JP2019108587A - Metal powder and method for producing the same, and lamination-molded article and method for producing the same - Google Patents

Metal powder and method for producing the same, and lamination-molded article and method for producing the same Download PDF

Info

Publication number
JP2019108587A
JP2019108587A JP2017242236A JP2017242236A JP2019108587A JP 2019108587 A JP2019108587 A JP 2019108587A JP 2017242236 A JP2017242236 A JP 2017242236A JP 2017242236 A JP2017242236 A JP 2017242236A JP 2019108587 A JP2019108587 A JP 2019108587A
Authority
JP
Japan
Prior art keywords
powder
metal powder
copper
mass
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017242236A
Other languages
Japanese (ja)
Inventor
大輔 片山
Daisuke Katayama
大輔 片山
香織 井神
Kaori Igami
香織 井神
健次 戸田
Kenji Toda
健次 戸田
幹人 中澤
Mikito Nakazawa
幹人 中澤
貴広 菅原
Takahiro Sugawara
貴広 菅原
中本 貴之
Takayuki Nakamoto
貴之 中本
壮平 内田
Sohei Uchida
壮平 内田
隆生 三木
Takao Miki
隆生 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEC Co Ltd
Osaka Research Institute of Industrial Science and Technology
Original Assignee
MEC Co Ltd
Osaka Research Institute of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEC Co Ltd, Osaka Research Institute of Industrial Science and Technology filed Critical MEC Co Ltd
Priority to JP2017242236A priority Critical patent/JP2019108587A/en
Publication of JP2019108587A publication Critical patent/JP2019108587A/en
Pending legal-status Critical Current

Links

Abstract

To provide a metal powder material for lamination molding, capable of achieving high densification and high conductivity of a molded article.SOLUTION: Metal powder for lamination molding of this invention comprises: 0.02 mass% or more in total of one or more non-metallic elements selected from the group consisting of sulfur, nitrogen and carbon; and 90 mass% or more of copper. For example, the metal powder for lamination molding can be obtained by bringing copper powder into contact with a solution containing the one or more non-metallic elements selected from the group consisting of sulfur, nitrogen and carbon.SELECTED DRAWING: None

Description

本発明は、積層造形用材料として好適に使用可能な金属粉末およびその製造方法、ならびに積層造形物の製造方法に関する。さらに、本発明は積層造形物に関する。   The present invention relates to a metal powder that can be suitably used as a material for additive manufacturing, a method for producing the same, and a method for producing a laminated object. Furthermore, the present invention relates to a laminate.

三次元積層造形技術は、切削加工等の従来の加工技術では不可能であった複雑な形状の製品の作製が可能であり、様々な分野での応用が期待されている。近年、金属粉末を用いた積層造形法についても様々な検討がなされている。   The three-dimensional additive manufacturing technology can produce a product having a complicated shape which can not be achieved by conventional processing technology such as cutting, and is expected to be applied to various fields. In recent years, various studies have been made on the additive manufacturing method using metal powder.

機械強度および高導電率が求められる部品には銅が多用されており、銅を用いた積層造形技術の開発が求められている。しかし、銅粉末を用いた積層造形物は多数の空隙を有しており、機械強度や導電率が低いことが知られている(例えば特許文献1参照)。   Copper is often used for parts that are required to have mechanical strength and high conductivity, and development of additive manufacturing technology using copper is required. However, it is known that a laminate-molded article using copper powder has a large number of voids and low mechanical strength and conductivity (see, for example, Patent Document 1).

特開2016−211062号公報Unexamined-Japanese-Patent No. 2016-211062

特許文献1では、クロムまたはケイ素を含む銅合金粉末を積層造形材料として用いることにより、機械強度に優れかつ高導電率の積層造形物が得られることが報告されている。銅合金粉末を材料として得られる積層造形物は、純銅の粉末を材料として用いる場合に比べて、機械強度および導電率を向上できるものの、理論密度に対する相対密度が標準軟銅に比べると小さい。また、合金材料を用いた場合は、積層造形物が高密度の場合でも、その金属組成に依存して導電率を十分に大きくすることは困難である。   In patent document 1, it is reported that the laminated molded article which is excellent in mechanical strength and has high conductivity is obtained by using the copper alloy powder containing chromium or silicon as a lamination molding material. Although the laminate-molded product obtained by using the copper alloy powder as a material can improve the mechanical strength and the conductivity as compared with the case of using a powder of pure copper as a material, the relative density to the theoretical density is smaller than that of standard soft copper. In addition, when an alloy material is used, it is difficult to sufficiently increase the conductivity depending on the metal composition even when the layered product has a high density.

上記に鑑み、本発明は、造形物の高密度化および高導電率化を実現可能な、積層造形用の金属粉末材料の提供を目的とする。   In view of the above, it is an object of the present invention to provide a metal powder material for additive manufacturing which can realize densification and high conductivity of a shaped object.

本発明の金属粉末は、銅を90質量%以上含有し、硫黄、窒素および炭素からなる群から選択される1種以上の非金属元素を合計0.02質量%以上含有する。本発明の金属粉末は、積層造形用材料として好適に用いられる。   The metal powder of the present invention contains 90% by mass or more of copper, and contains 0.02% by mass or more of at least one nonmetallic element selected from the group consisting of sulfur, nitrogen and carbon. The metal powder of the present invention is suitably used as a laminate molding material.

金属粉末の平均粒子径は、好ましくは0.5〜200μm程度である。金属粉末は、好ましくは、上記の非金属元素、銅、9質量%以下の酸素および不可避不純物からなる。金属粉末は、非金属元素として、硫黄を0.02質量%以上含有することが好ましい。   The average particle size of the metal powder is preferably about 0.5 to 200 μm. The metal powder preferably comprises the above nonmetallic element, copper, 9% by mass or less of oxygen and unavoidable impurities. The metal powder preferably contains 0.02% by mass or more of sulfur as a nonmetal element.

金属粉末は、表層部における非金属元素の濃度が中心部における非金属元素濃度よりも大きいことが好ましい。例えば、銅粉末を、非金属元素を含む溶液と接触させることにより、表層に被膜が形成され、表層非金属元素濃度が高い金属粉末が得られる。溶液との接触により、金属粉末の表面積を増大させてもよい。また、溶液との接触により、金属粉末の光反射率を低下させてもよい。   In the metal powder, the concentration of the nonmetallic element in the surface layer portion is preferably higher than the concentration of the nonmetallic element in the central portion. For example, by bringing copper powder into contact with a solution containing a nonmetallic element, a film is formed on the surface layer, and a metal powder having a high concentration of nonmetallic element in the surface layer can be obtained. Contact with the solution may increase the surface area of the metal powder. In addition, the light reflectance of the metal powder may be reduced by contact with a solution.

さらに、本発明は上記金属粉末を用いた積層造形方法に関する。積層造形方法としては、パウダーベッド方式、メタルデポジション方式等を採用できる。   Furthermore, the present invention relates to a lamination molding method using the above-mentioned metal powder. A powder bed method, a metal deposition method or the like can be adopted as the additive manufacturing method.

パウダーベッド方式では、金属粉末を含む粉末層を形成する粉末層形成工程と、粉末層の所定位置に、レーザ、電子ビーム、プラズマ等のエネルギーを照射して金属粉末を固化させて造形層を形成する造形工程とを順次繰り返すことにより、造形層を積層し、積層造形物が得られる。   In the powder bed method, a powder layer forming step of forming a powder layer containing metal powder, and energy such as laser, electron beam, plasma or the like is applied to a predetermined position of the powder layer to solidify the metal powder to form a shaped layer. By sequentially repeating the forming process, the forming layer is laminated to obtain a layered formed article.

メタルデポジション方式では、金属粉末の加熱溶融物を所定位置に供給し固化させて造形層を形成する工程を繰り返すことにより、造形層を積層する。   In the metal deposition method, the shaped layer is laminated by repeating the steps of supplying the heated melt of metal powder to a predetermined position and solidifying it to form the shaped layer.

さらに、本発明は積層造形物に関する。一実施形態にかかる積層造形物は、硫黄、窒素および炭素からなる群から選択される1種以上の非金属元素を、合計0.02質量%以上含有し、銅を90質量%以上含有する。積層造形物の断面観察から求められる空隙率は10%以下が好ましく、積層造形物の導電率は30%IACS以上が好ましい。   Furthermore, the present invention relates to a laminate. The layered object according to one embodiment contains 0.02% by mass or more in total of one or more nonmetallic elements selected from the group consisting of sulfur, nitrogen and carbon, and 90% by mass or more of copper. 10% or less is preferable for the porosity calculated | required from cross-sectional observation of a laminate-molded article, and 30% IACS or more of conductivity of a laminate-molded article is preferable.

本発明の金属粉末を材料として積層造形を行うことにより、空隙率が小さく高密度かつ高導電率の積層造形物を形成できる。   By performing lamination molding using the metal powder of the present invention as a material, it is possible to form a lamination-shaped object having a low porosity and high density and high conductivity.

