JP2008101276A - Copper powder for electrically conductive paste for external electrode having excellent oxidation resistance and sinterability - Google Patents

Copper powder for electrically conductive paste for external electrode having excellent oxidation resistance and sinterability Download PDF

Info

Publication number
JP2008101276A
JP2008101276A JP2008001263A JP2008001263A JP2008101276A JP 2008101276 A JP2008101276 A JP 2008101276A JP 2008001263 A JP2008001263 A JP 2008001263A JP 2008001263 A JP2008001263 A JP 2008001263A JP 2008101276 A JP2008101276 A JP 2008101276A
Authority
JP
Japan
Prior art keywords
copper powder
conductive paste
sio
coating film
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008001263A
Other languages
Japanese (ja)
Other versions
JP4977041B2 (en
Inventor
Yoshihiro Okada
美洋 岡田
Akitsugu Hirata
晃嗣 平田
Katayuki Sakane
堅之 坂根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2008001263A priority Critical patent/JP4977041B2/en
Publication of JP2008101276A publication Critical patent/JP2008101276A/en
Application granted granted Critical
Publication of JP4977041B2 publication Critical patent/JP4977041B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the oxidation of copper powder in a debindering stage till the sintering of electrically conductive paste using the copper powder as an electrically conductive filler, and simultaneously, to improve the quality of the resultant sintered compact. <P>SOLUTION: Regarding the copper powder used for an electrically conductive filler in electrically conductive paste having excellent oxidation resistance and sinterability, Si is comprised by ≤5 wt.%, substantially all the Si is deposited on the surfaces of copper particles as an SiO<SB>2</SB>-based gel coating film, and at least one of glass formable component is comprised in the SiO<SB>2</SB>-based gel coating film. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,外部電極用導電ペーストの導電フィラーに用いる耐酸化性および焼結性に優れた銅粉に関する。   The present invention relates to a copper powder excellent in oxidation resistance and sinterability used for a conductive filler of a conductive paste for external electrodes.

各種基板の表面や内部あるいは外部に電気回路や電極を形成する手段として導電ペーストが多く使用されている。導電ペーストは,樹脂系バインダーと溶媒からなるビヒクル中に,導電フィラーを分散させた流動性のある流体であり,導電フィラーとしては,銅粉と銀粉の使用が一般的である。このような導電ペーストを各種基板の回路や電子部品の電極として塗布し,適当な温度に昇温すると,ビヒクルが蒸発・分解し,導電フィラーとしての金属粉が互いに焼結して電気の良導体が形成される。最近では,銅粉を導電フィラーとした導電ペースト(銅系ペースト)は,銀粉を導電フィラーとした導電ペースト(銀系ペースト)と比較し,マイグレーションが生じにくい,耐ハンダ性に優れる,低コスト化が可能である等の理由により,一層汎用化されつつある。   A conductive paste is often used as a means for forming electric circuits and electrodes on the surface, inside or outside of various substrates. The conductive paste is a fluid fluid in which a conductive filler is dispersed in a vehicle composed of a resin binder and a solvent, and copper powder and silver powder are generally used as the conductive filler. When such conductive paste is applied as an electrode for various circuit boards and electronic components and heated to an appropriate temperature, the vehicle evaporates and decomposes, and the metal powder as the conductive filler sinters together to produce a good electrical conductor. It is formed. Recently, conductive paste using copper powder as a conductive filler (copper-based paste) is less likely to cause migration, has better solder resistance, and is less expensive than conductive paste using silver powder as a conductive filler (silver-based paste). However, it is becoming more and more versatile because it is possible.

同じ銅系ペーストでも,積層セラミックコンデンサーの外部電極に用いるものや,基板に各種の回路を形成するものでは,電極や回路の形態,その形成方法,基板材料の違い等によって,導電ペーストに要求される物理的および化学的性質が異なる。   Even if the same copper paste is used for the external electrode of the multilayer ceramic capacitor or for forming various circuits on the substrate, it is required for the conductive paste depending on the form of the electrode and circuit, the formation method, and the substrate material. Different physical and chemical properties.

例えば積層セラミックコンデンサー等のチップ部品に銅系ペーストを塗布し,加熱することによって該ペースト中の銅粉を焼結して電極等の導体を形成する場合には,当該銅粉は特に耐酸化性と焼結性が良好であることが要求される。すなわち,前記の加熱処理では,銅粉の酸化を防止するために不活性ガス(一般的に窒素ガス)雰囲気が採用されるが,実際には,ペースト中の樹脂や溶媒の分解生成物である炭素質成分が残留してしまうと,焼結性に悪影響を及ぼすことがあるため,窒素ガスに若干の酸素を混入させてペースト中の樹脂や溶媒の気化(脱バインダーと呼ぶ)を促進させており,この場合には銅粉表面が酸化されてしまうことがある。   For example, when a copper paste is applied to a chip component such as a multilayer ceramic capacitor and the copper powder in the paste is sintered by heating to form a conductor such as an electrode, the copper powder is particularly resistant to oxidation. And good sinterability is required. That is, in the above heat treatment, an inert gas (generally nitrogen gas) atmosphere is employed to prevent the copper powder from being oxidized, but in reality, it is a decomposition product of the resin and solvent in the paste. If the carbonaceous component remains, the sinterability may be adversely affected, so that some oxygen is mixed into the nitrogen gas to promote the vaporization of the resin and solvent in the paste (called debinding). In this case, the copper powder surface may be oxidized.

銅粉表面が酸化されてしまうと,粒子表面が酸化銅で覆われてしまうこととなり,焼結性が悪くなり,形成される導体の導電性にも悪い影響を与える。他方,銅粉に耐酸化性を付与する手段を採用すると,例えば耐酸化性被膜などを銅粒子表面に施すと,前記加熱時の酸化は防止できるが,一般に焼結性が悪くなり,焼結温度も高くしなければならない。したがって,加熱時の酸化が防止されると同時に焼結性も良好な導電ペースト用銅粉が求められている。
特開2001−307944号公報 特開平10−330802号公報 特開2002−280248号公報 特開平3−54126号公報
If the surface of the copper powder is oxidized, the particle surface is covered with copper oxide, so that the sinterability is deteriorated and the conductivity of the formed conductor is also adversely affected. On the other hand, if a means for imparting oxidation resistance to copper powder is adopted, for example, if an oxidation resistant coating is applied to the surface of the copper particles, oxidation during the heating can be prevented, but in general, the sinterability is deteriorated and sintering is performed. The temperature must also be increased. Therefore, there is a need for a copper powder for conductive paste that is prevented from oxidation during heating and at the same time has good sinterability.
JP 2001-307944 A Japanese Patent Laid-Open No. 10-330802 JP 2002-280248 A JP-A-3-54126

本発明の課題は,このような要求を満たすことにあり,耐酸化性と焼結性が同時に優れた外部電極用導電ペースト用銅粉を得ることにある。   An object of the present invention is to satisfy such a demand, and to obtain a copper powder for a conductive paste for external electrodes, which is excellent in oxidation resistance and sinterability at the same time.

本発明によれば,導電ペーストの導電フィラーに用いる銅粉において,5重量%以下のSiを含有し,そのSiの実質上全てがSiO2系ゲルコーティング膜として銅粒子表面に被着しており,このSiO2系ゲルコーティング膜が少なくとも1種のガラス形成性成分を含有していることを特徴とする耐酸化性および焼結性に優れた外部電極用導電ペースト用銅粉を提供する。この銅粉はSiO2系ゲルコーティング膜が優れた耐酸化性を示す。またこの銅粉はガラスフリットと混合して導電ペーストとしたさいに,焼結時においてSiO2系ゲルコーティング膜中のガラス形成性成分がガラスフリットとの融和を促進し,低い焼結温度で良好な焼結体を形成することができる。ここで,ガラス形成性成分は,アルカリ金属(M1という),アルカリ土類金属(M2という),両性金属(M3という)または酸素・水素と結合してオキソ酸を形成する元素(M4という)であることができ,M1/Siの原子比,M2/Siの原子比,M3/Siの原子比,M4/Siの原子比がいずれも0.5以下であるのがよい。 According to the present invention, the copper powder used for the conductive filler of the conductive paste contains 5% by weight or less of Si, and substantially all of the Si is deposited on the surface of the copper particles as a SiO 2 gel coating film. The present invention provides a copper powder for a conductive paste for external electrodes, which is excellent in oxidation resistance and sinterability, characterized in that the SiO 2 gel coating film contains at least one glass-forming component. This copper powder exhibits excellent oxidation resistance in the SiO 2 gel coating film. In addition, when this copper powder is mixed with glass frit to form a conductive paste, the glass-forming component in the SiO 2 gel coating film promotes the fusion with the glass frit during sintering and is good at low sintering temperatures. Can be formed. Here, the glass-forming component is an element that forms an oxo acid by combining with an alkali metal (referred to as M 1 ), an alkaline earth metal (referred to as M 2 ), an amphoteric metal (referred to as M 3 ), or oxygen / hydrogen. 4 ), and the atomic ratio of M 1 / Si, the atomic ratio of M 2 / Si, the atomic ratio of M 3 / Si, and the atomic ratio of M 4 / Si are all 0.5 or less. Is good.

