JP2002356702A - Copper powder for low temperature burning or copper powder for electroconductive paste - Google Patents

Copper powder for low temperature burning or copper powder for electroconductive paste

Info

Publication number
JP2002356702A
JP2002356702A JP2001162156A JP2001162156A JP2002356702A JP 2002356702 A JP2002356702 A JP 2002356702A JP 2001162156 A JP2001162156 A JP 2001162156A JP 2001162156 A JP2001162156 A JP 2001162156A JP 2002356702 A JP2002356702 A JP 2002356702A
Authority
JP
Japan
Prior art keywords
copper powder
copper
weight
powder
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001162156A
Other languages
Japanese (ja)
Other versions
JP5044857B2 (en
Inventor
Yoshihiro Okada
美洋 岡田
Hiromasa Miyoshi
宏昌 三好
Kazuji Sano
和司 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2001162156A priority Critical patent/JP5044857B2/en
Publication of JP2002356702A publication Critical patent/JP2002356702A/en
Application granted granted Critical
Publication of JP5044857B2 publication Critical patent/JP5044857B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the sintering starting temperature of electroconductive paste in the formation of an electroconductive circuit using copper powder as an electroconductive filler. SOLUTION: The whole surfaces of particles of the copper powder are coated with a thin film of copper oxide of 1.0 to 50 wt.% to the weight of the copper powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,焼成温度の低い銅
粉,特に導電ペーストの導電フイラーに用いるのに適し
た銅粉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper powder having a low firing temperature, and particularly to a copper powder suitable for use in a conductive filler of a conductive paste.

【0002】[0002]

【従来の技術】各種基板の表面や内部或いは外部に導電
回路や電極を形成する手段として導電ペーストが多く使
用されている。そのさい,基板表面や内部等に導電ペー
ストを塗布または充填した状態で基板と共に適切な加熱
処理が行なわれ,この加熱処理によって導電ペーストの
揮発性媒体を気化させると共に導電フイラーとしての金
属粉が互いに焼結して通電可能な回路が形成される。
2. Description of the Related Art A conductive paste is widely used as a means for forming a conductive circuit or an electrode on the surface, inside or outside of various substrates. At this time, an appropriate heat treatment is performed together with the substrate in a state where the conductive paste is applied or filled on the surface or inside of the substrate, and by this heat treatment, the volatile medium of the conductive paste is vaporized and the metal powder as the conductive filler is mutually separated. Sintering forms an energizable circuit.

【0003】このような導電ペーストの導電フイラー
(金属粉)として,銀粉と銅粉の使用が一般化している
が,銅粉を導電フイラーとした導電ペースト(銅系ペー
スト)は,銀系ペーストに比べて,マイグレーションが
起き難い,回路を微細化しやすい,耐半田性に優る,低
コスト化が可能である,等の理由により,一層汎用化さ
れつつある。このような利点をもつ銅系の導電ペースト
は,粒径が0.1〜10μm程度の銅粉を適切な樹脂バ
インダーに分散させることによって得られる。
As the conductive filler (metal powder) of such a conductive paste, silver powder and copper powder are generally used. However, a conductive paste using copper powder as a conductive filler (copper-based paste) is a silver-based paste. On the other hand, they are becoming more and more popular because migration is less likely to occur, circuits can be easily miniaturized, solder resistance is excellent, and cost can be reduced. A copper-based conductive paste having such advantages can be obtained by dispersing copper powder having a particle size of about 0.1 to 10 μm in an appropriate resin binder.

【0004】基板に形成する回路の形態,回路の形成方
法,基板の材料等の要因によって,導電ペーストに要求
される物理的および化学的性質も異なる。このため,各
種の性能をもつ銅系ペーストを用途別に作製することが
一般的に行われており,フイラーとしての銅粉について
もその粒子形状,粒度分布,粒子表面性状,粒子の成分
組成等を適切に調整し,用途別に諸要求を満たすように
すると共に,導電ペーストの塗布条件や焼結条件も各ペ
ースト毎に最適範囲の条件化を行っている。
The physical and chemical properties required for the conductive paste vary depending on factors such as the form of the circuit formed on the substrate, the method of forming the circuit, and the material of the substrate. For this reason, it is common practice to produce copper-based pastes with various performances for each application. For copper powder as a filler, its particle shape, particle size distribution, particle surface properties, particle composition, etc. Appropriate adjustments are made to satisfy various requirements for each application, and the conditions for applying and sintering the conductive paste are adjusted to the optimum range for each paste.

【0005】このうち,銅系ペーストの焼結性について
は,特別の事例を除いては低温で焼結できるものが好ま
しい。基板の表面や内部において,低温の加熱で導電回
路が焼成できれば,導電ペーストと共に加熱される基板
の加熱温度も低くでき,基板に対する熱的影響が軽減さ
れると共に,熱エネルギー的,設備的にも有利となり,
さらにはセラミツク製基板と銅回路との間の熱膨張差に
基づく歪み発生も低減できるからである。
Among these, the sinterability of the copper-based paste is preferably one that can be sintered at a low temperature except for special cases. If the conductive circuit can be fired at a low temperature on the surface or inside of the substrate, the heating temperature of the substrate heated together with the conductive paste can be reduced, reducing the thermal effect on the substrate and improving the thermal energy and equipment. Be advantageous,
Further, the occurrence of distortion due to the difference in thermal expansion between the ceramic substrate and the copper circuit can be reduced.