実施例で得られた積層造形物の断面顕微鏡観察像である。It is a cross-sectional microscope observation image of the laminate-molded article obtained in the Example. 実施例の硫化処理銅粉のSEM像である。It is a SEM image of sulfided copper powder of an example. 硫化処理銅粉の硫黄含有量と、積層造形物の空隙率をプロットしたグラフである。It is the graph which plotted the sulfur content of sulfided copper powder, and the porosity of a laminate-molded article.

[金属粉末]
本発明の金属粉末は、銅を90質量%以上含有し、硫黄、窒素および炭素からなる群から選択される1種以上の非金属元素を含む。この金属粉末は、積層造形用材料として使用可能である。金属粉末における上記非金属元素の含有量は、0.02質量%以上である。金属粉末が非金属元素を含むことにより、空隙率が小さく高密度の積層造形物が得られる。非金属元素の含有量が0.02質量%未満の場合は、金属粉末の性質が純銅(無酸素銅)粉末の性質に近く、高密度の積層造形物の形成が困難となる。積層造形物の密度および導電率を高める観点から、金属粉末における上記非金属元素の含有量10質量%以下が好ましい。
[Metal powder]
The metal powder of the present invention contains 90% by mass or more of copper, and contains one or more nonmetallic elements selected from the group consisting of sulfur, nitrogen and carbon. This metal powder can be used as a laminate molding material. Content of the said nonmetallic element in metal powder is 0.02 mass% or more. When the metal powder contains a non-metal element, a low-porosity, high-density layered product can be obtained. When the content of the nonmetallic element is less than 0.02% by mass, the properties of the metal powder are close to the properties of a pure copper (oxygen-free copper) powder, and it becomes difficult to form a high density laminate-shaped article. From the viewpoint of increasing the density and conductivity of the laminate-molded product, the content of the nonmetallic element in the metal powder is preferably 10% by mass or less.

空隙率が小さく高密度の積層造形物を形成するためには、金属粉末における上記非金属元素の含有量は、0.03〜7質量%が好ましく、0.05〜5質量%がより好ましく、0.1〜3質量%がより好ましい。より高導電率の積層造形物を得るためには、金属粉末における上記非金属元素の含有量は、2質量%以下が好ましく、1質量%以下がより好ましく、0.5質量%以下がさらに好ましい。   In order to form a low-porosity small and high-density laminate-molded article, the content of the nonmetallic element in the metal powder is preferably 0.03 to 7% by mass, and more preferably 0.05 to 5% by mass. 0.1 to 3% by mass is more preferable. In order to obtain a layered product with higher conductivity, the content of the nonmetallic element in the metal powder is preferably 2% by mass or less, more preferably 1% by mass or less, and still more preferably 0.5% by mass or less .

金属粉末は、上記の非金属元素の中で、硫黄を含むことが特に好ましい。硫化銅等の硫黄化合物は、他の非金属元素の化合物に比べて導電率が高いため、積層造形物中に硫黄元素が残存している場合でも、高導電率化を図りやすい。また、硫化銅は、光反射率が小さいため、銅粉末の表面に硫化銅被膜が形成されることにより、積層造形のエネルギー源としてのレーザ等を吸収しやすくなり、エネルギー利用効率の向上が期待できる。本発明の特に好ましい形態では、金属粉末が、非金属元素として硫黄元素を上記範囲で含有する。   It is particularly preferable that the metal powder contains sulfur among the above nonmetallic elements. Since sulfur compounds such as copper sulfide have higher conductivity than compounds of other nonmetallic elements, even if sulfur elements remain in the laminate-molded product, it is easy to achieve high conductivity. In addition, since copper sulfide has a low light reflectance, a copper sulfide film is formed on the surface of copper powder, so it becomes easy to absorb a laser etc. as an energy source for layered manufacturing, and it is expected to improve energy utilization efficiency it can. In a particularly preferred embodiment of the present invention, the metal powder contains sulfur as a nonmetallic element in the above range.

金属粉末は、銅および上記の非金属元素の他に、不純物元素を含有する場合がある。不純物元素は、原料銅粉末の製造時に不可避的に混入する元素や、銅粉末を溶液で処理する際に不可避的に混入する元素である。不可避的不純物元素としては、例えば、アトマイズ法により原料粉末を作製する際に混入するリン等が挙げられる。このような不可避的不純物の量は、例えば、0.1質量%未満である。   The metal powder may contain an impurity element in addition to copper and the nonmetallic element described above. The impurity element is an element which is inevitably mixed in the production of the raw material copper powder, or an element which is inevitably mixed in the case where the copper powder is treated with a solution. As an unavoidable impurity element, the phosphorus etc. which are mixed, for example, when producing a raw material powder by the atomization method are mentioned. The amount of such unavoidable impurities is, for example, less than 0.1% by mass.

また、溶液による処理の際に、金属の酸化等に伴って酸素が混入する場合がある。金属粉末に含まれる酸素原子は例えば9質量%以下であり、好ましくは7質量%以下、より好ましくは5質量%以下である。金属粉末に少量(例えば0.01〜5質量%程度)の酸素が含まれていることにより、積層造形時の加熱等による硫黄、窒素、炭素等の非金属元素の気化による脱離が促進される場合があり、造形物の空隙率減少や導電率向上が期待できる。金属粉末中の酸素含有量が過度に大きいと、造形物中の残存酸素量が大きくなり、造形物の導電率が低下する場合がある。   In addition, during the treatment with a solution, oxygen may be mixed with the oxidation of the metal or the like. The oxygen atom contained in the metal powder is, for example, 9% by mass or less, preferably 7% by mass or less, and more preferably 5% by mass or less. The metal powder contains a small amount (for example, about 0.01 to 5% by mass) of oxygen, thereby promoting desorption by vaporization of nonmetallic elements such as sulfur, nitrogen, and carbon by heating at the time of additive manufacturing, etc. In some cases, it is expected that the porosity of the shaped article will be reduced and the conductivity will be improved. If the oxygen content in the metal powder is excessively high, the amount of residual oxygen in the shaped article may be increased, and the conductivity of the shaped article may be reduced.

上記の非金属元素は、銅粉末の表面に被膜として析出していてもよく、銅と化合物を形成していてもよく、銅以外の元素と化合物を形成していてもよい。上記の非金属元素は、金属粉末の全体に等濃度で含まれていてもよく、濃度分布を有していてもよい。例えば、銅粉末を原料粉末として、非金属元素を含む溶液により粉末の表面処理を行うと、粉末の表層部に非金属元素が導入される。そのため、金属粉末は、表層部における非金属元素の濃度が中心部における非金属元素濃度よりも大きくなる傾向がある。   The above nonmetallic element may be deposited as a film on the surface of the copper powder, may form a compound with copper, or may form a compound with an element other than copper. The above nonmetallic element may be contained in the whole of the metal powder at equal concentration, or may have a concentration distribution. For example, when copper powder is used as a raw material powder and the powder is surface-treated with a solution containing a nonmetallic element, the nonmetallic element is introduced into the surface layer of the powder. Therefore, in the metal powder, the concentration of the nonmetallic element in the surface layer portion tends to be larger than the concentration of the nonmetallic element in the central portion.

粉末の表層部の非金属元素の濃度が高く、中心部の非金属元素の濃度が低い(組成が純銅に近い)ことにより、高導電率等の銅の特性を保持しながら、粉末の表層部を改質して積層造形による加工性を向上できる。そのため、このような非金属元素の濃度分布を有する金属粉末は、高密度かつ高導電率の積層造形物の形成に適している。   The surface layer portion of the powder is maintained while maintaining the characteristics of copper such as high conductivity by the high concentration of nonmetal elements in the surface layer portion of the powder and the low concentration of nonmetal elements in the center portion (composition is close to pure copper) To improve the processability by additive manufacturing. Therefore, the metal powder which has concentration distribution of such a nonmetallic element is suitable for formation of the high-density and high conductivity layered product.

金属粉末の形状は特に限定されず、球状、フレーク状、板状、針状、不定形等であり得る。後述のパウダーベッド方式により積層造形を行う場合は、粉末層の形成時に粉末間の隙間を少なく敷き詰められることから、球状またはアスペクト比2以下の略球状が好ましい。金属粉末の表面には凹凸が形成されていてもよい。また、金属粉末の表面に二次粒子が析出していてもよい。   The shape of the metal powder is not particularly limited, and may be spherical, flake-like, plate-like, needle-like, amorphous or the like. In the case of performing lamination molding by the powder bed method described later, a spherical shape or a substantially spherical shape having an aspect ratio of 2 or less is preferable because the gaps between the powders can be spread little at the time of forming the powder layer. Irregularities may be formed on the surface of the metal powder. In addition, secondary particles may be deposited on the surface of the metal powder.

