JPWO2018216571A1 - 透明樹脂組成物、透明被膜および透明樹脂被覆ガラス基板 - Google Patents

透明樹脂組成物、透明被膜および透明樹脂被覆ガラス基板 Download PDF

Info

Publication number
JPWO2018216571A1
JPWO2018216571A1 JP2018526825A JP2018526825A JPWO2018216571A1 JP WO2018216571 A1 JPWO2018216571 A1 JP WO2018216571A1 JP 2018526825 A JP2018526825 A JP 2018526825A JP 2018526825 A JP2018526825 A JP 2018526825A JP WO2018216571 A1 JPWO2018216571 A1 JP WO2018216571A1
Authority
JP
Japan
Prior art keywords
resin composition
transparent
transparent resin
group
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018526825A
Other languages
English (en)
Other versions
JP6489288B1 (ja
Inventor
欣彦 井上
欣彦 井上
雄介 福▲崎▼
雄介 福▲崎▼
弘和 飯森
弘和 飯森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Application granted granted Critical
Publication of JP6489288B1 publication Critical patent/JP6489288B1/ja
Publication of JPWO2018216571A1 publication Critical patent/JPWO2018216571A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3405Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of organic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L43/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Compositions of derivatives of such polymers
    • C08L43/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/445Organic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/478Silica
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/119Deposition methods from solutions or suspensions by printing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)
  • Surface Treatment Of Glass (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

少なくとも(A)シロキサン樹脂、(B)有機溶媒および2種以上の(C)界面活性剤を含有する透明樹脂組成物であって、前記界面活性剤として(C1)シリコン変性アクリル系界面活性剤および(C2)含フッ素熱分解性界面活性剤を含有し、前記界面活性剤(C1)および(C2)の総含有量が、透明樹脂組成物中50ppm以上500ppm以下である透明樹脂組成物。スプレー塗布やインクジェット塗布により塗布した際においても、はじきやムラを抑制し、外観良好で、無機膜や有機膜との密着性に優れる透明被膜を形成することができる透明樹脂組成物を提供する。