【0006】他方,実際の焼結処理にあたっては,該ペ
ーストを塗布したセラミック製電子部品を数10ppm
の酸素を含む弱酸化性の不活性ガス雰囲気中で加熱処理
することがある。一般に加熱処理は,ペースト中の樹脂
や溶媒を気化させてから(この工程を脱バインダー工程
と言う),残部の銅粉を基板の表面や内部で焼結させる
(銅粉の焼結工程)という段階を経るが,脱バインダー
工程においてペースト中の樹脂や溶媒の分解生成物(炭
素質成分)が残留すると,後続の焼結工程での銅粉の焼
結性を損なうので,脱バインダー工程では不活性ガス雰
囲気中に微量の酸素を混入し,この酸素によって炭素質
成分を炭酸ガスに燃焼させて排出させるという酸化・脱
バイダー処理が行われることがあり,そのさい,雰囲気
中に混入される酸素によって,銅粉の一部も酸化される
ことがある。
On the other hand, in the actual sintering process, several tens of ppm of ceramic electronic parts coated with the paste are used.
Heat treatment may be performed in a weakly oxidizing inert gas atmosphere containing oxygen. Generally, the heat treatment is to evaporate the resin or solvent in the paste (this step is called the debinding step) and then sinter the remaining copper powder on the surface or inside the substrate (the copper powder sintering step). However, if the decomposition product (carbonaceous component) of the resin or solvent in the paste remains in the debinding step, the sinterability of the copper powder in the subsequent sintering step will be impaired, so that it will not be possible in the debinding step. Oxidation and de-binder treatment may be performed in which a trace amount of oxygen is mixed into the active gas atmosphere, and the carbonaceous component is burned into carbon dioxide gas and discharged by this oxygen. Therefore, some of the copper powder may be oxidized.

【0007】銅粉が酸化されると,粒子表面が酸化して
焼結性に影響を与え,焼結が均一に進まないといった問
題が生ずる。このために,銅粒子表面に耐酸化性皮膜を
形成する表面処理がが行われたり,酸化した銅を還元す
る還元処理工程を脱バインダー工程の後,最終の焼結前
に挿入したりして対処している。
[0007] When the copper powder is oxidized, the surface of the particles is oxidized, affecting the sinterability and causing a problem that sintering does not proceed uniformly. For this purpose, a surface treatment for forming an oxidation-resistant film on the surface of copper particles is performed, or a reduction process for reducing oxidized copper is inserted after the binder removal process and before the final sintering. We are dealing.

【0008】[0008]

【発明が解決しようとする課題】ペースト用フイラー銅
粉のうち,焼結性に優れ,比較的低温から焼結を開始す
るものでは,一般に耐酸化性が劣り表面が酸化し易い。
すなわち,焼結性に優れるものは銅系ペーストの脱バイ
ダー処理工程で表面が酸化しやすく,このために脱バイ
ンダー処理後に還元処理工程を設けることが必要とな
る。この還元処理工程が増設されることは,それだけ,
処理工数の増加と設備増加につながり,費用的にも設備
的にも負担となる。
Among the filler copper powders for pastes, those which have excellent sinterability and start sintering at a relatively low temperature generally have poor oxidation resistance and easily oxidize the surface.
That is, those having excellent sintering properties are easily oxidized in the surface of the copper-based paste in the binder removal step, and therefore, it is necessary to provide a reduction step after the binder removal processing. This additional reduction process is only
This leads to an increase in the number of processing steps and the number of facilities, which imposes a burden on both costs and facilities.

【0009】したがって,焼結性に優れ,比較的低温か
ら焼結を開始すると共に,耐酸化性にも優れる銅粉が要
求される。本発明の課題はこの要求を満たすことにあ
る。
Therefore, a copper powder which is excellent in sinterability, starts sintering at a relatively low temperature, and has excellent oxidation resistance is required. An object of the present invention is to satisfy this requirement.

【0010】[0010]

【課題を解決するための手段】前記課題を解決する銅粉
として,本発明は,銅粉重量に対し1.5〜50重量%
の銅酸化物が粒子表面に存在する低温焼成用または導電
ペースト用の銅粉を提供する。さらに,本発明によれ
ば,銅粉重量に対し1.5〜50重量%の銅酸化物の薄
膜で粒子表面の全体を覆った低温焼成用または導電ペー
スト用の銅粉を提供する。
According to the present invention, as a copper powder for solving the above-mentioned problems, 1.5 to 50% by weight based on the weight of the copper powder.
The present invention provides a copper powder for low-temperature sintering or a conductive paste in which a copper oxide is present on the particle surface. Further, according to the present invention, there is provided a copper powder for low-temperature firing or a conductive paste, wherein the entire surface of the particle is covered with a copper oxide thin film of 1.5 to 50% by weight based on the weight of the copper powder.

【0011】[0011]

【発明の実施の形態】これまで銅系ペーストに用いる銅
粉は,表面が酸化していると,該ペーストの印刷性,半
田付け性,焼成後の導電性,密着性などを劣化させるの
で,できるだけ表面酸化しないことが重要であるとされ
ていた。このために,銅粉の最終製造工程のあと直ちに
酸化防止のための処置を施すのが通常であった。酸化防
止の処置としては銅粉の粒子表面に耐酸化性皮膜を形成
する方法が一般化している。耐酸化性皮膜には種々のも
のが知られているが,粒子表面を硼素の薄い融膜で被覆
する方法や,シランカップリング剤で被覆する方法(特
開昭57−155386号公報)などが知られている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Copper powder used in a copper-based paste so far degrades its printability, solderability, conductivity after firing, adhesion and the like if the surface is oxidized. It was considered important not to oxidize the surface as much as possible. For this reason, it is usual to take measures to prevent oxidation immediately after the final production process of copper powder. As a measure for preventing oxidation, a method of forming an oxidation-resistant film on the surface of copper powder particles has become common. Various types of oxidation-resistant coatings are known, and a method of coating the particle surface with a thin film of boron or a method of coating with a silane coupling agent (Japanese Patent Application Laid-Open No. 57-155386) is known. Are known.