金属粉末の粒子径は特に限定されず、積層造形方法や、積層造形の積層厚さ等に応じて適宜に調整すればよい。金属粉末の平均粒子径は、例えば0.1〜200μmであり、1〜100μmが好ましく、3〜70μmがより好ましく、5〜50μmがさらに好ましい。平均粒子径は、レーザ回折式粒度分布測定装置により計測される粒子径分布から求められるメジアン径である。   The particle diameter of the metal powder is not particularly limited, and may be appropriately adjusted in accordance with the lamination molding method, the lamination thickness of lamination molding, and the like. The average particle diameter of the metal powder is, for example, 0.1 to 200 μm, preferably 1 to 100 μm, more preferably 3 to 70 μm, and still more preferably 5 to 50 μm. The average particle size is a median size obtained from a particle size distribution measured by a laser diffraction type particle size distribution measuring apparatus.

[金属粉末の作製]
本発明の金属粉末の作製方法は特に限定されず、所定の組成を有する材料を粉末化してもよく、原料粉末の表面処理により組成を調整してもよい。表層部の非金属元素濃度が相対的に高い金属粉末を作製するためには、銅粉末を原料として、原料銅粉末と非金属元素を含む溶液とを接触させて、表面処理を行う方法が好ましい。
[Preparation of metal powder]
The method for producing the metal powder of the present invention is not particularly limited, and a material having a predetermined composition may be powdered, or the composition may be adjusted by surface treatment of the raw material powder. In order to produce a metal powder having a relatively high concentration of nonmetallic elements in the surface layer portion, it is preferable to use a copper powder as a raw material and contact the raw material copper powder with a solution containing a nonmetallic element to perform surface treatment .

原料銅粉末としては、機械的手法、化学的手法、アトマイズ法等により形成された銅粉末を制限なく使用できる。球状または略球状の粉末を得るためには、ガスアトマイズ法、水アトマイズ法、ディスクアトマイズ法、プラズマ回転電極法、熱プラズマ法等が好ましい。一般には、表面処理の前後で粒子径はほとんど変化しないため、原料銅粉末としては、上記の金属粉末の粒子径と同等の粒子径を有するものが好ましい。   As a raw material copper powder, the copper powder formed of the mechanical method, the chemical method, the atomizing method etc. can be used without a restriction | limiting. In order to obtain spherical or substantially spherical powder, gas atomizing method, water atomizing method, disk atomizing method, plasma rotating electrode method, thermal plasma method and the like are preferable. In general, since the particle size hardly changes before and after the surface treatment, as the raw material copper powder, one having a particle size equivalent to the particle size of the above-mentioned metal powder is preferable.

表面処理溶液としては、硫黄、窒素および炭素からなる群から選択される1種以上の非金属元素を含む溶液が用いられる。表面処理溶液は、銅粉末の表面に非金属元素と銅の化合物の被膜を形成可能であるもの、銅粉末の表面に非金属元素を含む被膜を形成可能であるもの、または銅粉末の表面に非金属元素を含む二次粒子を析出可能であるものが好ましく用いられる。非金属元素と銅の化合物としては、硫化銅、窒化銅および炭化銅が挙げられる。銅化合物以外に銅粉末表面に形成され得る被膜としては、含硫黄有機化合物、含窒素有機化合物やカーボン等が挙げられる。また、これらの被膜材料が二次粒子として銅粉末の表面に析出する場合がある。   As the surface treatment solution, a solution containing one or more nonmetallic elements selected from the group consisting of sulfur, nitrogen and carbon is used. The surface treatment solution is capable of forming a film of a nonmetallic element and a compound of copper on the surface of copper powder, capable of forming a film containing a nonmetallic element on the surface of copper powder, or on the surface of copper powder Those which can precipitate secondary particles containing nonmetallic elements are preferably used. The compound of the nonmetallic element and copper includes copper sulfide, copper nitride and copper carbide. As a film which may be formed on the surface of copper powder other than copper compounds, sulfur-containing organic compounds, nitrogen-containing organic compounds, carbon and the like can be mentioned. In addition, these coating materials may be deposited on the surface of the copper powder as secondary particles.

例えば、銅粉末の表面に硫化銅被膜を形成する場合は、硫黄源として、硫化カリウム(KS)、硫化ナトリウム(NaS)、硫化バリウム(BaS)、硫化アンモニウム((NHS)等の硫化物を含む水溶液を用いて銅粉末を処理することが好ましい。銅粉の表面に硫化銅被膜が形成されると、表面が黒色化し、光反射率が低減する傾向がある。 For example, when forming a copper sulfide film on the surface of a copper powder, as a sulfur source, potassium sulfide (K 2 S), sodium sulfide (Na 2 S), barium sulfide (BaS), ammonium sulfide ((NH 4 ) 2 It is preferable to treat the copper powder with an aqueous solution containing a sulfide such as S). When the copper sulfide film is formed on the surface of the copper powder, the surface tends to be blackened and the light reflectance tends to be reduced.

表面処理溶液として硫化アンモニウム水溶液を用いる場合、銅粉末表面の硫化を促進する観点から、硫化アンモニウム水溶液中の硫黄濃度は0.0001質量%以上が好ましく、0.0005質量%以上がより好ましく、0.001質量%以上がさらに好ましく0.002質量%以上が特に好ましい。硫化アンモニウム水溶液中の硫黄濃度の上限は特に限定されないが、処理速度および硫黄元素導入量の調整を容易とするためには、5質量%以下が好ましく、1質量%以下がより好ましく、0.5質量%以下がさらに好ましく、0.3質量%以下が特に好ましい。硫化アンモニウム以外の硫化物を用いる場合も、水溶液中の硫黄濃度は上記範囲内であることが好ましい。   When using an aqueous solution of ammonium sulfide as the surface treatment solution, the concentration of sulfur in the aqueous solution of ammonium sulfide is preferably 0.0001% by mass or more, more preferably 0.0005% by mass or more, from the viewpoint of promoting sulfurization on the surface of copper powder. .001% by mass or more is more preferable, and 0.002% by mass or more is particularly preferable. The upper limit of the sulfur concentration in the ammonium sulfide aqueous solution is not particularly limited, but in order to facilitate the adjustment of the treatment rate and the introduction amount of sulfur element, 5% by mass or less is preferable, 1% by mass or less is more preferable 0.5 % By mass or less is more preferable, and 0.3% by mass or less is particularly preferable. Also when using sulfides other than ammonium sulfide, it is preferable that the sulfur concentration in aqueous solution is in the said range.

硫化処理を行う前に、銅粉末の表面に形成された酸化被膜を除去してもよい(例えば特開2015−129336号公報参照)。また、酸化被膜が形成された銅粉末を還元剤で処理した後、還元剤存在下で硫化物水溶液と接触させる方法により、銅粉末の表面に硫化銅被膜を形成してもよい(例えば、特開2014−5491号公報参照)。   Before the sulfidation treatment, the oxide film formed on the surface of the copper powder may be removed (see, for example, JP-A-2015-129336). In addition, after the copper powder on which the oxide film is formed is treated with a reducing agent, a copper sulfide film may be formed on the surface of the copper powder by a method of contacting with a sulfide aqueous solution in the presence of a reducing agent (for example, See open 2014-5491).

表面処理溶液には、硫黄源、窒素源および炭素源に加えて、銅を溶解可能な成分が含まれていてもよい。銅を溶解可能な成分と非金属元素とを含む溶液を用いることにより、銅の表面を溶解させながら、表面に非金属元素を含む被膜や二次粒子が形成される場合がある。銅を溶解可能な成分としては、例えば、銅の酸化剤や酸成分等が挙げられる。   The surface treatment solution may contain, in addition to the sulfur source, the nitrogen source and the carbon source, a component capable of dissolving copper. By using a solution containing a component capable of dissolving copper and a nonmetallic element, a film or a secondary particle containing the nonmetallic element may be formed on the surface while dissolving the copper surface. As a component which can melt | dissolve copper, the oxidizing agent of a copper, an acid component, etc. are mentioned, for example.