このような銅粉は,水溶性の有機溶媒中で,銅粉,オルガノシラン化合物および水を反応させてオルガノシランの加水分解生成物を生成させ,得られた懸濁液にゲル化剤を添加して銅粉の粒子表面にSiO2系ゲルコーティング膜を形成させ,次いで,固液分離してSiO2系ゲルコーティング膜を有する銅粒子を採取する方法において,前記のオルガノシランの加水分解生成物が生成した懸濁液若しくは生成途中または前の液に,ガラス形成性成分を溶解した水溶液を添加することによって,有利に製造できる。 Such a copper powder is obtained by reacting copper powder, an organosilane compound and water in a water-soluble organic solvent to produce a hydrolyzed product of organosilane, and adding a gelling agent to the resulting suspension. In the method of forming a SiO 2 gel coating film on the surface of the copper powder particles and then collecting the copper particles having the SiO 2 gel coating film by solid-liquid separation, the hydrolysis product of the organosilane described above Can be advantageously produced by adding an aqueous solution in which a glass-forming component is dissolved to the suspension produced or during or before production.

本発明によると,耐酸化性を維持したまま焼結性を向上できる銅粉を得ることができた。その結果,導電ペーストのフィラーに使用した場合,焼成過程で発生するボイドを抑えることができ,焼結性の優れた外部電極用導電ペーストを得ることができる。また,ボイド数が低減したことにより,焼成後の導電ペースト上にメッキを施す際,ボイド中にメッキ液が入り込んで腐食するという問題なども解決できる。   According to the present invention, a copper powder capable of improving the sinterability while maintaining the oxidation resistance could be obtained. As a result, when used as a filler for a conductive paste, voids generated during the firing process can be suppressed, and a conductive paste for external electrodes having excellent sinterability can be obtained. In addition, since the number of voids is reduced, it is possible to solve the problem that the plating solution gets into the void and corrodes when plating is performed on the conductive paste after firing.

前記の課題を解決すべく,本発明者らはゾル・ゲル法に着目して銅粉表面に金属酸化物をコーティングすることを種々試みた。その結果,オルガノシラン化合物由来の加水分解生成物の極薄層を銅粒子表面にシロキサン結合で被着させたあと触媒などによって縮合反応を行わせると,銅粒子表面に均一な極薄のSiO2系ゲルコーティング膜が湿式法で生成できることを知った。そして,このようにして得られたSiO2系ゲルコーティング膜をもつ銅粉は,当該皮膜なしの銅粉に比べて,酸化開始温度を120〜200℃程度高くすることが可能となり,焼結開始温度も変化することがわかった。また,このSiO2系ゲルコーティング膜に適切なガラス形成性成分を含有させることによって,ガラス形成性成分含有のSiO2系ゲルコーティング膜付きの銅粉とし,このものをガラスフリットと共にビヒクル中に分散させて導電ペーストを作成すると,その焼結性を著しく改善できることが判明した。 In order to solve the above-mentioned problems, the present inventors have made various attempts to coat the surface of the copper powder with a metal oxide while paying attention to the sol-gel method. As a result, when an ultrathin layer of a hydrolysis product derived from an organosilane compound is deposited on the surface of copper particles with a siloxane bond and then subjected to a condensation reaction with a catalyst or the like, a uniform ultrathin SiO 2 layer is formed on the surface of the copper particles. It was found that a gel coating film can be formed by a wet method. And, the copper powder having the SiO 2 gel coating film thus obtained can have an oxidation start temperature of about 120 to 200 ° C. higher than that of the copper powder without the film, and the sintering start. It was found that the temperature also changed. Further, by incorporating a suitable glass forming ingredients on the SiO 2 based gel coating, and glass-forming component containing SiO 2 based gel coating film with a copper powder, dispersing the ones in a vehicle together with glass frit It was found that the sinterability can be significantly improved by making the conductive paste.

まず,ゾル・ゲル法の適用について説明すると,平均粒径が好ましくは10μm以下の銅粉に対して,その銅粒子表面でオルガノシラン化合物の加水分解・縮合のゾル・ゲル反応を有機溶媒中で進行させると,膜厚が薄くて均一なSiO2系ゲルコーティング膜が形成できる。具体的には,まずゾルの加水分解を行うために,水溶性の有機溶媒例えばイソプロピルアルコール中で銅粉,オルガノシラン化合物および水を反応させる。 First, the application of the sol-gel method will be described. For the copper powder having an average particle size of preferably 10 μm or less, the sol-gel reaction of hydrolysis / condensation of the organosilane compound on the surface of the copper particle is performed in an organic solvent. As the process proceeds, a thin and uniform SiO 2 gel coating film can be formed. Specifically, in order to hydrolyze the sol, copper powder, an organosilane compound and water are reacted in a water-soluble organic solvent such as isopropyl alcohol.

有機溶媒としては,加水分解を進行させるゾル媒体として機能するために,水を溶解するものが好ましく,例えば20℃での水の溶解度が10重量%以上のものがよい。このような有機溶媒としては,メチルアルコール,エチルアルコール,イソプロピルアルコール,アセトン,メチルエチルケトン,テトラヒドロフラン,ジオキソラン,ジオキサンなどが使用可能である。   As an organic solvent, in order to function as a sol medium which advances hydrolysis, the thing which dissolves water is preferable, for example, the solubility of water at 20 degreeC is 10 weight% or more. As such an organic solvent, methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, methyl ethyl ketone, tetrahydrofuran, dioxolane, dioxane and the like can be used.

オルガノシランとしては,例えば一般式R1 4-aSi( OR2aで表されるアルコキシシラン(R1は1価の炭化水素基,R2は炭素数1〜4の1価の炭化水素基,aは3〜4)が好適であり,代表的なものとして,テトラエトキシシラン,メチルトリメトキシシランなどが挙げられる。 Examples of the organosilane include alkoxysilanes represented by the general formula R 14 -a Si (OR 2 ) a (R 1 is a monovalent hydrocarbon group, R 2 is a monovalent hydrocarbon having 1 to 4 carbon atoms) The group a is preferably 3-4), and typical examples include tetraethoxysilane and methyltrimethoxysilane.

アルコキシシランの加水分解反応を,該有機溶媒中の銅粉表面で行わせるために,先ず銅粉を有機溶媒に入れて攪拌し懸濁させておき,そのなかにアルコキシシランを添加し,ついで加水分解に供される水(純水)を添加する(或いは純水を添加したあとでアルコキシシランを添加する)という操作順序を経てから,加水分解・縮合反応を促進させるアルカリ触媒,例えばアンモニア水を添加するのがよい。これによって,まず,銅粉表面にはシロキサン結合によってアルコキシシランが付着し,そのアルコキシシランが銅粉表面で加水分解し,縮合反応して(ゲル化して)SiO2系の均一な皮膜が銅粒子表面に形成される。 In order to cause the alkoxysilane hydrolysis reaction to occur on the surface of the copper powder in the organic solvent, the copper powder is first put in an organic solvent, suspended and suspended, and then the alkoxysilane is added thereto, and then the water is added. After the operation sequence of adding water (pure water) to be decomposed (or adding alkoxysilane after adding pure water), an alkaline catalyst that promotes hydrolysis / condensation reaction, such as ammonia water, is added. It is good to add. As a result, first, alkoxysilane adheres to the surface of the copper powder by a siloxane bond, and the alkoxysilane is hydrolyzed on the surface of the copper powder to undergo a condensation reaction (gelation) to form a uniform SiO 2 -based film with copper particles. Formed on the surface.