【0012】高品質の銅系ペーストを得るには,銅粉の
酸化をできるだけ防止しなければならない,というこれ
までの常識に反し,本発明者らは,銅粉の粒子表面に均
一な銅酸化物の層(酸化膜)を積極的に形成することを
試みた。その結果,酸化銅の皮膜が均一で且つ適切な量
比である場合には,該ペーストの品質を劣化させるよう
な実害はなく,かえって銅粉の焼結温度を著しく低下さ
せることができる点で有利に作用することがわかった。
しかも,銅系ペーストの焼成にさいしての前述の脱バイ
ンダー工程において,銅粒子表面に存在する銅酸化物が
樹脂バインダーや溶媒の分解生成物(炭素質物質)を酸
化させる酸化剤として働き,該炭素質物質を炭酸ガス等
のガス成分に変えて系外に排除できると共に,表面の銅
酸化物の一部は銅に還元されたような状態で次の焼結処
理に供されることになる。
Contrary to the conventional wisdom that oxidation of copper powder must be prevented as much as possible in order to obtain a high-quality copper-based paste, the present inventors have found that a uniform copper oxidation is applied to the surface of copper powder particles. An attempt was made to positively form a layer (oxide film) of the material. As a result, when the copper oxide film is uniform and has an appropriate quantitative ratio, there is no actual harm that deteriorates the quality of the paste, and the sintering temperature of the copper powder can be significantly lowered. It has been found to work favorably.
In addition, in the above-described binder removal step before firing the copper-based paste, the copper oxide present on the surface of the copper particles acts as an oxidizing agent for oxidizing decomposition products (carbonaceous substances) of the resin binder and the solvent. The carbonaceous material can be converted to gaseous components such as carbon dioxide gas and eliminated from the system, and a portion of the copper oxide on the surface is subjected to the next sintering process in a state reduced to copper. .

【0013】すなわち,脱バインダー工程で粒子表面に
付着する分解生成物(炭素質物質)が粒子表面に均一に
形成されている銅酸化物中の酸素と反応し,炭素質物質
をガス化させると同時に銅酸化物の一部が還元されるよ
うな反応が進行し,この反応によって銅粒子表面は活性
化された状態となる。このことが,次の焼結工程では粒
子同士の接合を促す起因となり,焼結開始温度の低下に
寄与するのではないかと考えられる。
That is, when a decomposition product (carbonaceous substance) adhering to the particle surface in the debinding step reacts with oxygen in the copper oxide uniformly formed on the particle surface to gasify the carbonaceous substance. At the same time, a reaction in which a part of the copper oxide is reduced proceeds, and the surface of the copper particles is activated by this reaction. This is considered to be a cause of promoting the bonding of the particles in the next sintering step, and may contribute to a reduction in the sintering start temperature.

【0014】銅粒子表面に対して銅酸化物の薄膜を均一
に形成するには,空気,酸素ガス,オゾンガス等を銅粉
に作用させる乾式法,或いは銅粉を水または有機溶媒中
に懸濁させて酸化剤(空気等)をバブリングさせる湿式
法によって行い得る。乾式法による場合は,銅粉を流動
状態に維持しながら所定の温度で酸化剤ガスと反応させ
るのがよく,例えば攪拌用ミキサーやロータリーキルン
内で銅粉を流動化しながら60〜150℃,好ましくは
80〜100℃で酸化剤ガスと反応させることにより,
その雰囲気中の酸素濃度または処理時間を調整すること
によって,銅粉に対し1.5〜50重量%の銅酸化物の
薄膜を粒子表面に形成させるのが便宜である。別法とし
て真空乾燥炉を使用し,炉内に減圧下に静置した銅粉に
対し,酸化性ガスを適量通気する方法でも同様に銅酸化
物の薄膜を形成できる。
In order to form a copper oxide thin film uniformly on the surface of copper particles, a dry method in which air, oxygen gas, ozone gas or the like is applied to copper powder, or copper powder is suspended in water or an organic solvent. Then, a wet method in which an oxidizing agent (air or the like) is bubbled is performed. In the case of the dry method, it is preferable to react the copper powder with the oxidizing gas at a predetermined temperature while maintaining the copper powder in a fluidized state. By reacting with oxidizing gas at 80-100 ° C,
By adjusting the oxygen concentration in the atmosphere or the treatment time, it is convenient to form a copper oxide thin film of 1.5 to 50% by weight based on the copper powder on the particle surface. Alternatively, a copper oxide thin film can be formed in the same manner by using a vacuum drying furnace and passing an appropriate amount of an oxidizing gas through copper powder which has been left still in the furnace under reduced pressure.