銅の酸化剤としては、第二銅イオンおよび第二鉄イオン等の金属イオン、硝酸、ならびに過酸化水素等が挙げられる。酸成分としては、フッ化水素酸、塩化水素酸(塩酸)、臭化水素酸、ヨウ化水素酸等のハロゲン化水素酸や、硫酸、硝酸、リン酸、過塩素酸、スルファミン酸等の無機酸;スルホン酸、カルボン酸等の有機酸が挙げられる。酸成分は銅粉末から溶出する銅を溶液に溶解させる作用を有するため、酸成分を含む処理溶液を用いることにより、粉末表面に微細な凹凸形状が形成される場合がある。また、溶液中に溶解した銅が溶液中の非金属元素と化合物を形成することにより、粉末の表面に、非金属元素と銅を含む被膜や二次粒子が形成される場合がある。表面に凹凸形状や二次粒子が形成されると、粉末の表面積が増大し、これに伴って光反射率が小さくなる傾向がある。   Examples of oxidizing agents for copper include metal ions such as cupric ions and ferric ions, nitric acid, hydrogen peroxide and the like. Examples of the acid component include hydrohalic acids such as hydrofluoric acid, hydrochloric acid (hydrochloric acid), hydrobromic acid and hydroiodic acid, and inorganic substances such as sulfuric acid, nitric acid, phosphoric acid, perchloric acid and sulfamic acid Examples of the acid include organic acids such as sulfonic acid and carboxylic acid. Since the acid component has the function of dissolving the copper eluted from the copper powder in the solution, the use of the treatment solution containing the acid component may result in the formation of fine irregularities on the powder surface. In addition, when copper dissolved in a solution forms a compound with a nonmetallic element in the solution, a film or a secondary particle containing the nonmetallic element and copper may be formed on the surface of the powder. When the concavo-convex shape and secondary particles are formed on the surface, the surface area of the powder is increased, and the light reflectance tends to be reduced accordingly.

表面処理溶液中には、各種の添加剤が含まれていてもよい。例えば、消泡剤としてのノニオン性界面活性剤や、銅の安定性を向上させるためにピリジン等の錯化剤を添加してもよい。添加剤として、各種のアミン類、ピロール、ピラゾール、イミダゾール、トリアゾール、テトラゾール、オキサゾール、オキサジアゾール、イソキサゾール、チアゾール、イソチアゾール、トリアジン、テトラジン、ピペラジンおよびピリミジン等の含窒素環状化合物、あるいはこれらの誘導体等を用いてもよい。添加剤を含めることにより、銅粉末表面への二次粒子の析出が促進される場合がある。さらには、添加剤として各種の水溶性ポリマーを用いることにより、銅粉末の表面に様々な凹凸形状が形成される場合がある。   The surface treatment solution may contain various additives. For example, a nonionic surfactant as an antifoaming agent or a complexing agent such as pyridine may be added to improve the stability of copper. As additives, various amines, pyrrole, pyrazole, imidazole, triazole, tetrazole, oxazole, oxadiazole, isoxazole, thiazole, isothiazole, triazine, tetrazine, piperazine, pyrimidine and the like, nitrogen-containing cyclic compounds, or derivatives thereof Etc. may be used. The inclusion of additives may accelerate the deposition of secondary particles on the surface of the copper powder. Furthermore, various asperities may be formed on the surface of the copper powder by using various water-soluble polymers as additives.

表面処理溶液の溶媒としては、水、エタノールやイソプロピルアルコール等のアルコール類、エステル類、エーテル類、ケトン類、芳香族炭化水素等を用いることができる。水としては、イオン性物質や不純物を除去した水が好ましく、例えばイオン交換水、純水、超純水等が好ましく用いられる。   As the solvent for the surface treatment solution, water, alcohols such as ethanol and isopropyl alcohol, esters, ethers, ketones, aromatic hydrocarbons and the like can be used. As water, water from which ionic substances and impurities have been removed is preferable, and for example, ion-exchanged water, pure water, ultrapure water and the like are preferably used.

原料粉末と表面処理溶液との接触方法は特に限定されず、スプレー法等により原料粉末の表面にミスト状の溶液を接触させる方法や、溶液中に原料粉末を浸漬する方法等を採用できる。処理時の温度や処理時間(溶液との接触時間)も特に限定されず、原料粉末の形状や粒子径、表面処理溶液の組成、目的とする金属粉末の組成や表面形状等に応じて設定すればよい。粉末の組成や表面形状等を適切に制御する観点から、処理後には粉末の表面から溶液を除去することが好ましい。例えば、水洗により粉末表面から溶液を除去できる。   The method of contacting the raw material powder with the surface treatment solution is not particularly limited, and a method of bringing a mist-like solution into contact with the surface of the raw material powder by a spray method or a method of immersing the raw material powder in a solution can be employed. The temperature and the treatment time (the contact time with the solution) during the treatment are not particularly limited, and may be set according to the shape and particle diameter of the raw material powder, the composition of the surface treatment solution, the composition and surface shape of the target metal powder, etc. Just do it. From the viewpoint of appropriately controlling the composition, surface shape and the like of the powder, it is preferable to remove the solution from the surface of the powder after the treatment. For example, the solution can be removed from the powder surface by water washing.

上記のように、原料粉末と表面処理溶液とを接触させることにより、銅粉末の表層に非金属元素が導入され、積層造形用材料に適した金属粉末が得られる。表面処理は、金属粉末への非金属元素の導入に加えて、金属粉末の光反射率を原料銅粉末の光反射率よりも小さくする処理であってもよく、金属粉末の表面積を原料銅粉末の表面積よりも大きくする処理であってもよい。   As described above, by bringing the raw material powder and the surface treatment solution into contact with each other, the nonmetal element is introduced into the surface layer of the copper powder, and a metal powder suitable for a laminate molding material can be obtained. The surface treatment may be a treatment to make the light reflectance of the metal powder smaller than the light reflectance of the raw material copper powder in addition to the introduction of the nonmetal element to the metal powder, and the surface area of the metal powder is a raw material copper powder It may be processing to make it larger than the surface area of.

[積層造形方法]
上記の金属粉末を用いて積層造形を行うことにより積層造形物が得られる。本発明の積層造形方法は、積層造形材料として上記の金属粉末を用いること以外は、金属粉末を用いた従来の積層造形方法と同様に実施できる。
[Laminated modeling method]
A laminate-molded article can be obtained by performing lamination molding using the above-mentioned metal powder. The lamination molding method of the present invention can be carried out in the same manner as the conventional lamination molding method using metal powder, except that the above-mentioned metal powder is used as the lamination molding material.

金属粉末を用いた積層造形方法としては、金属粉末に高密度のエネルギーを付与して溶融固化させる方法が適している。金属粉末を溶融固化させるためのエネルギー源としては、レーザ、電子ビーム、プラズマ等が挙げられる。中でも、局所的に高密度のエネルギーを付与して金属粉末を溶融できることから、レーザを用いる方法が好ましい。レーザを用いた金属粉末の積層造形法としては、パウダーベッド方式およびメタルデポジション方式が挙げられる。   As a lamination molding method using metal powder, a method of applying high density energy to metal powder and melting and solidifying it is suitable. As an energy source for melting and solidifying the metal powder, a laser, an electron beam, plasma and the like can be mentioned. Among them, a method using a laser is preferable because it can locally melt high-density energy to melt the metal powder. The powder bed method and the metal deposition method can be mentioned as a lamination molding method of metal powder using a laser.

パウダーベッド方式では、金属粉末を層状に配置して粉末層を形成し、粉末層の所定位置にエネルギーを照射して金属粉末を溶融固化して造形層を形成する。粉末層の形成とエネルギー照射による造形層の形成とを繰り返すことにより、任意の形状の三次元積層造形物を作製できる。メタルデポジション方式では、金属粉末をレーザ等のエネルギーにより加熱溶融し、加熱溶融物を所定位置に供給し、所定位置で固化させることにより造形層を形成する。造形層の形成を繰り返すことにより三次元積層造形物を作製できる。   In the powder bed method, metal powder is arranged in a layer to form a powder layer, and energy is irradiated to a predetermined position of the powder layer to solidify and solidify the metal powder to form a shaped layer. By repeating the formation of the powder layer and the formation of the shaped layer by energy irradiation, it is possible to produce a three-dimensional laminated three-dimensional object of any shape. In the metal deposition method, the metal powder is heated and melted by energy such as a laser, and the heated molten material is supplied to a predetermined position and solidified at the predetermined position to form a shaped layer. A three-dimensional laminated three-dimensional object can be produced by repeating the formation of the formation layer.

上記の中でも、パウダーベッド方式は、加工精度が高く、高密度の造形物を形成可能であるとの利点を有する。以下ではパウダーベッド方式による積層造形方法について説明する。   Among the above, the powder bed method has the advantages of high processing accuracy and capable of forming a high-density shaped object. Hereinafter, a layered manufacturing method by the powder bed method will be described.

積層造形においては、まず造形物の三次元形状データに基づいて、積層造形用のスライスデータを作成する。例えば3D−CAD等により作製した三次元形状データを、有限要素法による要素分割により、STL(Stereolithography)データに変換し、STLデータからスライスデータが作成される。スライスデータは、造形物のSTLデータを高さ方向(造形方向)に沿ってN分割したものであり、第1層〜第N層のそれぞれの造形層の形状データ(xy座標)を含んでいる。スライス厚さdは10〜150μm程度である。このスライス厚さdが、積層造形における1層の積層厚さに対応する。   In additive manufacturing, first, slice data for additive manufacturing is created based on three-dimensional shape data of a shaped object. For example, three-dimensional shape data produced by 3D-CAD or the like is converted into STL (Stereolithography) data by element division by the finite element method, and slice data is created from the STL data. The slice data is obtained by dividing the STL data of a shaped object into N along the height direction (modeling direction), and includes shape data (xy coordinates) of each of the shaped layers of the first to N-th layers. . The slice thickness d is about 10 to 150 μm. This slice thickness d corresponds to the lamination thickness of one layer in additive manufacturing.