一般にゾル・ゲル反応の触媒には酸またはアルカリが用いられるが,銅粉表面にSiO2系ゲルコーティング膜を形成する場合には,アンモニアが触媒として最も適していることを本発明者らは知った。塩酸,硫酸または燐酸などの酸では耐酸化性が十分なゲルコーティング膜が得られない。これに対し,アンモニアを用いた場合には,良好な耐酸化特性をもつゲルコーティング膜が得られるとともに,入手しやすく低コストで揮発除去が簡単で不純物の残留がないなどのメリットがある。 In general, acid or alkali is used as a catalyst for the sol-gel reaction, but the present inventors know that ammonia is most suitable as a catalyst when a SiO 2 gel coating film is formed on the surface of copper powder. It was. A gel coating film having sufficient oxidation resistance cannot be obtained with an acid such as hydrochloric acid, sulfuric acid or phosphoric acid. On the other hand, when ammonia is used, a gel coating film having good oxidation resistance can be obtained, and it is easy to obtain, has a merit that it is easy to remove at a low cost and has no residual impurities.

該縮合反応はアンモニア水を添加したあと,所定温度で所定時間熟成することによって進行させるのが望ましく,例えば液温を20〜60℃に所定の時間保持するのがよい。SiO2系ゲルコーティング膜の膜厚は一般にアルコキシシラン量,液温,保持時間などに依存するので,これらを調整することによって,均一厚みのSiO2系ゲルコーティング膜の薄膜を銅粒子表面に形成させることができる。そのさい,銅粉の粒子形状は膜厚に影響することは殆んどなく,球状,板状,フレーク状(箔片状),角形状などあらゆる形状の銅粒子でも均一な膜厚のSiO2系ゲルコーティング膜が形成できることが確認された。またアンモニア触媒の使用にあたっては,連続的に反応系に添加することによって,SiO2系ゲルコーティング膜付き銅粉の凝集を防止できることがわかった。仮に凝集したとしても,反応系に超音波を付与すると良好に分散して少なくとも原料銅粉と同等程度にまでは分散させることができる。 The condensation reaction is preferably allowed to proceed by adding ammonia water and then aging at a predetermined temperature for a predetermined time. For example, the liquid temperature may be maintained at 20 to 60 ° C. for a predetermined time. The film thickness of the SiO 2 -based gel coating film generally depends on the amount of alkoxysilane, liquid temperature, holding time, etc. By adjusting these, a thin film of SiO 2 -based gel coating film with a uniform thickness is formed on the copper particle surface Can be made. At this time, the particle shape of the copper powder hardly affects the film thickness. Even if the copper particles have any shape such as spherical, plate, flake (foil piece), square, etc., the SiO 2 film has a uniform thickness. It was confirmed that a gel coating film can be formed. In addition, when using an ammonia catalyst, it was found that aggregation of copper powder with a SiO 2 gel coating film can be prevented by continuously adding it to the reaction system. Even if agglomerated, it can be dispersed satisfactorily by applying ultrasonic waves to the reaction system and at least to the same extent as the raw material copper powder.

このようにして銅粉表面に均一な膜厚のSiO2系ゲルコーティング膜が形成できるが,この皮膜の量については,銅に対してSiO2量が10重量%を超えるような量では導電性にも影響が大きくなるので,それ以下であるのがよく,Si量で言えば5重量%以下であるのがよい。すなわち,5重量%以下のSiを含有した銅粉であって,そのSiの実質上全てがSiO2系ゲルコーティング膜として銅粒子表面に被着しているのがよい。ここで,Siの「実質上」全てとは,SiO2以外にも少量のSiが皮膜中に不可避的に残存してもよいという意味であり,例えば製造上の理由によりSiの一部がアルコキシシランの残留物として皮膜中に不可避的に残存したり,SiO2以外のSi酸化物として少量存在しても,その量が僅かであれば特に悪影響を与えることはない。 In this way, a uniform SiO 2 -based gel coating film can be formed on the surface of the copper powder, but the amount of this film is not conductive if the amount of SiO 2 exceeds 10% by weight with respect to copper. The amount of Si is preferably less than that, and the amount of Si is preferably 5% by weight or less. That is, it is preferable that the copper powder contains 5% by weight or less of Si, and substantially all of the Si is deposited on the surface of the copper particles as a SiO 2 gel coating film. Here, “substantially” all of Si means that a small amount of Si other than SiO 2 may inevitably remain in the film. For example, a part of Si may be alkoxy for manufacturing reasons. Even if a silane residue inevitably remains in the film or is present in a small amount as a Si oxide other than SiO 2 , there is no particular adverse effect as long as the amount is small.

このようにして,ゾル・ゲル法により銅粉表面にSiO2系ゲルコーティング膜を施すことができ,これによって銅粉の耐酸化性と焼結性を向上させることができるが,このゾル・ゲル法によるSiO2系ゲルコーティング膜を施す過程で適切なガラス形成性成分を当該ゲルコーティング膜に含有させるようにすると,良好な耐酸化性を維持しながら,さらに焼結性を向上させることができる。 In this way, the SiO 2 gel coating film can be applied to the surface of the copper powder by the sol-gel method, which can improve the oxidation resistance and sintering property of the copper powder. When a suitable glass-forming component is included in the gel coating film during the process of applying the SiO 2 -based gel coating film, the sinterability can be further improved while maintaining good oxidation resistance. .

以下に,当該ゲルコーティング膜へのガラス形成性成分の添加について説明するが,その要旨とするところは,前記のように水溶性の有機溶媒中で,銅粉,オルガノシラン化合物および水を反応させてオルガノシランの加水分解生成物を生成させ,得られた懸濁液にゲル化剤を添加して銅粉の粒子表面にSiO2系ゲルコーティング膜を形成させ,次いで,固液分離してSiO2系ゲルコーティング膜を有する銅粒子を採取する銅粉の製造法において,当該オルガノシランの加水分解生成物が生成した懸濁液若しくは生成途中または生成前の液に「ガラス形成性成分を溶解した水溶液」を添加することによって,生成するSiO2系ゲルコーティング膜中にガラス形成性成分を含有させるものである。 In the following, the addition of glass-forming components to the gel coating film will be described. The gist of the addition is to react copper powder, organosilane compound and water in a water-soluble organic solvent as described above. A hydrolyzed product of organosilane is generated, and a gelling agent is added to the resulting suspension to form a SiO 2 gel coating film on the surface of the copper powder particles. In the method for producing copper powder by collecting copper particles having a 2 system gel coating film, the glass-forming component was dissolved in the suspension in which the hydrolysis product of the organosilane was produced, or during or before the production. By adding “aqueous solution”, a glass-forming component is contained in the SiO 2 -based gel coating film to be formed.

すなわち,オルガノシランの加水分解生成物(ゾル)が生成した懸濁液,若しくはゾルの生成途中またはゾルの生成前の液に,ガラス形成性成分を溶解した水溶液を添加する点に特徴がある。そのさい,該ゾルが形成した懸濁液に対して添加する場合には,ゲル化剤の添加前にガラス形成性成分を溶解した水溶液を添加してもよいが,ゲル化剤と同時にガラス形成性成分を添加してもよい。後者の場合には,ゲル化剤にガラス形成性成分を含有させた状態で添加することもできる。ガラス形成性成分を水溶液の形態で添加してゲル化剤(アンモニア)でゲル化を進行させると,生成するゲル中にガラス形成性成分の酸化物が取り込まれ,ガラス形成性成分を一様に含有したSiO2系ゲルコーティング膜が銅粒子の表面に形成される。 That is, it is characterized in that an aqueous solution in which a glass-forming component is dissolved is added to a suspension in which an organosilane hydrolysis product (sol) is formed, or to a solution in the middle of or before the generation of the sol. At that time, when adding to the suspension formed by the sol, an aqueous solution in which the glass-forming component is dissolved may be added before adding the gelling agent. Sexual components may be added. In the case of the latter, it can also add in the state which made the gelatinizer contain the glass-forming component. When a glass-forming component is added in the form of an aqueous solution and gelation proceeds with a gelling agent (ammonia), an oxide of the glass-forming component is incorporated into the resulting gel, and the glass-forming component is uniformly distributed. The contained SiO 2 gel coating film is formed on the surface of the copper particles.

このガラス形成性成分の添加は,当該成分の水酸化物,酸化物,無機酸塩,オキソ酸またはオキソ酸塩を溶解した溶液を使用して行うのがよい。本発明で使用するガラス形成性成分はアルカリ金属(M1),アルカリ土類金属(M2),両性金属元素(M3)または酸素・水素と結合してオキソ酸を形成する元素(M4)であることができる。このようなガラス形成性成分は,銅粉をフィラーとした導電ペーストを焼成するさいにガラス化し易い成分であり,実際には,当該導電ペースト中にガラスフリットを共存させる場合に,そのガラスフリットとなじみがよく,したがって,SiO2系ゲルコーティング膜のガラスフリットに対する濡れ性を改善する性質のある成分を意味している。 The glass-forming component is preferably added using a solution in which the component hydroxide, oxide, inorganic acid salt, oxo acid or oxo acid salt is dissolved. Glass-forming components for use in the present invention are alkali metal (M 1), alkaline earth metal (M 2), amphoteric metal element (M 3) or bonded to the oxygen-hydrogen to an element forming the oxo acid (M 4 ). Such a glass-forming component is a component that is easily vitrified when a conductive paste containing copper powder as a filler is fired. Actually, when a glass frit coexists in the conductive paste, It is familiar and therefore means a component having the property of improving the wettability of the SiO 2 gel coating film to glass frit.