Description

本発明は、シロキサン樹脂、有機溶媒および界面活性剤を含有する透明樹脂組成物と、それを用いた透明被膜および透明樹脂被覆ガラス基板に関する。
近年、ウェアラブル端末、スマートフォン、タブレットPC(パーソナルコンピューター)などの各種表示端末は、液晶表示装置や有機EL(エレクトロルミネッセンス)表示装置などの表示パネルの前面に、印刷用着色インキ等により加飾膜が形成されたカバーガラスを張り合わせた構成を有している。また、一部表示端末においては、ガラス上に透明電極を有する、タッチセンサー機能が付与されたカバーガラスも適用されている。しかしながら、これらの表示端末には、カバーガラスのガラス自体の強度の不足や、ガラス上の透明電極等の無機膜によるガラス強度の低下により、表示端末を落下させた場合にカバーガラスが破損しやすい課題があった。
タッチセンサー機能を有するカバーガラスとしては、カバーガラス上に導電膜およびセンサーを直接形成した、1枚のガラスが、カバーガラスとタッチセンサーの両方の機能を有するカバーガラス一体型タッチパネルが提案されている。このような構成においては、ガラス上に遮光層を形成し、遮光層上にさらに導電膜やITOなどの配線が形成されることが一般的である。カバーガラス一体型タッチパネルの製造方法として、例えば、スクリーン印刷法によりカバーガラス基板上に加飾部を形成する工程と、カバーガラス基板上の加飾部を研磨する工程と、カバーガラス基板上にオーバーコート層を塗布する工程と、オーバーコート層の上にタッチパネルセンサーを形成する工程と、タッチパネルセンサーごとにカバーガラス基板を断裁する工程と、をこの順で含む加飾カバーガラス一体型タッチパネルの製造方法(例えば、特許文献1参照)が提案されている。しかしながら、そのような製造方法においては、ガラスの強度が不足するという課題があった。
そこで、強度を向上させる技術として、例えば、ガラス板と、透明導電膜と、透明な有機化合物からなる下地絶縁膜とを備えるセンサ一体型カバーガラス(例えば、特許文献2参照)、透光性化学強化ガラス基板と、樹脂層とを有する、表示装置用の保護板用基板(例えば、特許文献3参照)、強化処理ガラスと、透明導電膜と、硬化膜とを有する画像表示装置の前面板(例えば、特許文献4参照)などが提案されている。
樹脂層を形成する方法として、例えば、インクジェット塗布やスプレー塗布などの塗布方法が挙げられる。インクジェット塗布に適した樹脂組成物として、例えば、オキサゾリン基含有樹脂と、炭素数7以上のアルカンジオールと、界面活性剤と、水と、を含有するインクジェット用コート液(例えば、特許文献5参照)、炭素数6以下のヒドロキシ基含有カルボン酸エステルと、界面活性剤と、水とを含有するインクジェット用インク(例えば、特許文献6参照)などが提案されている。
一方、コーティング材を良好に塗工できる組成物として、重合性単量体の重合体構造を有する主鎖と、フッ素化アルキル基またはポリ(パーフルオロアルキレンエーテル)鎖を有する側鎖と、特定の官能基を有する側鎖とを有する含フッ素熱分解性樹脂を含むレジスト組成物が(例えば特許文献7参照)提案されている。
特開2012−155644号公報 国際公開第2014/30599号 特開2014−228615号公報 特開2016−124720号公報 特開2013−28130号公報 特開2013−87207号公報 特開2016−17172号公報
近年、カバーガラス一体型タッチパネルの強度のさらなる向上を目的として、個片に分断して化学強化を行ったガラスを用いてカバーガラス一体型センサーを形成する検討や、意匠性向上を目的として、曲面形状のガラスを用いてカバーガラス一体型センサーを形成する検討がなされている。個片ガラスや曲面形状のガラスに樹脂組成物を塗布する場合、従来のスリットコーターやスピナーを用いた方法は、生産性の観点から適用が困難である。一方、インクジェット塗布やスプレー塗布について、特許文献5〜6に記載の技術をカバーガラス一体型タッチパネルに適用すると、はじきなどの塗布性不良や、塗膜乾燥時のムラなどの外観上の課題があった。また、特許文献7に記載されたレジスト組成物は、ガラス強度の向上を目的としてガラス上に透明樹脂膜を形成した後、意匠性向上のため透明樹脂膜上に着色インキを塗布し着色膜を形成したり、光学調整層として透明無機膜を形成した際に、熱膨張係数の違いにより、積層界面で剥がれが発生する課題があった。本発明は、かかる従来技術の課題に鑑み創案されたもので、スプレー塗布やインクジェット塗布により塗布した際においても、はじきやムラを抑制し、外観良好で、無機膜や有機膜との密着性に優れる透明被膜を形成することができる透明樹脂組成物を提供することを目的とする。
本発明者らは、従来技術の課題を解決するために鋭意検討した結果、透明樹脂組成物のマトリクス樹脂としてシロキサン樹脂を用い、特定の界面活性剤を複数併用することにより、本発明の課題を解決できることを見いだした。