スライスデータに基づいて積層造形を行う。積層造形は、造形物の酸化を抑制するために、窒素、アルゴン、ヘリウム等の不活性ガス雰囲気下や、減圧雰囲気下で実施することが好ましい。   The additive manufacturing is performed based on the slice data. In order to suppress oxidation of a shaped article, it is preferable to carry out additive manufacturing in an inert gas atmosphere such as nitrogen, argon or helium or in a reduced pressure atmosphere.

(粉末層形成工程)
昇降可能なテーブル上の所定領域に、上記の金属粉末を敷き詰め、厚みdの粉末層を形成する。粉末層は、上記の金属粉末の他に、レーザ吸収剤等を含んでいてもよい。粉末層の表面は、必要に応じてスキージブレード等により平滑化してもよい。
(Powder layer forming process)
The above-mentioned metal powder is spread over a predetermined area on the table which can be raised and lowered to form a powder layer of thickness d. The powder layer may contain a laser absorber etc. in addition to the above-mentioned metal powder. The surface of the powder layer may be smoothed with a squeegee blade or the like as required.

(造形工程)
スライスデータに基づいて、粉末層の所定位置にエネルギーを照射する。前述のように、照射するエネルギーとしては、レーザ、電子ビーム、プラズマ等が挙げられ、特にレーザが好ましい。レーザ等によるエネルギー照射に先立ち、予め粉末層を加熱しておいてもよい。エネルギー照射領域の金属粉末は、溶融または焼結を経て固化し、造形層が形成される。エネルギーが照射されなかった領域の金属粉末は固化せずに粉末状態で残存する。
(Forming process)
Energy is applied to a predetermined position of the powder layer based on the slice data. As described above, examples of the energy to be irradiated include a laser, an electron beam, plasma and the like, and a laser is particularly preferable. The powder layer may be heated in advance prior to energy irradiation by a laser or the like. The metal powder in the energy irradiated area solidifies through melting or sintering to form a shaped layer. The metal powder in the region where the energy was not irradiated remains in a powder state without solidifying.

レーザとしては、ファイバーレーザ、YAGレーザ、炭酸ガスレーザ、半導体レーザ等などが用いられる。レーザ出力は、50〜1000W程度が好ましい。レーザの走査速度は、たとえば1〜5000mm/秒程度である。レーザの走査ピッチは、10〜500μm程度である。レーザのエネルギー密度は、例えば50〜1000J/mmの範囲で調整される。レーザのエネルギー密度Eは、E=P/v・s・dで表される。Pはレーザの出力、vは走査速度、sは走査ピッチ、dはスライス厚さ(積層厚さ)である。 As the laser, a fiber laser, a YAG laser, a carbon dioxide gas laser, a semiconductor laser or the like is used. The laser output is preferably about 50 to 1000 W. The scanning speed of the laser is, for example, about 1 to 5000 mm / sec. The scanning pitch of the laser is about 10 to 500 μm. The energy density of the laser is adjusted, for example, in the range of 50 to 1000 J / mm 3 . The energy density E of the laser is represented by E = P / v · s · d. P is the laser output, v is the scanning speed, s is the scanning pitch, and d is the slice thickness (stacking thickness).

上記の粉末層形成工程と造形工程により、スライスデータの第1層に対応する造形層が形成される。その後、テーブルをスライス厚さdだけ下降させる。テーブルを下降させる代わりに、レーザ光源を上昇させることにより、粉末層とレーザ光源との相対的な位置関係を調整してもよい。造形層形成後の第1層の上に金属粉末を敷き詰めて第2層の粉末層を形成し、第2層のスライスデータに基づいて、粉末層の所定位置にレーザを照射し、造形層を形成する。   A shaped layer corresponding to the first layer of slice data is formed by the powder layer forming step and the shaping step described above. Thereafter, the table is lowered by the slice thickness d. Instead of lowering the table, the relative positional relationship between the powder layer and the laser light source may be adjusted by raising the laser light source. A metal powder is spread on the first layer after forming the forming layer to form a powder layer of the second layer, and laser is irradiated to a predetermined position of the powder layer based on the slice data of the second layer to form the forming layer. Form.

以降、第3層〜第N層まで、粉末層形成工程と、第n層(n≦N)のスライスデータに基づくエネルギー照射による造形層形成工程とを繰り返す。最後に、エネルギーが照射されなかった領域の未固化の金属粉末を除去することにより、積層造形物が完成する。積層造形物は後処理に供してもよい。後処理としては例えば加熱が挙げられる。加熱等の後処理を行うことにより、積層造形物の機械強度や導電率が向上する場合がある。   Thereafter, the powder layer forming step and the shaping layer forming step by energy irradiation based on the slice data of the n-th layer (n ≦ N) are repeated for the third to N-th layers. Finally, the layered product is completed by removing the unsolidified metal powder in the area not irradiated with energy. The layered product may be subjected to post-treatment. Post treatments include, for example, heating. By performing post-processing such as heating, the mechanical strength and conductivity of the laminate-molded article may be improved.

[積層造形物]
積層造形により作製される造形物は、切削加工では実現できない複雑形状を有し得る。本発明では、銅を主成分とする金属粉末を積層造形材料として用いるため、得られる積層造形物は銅を主成分とする。積層造形物における銅の含有量は、90質量%以上が好ましく、95質量%以上がより好ましく、97質量%以上がさらに好ましい。
[Layered object]
Shaped articles produced by additive manufacturing may have complicated shapes that can not be realized by cutting. In the present invention, since the metal powder containing copper as a main component is used as a laminate-modeling material, the resulting laminate-molded article contains copper as a main component. 90 mass% or more is preferable, as for content of copper in a laminate-molded article, 95 mass% or more is more preferable, and 97 mass% or more is more preferable.

積層造形物の組成は、積層造形材料としての金属粉末と同一でもよく異なっていてもよい。金属粉末に含まれる硫黄、窒素、炭素等の非金属元素は、積層造形時の加熱等により気化して脱離しやすいため、積層造形物における非金属元素の含有量は、金属粉末における非金属元素の含有量よりも小さくなる傾向がある。金属粉末と同様、積層造形物は不可避不純物を含んでいてもよい。   The composition of the layered object may be the same as or different from the metal powder as the layered material. Since nonmetallic elements such as sulfur, nitrogen, and carbon contained in the metal powder are easily vaporized and eliminated by heating at the time of additive manufacturing, the content of the nonmetallic element in the additive is the same as the nonmetallic elements in the metal powder. It tends to be smaller than the content of Similar to the metal powder, the layered product may contain unavoidable impurities.

積層造形物の断面観察から求められる空隙率は、10%以下が好ましく、7%以下がより好ましく、5%以下がさらに好ましく、3%以下が特に好ましい。積層造形物の空隙率が小さいほど、機械強度および導電率が向上する傾向がある。積層造形材料として本発明の金属粉末を用いることにより、一般的な銅粉末を用いた場合よりも空隙率が小さく高密度の積層造形物を形成できる。   10% or less is preferable, 7% or less is more preferable, 5% or less is more preferable, and 3% or less is particularly preferable. As the porosity of the layered product is smaller, mechanical strength and conductivity tend to be improved. By using the metal powder of the present invention as the layered molding material, it is possible to form a layered molded article having a smaller porosity and a higher density than when a general copper powder is used.

非金属元素を含む本発明の金属粉末により空隙率の小さい積層造形物が得られる理由の1つとして、金属粉末を溶融固化させるために照射するレーザ等のエネルギーの利用効率が向上することが挙げられる。銅粉末に硫黄、炭素、窒素等の非金属元素を含む溶液を接触させると、表面に硫化銅、炭化銅、窒化銅等の銅化合物の被膜が形成される場合がある。また、銅粉末への溶液の接触により、表面が粗化されて微細な凹凸形状が形成される場合や、二次粒子が析出する場合がある。   As one of the reasons why laminated shaped articles with a small porosity can be obtained by the metal powder of the present invention containing a nonmetallic element, the utilization efficiency of energy such as a laser to be irradiated to melt and solidify the metal powder is improved Be When a copper powder is brought into contact with a solution containing a nonmetallic element such as sulfur, carbon or nitrogen, a film of a copper compound such as copper sulfide, copper carbide or copper nitride may be formed on the surface. In addition, the contact of the solution with the copper powder may roughen the surface to form a fine uneven shape, or the secondary particles may be precipitated.