アルカリ金属元素(M1)としては,NaまたはKが挙げられる。アルカリ土類金属(M2)としてはCa,SrまたはBa があるが,SiO2とBaOとのガラス化範囲が,SiO2とCaOまたはSrOとのガラス化範囲よりも広いために,Baでは焼成時にガラスの結晶化が起こりにくくなるので,これらのうちでもBa を使用するのが好ましい。M2の添加量としてはM2/Siの原子比(モル比)で,0.1以上,0.5以下とするのが好ましい。M2/Siが0.1未満では,ガラスとの濡れ性が不十分で,0.7より大きくなるとガラスの結晶化が起こりやすくなるので,好ましくは0.5以下とするのがよい。 Examples of the alkali metal element (M 1 ) include Na or K. Alkaline earth metal (M 2 ) includes Ca, Sr or Ba. However, since the vitrification range of SiO 2 and BaO is wider than the vitrification range of SiO 2 and CaO or SrO, Ba is fired. Of these, it is preferable to use Ba because crystallization of the glass hardly occurs. The atomic ratio of M 2 / Si The addition amount of M 2 (molar ratio), 0.1 or more, preferably 0.5 or less. If M 2 / Si is less than 0.1, the wettability with glass is insufficient, and if it exceeds 0.7, crystallization of the glass tends to occur. Therefore, it is preferably 0.5 or less.

両性金属元素(M3)としては,Al,Zn,Sn,Bi,Pb,As,Sbなどが挙げられるが,毒性や環境負荷の低いAl,ZnまたはSnがより好ましい。オキソ酸形成可能な元素(M4)としては,P ,B ,Al,SまたはClなどが挙げられるが,特にPとBはSiO2と混ざりあってガラスを形成し易い性質があり,ガラスと金属の濡れ性を向上させることができるので,より好ましい。 Examples of the amphoteric metal element (M 3 ) include Al, Zn, Sn, Bi, Pb, As, and Sb. Al, Zn, or Sn, which has low toxicity and low environmental load, is more preferable. Examples of the element capable of forming oxo acid (M 4 ) include P 1, B 2, Al, S, or Cl, and in particular, P and B are easily mixed with SiO 2 to form a glass. Since the wettability of a metal can be improved, it is more preferable.

このようにして,M123またはM4をSiO2系ゲルコーティング膜に適量含有させることにより,後記の実施例に示すように,これらの元素を含有しないSiO2系ゲルコーティング膜のものに比べて,これをフィラーとした導電ペーストでは,ガラスへの濡れ性の向上,軟化点の低下などによって,ボイド数が低下して焼結性が向上し,高品質の導電体とすることができる。 In this way, by adding an appropriate amount of M 1 M 2 M 3 or M 4 to the SiO 2 -based gel coating film, as shown in the examples described later, the SiO 2 -based gel coating film not containing these elements is used. Compared with pastes, conductive pastes with fillers should have high-quality conductors because the number of voids is reduced and the sinterability is improved due to improved wettability to glass and lower softening point. Can do.

具体的には,M1またはM2をSiO2系ゲルコーティング膜に適量含有させると導電ペーストの焼成時において,ガラス相へのSiO2系ゲルコーティング膜溶解時の粘度が変化し,より低い温度で焼結を促進させることができるようになる。M3またはM4をSiO2系ゲルコーティング膜に適量含有させると,焼結時にガラス相と銅粉との濡れ性が向上し,より緻密な焼結体を得ることができるようになる。さらにM123またはM4を組合せて含有させることにより一層焼結性を向上させることができる。 Specifically, at the time of baking of the suitable amount is to the conductive paste M 1 or M 2 in SiO 2 based gel coating, the viscosity at the time of SiO 2 based gel coating film dissolved in the glass phase varies, lower temperatures With this, sintering can be promoted. When an appropriate amount of M 3 or M 4 is contained in the SiO 2 gel coating film, the wettability between the glass phase and the copper powder is improved during sintering, and a denser sintered body can be obtained. Furthermore, by including M 1 M 2 M 3 or M 4 in combination, the sinterability can be further improved.

導電フィラーに共存させるガラスフリットについては,その成分は特に限定されないが,SiO2,Na2,23,PbO等の金属酸化物成分を含有したガラスフリットを使用するのがよい。ガラスフリットの配合量についてはあまり多くなると導電体としての導電性質に影響を与えるようになるので,本発明に従う銅粉100重量部に対し,ガラスフリットが10重量部以下,好ましくは7重量部の範囲であるのがよい。 The glass frit to be coexisted with the conductive filler is not particularly limited, but a glass frit containing a metal oxide component such as SiO 2 , Na 2 O , B 2 O 3 , or PbO is preferably used. If the blending amount of the glass frit is too large, the conductive properties as a conductor will be affected. Therefore, the glass frit is 10 parts by weight or less, preferably 7 parts by weight with respect to 100 parts by weight of the copper powder according to the present invention. It should be a range.

本発明に従ってSiO2系ゲルコーティング膜をその表面に形成させるための銅粉(被処理銅粉)としては,湿式還元法で製造された銅粉でもアトマイズ法で製造されたものでもよい。すなわち銅粉の製造法には限定されず,あらゆる製造法で得られた銅粉が適用可能であるが,水酸化銅→酸化銅→金属銅と変化させる湿式還元法によって製造された銅粉の場合には各種の粒度分布のものが比較的容易に得られ,また球状粉または板状粉も比較的容易に得られる。 As the copper powder (copper powder to be treated) for forming the SiO 2 gel coating film on the surface according to the present invention, the copper powder manufactured by the wet reduction method or the atomized method may be used. In other words, it is not limited to the copper powder production method, and copper powder obtained by any production method can be applied. However, the copper powder produced by the wet reduction method in which copper hydroxide → copper oxide → metal copper is changed. In some cases, various particle size distributions can be obtained relatively easily, and spherical powders or plate-like powders can be obtained relatively easily.

なお,銅粉表面のSiO2系ゲルコーティング膜はこれをガラス化するための処理は必要ではない。SiO2系ゲルコーティング膜はこれを200℃を超える或る温度に加熱するとガラス化することができるが,このようなガラス化のための熱処理を行わなくても,ゲルコーティングのままにおいて導電ペーストに要求されるに十分な耐酸化性を具備する。ガラス化のための熱処理を行うと,コーティング膜に亀裂が発生したりゲルコーティングが収縮して銅粒子の表面が露出したりして,かえって耐酸化性を阻害したり焼結特性に悪影響を与えることになるので,本発明にとっては好ましいことではない。 Note that the SiO 2 gel coating film on the surface of the copper powder does not require a treatment for vitrification. The SiO 2 -based gel coating film can be vitrified by heating it to a certain temperature exceeding 200 ° C., but without conducting the heat treatment for vitrification, the gel coating remains as a conductive paste. It has sufficient oxidation resistance as required. When heat treatment for vitrification is performed, cracks occur in the coating film or the gel coating shrinks and the surface of the copper particles is exposed, which adversely affects the oxidation resistance and adversely affects the sintering characteristics. Therefore, it is not preferable for the present invention.

〔実施例1〕
平均粒径が3μmの銅粉200gをイソプロピルアルコール500gに添加し,スラリー濃度が28.6重量%のスラリーとし,窒素雰囲気中で攪拌を行って酸素濃度がゼロになることを確認した。その後, 40℃に昇温し,テトラエトキシシラン6.3gを添加し5分間熟成した。次いで, Ba濃度が3.0%となるようにBa(OH)2を抜気済みの純水に溶解したバリウム水溶液72.6gを一括添加し,再び5分間熟成した。最後に, NH3(20.73 %) 69.5gのアンモニア水を連続添加したのち,60分間熟成する。反応終了後は空気中で吸引濾過し,窒素雰囲気中 120℃で11時間乾燥する。
[Example 1]
200 g of copper powder having an average particle size of 3 μm was added to 500 g of isopropyl alcohol to obtain a slurry having a slurry concentration of 28.6% by weight, and stirring was performed in a nitrogen atmosphere to confirm that the oxygen concentration became zero. Thereafter, the temperature was raised to 40 ° C., and 6.3 g of tetraethoxysilane was added and aged for 5 minutes. Subsequently, 72.6 g of an aqueous barium solution in which Ba (OH) 2 was dissolved in pure water so that the Ba concentration was 3.0% was added all at once, and the mixture was aged again for 5 minutes. Finally, NH 3 (20.73%) 69.5 g of ammonia water is continuously added, and then aged for 60 minutes. After completion of the reaction, it is suction filtered in air and dried at 120 ° C. for 11 hours in a nitrogen atmosphere.