【0015】銅酸化物の量が銅粉に対し1.0重量%未
満では,粒子表面の全体に均一にその薄膜を形成するに
は酸素量が不足し,局部酸化の状態になったり酸化皮膜
の厚みの不均一性が発生したりして,脱バインダー工程
での炭素質物質の分解反応が不十分となったり,焼結開
始温度を低下させる作用が不十分となったりするし,焼
結開始温度にバラツキを生ずる原因にもなる。
If the amount of copper oxide is less than 1.0% by weight of the copper powder, the amount of oxygen is insufficient to uniformly form a thin film on the entire surface of the particles, resulting in local oxidation or an oxide film. Of the carbonaceous material in the binder removal process, the effect of lowering the sintering start temperature becomes insufficient, This may cause a variation in the starting temperature.

【0016】他方,銅酸化物の量が銅粉に対し50重量
%を超えるようになると,炭素質物質の分解に必要な酸
素量が過剰になり,その分解反応に消費されなかった銅
酸化物の残存量が多くなって焼結開始温度にバラツキを
発生させたり,焼結体の導電性を低下させたりするよう
になるので,銅酸化物の量が銅粉に対し50重量%以
下,好ましくは30重量%以下,さらに好ましくは15
重量%以下とするのがよい。形成する銅酸化物の皮膜が
CuOであるか,またはCu2Oであるかによって,銅
粉に含有される酸素量は相違することになるが,銅酸化
物の皮膜中の酸素量は銅粉に対し,一般に0.1〜5重
量%,好ましくは0.3〜3重量%の範囲にあるのがよ
い。
On the other hand, when the amount of the copper oxide exceeds 50% by weight with respect to the copper powder, the amount of oxygen necessary for decomposing the carbonaceous substance becomes excessive, and the copper oxide not consumed in the decomposition reaction becomes excessive. The amount of copper oxide increases, causing a variation in the sintering start temperature and a decrease in the conductivity of the sintered body. Therefore, the amount of copper oxide is preferably 50% by weight or less based on the copper powder. Is 30% by weight or less, more preferably 15% by weight.
% By weight or less. Although the amount of oxygen contained in the copper powder differs depending on whether the copper oxide film to be formed is CuO or Cu 2 O, the amount of oxygen in the copper oxide film is copper powder. On the other hand, it is generally in the range of 0.1 to 5% by weight, preferably 0.3 to 3% by weight.

【0017】銅酸化物を被覆する銅粉そのものは湿式還
元法,アトマイズ法,機械粉砕法等によって製造された
各種のものが使用でき,導電ペーストのフイラーとして
適するものであれば平均粒径0.1〜10μmの粉体で
あればよい。いずれにしても銅粉の各粒子全体に銅酸化
物皮膜が形成され,その皮膜も粒子表面の全体に均一に
形成されているのが好ましい。
As the copper powder coated with the copper oxide, various powders produced by a wet reduction method, an atomizing method, a mechanical pulverizing method or the like can be used. What is necessary is just a powder of 1 to 10 μm. In any case, it is preferable that a copper oxide film is formed on the entire surface of each particle of the copper powder, and the film is also formed uniformly on the entire surface of the particle.

【0018】[0018]

【実施例】〔実施例1〕粒度分布測定装置による銅粉の
粒度分布測定において,D10=2.34μm,D50=3.12μ
m, D90=4.07μmの粒度分布をもち,平均粒径が 3.1
μmの銅粉を供試材とした。ここで,D10,D50および
D90は,横軸に粒径D(μm)をとり,縦軸に粒径Dμ
m以下の粒子が存在する容積(Q%)をとった累積粒度
曲線において,Q%が10%,50%および90%に対
応するそれぞれの粒径Dの値を言う。供試材の銅粉は湿
式還元法に製造されたものであり,粒子形状はほぼ球形
である。
[Example 1] In the particle size distribution measurement of copper powder using a particle size distribution measuring device, D10 = 2.34 µm, D50 = 3.12 µm.
m, D90 = 4.07μm, with an average particle size of 3.1
A μm copper powder was used as a test material. Here, for D10, D50 and D90, the horizontal axis represents the particle diameter D (μm), and the vertical axis represents the particle diameter Dμ.
In a cumulative particle size curve obtained by taking a volume (Q%) in which particles having a particle size of m or less exist, the value of each particle size D corresponds to 10%, 50%, and 90%. The copper powder used in the test was produced by the wet reduction method, and the particle shape was almost spherical.

【0019】前記の供試材銅粉をヘンシエルミキサーに
26Kg装填し,空気を2リットル/分の流量で通気し
ながら周波数20Hzで攪拌を付与し,ミキサー内を最
初の240分は80℃,次いで100℃に昇温して合計
1200分の酸化処理を行った。その結果,D10=2.17
μm,D50=3.43μm, D90=5.63μmの粒度分布をも
ち,平均粒径が 2.0μmの酸化膜付き銅粉を得た。供試
材(対照例)と酸化膜付き銅粉の比表面積 (BET法),
タップ密度, 酸素含有量,炭素含有量を表1に示し
た。表1の酸化膜付き銅粉の酸素含有量=1.13重量%
は,銅酸化物の全てがCu2Oとすると,銅酸化物の含
有量は銅粉に対し10.1重量%となる。
26 kg of the test material copper powder was charged into a Hensiel mixer, and agitation was applied at a frequency of 20 Hz while passing air at a flow rate of 2 liters / minute. Next, the temperature was raised to 100 ° C., and the oxidation treatment was performed for a total of 1200 minutes. As a result, D10 = 2.17
A copper powder with an oxide film having a particle size distribution of μm, D50 = 3.43 μm, D90 = 5.63 μm and an average particle size of 2.0 μm was obtained. Specific surface area of test material (control) and copper powder with oxide film (BET method),
Table 1 shows the tap density, oxygen content, and carbon content. Oxygen content of copper powder with oxide film in Table 1 = 1.13 wt%
Assuming that all of the copper oxide is Cu 2 O, the content of the copper oxide is 10.1% by weight based on the copper powder.