硫化銅、炭化銅、窒化銅等の銅化合物は、金属銅に比べて光反射率が小さいため、銅粉末の表面に銅化合物被膜が形成されると、金属粉末に吸収される光エネルギーが増大すると考えられる。銅粉末の表面に微細な凹凸形状が形成されると、比表面積が増大する。また、銅粉末の表面に二次粒子が析出した場合も比表面積が増大する。比表面積が増大すると、金属粉末に吸収される光エネルギーが増大する傾向がある。このように、銅粉末を表面処理することにより、化合物被膜の形成、凹凸形状の形成、二次粒子の析出等が生じ、光エネルギーの利用効率が増大することにより、空隙率が小さく高密度の造形物が得られると考えられる。   Since copper compounds such as copper sulfide, copper carbide and copper nitride have lower light reflectance than metal copper, when a copper compound film is formed on the surface of copper powder, the light energy absorbed by the metal powder is increased It is thought that. When a fine uneven shape is formed on the surface of the copper powder, the specific surface area is increased. The specific surface area also increases when secondary particles are deposited on the surface of the copper powder. As the specific surface area increases, the light energy absorbed by the metal powder tends to increase. Thus, surface treatment of the copper powder causes formation of a compound film, formation of an uneven shape, precipitation of secondary particles, and the like, and the utilization efficiency of light energy is increased, so that the void ratio is small and high density. It is believed that a shaped object is obtained.

積層造形物の導電率は、30%IACS以上が好ましく、40%IACS以上がより好ましく、50%IACS以上がさらに好ましく、60%IACS以上が特に好ましい。なお、IACS%は、焼鈍標準軟銅(International Annealed Copper Standard: IACS)の導電率(1.7241×10−20μΩ・m)を100%IACSとして規定した導電率である。積層造形物が電気材料として用いられる場合、導電率は高い方が好ましいが、30%IACS以上であれば、黄銅と同等以上の導電率を有するため、電気材料として十分に使用可能である。 The conductivity of the layered product is preferably 30% IACS or more, more preferably 40% IACS or more, further preferably 50% IACS or more, and particularly preferably 60% IACS or more. In addition, IACS% is the electrical conductivity which prescribed | regulated the electrical conductivity (1.7241 * 10 < -20 > (micro | micron | mu) ohm * m) of annealing standard soft copper (International Annealed Copper Standard: IACS) as 100% IACS. When the layered product is used as an electrical material, the conductivity is preferably high. However, if it is 30% IACS or more, it has a conductivity equal to or higher than that of brass, so it can be sufficiently used as an electrical material.

硫化銅、炭化銅、窒化銅等の銅と非金属元素との化合物は、一般に、銅に比べると著しく導電率が低いが、本発明の金属粉末を用いて作製される積層造形物は、上記の様に高導電率を有する。積層造形物が高導電率を有する理由の1つとして、金属粉末における非金属元素の含有量が小さいことが挙げられる。   Compounds of copper and nonmetallic elements such as copper sulfide, copper carbide and copper nitride generally have significantly lower conductivity than copper, but the laminate-molded product produced using the metal powder of the present invention is the above-mentioned. Have a high conductivity. One of the reasons why the layered product has high conductivity is that the content of the nonmetallic element in the metal powder is small.

後の実施例に示すように、金属粉末の非金属元素の含有量が小さいほど、積層造形物の導電率が高くなる傾向がある。一方、非金属元素の含有量が0.02質量%未満の場合は、金属粉末の性質が、未処理の純銅粉末の性質に近くなり、積層造形物の空隙率が大きくなる傾向がある。前述のように、本発明においては、積層造形材料としての粉末に含まれる非金属元素が、積層造形時の加熱等により気化して脱離することにより、積層造形物中の非金属元素の含有量が小さくなり、空隙率が小さく、高密度かつ高導電率の積層造形物が得られる。   As shown in the subsequent examples, the smaller the content of the nonmetal element of the metal powder, the higher the conductivity of the laminate-shaped article tends to be. On the other hand, when the content of the nonmetallic element is less than 0.02% by mass, the properties of the metal powder tend to be close to the properties of the untreated pure copper powder, and the porosity of the laminate-shaped article tends to be large. As described above, in the present invention, the nonmetallic element contained in the powder as the laminate shaping material is vaporized and eliminated by heating or the like at the time of laminate modeling, thereby containing the nonmetal element in the laminate shaped article. The amount is small, the void ratio is small, and a layered product with high density and high conductivity is obtained.

以下、実施例を示して本発明をより具体的に説明するが、本発明はこれらの例に限定されるものではない。   Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited to these examples.

[金属粉末の調製]
<硫化処理銅粉1>
容器内に平均粒子径20μmの水アトマイズ銅粉を投入し、その上から銅粉に対して5倍量(重量比)の硫化アンモニウム水溶液を注ぎ、温度20℃で2分間撹拌した後、吸引濾過により溶液を濾別し、イオン交換水により粉末の表面を洗浄した。硫化アンモニウム水溶液としては、硫黄濃度6%の硫化アンモニウム水溶液を、硫黄濃度が0.001質量%となるように希釈したものを用いた。ICP発光分光による分析の結果、得られた粉末の硫黄濃度は0.01質量%であった。
[Preparation of metal powder]
<Sulfurated copper powder 1>
Water atomized copper powder having an average particle diameter of 20 μm is placed in a container, and a 5-fold amount (weight ratio) of ammonium sulfide aqueous solution is poured onto the copper powder and stirred for 2 minutes at a temperature of 20 ° C. The solution was separated by filtration, and the surface of the powder was washed with ion exchanged water. As the ammonium sulfide aqueous solution, one obtained by diluting an ammonium sulfide aqueous solution having a sulfur concentration of 6% so that the sulfur concentration is 0.001 mass% was used. As a result of analysis by ICP emission spectroscopy, the obtained powder had a sulfur concentration of 0.01% by mass.

<硫化処理銅粉2>
処理溶液の硫黄濃度を0.006質量%に変更したこと以外は硫化処理銅粉1の調製と同様に処理を行い、硫黄濃度が0.03質量%の粉末を得た。
<Sulfurated copper powder 2>
The treatment was performed in the same manner as in the preparation of the sulfided copper powder 1 except that the sulfur concentration of the treatment solution was changed to 0.006 mass%, to obtain a powder having a sulfur concentration of 0.03 mass%.

<硫化処理銅粉3>
処理溶液の硫黄濃度を0.03質量%に変更したこと以外は硫化処理銅粉1の調製と同様に処理を行い、硫黄濃度が0.13質量%の粉末を得た。
<Sulfurated copper powder 3>
The treatment was performed in the same manner as in the preparation of the sulfurized copper powder 1 except that the sulfur concentration of the treatment solution was changed to 0.03 mass%, to obtain a powder having a sulfur concentration of 0.13 mass%.

<硫化処理銅粉4>
処理溶液の硫黄濃度を0.12質量%に変更したこと以外は硫化処理銅粉1の調製と同様に処理を行い、硫黄濃度が0.50質量%の粉末を得た。
<Sulfurated copper powder 4>
It processed similarly to preparation of the sulfurization-treated copper powder 1 except having changed the sulfur concentration of the process solution into 0.12 mass%, and obtained the powder whose sulfur concentration is 0.50 mass%.

<硫化処理銅粉5>
処理溶液の硫黄濃度を0.54質量%に変更したこと以外は硫化処理銅粉1の調製と同様に処理を行い、硫黄濃度が2.75質量%の粉末を得た。
<Sulfurated copper powder 5>
The treatment was performed in the same manner as in the preparation of the sulfided copper powder 1 except that the sulfur concentration of the treatment solution was changed to 0.54 mass%, to obtain a powder having a sulfur concentration of 2.75 mass%.

<硫化処理銅粉6>
処理溶液の硫黄濃度を0.75質量%に変更したこと以外は硫化処理銅粉1の調製と同様に処理を行い、硫黄濃度が6.90質量%の粉末を得た。
<Sulfurated copper powder 6>
It processed similarly to preparation of the sulfurization-treated copper powder 1 except having changed the sulfur concentration of the process solution into 0.75 mass%, and obtained the powder whose sulfur concentration is 6.90 mass%.

[レーザ積層造形]
上記の硫化処理銅粉1〜5、および処理前の銅粉を原料として、ドイツEOS製「EOSINT M280」を用い、窒素ガスフロー雰囲気(残留酸素濃度約0.5%)にて、下記の条件で、直径8mm、高さ約10mmの円柱形状の造形物を作製した。
レーザ出力;370W
走査速度:200〜1200mm/秒
走査ピッチ:100μm
積層厚さ:40μm
[Laser layer formation]
Using the above-mentioned sulfurized copper powder 1 to 5 and the copper powder before treatment as raw materials, using EOSINT M280 made by Germany EOS, under the nitrogen gas flow atmosphere (residual oxygen concentration about 0.5%), the following conditions A cylindrical shaped object having a diameter of 8 mm and a height of about 10 mm was produced.
Laser power: 370 W
Scanning speed: 200 to 1200 mm / sec Scanning pitch: 100 μm
Stacking thickness: 40 μm

未処理の銅粉末については、走査速度400mm/秒の条件でのみ積層造形を行った。硫化処理銅粉1〜5は、走査速度200mm/秒、400mm/秒、600mm/秒、800mm/秒、1000mm/秒、および1200mm/秒の条件で積層造形を行った。硫化処理銅粉5(硫黄含有量2.75質量%)は、走査速度200mm/秒および400mm/秒では造形物を作製できなかった。   For the untreated copper powder, additive manufacturing was performed only at a scanning speed of 400 mm / sec. The sulfided copper powders 1 to 5 were subjected to additive manufacturing under conditions of a scanning speed of 200 mm / sec, 400 mm / sec, 600 mm / sec, 800 mm / sec, 1000 mm / sec, and 1200 mm / sec. The sulfided copper powder 5 (sulfur content: 2.75% by mass) could not produce a shaped article at a scanning speed of 200 mm / sec and 400 mm / sec.