得られた粉体を化学分析し,また酸化開始温度および焼結開始温度の測定を行った。それらの結果を表1および図1に示した。表1および図1には,比較のために,バリウム水溶液を添加しなかった以外は実施例1を繰り返して得た粉体についても同様の測定を行い,それらを〔比較例1〕として示した。   The obtained powder was chemically analyzed, and the oxidation start temperature and sintering start temperature were measured. The results are shown in Table 1 and FIG. In Table 1 and FIG. 1, for comparison, the same measurement was performed on the powder obtained by repeating Example 1 except that no barium aqueous solution was added, and these were shown as [Comparative Example 1]. .

酸化開始温度の測定は空気中での示差熱分析計(TG)で行った。酸化開始温度とは「示差熱分析計において,サンプル銅粉の重量が初期値から0.5%増加したときの温度」と定義する。また焼結開始温度の測定は次のようにして行った。すなわち,銅粉と有機ビヒクルを混合して円柱状に成形する。この成形体を,鉛直方向にして且つ軸方向に加重を付与した状態で昇温炉に装填し,窒素雰囲気中で昇温速度10℃/ 分,測定範囲:常温〜1000℃に連続的に昇温してゆき,成形体の高さ変化(収縮・膨張の変化)を自動記録する。そして,成形体の高さ変化(収縮)が始まり,その収縮率が0.5%に達したところの温度を「焼結開始温度」とする。   The oxidation start temperature was measured with a differential thermal analyzer (TG) in air. The oxidation start temperature is defined as “temperature at which the weight of the sample copper powder increases by 0.5% from the initial value in the differential thermal analyzer”. The sintering start temperature was measured as follows. That is, copper powder and an organic vehicle are mixed and formed into a cylindrical shape. This molded body was loaded in a heating furnace in a vertical direction and with a load applied in the axial direction, and the temperature rising rate was 10 ° C./min in a nitrogen atmosphere, and the measurement range was continuously elevated from room temperature to 1000 ° C. As it warms, the height change (shrinkage / expansion change) of the compact is automatically recorded. The temperature at which the height change (shrinkage) of the compact starts and the shrinkage rate reaches 0.5% is defined as “sintering start temperature”.

表1および図1の結果に見られるように,本実施例1の銅粉は,Si量=0.42wt%,Ba量=0.71wt%,Ba/Siの原子比=0.35の,BaO含有SiO2系ゲルコーティング膜が形成されたものであり,その酸化開始温度は308℃であり,耐酸化性として好ましい300℃以上である。また焼結開始温度は,比較例1のBaを含まないSiO2系ゲルコーティング膜のものに比べて若干高めではあるが,図1に見られるように,約750℃以上において比較例1のものより収縮率が大きく,この点で導電ペーストの焼結性が改善するものと考えられる。 As can be seen from the results in Table 1 and FIG. 1, the copper powder of Example 1 has a Si content of 0.42 wt%, a Ba content of 0.71 wt%, and an atomic ratio of Ba / Si = 0.35. A BaO-containing SiO 2 -based gel coating film is formed, and its oxidation start temperature is 308 ° C., which is preferably 300 ° C. or more, which is preferable for oxidation resistance. In addition, although the sintering start temperature is slightly higher than that of the SiO 2 gel coating film not containing Ba in Comparative Example 1, as shown in FIG. It is considered that the shrinkage rate is larger and the sinterability of the conductive paste is improved in this respect.

実際に,本実施例1の銅粉と比較例1の銅粉を用いて導電ペーストを作成してその焼結性評価を行ったところ,次の結果が得られた。焼結性試験は次のとおりである。   Actually, when the conductive paste was prepared using the copper powder of Example 1 and the copper powder of Comparative Example 1 and the sinterability was evaluated, the following results were obtained. The sinterability test is as follows.

〔焼結性試験〕供試銅粉4.2g,希釈剤 0.2720g,ビヒクル0.8180g およびガラスフリット0.1600g を混合した後,この混合物を三本ロールで混練して導電性ペーストを作成する。得られた導電性ペーストを積層セラミックコンデンサーの外部電極として塗布し,830℃の窒素雰囲気中で30分間焼成する。焼成後の表面を電子顕微鏡(FE−SEM)により観察し,ボイド数を数える。ボイド数の計測は,図2に示すように,形成された外部電極の角から横60μm,縦40μm離れた位置に,計測範囲(縦80μm,横100μmの長方形)の右上角がくるように固定し,この計測範囲に存在する径が6μm以上のボイド数と,径が12μm以上のボイド数を数える(図2の枠線にかかっているものについても数える)。 [Sinterability test] After mixing 4.2 g of test copper powder, 0.2720 g of diluent, 0.8180 g of vehicle and 0.1600 g of glass frit, this mixture was kneaded with three rolls to prepare a conductive paste. To do. The obtained conductive paste is applied as an external electrode of a multilayer ceramic capacitor and baked in a nitrogen atmosphere at 830 ° C. for 30 minutes. The surface after firing is observed with an electron microscope (FE-SEM), and the number of voids is counted. As shown in Fig. 2, the number of voids is fixed so that the upper right corner of the measurement range (80 µm in length and 100 µm in width) is at a position 60 µm wide and 40 µm long from the corner of the formed external electrode. Then, the number of voids having a diameter of 6 μm or more and the number of voids having a diameter of 12 μm or more existing in this measurement range are counted (the number of voids on the frame in FIG. 2 is also counted).

〔焼結性の試験結果〕実施例1と比較例1の粉体を用いた導電ペーストの焼成試験の結果は,次のとおりである。
6μm以上のボイド数 12μm以上のボイド数
比較例1の銅粉 25 8
実施例1の銅粉 17 2
[Results of Sinterability Test] The results of the firing test of the conductive paste using the powders of Example 1 and Comparative Example 1 are as follows.
Number of voids of 6 μm or more Copper powder of Comparative Example 1 having a number of voids of 12 μm or more 25 8
Copper powder of Example 1 17 2

すなわち,SiO2系ゲルコーティング膜にBaを含有する本例の銅粉は,Baを含有しない比較例1のものに比べて,大きいボイド数が減り,良好な焼成品が得られた。 That is, the copper powder of this example containing Ba in the SiO 2 gel coating film has a smaller number of large voids than that of Comparative Example 1 not containing Ba, and a good fired product was obtained.

〔実施例2〕
Ba(OH)2の水溶液に代えて,NaOHの水溶液を添加した以外は実施例1を繰り返して,Na2O含有SiO2系ゲルコーティング膜をもつ銅粉を得た。得られた銅粉を化学分析し,実施例1と同様にして酸化開始温度および焼結開始温度の測定を行った。その結果を表2および図3に示した。
[Example 2]
Example 1 was repeated except that an aqueous solution of NaOH was added instead of the aqueous solution of Ba (OH) 2 to obtain a copper powder having an Na 2 O-containing SiO 2 gel coating film. The obtained copper powder was chemically analyzed and the oxidation start temperature and the sintering start temperature were measured in the same manner as in Example 1. The results are shown in Table 2 and FIG.

これらの結果に見られるように,本例のNa2O含有SiO2系ゲルコーティング膜付き銅粉は,酸化開始温度が267℃であり,SiO2単独の比較例1と比較して若干劣るが,SiO2系ゲルコーティング膜のない銅粉の酸化開始温度はほぼ180℃であり,これに比べると約80℃も高い。また,本例の銅粉は焼結開始温度が550℃であり,比較例1のものに比べて80℃低い。とくに,図3より,ペーストの焼成温度である830℃付近まで,比較例1より収縮率が大きいことがわかる。 As can be seen from these results, the copper powder with Na 2 O-containing SiO 2 gel coating film of this example has an oxidation start temperature of 267 ° C., which is slightly inferior to that of Comparative Example 1 with SiO 2 alone. The oxidation start temperature of the copper powder without the SiO 2 gel coating film is about 180 ° C., which is about 80 ° C. higher than this. The copper powder of this example has a sintering start temperature of 550 ° C., which is 80 ° C. lower than that of Comparative Example 1. In particular, FIG. 3 shows that the shrinkage rate is higher than that of Comparative Example 1 up to around 830 ° C., which is the firing temperature of the paste.