【0020】[0020]

【表1】 [Table 1]

【0021】これらの供試材銅粉と酸化膜付き銅粉につ
いて,以下に述べる焼結開始温度の測定に供した。 〔焼結開始温度の測定〕:測定用の銅粉0.97±0.001gを
採取し,これに 0.03 〜0.05g のターピネオールと4.5
重量%のエチルセルロースを加えてメノウ乳鉢で約5分
混合し,この混合物を直径5mmの筒体に装填し,上部
からポンチを押し込んで1623Nで10秒保持する加
圧を付与し,高さ約10mm相当の円柱状に成形する。
この成形体を,軸を鉛直方向にして且つ軸方向に10g
の荷重を付与した条件で,昇温炉に装填し,窒素流量中
で昇温速度10℃/分,測定範囲:常温〜1000℃に
連続的に昇温してゆき,成形体の高さ変化(膨張・収縮
の変化)を自動記録する。そして,成形体の高さ変化が
始まったところの屈曲点を焼結開始温度とする。なお,
前記の高さ変化の自動記録において,横軸に昇温してゆ
く温度(昇温速度が一定である場合には経過時間に対応
する)を採り,縦軸に高さ変化の割合(膨張率または収
縮率)を記録したものをTMA曲線と呼ぶ。
The test sample copper powder and the copper powder with an oxide film were subjected to measurement of the sintering start temperature described below. [Measurement of sintering start temperature]: 0.97 ± 0.001 g of copper powder for measurement was collected, and 0.03-0.05 g of terpineol and 4.5 g
Weight% of ethyl cellulose was added and mixed in an agate mortar for about 5 minutes. This mixture was loaded into a cylinder having a diameter of 5 mm. Form into a substantial columnar shape.
10 g of this molded body with the axis set in the vertical direction and
Under the condition of applying a load, the sample was charged into a heating furnace, and the temperature was raised continuously from room temperature to 1000 ° C. in a nitrogen flow at a heating rate of 10 ° C./min. (Change in expansion / contraction) is automatically recorded. Then, the bending point where the height change of the compact starts to be the sintering start temperature. In addition,
In the above-mentioned automatic recording of height change, the temperature at which the temperature rises (corresponding to the elapsed time when the heating rate is constant) is taken on the horizontal axis, and the ratio of the height change (expansion rate) is taken on the vertical axis. Alternatively, the recorded value is referred to as a TMA curve.

【0022】両粉体について得られたTMA曲線を図1
に示した。図1のTMA曲線から計測される焼結開始温
度は,供試材銅粉では746.2℃,酸化膜付き銅粉で
は406.2℃と算出され,後者の銅粉は前者に比べて
焼結開始温度が340℃低下したことになる。
The TMA curves obtained for both powders are shown in FIG.
It was shown to. The sintering start temperature measured from the TMA curve in FIG. 1 was calculated to be 746.2 ° C. for the test material copper powder and 406.2 ° C. for the copper powder with an oxide film, and the latter copper powder was calcined compared to the former. This means that the setting start temperature decreased by 340 ° C.

【0023】[0023]

【発明の効果】以上説明したように,本発明によると,
焼結開始温度が低下した銅粉が得られる。そして本発明
の銅粉が粒子表面に有する銅酸化物は,導電ペーストの
脱バインダー工程で炭素質物質の酸化剤として機能する
ので,導電ペーストの焼結性をさらに向上させることが
できる。
As described above, according to the present invention,
A copper powder having a reduced sintering start temperature is obtained. Since the copper oxide of the present invention on the particle surface functions as an oxidizing agent for the carbonaceous substance in the step of debinding the conductive paste, the sinterability of the conductive paste can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】供試材銅粉と酸化膜付き銅粉のTMA曲線を対
比して示した図である。
FIG. 1 is a diagram showing a comparison between TMA curves of a test material copper powder and a copper powder with an oxide film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐野 和司 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 Fターム(参考) 4K018 BA02 BC28 BC33 BD04 5G301 DA06 DA23 DD01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kazushi Sano 1-8-2 Marunouchi, Chiyoda-ku, Tokyo F-term within the same mining company 4K018 BA02 BC28 BC33 BD04 5G301 DA06 DA23 DD01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 銅粉重量に対し1.0〜50重量%の銅
酸化物が粒子表面に存在する低温焼成用銅粉。
1. A copper powder for low-temperature sintering in which 1.0 to 50% by weight of copper oxide is present on the surface of the particle relative to the weight of the copper powder.
【請求項2】 銅粉重量に対し1.0〜50重量%の銅
酸化物の薄膜で粒子表面の全体を覆った低温焼成用銅
粉。
2. A copper powder for low-temperature firing, wherein the entire surface of the particle is covered with a thin film of copper oxide of 1.0 to 50% by weight based on the weight of the copper powder.
【請求項3】 銅粉重量に対し1.0〜50重量%の銅
酸化物が粒子表面に存在する導電ペースト用銅粉。
3. Copper powder for a conductive paste, wherein 1.0 to 50% by weight of copper oxide is present on the surface of the particles based on the weight of the copper powder.
【請求項4】 銅粉重量に対し1.5〜50重量%の銅
酸化物の薄膜で粒子表面の全体を覆った導電ペースト用
銅粉。
4. Copper powder for a conductive paste, wherein the entire surface of the particle is covered with a thin film of copper oxide of 1.5 to 50% by weight based on the weight of the copper powder.
JP2001162156A 2001-05-30 2001-05-30 Manufacturing method of copper powder with oxide film Expired - Lifetime JP5044857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001162156A JP5044857B2 (en) 2001-05-30 2001-05-30 Manufacturing method of copper powder with oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001162156A JP5044857B2 (en) 2001-05-30 2001-05-30 Manufacturing method of copper powder with oxide film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010272850A Division JP2011094236A (en) 2010-12-07 2010-12-07 Copper powder for low temperature firing, or copper powder for conductive paste