[評価]
<粉末の観察>
未処理銅粉および硫化処理銅粉1〜6の表面形状を走査型電子顕微鏡(SEM)により、倍率500倍および2000倍で観察した。
[Evaluation]
<Observation of powder>
The surface shapes of the untreated copper powder and the sulfided copper powder 1 to 6 were observed with a scanning electron microscope (SEM) at a magnification of 500 times and 2000 times.

<積層造形物の断面観察>
光学顕微鏡により、積層造形物の断面を倍率25倍および50倍で観察した。
<Cross-sectional observation of layered object>
The cross section of the laminate was observed at 25 × and 50 × magnification by an optical microscope.

<積層造形物の空隙率>
積層造形物の断面(円の中心付近)を光学顕微鏡(倍率50倍)で観察し、観察像内の空隙の面積から、空隙率(%)=100×(空隙面積)/(観察面積)を算出した。
<Void ratio of layered object>
The cross section (near the center of a circle) of the layered object is observed with an optical microscope (magnification: 50 times), and the void ratio (%) = 100 × (void area) / (observation area) Calculated.

<積層造形物の導電率>
渦電流式導電率計を用いて、積層造形物の導電率(%IACS)を測定した。
<Conductivity of Laminated Products>
The conductivity (% IACS) of the laminate was measured using an eddy current conductivity meter.

[評価結果]
各積層造形物の製造に用いた粉末の種類(処理に用いた硫化アンモニウム水溶液の硫黄濃度、および粉末の硫黄含有量)、積層造形の走査速度、ならびに積層造形物の評価結果(空隙率および導電率)を表1に示す。
[Evaluation results]
Type of powder used to manufacture each layered object (sulfur concentration of ammonium sulfide aqueous solution used for processing and sulfur content of powder), scanning speed of layering, and evaluation results of layered object (porosity and conductivity) The ratio is shown in Table 1.

未処理銅粉および硫化処理銅粉1〜5の走査速度200mm/秒、400mm/秒および600mm/秒での積層造形物の断面観察像を図1に示す。また、未処理銅粉および硫化処理銅粉1〜6のSEM像を図2に示す。硫化処理銅粉1〜4の硫黄含有量と、走査速度200mm/秒および400mm/秒での積層造形物の空隙率をプロットしたグラフを図3に示す。   The cross-sectional observation image of the laminate-molded article in the scanning speed of 200 mm / sec, 400 mm / sec, and 600 mm / sec of untreated copper powder and sulfurization-treated copper powder 1-5 is shown in FIG. Moreover, the SEM image of untreated copper powder and sulfurization-treated copper powder 1-6 is shown in FIG. The graph which plotted the sulfur content of the sulfided copper powders 1-4, and the porosity of the laminate-molded article in the scanning speed of 200 mm / sec and 400 mm / sec is shown in FIG.

表1および図1に示すように、硫化処理銅粉1〜4では、レーザ走査速度が小さいほど、積層造形物の空隙率が小さく導電率が高くなる傾向がみられた。同一のレーザ走査速度で積層造形物の特性を対比すると、図3に示すように、硫化処理銅粉2〜4では、硫化処理銅粉1を用いた場合に比べて、積層造形物の空隙率が大幅に減少していることが分かる。   As shown in Table 1 and FIG. 1, in the case of the sulfided copper powders 1 to 4, as the laser scanning speed is smaller, the porosity of the laminate-molded product tends to be smaller and the conductivity to be higher. When the characteristics of the laminate-molded article are compared at the same laser scanning speed, as shown in FIG. 3, the porosity of the laminate-molded article is lower in the case of the sulfided copper powders 2 to 4 than in the case where the sulfided copper powder 1 is used. Is clearly reduced.

図1に示すように、硫化処理銅粉3および硫化処理銅粉4を用いて、レーザ走査速度200mm/秒または400mm/秒で作製した積層造形物は、他の例に比べて空隙率が大幅に減少していた。硫化処理銅粉2を用いて、レーザ走査速度200mm/秒で作製した積層造形物は、未処理銅粉を用いて作製した積層造形物よりも空隙率が小さく高導電率を示した。その他の積層造形物は、未処理銅粉を用いた積層造形物に比べると導電率が低下していたが、いずれも30%IACS以上の導電率を示した。   As shown in FIG. 1, the layered product produced at a laser scanning speed of 200 mm / sec or 400 mm / sec using the sulfided copper powder 3 and the sulfided copper powder 4 has a significantly higher porosity than the other examples. Was reduced to The laminate-molded product produced at a laser scanning speed of 200 mm / sec using the sulfided copper powder 2 has a smaller porosity and higher conductivity than the laminate-molded product produced using the untreated copper powder. The other laminate-molded articles had a conductivity lower than that of the laminate-molded article using untreated copper powder, but all exhibited a conductivity of 30% IACS or more.

硫黄含有量が0.01質量%の硫化処理銅粉1を用いた積層造形物の空隙率は、未処理銅粉を用いた積層造形物と同等であった。硫化処理銅粉1では、銅粉の表面処理が十分ではなく、未処理銅粉と同等の特性を有しているため、積層造形物の空隙減少効果が得られなかったと考えられる。   The porosity of the laminate-molded product using the sulfurized copper powder 1 having a sulfur content of 0.01% by mass was equivalent to that of the laminate-molded product using the untreated copper powder. In the case of the sulfide-treated copper powder 1, the surface treatment of the copper powder is not sufficient, and it is considered that the void reduction effect of the layered product is not obtained because it has the same characteristics as the untreated copper powder.

図2に示すように、硫黄濃度が0.01質量%の硫化処理銅粉1は、未処理銅粉と同様表面が平滑であった。硫黄濃度が0.03質量%の硫化処理銅粉2では銅粉の表面に微細な凹凸が形成されており、硫化処理銅粉3,4でも、硫化処理銅粉2と同様の微細な凹凸が形成されていた。硫化アンモニウム処理によって銅粉の表面が硫化されることに加えて、微細な凹凸が形成されることにより、光反射率が低減され、金属粉末による光エネルギーの利用効率が増大したことが、空隙率の小さい造形物を形成可能な要因の1つであると考えられる。   As shown in FIG. 2, the sulfurized copper powder 1 having a sulfur concentration of 0.01% by mass had a smooth surface, like the untreated copper powder. In the case of sulfurized copper powder 2 having a sulfur concentration of 0.03% by mass, fine irregularities are formed on the surface of the copper powder, and even with sulfurized copper powder 3 and 4, fine irregularities similar to those of sulfurized copper powder 2 are obtained. It was formed. In addition to the surface of the copper powder being sulfided by the ammonium sulfide treatment, the formation of fine irregularities reduces the light reflectance and increases the utilization efficiency of the light energy by the metal powder. It is considered to be one of the factors that can form a small shaped object.

硫黄濃度が2.75質量%の硫化処理銅粉5では、硫化処理銅粉2〜4と比べると表面の凹凸形状が粗大化し、粒子状の析出物がみられた。処理溶液の硫黄濃度を高め、硫黄濃度を6.90質量%とした硫化処理銅粉6では、表面の凹凸がさらに粗大化し、表層の被膜にクラックが生じていた。粉末の硫黄濃度が過度に高い場合に、積層造形物の導電率の低下に加えて空隙率が大きくなる原因として、このような表面形状の変化が影響していると推定される。   In the case of the sulfurized copper powder 5 having a sulfur concentration of 2.75% by mass, as compared with the sulfided copper powders 2 to 4, the surface asperity shape was coarsened, and particulate precipitates were observed. In the sulfurized copper powder 6 in which the sulfur concentration of the treatment solution was increased to a sulfur concentration of 6.90% by mass, the surface irregularities were further coarsened, and a crack was generated in the surface layer film. When the sulfur concentration of the powder is excessively high, it is presumed that such a change in the surface shape influences as a cause of the increase in the porosity in addition to the decrease in the conductivity of the layered product.