次に,得られた銅粉を用いた導電ペーストの焼結性評価を実施例1と同様にして行ったが,供試粉体を次のような配合のものとした。すなわち, 実施例1で使用した銅粉 4.2gに代えて, 実施例2の銅粉66%に対し,フレーク銅粉にSiO2系ゲルコーティング膜を施した銅粉33%を混合した混合銅粉 4.2gを使用した以外は,実施例1で記載した焼結性試験を行った。比較例についても,比較例1の銅粉66%に対し,フレーク銅粉にSiO2系ゲルコーティング膜を施した銅粉33%を混合した混合銅粉 4.2gを使用し,実施例1で記載した焼結性試験を行った。 Next, the sinterability evaluation of the conductive paste using the obtained copper powder was carried out in the same manner as in Example 1, but the sample powder had the following composition. That is, instead of 4.2 g of the copper powder used in Example 1, 66% of the copper powder of Example 2 was mixed with 33% of copper powder obtained by applying a SiO 2 gel coating film to flake copper powder. The sinterability test described in Example 1 was performed except that 4.2 g of powder was used. Also in the comparative example, 4.2 g of mixed copper powder obtained by mixing 33% of the copper powder obtained by applying the SiO 2 gel coating film to the flake copper powder to 66% of the copper powder of the comparative example 1 was used. The described sinterability test was performed.

いずれの焼成電極についても,電子顕微鏡(FE−SEM)観察し,実施例1と同様にしてボイド数を数えた。その結果を下記に示すが,Naが添加されたSiO2系ゲルコーティング膜付きの本例の銅粉は,Baが添加されたものと同様に,大きなボイドの数が減り,焼結性が良好になっている。特に12μm以上のボイド数については,Naを含まないものに比べて1/6にまで減少していることがわかる。
6μm以上のボイド数 12μm以上のボイド数
比較例の銅粉 15 6
本例の銅粉 8 1
All the fired electrodes were observed with an electron microscope (FE-SEM), and the number of voids was counted in the same manner as in Example 1. The results are shown below. The copper powder of this example with a SiO 2 -based gel coating film to which Na was added had the same number of large voids and good sinterability as that to which Ba was added. It has become. In particular, it can be seen that the number of voids of 12 μm or more is reduced to 1/6 compared with those not containing Na.
Number of voids of 6 μm or more Copper powder of comparative example of number of voids of 12 μm or more 15 6
Copper powder of this example 8 1

〔実施例3〕
平均粒径が2.5μmの銅粉200gをイソプロピルアルコール500gに添加し,スラリー濃度が28.6%のスラリーとし,窒素雰囲気中で撹拌を行い,酸素濃度がゼロになることを確認した。次いで40℃に昇温後,テトラエトキシシラン7.8gを添加し5 分間熟成した。その後,1.7gのH3BO3を抜気済み純水61.9gに溶解したホウ酸水溶液を一括添加し,再び5分間熟成した。最後に NH3(19.87%) 72.5gのアンモニア水を連続添加したのち,60分間熟成した。反応終了後は空気中で吸引濾過し,窒素雰囲気中120℃で11時間乾燥した。
Example 3
200 g of copper powder having an average particle size of 2.5 μm was added to 500 g of isopropyl alcohol to make a slurry having a slurry concentration of 28.6%, and stirring was performed in a nitrogen atmosphere, and it was confirmed that the oxygen concentration became zero. Next, after raising the temperature to 40 ° C., 7.8 g of tetraethoxysilane was added and aged for 5 minutes. Thereafter, an aqueous boric acid solution obtained by dissolving 1.7 g of H 3 BO 3 in 61.9 g of pure water which had been evacuated was added all at once and aged again for 5 minutes. Finally, NH 3 (19.87%) 72.5 g of ammonia water was continuously added, followed by aging for 60 minutes. After completion of the reaction, the mixture was suction filtered in air and dried at 120 ° C. for 11 hours in a nitrogen atmosphere.

得られた銅粉を化学分析し,実施例1と同様にして酸化開始温度および焼結開始温度の測定を行った。その結果を表3および図4に示した。比較のために,ホウ酸水溶液を添加しなかった以外は,実施例3を繰り返して得た銅粉を「比較例3」として,表3および表4に示した。   The obtained copper powder was chemically analyzed and the oxidation start temperature and the sintering start temperature were measured in the same manner as in Example 1. The results are shown in Table 3 and FIG. For comparison, the copper powder obtained by repeating Example 3 was shown in Tables 3 and 4 as “Comparative Example 3” except that the boric acid aqueous solution was not added.

これらの結果に見られるように,本例のB23含有SiO2系ゲルコーティング膜付き銅粉は,酸化開始温度が400℃と高く,SiO2単独の比較例3に比べて高い。また,焼結開始温度が613℃であり,図4に見られるように,比較例3のものに比べると収縮率が高く,焼結性が良好であると考えられる。 As can be seen from these results, the copper powder with the B 2 O 3 -containing SiO 2 gel coating film of this example has a high oxidation start temperature of 400 ° C., which is higher than that of Comparative Example 3 using SiO 2 alone. In addition, the sintering start temperature is 613 ° C., and as shown in FIG. 4, it is considered that the shrinkage rate is higher than that of Comparative Example 3 and the sinterability is good.

事実,得られた粉体と比較例3の粉体を,実施例1と同様の焼結性試験に供したところ,下記の結果となり,大きなボイド数はゼロとなるまでに,焼結性が改善された。
6μm以上のボイド数 12μm以上のボイド数
比較例3の銅粉 9 4
実施例3の銅粉 5 0
In fact, when the obtained powder and the powder of Comparative Example 3 were subjected to the same sinterability test as in Example 1, the following results were obtained, and the sinterability was increased until the number of large voids became zero. Improved.
Number of voids of 6 μm or more Copper powder of Comparative Example 3 having a number of voids of 12 μm or more 9 4
Copper powder of Example 3 50

〔実施例4〕
平均粒径が3.0μmの銅粉200gをイソプロピルアルコール500g,純水70.6gに添加し,窒素雰囲気中で撹拌を行い酸素濃度がゼロになることを確認したあと,40℃に昇温し,テトラエトキシシラン5.85gを添加し5 分間熟成した。その後,NH3(22.58%) 191.4gのアンモニア水に酸化亜鉛2gを溶解した溶液63.8gを連続添加し,60分間熟成させた。反応終了後は空気中で吸引濾過し,窒素雰囲気中120℃で11時間乾燥した。
Example 4
After adding 200 g of copper powder with an average particle size of 3.0 μm to 500 g of isopropyl alcohol and 70.6 g of pure water, stirring in a nitrogen atmosphere and confirming that the oxygen concentration becomes zero, the temperature was raised to 40 ° C. Then, 5.85 g of tetraethoxysilane was added and aged for 5 minutes. Thereafter, 63.8 g of a solution of 2 g of zinc oxide dissolved in 191.4 g of NH 3 (22.58%) aqueous ammonia was continuously added and aged for 60 minutes. After completion of the reaction, the mixture was suction filtered in air and dried at 120 ° C. for 11 hours in a nitrogen atmosphere.

得られたZnO含有SiO2系ゲルコーティング膜付き銅粉を実施例1と同様の焼結性試験に供した。その結果を前記の比較例1と対比して下記に示すが,両性金属Znが添加されたSiO2系ゲルコーティング膜付き銅粉についても,前例のBa ,Na,Bなどが添加されたものと同様に大きいボイドの数が減り焼結性が良好になっていることがわかる。
6μm以上のボイド数 12μm以上のボイド数
比較例1の銅粉 25 8
実施例4の銅粉 18 3
The obtained copper powder with ZnO-containing SiO 2 -based gel coating film was subjected to the same sinterability test as in Example 1. The results are shown below in comparison with Comparative Example 1 described above. The copper powder with SiO 2 gel coating film to which amphoteric metal Zn was added was also added with Ba, Na, B, etc. of the previous example. Similarly, it can be seen that the number of large voids is reduced and the sinterability is improved.
Number of voids of 6 μm or more Copper powder of Comparative Example 1 having a number of voids of 12 μm or more 25 8
Copper powder of Example 4 18 3

〔実施例5〕
実施例1と同様の方法で,Ba /Siの原子比(モル比)がおよそ 0.4,0.6,0.8 となるBaO含有SiO2系ゲルコーティング膜付き銅粉を作成した。得られた各銅粉(実施例5−1,同5−2,同5−3)の化学分析値と酸化開始温度の測定結果を表4に示した。表4の結果にみられるように,酸化開始温度はBa 添加によりBa添加しない比較例1のもの(酸化開始温度319℃)に比べ高くなり,耐酸化性が向上している。
Example 5
In the same manner as in Example 1, copper powder with BaO-containing SiO 2 -based gel coating film having a Ba 2 / Si atomic ratio (molar ratio) of about 0.4, 0.6, and 0.8 was prepared. Table 4 shows the chemical analysis values and the measurement results of the oxidation start temperature of the obtained copper powders (Examples 5-1, 5-2, and 5-3). As can be seen from the results of Table 4, the oxidation start temperature is higher than that of Comparative Example 1 (oxidation start temperature 319 ° C.) in which Ba is not added due to the addition of Ba, and the oxidation resistance is improved.