Publications (2)

Publication Number Publication Date
JP2002356702A true JP2002356702A (en) 2002-12-13
JP5044857B2 JP5044857B2 (en) 2012-10-10

Family

ID=19005325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001162156A Expired - Lifetime JP5044857B2 (en) 2001-05-30 2001-05-30 Manufacturing method of copper powder with oxide film

Country Status (1)

Country Link
JP (1) JP5044857B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067211A1 (en) * 2003-01-31 2004-08-12 Toho Titanium Co., Ltd. Fine metal powder, process for producing the same, and conductive paste containing the fine metal powder
JP2005154861A (en) * 2003-11-27 2005-06-16 Mitsui Mining & Smelting Co Ltd Double layer-coated copper powder, method of producing the double layer-coated copper powder, and electrically conductive paste using the double layer-coated copper powder
JP2006118032A (en) * 2004-10-25 2006-05-11 Mitsui Mining & Smelting Co Ltd Flake copper powder provided with copper oxide coat layer, method for producing flake copper powder provided with copper oxide coat layer and conductive slurry comprising flake copper powder provided with copper oxide coat layer
JP2006196717A (en) * 2005-01-14 2006-07-27 Nec Tokin Corp Laminated piezoelectric ceramics element, and manufacturing method thereof
JP2009218167A (en) * 2008-03-12 2009-09-24 Hitachi Chem Co Ltd Conductive substrate, manufacturing method thereof, copper wiring substrate, and manufacturing method thereof
JP4761407B1 (en) * 2010-04-09 2011-08-31 三菱マテリアル株式会社 Clay-like composition for forming silver-copper alloy sintered body, powder for clay-like composition for forming silver-copper alloy sintered body, method for producing clay-like composition for forming silver-copper alloy sintered body,
JP2012046819A (en) * 2010-07-27 2012-03-08 Mitsubishi Materials Corp Clay-like composition for forming sintered compact, powder for clay-like composition for forming sintered compact, production method of clay-like composition for forming sintered compact, silver sintered compact and production method of silver sintered compact
JP2012092375A (en) * 2010-10-25 2012-05-17 Mitsubishi Materials Corp Method for manufacturing silver sintered body and copper oxide-containing clay-like composition
JP2013036059A (en) * 2011-08-04 2013-02-21 Mitsubishi Materials Corp Method of manufacturing sintered silver-copper alloy body
WO2013031765A1 (en) * 2011-08-30 2013-03-07 三菱マテリアル株式会社 Powder for clay-like composition for forming sintered silver-copper alloy object using copper compound, clay-like composition, and method for producing clay-like composition
JP2013049875A (en) * 2011-08-30 2013-03-14 Mitsubishi Materials Corp Clay composition for forming silver-copper alloy sintered compact, powder for the clay composition for forming silver-copper alloy sintered compact, method for producing the clay composition for forming silver-copper alloy sintered compact, method for producing silver-copper alloy sintered compact, and the silver-copper alloy sintered compact
JP2013136840A (en) * 2011-12-27 2013-07-11 Samsung Electro-Mechanics Co Ltd Copper powder, copper paste, and method for producing the copper powder
WO2016052373A1 (en) * 2014-10-03 2016-04-07 三井金属鉱業株式会社 Copper powder
WO2018173753A1 (en) * 2017-03-24 2018-09-27 大陽日酸株式会社 Fine copper particles, method for producing fine copper particles and method for producing sintered body
WO2019017467A1 (en) * 2017-07-21 2019-01-24 三井金属鉱業株式会社 Copper powder, method for producing stereolithographic model using same, and stereolithographic model using copper
JP2021014633A (en) * 2019-07-16 2021-02-12 Jx金属株式会社 Surface-treated copper powder
JP2021014634A (en) * 2019-07-16 2021-02-12 Jx金属株式会社 Surface-treated copper powder
CN116013580A (en) * 2023-01-05 2023-04-25 哈尔滨理工大学 Self-reduction copper sintering slurry for power semiconductor packaging and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035405A (en) * 1983-06-20 1985-02-23 イ−・アイ・デユポン・ド・ネモア−ス・アンド・コンパニ− Copper conductor composition
JPH1125754A (en) * 1997-06-27 1999-01-29 Kyocera Corp Manufacture of copper-metallized composition and glass-ceramic substrate
JP2002169273A (en) * 2000-11-30 2002-06-14 Murata Mfg Co Ltd Photosensitive copper paste and circuit board using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035405A (en) * 1983-06-20 1985-02-23 イ−・アイ・デユポン・ド・ネモア−ス・アンド・コンパニ− Copper conductor composition
JPH1125754A (en) * 1997-06-27 1999-01-29 Kyocera Corp Manufacture of copper-metallized composition and glass-ceramic substrate
JP2002169273A (en) * 2000-11-30 2002-06-14 Murata Mfg Co Ltd Photosensitive copper paste and circuit board using the same

