiTi alloy components using increasing material manufacturing
TWI450786B (en) Solder powder and solder paste using this powder
RU2015125546A (en) METHOD FOR LAYERED PRODUCTION OF THE PART BY SELECTIVE MELTING OR SELECTIVE SINTERING OF POWDERS OF A POWDER WITH OPTIMAL DENSITY BY A HIGH-ENERGY BEAM
EP3187285A1 (en) Powder for layer-by-layer additive manufacturing, and process for producing object by layer-by-layer additive manufacturing
JP7042945B2 (en) Silver-coated metal powder and its manufacturing method
CN105855566A (en) Tantalum or niobium or tantalum and niobium alloy additive manufacturing method
JP2008138266A (en) Solder powder, and solder paste using the same
JP5052336B2 (en) Artificial bone and method for producing the same
JP2023168446A (en) Ceramic powder, ceramic powder production method and production method of ceramic structure using ceramic powder
JP6356034B2 (en) Method for producing gold alloy and shaped body
JP2020186429A (en) Copper powder having excellent laser light absorbency
JPWO2019225589A1 (en) Copper-based powder, surface-coated copper-based powder and mixed powders thereof, laminated modeled products and their manufacturing methods, and various metal parts
JP7294141B2 (en) Spherical Ti-based powder and method for producing the same
JP2009167491A (en) Metal powder having excellent sinterability, method for producing the same, and method for producing sintered compact using the metal powder
JP2019108587A (en) Metal powder and method for producing the same, and lamination-molded article and method for producing the same
JP2020190008A (en) Organic surface-coated copper-based powder, laminated article comprising copper-based material formed with organic surface-coated copper-based powder, method for manufacturing laminated article, and various metallic components
JP2019151872A (en) Copper alloy powder excellent in laser absorptivity
JP2023012810A (en) Copper-based powder, method for producing the same, and method for producing stereolithographic molding using copper-based powder
JP2021055160A (en) Method for manufacturing molded article