さらに,得られた各銅粉を実施例1と同様の焼結性試験に供した。その結果を前記の比較例1のものと対比した下記に示す。カッコ内の数値は,ボイド数が比較例1のものに対してどれだけの割合で減少したかを,%表示で表したものである。これを改善率と呼ぶ。   Furthermore, each obtained copper powder was used for the sinterability test similar to Example 1. FIG. The results are shown below in comparison with those of Comparative Example 1 described above. The numerical value in parentheses indicates how much the number of voids has decreased with respect to that in Comparative Example 1 in%. This is called the improvement rate.

6μm以上のボイド数 12μm以上のボイド数
比較例1の銅粉 25 8
実施例5−1の銅粉 7(72%) 3(63%)
実施例5−2の銅粉 14(44%) 6(25%)
実施例5−3の銅粉 3(88%) 0(100%)
Number of voids of 6 μm or more Copper powder of Comparative Example 1 having a number of voids of 12 μm or more 25 8
Copper powder of Example 5-1 7 (72%) 3 (63%)
Copper powder of Example 5-2 14 (44%) 6 (25%)
Copper powder of Example 5-3 3 (88%) 0 (100%)

ボイドの改善率は, これらのうち,Ba /Siのモル比が最も大きい実施例5−3 の銅粉のものが高い値を示している。しかし,あまりBa/Siのモル比が高いものでは焼結体中でBa が結晶化するおそれがあるので,Ba/Siのモル比が0.5以下でも良好なボイド改善率が得られるのであれば,Ba/Siのモル比は0.5以下とするのがよい。   Among these, the improvement rate of the void is high for the copper powder of Example 5-3 having the largest Ba / Si molar ratio. However, if the Ba / Si molar ratio is too high, Ba may be crystallized in the sintered body. Therefore, even if the Ba / Si molar ratio is 0.5 or less, a good void improvement rate can be obtained. For example, the molar ratio of Ba / Si is preferably 0.5 or less.

〔実施例6〕
実施例3と同様の方法でB/Siの原子比(モル比)がおよそ 0.4, 0.5, 0.8となるB23含有SiO2系ゲルコーティング膜付き銅粉を作成した。得られた各銅粉(実施例6−1,同6−2,同6−3)の化学分析と酸化開始温度の測定結果を表5に示した。表5の結果にみられるように,酸化開始温度はB添加によりB添加しない比較例3のもの(酸化開始温度326℃)に比べ高くなり,耐酸化性が向上している。とくに,B/Siのモル比が0.4 と0.5 のものでは酸化開始温度が400 ℃以上に達しており,耐酸化性の改善効果が大きい。
Example 6
A copper powder with a B 2 O 3 -containing SiO 2 -based gel coating film having an atomic ratio (molar ratio) of B / Si of about 0.4, 0.5, and 0.8 was prepared in the same manner as in Example 3. . Table 5 shows the chemical analysis of the obtained copper powders (Examples 6-1, 6-2, and 6-3) and the measurement results of the oxidation start temperature. As can be seen from the results in Table 5, the oxidation start temperature is higher by the addition of B than that of Comparative Example 3 (oxidation start temperature 326 ° C.) in which B is not added, and the oxidation resistance is improved. In particular, when the molar ratio of B / Si is 0.4 and 0.5, the oxidation start temperature reaches 400 ° C. or more, and the effect of improving oxidation resistance is great.

さらに,得られた各銅粉を実施例1と同様の焼結性試験に供した。その結果を前記の比較例1(元粉の粒径3μm)と比較例3(元粉の粒径2.5μm)のものと対比した下記に示す。カッコ内の数値は,元粉の粒径が同じ比較例のものに対するボイド数の改善率を表す。すなわち,実施例6−1 と6−2 の改善率は比較例3に対するものであり,実施例6−3 の改善率は比較例1に対するものである。これらの結果から,B/Siのモル比が0.5以下でもボイド数低減の効果が十分に現れることがわかる。   Furthermore, each obtained copper powder was used for the sinterability test similar to Example 1. FIG. The results are shown below in comparison with those of Comparative Example 1 (original powder particle size 3 μm) and Comparative Example 3 (original powder particle size 2.5 μm). The numerical value in parentheses represents the improvement rate of the number of voids for the comparative example having the same particle size of the base powder. That is, the improvement rates of Examples 6-1 and 6-2 are relative to Comparative Example 3, and the improvement rate of Example 6-3 is relative to Comparative Example 1. From these results, it can be seen that the effect of reducing the number of voids appears sufficiently even when the molar ratio of B / Si is 0.5 or less.

6μm以上のボイド数 12μm以上のボイド数
比較例1の銅粉 25 8
比較例3の銅粉 9 4
実施例6−1の銅粉 5(44%) 0(100%)
実施例6−2の銅粉 6(33%) 0(100%)
実施例6−3の銅粉 20(20%) 6(25%)
Number of voids of 6 μm or more Copper powder of Comparative Example 1 having a number of voids of 12 μm or more 25 8
Copper powder of Comparative Example 3 9 4
Copper powder of Example 6-1 5 (44%) 0 (100%)
Copper powder of Example 6-2 6 (33%) 0 (100%)
Copper powder of Example 6-3 20 (20%) 6 (25%)

〔実施例7〕
実施例1に従って製造したBa/Siモル比が0.35のBaO含有SiO2系ゲルコーティング膜付き銅粉と,実施例3に従って製造したB/Siモル比が0.499のB23含有SiO2系ゲルコーティング膜付き銅粉とを,重量比で1:3の割合で混合し,この混合粉について,実施例1と同様の焼結性試験に供した。その結果を,比較例1のものと対比して下記に示したが,6μm以上のボイド数および12μm以上のボイド数とも,比較例1のものに比べて減少しており,混合粉として使用すると,焼結性が一層向上することがわかる。
Example 7
BaO-containing copper powder with SiO 2 -based gel coating film having a Ba / Si molar ratio of 0.35 produced according to Example 1 and B 2 O 3 having a B / Si molar ratio of 0.499 produced according to Example 3 The copper powder with SiO 2 gel coating film was mixed at a weight ratio of 1: 3, and the mixed powder was subjected to the same sinterability test as in Example 1. The results are shown below in comparison with those of Comparative Example 1. Both the number of voids of 6 μm or more and the number of voids of 12 μm or more are reduced compared to those of Comparative Example 1, and when used as a mixed powder, It can be seen that the sinterability is further improved.

6μm以上のボイド数 12μm以上のボイド数
比較例1の銅粉 25 8
実施例7の混合粉 7 3
Number of voids of 6 μm or more Copper powder of Comparative Example 1 having a number of voids of 12 μm or more 25 8
Mixed powder of Example 7 7 3

本発明に従うBaO含有SiO2系ゲルコーティング膜付き銅粉の焼結開始温度(●印)を,BaOを含まないSiO2系ゲルコーティング膜付き銅粉(○印)のそれと対比して示した図である。Figure sintering initiation temperature (● mark), shown in comparison with that of the SiO 2 based gel coating film with copper powder not containing BaO (○ mark) of BaO-containing SiO 2 based gel coating film with copper powder according to the present invention It is. 本発明に従うBaO含有SiO2系ゲルコーティング膜付き銅粉を導電フィラーとした導電ペーストを焼結処理し,得られた焼結体の表面状態を,BaOを含まないSiO2系ゲルコーティング膜付き銅粉(図中,比較例1と記したもの)のそれと対比して示した電子顕微鏡写真である。The conductive paste using the BaO-containing SiO 2 -based gel coating film-coated copper powder as a conductive filler according to the present invention is subjected to a sintering treatment, and the surface state of the obtained sintered body is changed to a copper-containing SiO 2 gel coating film that does not contain BaO. It is the electron micrograph shown by contrasting with that of powder | flour (what was described as the comparative example 1 in the figure). 本発明に従うNa2O含有SiO2系ゲルコーティング膜付き銅粉の焼結開始温度(■印)を,Na2Oを含まないSiO2系ゲルコーティング膜付き銅粉(□印)のそれと対比して示した図である。The sintering start temperature (■ mark) of the Na 2 O-containing copper powder with SiO 2 gel coating film according to the present invention (■ mark) is compared with that of the copper powder with SiO 2 gel coating film not containing Na 2 O (□ mark). FIG. 本発明に従うB23含有SiO2系ゲルコーティング膜付き銅粉の焼結開始温度(●印)を,B23を含まないSiO2系ゲルコーティング膜付き銅粉(○印)のそれと対比して示した図である。The sintering start temperature of the copper powder with SiO 2 -based gel coating film containing B 2 O 3 according to the present invention (marked with ●) is the same as that of the copper powder with SiO 2 -based gel coating film not containing B 2 O 3 (marked with ○). It is the figure shown by contrast.