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067211A1 (en) * 2003-01-31 2004-08-12 Toho Titanium Co., Ltd. Fine metal powder, process for producing the same, and conductive paste containing the fine metal powder
JP2005154861A (en) * 2003-11-27 2005-06-16 Mitsui Mining & Smelting Co Ltd Double layer-coated copper powder, method of producing the double layer-coated copper powder, and electrically conductive paste using the double layer-coated copper powder
JP2006118032A (en) * 2004-10-25 2006-05-11 Mitsui Mining & Smelting Co Ltd Flake copper powder provided with copper oxide coat layer, method for producing flake copper powder provided with copper oxide coat layer and conductive slurry comprising flake copper powder provided with copper oxide coat layer
JP2006196717A (en) * 2005-01-14 2006-07-27 Nec Tokin Corp Laminated piezoelectric ceramics element, and manufacturing method thereof
JP2009218167A (en) * 2008-03-12 2009-09-24 Hitachi Chem Co Ltd Conductive substrate, manufacturing method thereof, copper wiring substrate, and manufacturing method thereof
US8308841B2 (en) 2010-04-09 2012-11-13 Mitsubishi Materials Corporation Clayish composition for forming sintered silver alloy body, powder for clayish composition for forming sintered silver alloy body, method for manufacturing clayish composition for forming sintered silver alloy body, sintered silver alloy body, and method for manufacturing sintered silver alloy body
WO2011125244A1 (en) * 2010-04-09 2011-10-13 三菱マテリアル株式会社 Clay-like composition for forming a sintered object, powder for a clay-like composition for forming a sintered object, method for manufacturing a clay-like composition for forming a sintered object, sintered silver object, and method for manufacturing a sintered silver object
WO2011125266A1 (en) * 2010-04-09 2011-10-13 三菱マテリアル株式会社 Clay-like composition for forming a sintered silver alloy object, powder for a clay-like composition for forming a sintered silver alloy object, method for manufacturing a clay-like composition for forming a sintered silver alloy object, sintered silver alloy object, and method for manufacturing a sintered silver alloy object
JP2012046820A (en) * 2010-04-09 2012-03-08 Mitsubishi Materials Corp Method for producing sintered silver-copper alloy body and sintered silver-copper alloy body produced by the method
US9399254B2 (en) 2010-04-09 2016-07-26 Mitsubishi Materials Corporation Clayish composition for forming sintered silver alloy body, powder for clayish composition for forming sintered silver alloy body, method for manufacturing clayish composition for forming sintered silver alloy body, sintered silver alloy body, and method for manufacturing sintered silver alloy body
JP2012122083A (en) * 2010-04-09 2012-06-28 Mitsubishi Materials Corp Clayish composition for forming sintered silver-copper alloy body, powder for clayish composition for forming sintered silver-copper alloy body and method for manufacturing clayish composition for forming sintered silver-copper alloy body
GB2492299B (en) * 2010-04-09 2016-11-02 Mitsubishi Materials Corp Clay-like composition for forming a sintered silver alloy object, powder for a clay like composition for forming a sintered silver object.
GB2492299A (en) * 2010-04-09 2012-12-26 Mitsubishi Materials Corp Clay-like composition for forming a sintered silver alloy object, powder for a clay like composition for forming a sintered silver object.
JP4761407B1 (en) * 2010-04-09 2011-08-31 三菱マテリアル株式会社 Clay-like composition for forming silver-copper alloy sintered body, powder for clay-like composition for forming silver-copper alloy sintered body, method for producing clay-like composition for forming silver-copper alloy sintered body,
US8496726B2 (en) 2010-04-09 2013-07-30 Mitsubishi Materials Corporation Clayish composition for forming sintered silver alloy body, powder for clayish composition for forming sintered silver alloy body, method for manufacturing clayish composition for forming sintered silver alloy body, sintered silver alloy body, and method for manufacturing sintered silver alloy body
JP2012046819A (en) * 2010-07-27 2012-03-08 Mitsubishi Materials Corp Clay-like composition for forming sintered compact, powder for clay-like composition for forming sintered compact, production method of clay-like composition for forming sintered compact, silver sintered compact and production method of silver sintered compact
JP2012092375A (en) * 2010-10-25 2012-05-17 Mitsubishi Materials Corp Method for manufacturing silver sintered body and copper oxide-containing clay-like composition
US9194025B2 (en) 2010-10-25 2015-11-24 Mitsubishi Materials Corporation Method of manufacturing sintered silver alloy body and copper oxide-containing clay-like composition
JP2013036059A (en) * 2011-08-04 2013-02-21 Mitsubishi Materials Corp Method of manufacturing sintered silver-copper alloy body
JP2013049875A (en) * 2011-08-30 2013-03-14 Mitsubishi Materials Corp Clay composition for forming silver-copper alloy sintered compact, powder for the clay composition for forming silver-copper alloy sintered compact, method for producing the clay composition for forming silver-copper alloy sintered compact, method for producing silver-copper alloy sintered compact, and the silver-copper alloy sintered compact
JP2013049874A (en) * 2011-08-30 2013-03-14 Mitsubishi Materials Corp Powder for clay-like composition for forming sintered silver-copper alloy object using copper compound, clay-like composition, and method for producing clay-like composition
WO2013031765A1 (en) * 2011-08-30 2013-03-07 三菱マテリアル株式会社 Powder for clay-like composition for forming sintered silver-copper alloy object using copper compound, clay-like composition, and method for producing clay-like composition
KR101353149B1 (en) * 2011-12-27 2014-01-27 삼성전기주식회사 Manufacturing mehtod for copper powder
JP2013136840A (en) * 2011-12-27 2013-07-11 Samsung Electro-Mechanics Co Ltd Copper powder, copper paste, and method for producing the copper powder
JPWO2016052373A1 (en) * 2014-10-03 2017-08-10 三井金属鉱業株式会社 Copper powder
TWI659114B (en) * 2014-10-03 2019-05-11 Mitsui Mining & Smelting Company, Ltd. Copper powder
WO2016052373A1 (en) * 2014-10-03 2016-04-07 三井金属鉱業株式会社 Copper powder
CN110430952B (en) * 2017-03-24 2022-04-05 大阳日酸株式会社 Copper fine particles, method for producing copper fine particles, and method for producing sintered body
WO2018173753A1 (en) * 2017-03-24 2018-09-27 大陽日酸株式会社 Fine copper particles, method for producing fine copper particles and method for producing sintered body
JP2018162474A (en) * 2017-03-24 2018-10-18 大陽日酸株式会社 Copper fine particle, method for producing a copper fine particle, and method for manufacturing a sintered body
US11701706B2 (en) 2017-03-24 2023-07-18 Taiyo Nippon Sanso Corporation Fine copper particles, method for producing fine copper particles and method for producing sintered body
CN110430952A (en) * 2017-03-24 2019-11-08 大阳日酸株式会社 The manufacturing method of copper particle, the manufacturing method of copper particle and sintered body
TWI806855B (en) * 2017-03-24 2023-07-01 日商大陽日酸股份有限公司 Copper fine particles, method for producing copper fine particles, and method for producing sintered body
JPWO2019017467A1 (en) * 2017-07-21 2020-05-28 三井金属鉱業株式会社 Copper powder, method of manufacturing stereolithography product using the same, and stereolithography product of copper
JP7143223B2 (en) 2017-07-21 2022-09-28 三井金属鉱業株式会社 Copper powder, method for manufacturing stereolithographic object using the same, and stereolithographic object using copper
WO2019017467A1 (en) * 2017-07-21 2019-01-24 三井金属鉱業株式会社 Copper powder, method for producing stereolithographic model using same, and stereolithographic model using copper
JP2021014634A (en) * 2019-07-16 2021-02-12 Jx金属株式会社 Surface-treated copper powder
JP2021014633A (en) * 2019-07-16 2021-02-12 Jx金属株式会社 Surface-treated copper powder
CN116013580A (en) * 2023-01-05 2023-04-25 哈尔滨理工大学 Self-reduction copper sintering slurry for power semiconductor packaging and preparation method and application thereof
CN116013580B (en) * 2023-01-05 2023-11-28 哈尔滨理工大学 Self-reduction copper sintering slurry for power semiconductor packaging and preparation method and application thereof