以上の結果から、銅粉の表面処理により、硫黄等の非金属元素を含有する金属粉末が得られることが分かる。また、非金属元素の含有量が所定範囲の金属粉末を積層造形用材料とすることにより、純銅を用いた場合よりも空隙率が小さく、高密度でかつ高導電率の積層造形物が得られることが分かる。

From the above results, it can be seen that metal powder containing a nonmetallic element such as sulfur can be obtained by surface treatment of copper powder. In addition, by using metal powder having a nonmetallic element content in a predetermined range as the material for laminating and forming, a laminate having a smaller porosity and higher density and higher conductivity than in the case of using pure copper can be obtained. I understand that.

Claims (11)

積層造形用の金属粉末であって、
硫黄、窒素および炭素からなる群から選択される1種以上の非金属元素を、合計0.02質量%以上含有し、銅を90質量%以上含有する、金属粉末。
A metal powder for additive manufacturing,
Metal powder which contains one or more nonmetallic elements selected from the group consisting of sulfur, nitrogen and carbon in a total amount of 0.02 mass% or more and 90 mass% or more of copper.
前記非金属元素、銅、9質量%以下の酸素および不可避不純物からなる、請求項1に記載の金属粉末。   The metal powder of Claim 1 which consists of said nonmetallic element, copper, 9 mass% or less oxygen, and an unavoidable impurity. 前記非金属元素として、硫黄を0.02質量%以上含有する、請求項1または2に記載の金属粉末。   The metal powder according to claim 1 or 2 which contains sulfur as 0.02 mass% or more as said nonmetallic element. 表層部における前記非金属元素の濃度が中心部における前記非金属元素の濃度よりも大きい、請求項1〜3のいずれか1項に記載の金属粉末。   The metal powder according to any one of claims 1 to 3, wherein the concentration of the nonmetallic element in the surface layer portion is higher than the concentration of the nonmetallic element in the central portion. 平均粒子径が0.5〜200μmである、請求項1〜4のいずれか1項に記載の金属粉末。   The metal powder of any one of Claims 1-4 which is an average particle diameter of 0.5-200 micrometers. 請求項1〜5のいずれか1項に記載の金属粉末の製造方法であって、
銅粉末を、硫黄、窒素および炭素からなる群から選択される1種以上の非金属元素を含む溶液と接触させることを特徴とする、金属粉末の製造方法。
It is a manufacturing method of the metal powder of any one of Claims 1-5, Comprising:
A method for producing a metal powder, comprising contacting the copper powder with a solution containing one or more nonmetallic elements selected from the group consisting of sulfur, nitrogen and carbon.
前記溶液との接触により、金属粉末の光反射率が前記銅粉末の光反射率よりも小さくなる、請求項6に記載の金属粉末の製造方法。   The manufacturing method of the metal powder of Claim 6 whose light reflectivity of metal powder becomes smaller than the light reflectivity of the said copper powder by contact with the said solution. 前記溶液との接触により、金属粉末の表面積が前記銅粉末の表面積よりも大きくなる、請求項6または7に記載の金属粉末の製造方法。   The method for producing a metal powder according to claim 6 or 7, wherein the surface area of the metal powder is larger than the surface area of the copper powder by the contact with the solution. 請求項1〜5のいずれか1項に記載の金属粉末を含む粉末層を形成する粉末層形成工程;および
前記粉末層の所定位置にエネルギーを照射して前記金属粉末を固化させて造形層を形成する造形工程、を含み、
前記粉末層形成工程と前記造形工程とを順次繰り返し、前記造形層を積層する、積層造形物の製造方法。
A powder layer forming step of forming a powder layer containing the metal powder according to any one of claims 1 to 5; and irradiating energy at a predetermined position of the powder layer to solidify the metal powder to form a shaped layer Forming a forming process,
The manufacturing method of a laminate-molded article which repeats the said powder layer formation process and the above-mentioned modeling process one by one, and laminates the above-mentioned modeling layer.
請求項1〜5のいずれか1項に記載の金属粉末の加熱溶融物を所定位置に供給し、固化させて造形層を形成する工程を繰り返して、造形層を積層する、積層造形物の製造方法。   The manufacturing of a laminate-molded article, wherein the step of supplying the heated melt of the metal powder according to any one of claims 1 to 5 to a predetermined position and solidifying it to form a shaped layer is repeated to laminate the shaped layer. Method. 硫黄、窒素および炭素からなる群から選択される1種以上の非金属元素を、合計0.02質量%以上含有し、銅を90質量%以上含有し、
断面観察から求められる空隙率が10%以下であり、導電率が30%IACS以上である、積層造形物。

Containing at least 0.02 mass% in total, and at least 90 mass% of copper, containing one or more nonmetallic elements selected from the group consisting of sulfur, nitrogen and carbon;
A laminate-molded article having a porosity of 10% or less and a conductivity of 30% IACS or more as determined from cross-sectional observation.

JP2017242236A 2017-12-18 2017-12-18 Metal powder and method for producing the same, and lamination-molded article and method for producing the same Pending JP2019108587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017242236A JP2019108587A (en) 2017-12-18 2017-12-18 Metal powder and method for producing the same, and lamination-molded article and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017242236A JP2019108587A (en) 2017-12-18 2017-12-18 Metal powder and method for producing the same, and lamination-molded article and method for producing the same

Publications (1)

Publication Number Publication Date
JP2019108587A true JP2019108587A (en) 2019-07-04

Family

ID=67179127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017242236A Pending JP2019108587A (en) 2017-12-18 2017-12-18 Metal powder and method for producing the same, and lamination-molded article and method for producing the same

Country Status (1)

Country Link
JP (1) JP2019108587A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019151872A (en) * 2018-03-01 2019-09-12 三菱マテリアル株式会社 Copper alloy powder excellent in laser absorptivity
JP7424108B2 (en) 2020-02-28 2024-01-30 三菱マテリアル株式会社 Heat-treated unsintered copper alloy powder for additive manufacturing and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019151872A (en) * 2018-03-01 2019-09-12 三菱マテリアル株式会社 Copper alloy powder excellent in laser absorptivity
JP7015976B2 (en) 2018-03-01 2022-02-04 三菱マテリアル株式会社 Copper alloy powder for metal laminate modeling with excellent laser absorption
US11351601B2 (en) 2018-03-01 2022-06-07 Mitsubishi Materials Corporation Copper alloy powder having excellent laser absorptivity
JP7424108B2 (en) 2020-02-28 2024-01-30 三菱マテリアル株式会社 Heat-treated unsintered copper alloy powder for additive manufacturing and its manufacturing method

Similar Documents

Publication Publication Date Title
JP6303016B2 (en) Manufacturing method of layered objects
Roy et al. Effect of size, morphology, and synthesis method on the thermal and sintering properties of copper nanoparticles for use in microscale additive manufacturing processes
JP7377324B2 (en) Copper powder, method for manufacturing a stereolithographic object using the same, and stereolithographic object using copper
JP2009270130A (en) Silver powder or silver alloy powder, method for producing shaped article of silver or silver alloy, and shaped article of silver or silver alloy
JP6464341B2 (en) Method for creating metal shaped object using metal powder by laser irradiation, forming material therefor, and created structure
JP7109222B2 (en) Coated metal powder, method for producing the same, and laminate-molded article using the metal powder
CN109843479A (en) Metal increasing material manufacturing metal powder and the molding made using the metal powder
KR102239261B1 (en) Copper alloy powder, manufacturing method of laminated moldings and laminated moldings
JP2019108587A (en) Metal powder and method for producing the same, and lamination-molded article and method for producing the same
US20190106790A1 (en) Method for manufacturing a part or a supported microstructure by laser exposure of a metal oxalate layer
CN109454233A (en) The manufacturing method of the made of metal divine force that created the universe
KR101523849B1 (en) Method of fabricating metal-carbon composite particle
JP6688659B2 (en) Silver coated copper powder
KR102328897B1 (en) Pure copper powder having Si film, manufacturing method thereof, and laminated sculpture using the pure copper powder
JP6721934B2 (en) Additive-manufactured copper powder, manufacturing method of additive-molded copper powder, additive-manufactured product manufacturing method, and additive-molded product
JP6722837B1 (en) Manufacturing method of layered product using pure copper powder having Si coating
JP2023012810A (en) Copper-based powder, method for producing the same, and method for producing stereolithographic molding using copper-based powder
JP7317177B2 (en) Coated metal powder, method for producing the same, and laminate-molded article using the metal powder
WO2020116349A1 (en) Copper powder for 3d printing, method for producing copper powder for 3d printing, method for producing 3d printed article, and 3d printed article
JP2021529885A (en) Use of highly reflective metal powders in additional manufacturing
JP7377337B2 (en) Copper alloy powder with Si coating and method for producing the same
JP2005325411A (en) Metal powder having excellent sinterability, its production method and method for producing sintered compact using the metal powder
JP2023110342A (en) Powder for laminate molding and production method of metal sintered body
WO2019065843A1 (en) Powder recycling method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200731