Claims (8)

導電ペーストの導電フィラーに用いる銅粉において、5重量%以下のSiを含有し、そのSiの実質上全てがSiO2系ゲルコーティング膜として銅粒子表面に被着しており、このSiO2系ゲルコーティング膜に少なくとも1種のガラス形成性成分が含まれていることを特徴とする耐酸化性および焼結性に優れた外部電極用導電ペースト用銅粉。 The copper powder used for the conductive filler of the conductive paste contains 5% by weight or less of Si, and substantially all of the Si is deposited on the copper particle surface as a SiO 2 gel coating film. This SiO 2 gel A copper powder for an external electrode conductive paste excellent in oxidation resistance and sinterability, wherein the coating film contains at least one glass-forming component. ガラス形成性成分は、アルカリ金属(M1という)またはアルカリ土類金属(M2という)である請求項1に記載の外部電極用導電ペースト用銅粉。 Glass forming ingredients, alkali metal (referred to M 1) or external electrode conductive paste of copper powder according to claim 1 is an alkaline earth metal (referred to M 2). ガラス形成性成分は、両性金属元素(M3という)である請求項1に記載の外部電極用導電ペースト用銅粉。 Glass forming ingredients, the external electrode conductive paste of copper powder according to claim 1 which is an amphoteric metal element (referred to M 3). ガラス形成性成分は、酸素・水素と結合してオキソ酸を形成する元素(M4という)である請求項1に記載の外部電極用導電ペースト用銅粉。 Glass forming ingredients, the external electrode conductive paste of copper powder according to claim 1 combined with oxygen-hydrogen is an element that forms an oxo acid (referred to M 4). 1/Siの原子比、M2/Siの原子比、M3/Siの原子比およびM4/Siの原子比がいずれも0.5以下である請求項2、3または4に記載の外部電極用導電ペースト用銅粉。 5. The atomic ratio of M 1 / Si, the atomic ratio of M 2 / Si, the atomic ratio of M 3 / Si, and the atomic ratio of M 4 / Si are all 0.5 or less. Copper powder for conductive paste for external electrodes. ガラス形成性成分としてM2を含有する請求項2に記載の銅粉と、ガラス形成性成分としてM4を含有する請求項4に記載の銅粉とを、所要の割合で混合してなる外部電極用導電ペースト用銅粉。 The copper powder according to claim 2 containing M 2 as a glass-forming component and the copper powder according to claim 4 containing M 4 as a glass-forming component in a required ratio. Copper powder for conductive paste for electrodes. 請求項1に記載の銅粉100重量部に対し、ガラスフリットを10重量部以下の割合で配合してなる外部電極用導電ペースト用フィラー。   The filler for electrically conductive paste for external electrodes which mix | blends glass frit with the ratio of 10 weight part or less with respect to 100 weight part of copper powder of Claim 1. 樹脂系バインダーと溶媒とからなるビヒクルに、請求項1に記載の銅粉とガラスフリットを分散させてなる外部電極用導電ペースト。   A conductive paste for external electrodes, wherein the copper powder and glass frit according to claim 1 are dispersed in a vehicle comprising a resin binder and a solvent.
JP2008001263A 2008-01-08 2008-01-08 Copper powder for conductive paste for external electrodes with excellent oxidation resistance and sinterability Expired - Lifetime JP4977041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008001263A JP4977041B2 (en) 2008-01-08 2008-01-08 Copper powder for conductive paste for external electrodes with excellent oxidation resistance and sinterability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008001263A JP4977041B2 (en) 2008-01-08 2008-01-08 Copper powder for conductive paste for external electrodes with excellent oxidation resistance and sinterability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002313345A Division JP4128424B2 (en) 2002-10-28 2002-10-28 Method for producing copper powder for conductive pastes with excellent oxidation resistance and sinterability

Publications (2)

Publication Number Publication Date
JP2008101276A true JP2008101276A (en) 2008-05-01
JP4977041B2 JP4977041B2 (en) 2012-07-18

Family

ID=39435821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008001263A Expired - Lifetime JP4977041B2 (en) 2008-01-08 2008-01-08 Copper powder for conductive paste for external electrodes with excellent oxidation resistance and sinterability

Country Status (1)

Country Link
JP (1) JP4977041B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8885312B2 (en) 2009-08-27 2014-11-11 Murata Manufacturing Co., Ltd. ESD protection device and manufacturing method thereof
JP2015018785A (en) * 2013-07-12 2015-01-29 サムソン エレクトロ−メカニックス カンパニーリミテッド. Composite conductive powder, conductive paste for external electrode including the same, and manufacturing method of multilayer ceramic capacitor
JP2018518003A (en) * 2015-04-24 2018-07-05 チャン スン カンパニー、リミテッド Electrode paste composition for chip parts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354126A (en) * 1989-07-20 1991-03-08 Hai Miller:Kk Production of powder coated with metallic oxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354126A (en) * 1989-07-20 1991-03-08 Hai Miller:Kk Production of powder coated with metallic oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8885312B2 (en) 2009-08-27 2014-11-11 Murata Manufacturing Co., Ltd. ESD protection device and manufacturing method thereof
JP2015018785A (en) * 2013-07-12 2015-01-29 サムソン エレクトロ−メカニックス カンパニーリミテッド. Composite conductive powder, conductive paste for external electrode including the same, and manufacturing method of multilayer ceramic capacitor
JP2018518003A (en) * 2015-04-24 2018-07-05 チャン スン カンパニー、リミテッド Electrode paste composition for chip parts

Also Published As

Publication number Publication date
JP4977041B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP3646259B2 (en) Copper powder for conductive paste with excellent oxidation resistance and method for producing the same
KR100680461B1 (en) Conductive paste for terminal electrode of multilayer ceramic electronic part
EP1321441B1 (en) Glass and conductive paste using the same
KR100895414B1 (en) The conductive paste composition for electrode including powder coated with silver and the manufacturing method thereof
JPH10330802A (en) Metallic powder, and its manufacture
JP4586141B2 (en) Conductive paste
JP5044857B2 (en) Manufacturing method of copper powder with oxide film
JP4213921B2 (en) Method for producing silver powder for conductive paste
JP2011094236A (en) Copper powder for low temperature firing, or copper powder for conductive paste
JP4854705B2 (en) Silver powder for conductive paste and conductive paste using the silver powder
JP4128424B2 (en) Method for producing copper powder for conductive pastes with excellent oxidation resistance and sinterability
JP4977041B2 (en) Copper powder for conductive paste for external electrodes with excellent oxidation resistance and sinterability
JP2006118032A (en) Flake copper powder provided with copper oxide coat layer, method for producing flake copper powder provided with copper oxide coat layer and conductive slurry comprising flake copper powder provided with copper oxide coat layer
JP2011129884A (en) Method of manufacturing ceramic electronic component, and ceramic electronic component
JP5754090B2 (en) Glass frit, conductive paste using the same, and electronic device
JP2009079269A (en) Copper powder for electroconductive paste, production method therefor and electroconductive paste
KR102302205B1 (en) Silver powder manufacturing method
JP6303022B2 (en) Copper powder
JP3457879B2 (en) Method for producing spherical platinum powder for use in platinum paste
JP4615987B2 (en) Metal paste and method for producing conductive film using the same
JPH07130573A (en) Ceramic powder coated with conductive metal
JP3059541B2 (en) Manufacturing method of inorganic insulated wire
JP2023081751A (en) Method for producing water-resistant inorganic oxide hollow particles
JP4341428B2 (en) Conductive paste and ceramic electronic component using the same
JPH06196356A (en) Manufacture of substrate having electrode layer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R150 Certificate of patent or registration of utility model

Ref document number: 4977041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term