Also Published As

Publication number Publication date
JP5044857B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP2002356702A (en) Copper powder for low temperature burning or copper powder for electroconductive paste
JP2011094236A (en) Copper powder for low temperature firing, or copper powder for conductive paste
EP3153254B1 (en) Method for firing copper paste
JP7090511B2 (en) Silver powder and its manufacturing method
JP2003016832A (en) Copper powder for conductive paste with superior oxidation resistance, and manufacturing method therefor
JP4158713B2 (en) Copper paste composition for external electrodes
JP7272834B2 (en) Silver powder and its manufacturing method
EP3395474A1 (en) Silver alloy powder and method for producing same
JP5067312B2 (en) Nickel powder and its manufacturing method
JP2006118032A (en) Flake copper powder provided with copper oxide coat layer, method for producing flake copper powder provided with copper oxide coat layer and conductive slurry comprising flake copper powder provided with copper oxide coat layer
JP4743387B2 (en) Method for producing aluminum nitride powder
JP2001220607A (en) Copper powder and method for producing copper powder
JP2002356630A (en) Copper powder for low-temperature baking or conductive paste
JP3861648B2 (en) Copper conductor paste composition, method for producing the same, and electronic component using the same
JP2004149817A (en) Copper powder for conductive paste excellent in oxidation resistance and sinterability, and its production method
JP2008101276A (en) Copper powder for electrically conductive paste for external electrode having excellent oxidation resistance and sinterability
JP2001118424A (en) Copper alloy powder for conductive paste
JP4276031B2 (en) Titanium compound-coated nickel powder and conductive paste using the same
WO2022264522A1 (en) Copper oxide-containing powder, conductive paste, and copper oxide-containing powder manufacturing method
JP2949296B2 (en) Aluminum nitride substrate
JP2949294B2 (en) Aluminum nitride substrate and method of manufacturing the same
JP3146861B2 (en) Binder removal method and method for manufacturing ceramic sintered body
JP2021152216A (en) Phosphorus-containing silver powder and conductive paste containing the silver powder
JP2720094B2 (en) Method for manufacturing aluminum nitride substrate
JPH08111120A (en) Conductive fine powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5044857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term