すなわち、本発明の目的は以下の構成により達成される。
少なくとも(A)シロキサン樹脂、(B)有機溶媒および2種以上の(C)界面活性剤を含有する透明樹脂組成物であって、前記界面活性剤として(C1)シリコン変性アクリル系界面活性剤および(C2)含フッ素熱分解性界面活性剤を含有し、前記界面活性剤(C1)および(C2)の総含有量が、透明樹脂組成物中50ppm以上500ppm以下である透明樹脂組成物。
本発明によれば、スプレーやインクジェットにより塗布した際においても、はじきやムラを抑制し、外観の良好な透明被膜を形成することができる。さらに、本発明の透明樹脂組成物を用いることにより、無機膜や有機膜との密着性に優れる透明被膜を得ることができる。
以下、本発明を更に詳細に説明する。
本発明の透明樹脂組成物は、少なくとも(A)シロキサン樹脂、(B)有機溶媒および2種以上の(C)界面活性剤を含有し、界面活性剤として(C1)シリコン変性アクリル系界面活性剤および(C2)含フッ素熱分解性界面活性剤を含有し、前記界面活性剤(C1)および(C2)の総含有量が、透明樹脂組成物中50ppm以上500ppm以下であることを特徴とする。(A)シロキサン樹脂は、樹脂組成物の透明性を向上させる作用を有し、(B)有機溶媒は、(A)シロキサン樹脂を均一に溶解する作用を有する。(A)シロキサン樹脂が(B)有機溶媒中に溶解した樹脂溶液により、ガラス基板上に、硬化収縮量が小さく、有機膜や無機膜との密着性に優れる透明被膜を簡便に形成することができる一方、塗膜乾燥時の溶媒揮発によりムラが生じやすい傾向にある。そこで、本発明においては、上記特定の界面活性剤を特定量含有することにより、透明樹脂組成物をスプレー塗布やインクジェット塗布によりガラス基板上に塗布した際においても、はじき等の塗布性不良や、塗膜乾燥時のベナードセルやガラス基板端部における膜厚バラツキに起因するムラなどを抑制し、外観の良好な透明被膜を形成することが可能となる。なお、本発明における透明樹脂組成物とは、厚さ1.5μmの樹脂被膜としたときの、分光光度計を用いて測定した波長400nmにおける透過率が80%以上となるものを指す。
(C1)シリコン変性アクリル系界面活性剤は、ガラス基板上における透明樹脂組成物の接触角の増大を抑制しつつ表面張力を低減することができる。このため、(C1)シリコン変性アクリル系界面活性剤を含有することにより、透明樹脂組成物をスプレーやインクジェットによりガラス基板上に塗布した場合においても、吐出された液滴がガラス基板上で濡れ広がり、はじき等の塗布性不良を抑制することができる。しかしながら、シロキサン樹脂を含む樹脂組成物においては、シリコン変性アクリル系界面活性剤による表面張力の低減効果が低くなるため、塗膜乾燥時にベナードセル等のムラが発生しやすい課題があった。一方、シリコン系界面活性剤やフッ素系界面活性剤は、透明樹脂組成物の表面張力を低減する作用を有し、塗膜乾燥時のムラを抑制することができる。しかしながら、ガラス基板上における透明樹脂組成物の接触角が大きくなることから、透明樹脂組成物をスプレーやインクジェットにより基板上に塗布した場合、はじきが発生しやすいという課題があった。また、シリコン系界面活性剤やフッ素系界面活性剤を含有する場合、形成した透明被膜の表面自由エネルギーが小さくなるため、透明被膜上に有機膜や無機膜を積層した場合に、密着性が低下しやすい。そこで、スプレー塗布やインクジェット塗布により透明樹脂組成物をガラス基板上に塗布した際の塗布性不良および塗膜乾燥時の乾燥不良を抑制することができ、透明被膜の密着性を維持する界面活性剤について、鋭意検討を行った結果、(C1)シリコン変性アクリル系界面活性剤と(C2)含フッ素熱分解性界面活性剤を組み合わせることにより課題を解決できることを見出した。すなわち、(C1)シリコン変性アクリル系界面活性剤を含有することにより、はじき等の塗布性不良を抑制し、(C2)含フッ素熱分解性界面活性剤を含有することにより、ガラス基板上における接触角の増大を抑制しつつ表面張力を低減し、塗膜乾燥時のムラをすることができ、透明樹脂組成物の熱硬化に際して(C2)含フッ素熱分解性界面活性剤が熱分解するため、透明被膜の無機膜や有機膜との密着性が向上することを見出した。
(C1)シリコン変性アクリル系界面活性剤としては、例えば、下記一般式(1)で表される構造を有する化合物が挙げられる。
上記一般式(1)中、R〜Rはそれぞれ独立に水素原子またはメチル基を表す。aは1〜18の整数を表し、pは0〜50の整数を表し、qは1〜8の整数を表す。aは2〜18の整数が好ましい。ただし、p個の繰り返し単位およびq個の繰り返し単位はブロックでもランダムでもよい。
(C1)シリコン変性アクリル系界面活性剤としては、市販されているものを用いてもよく、前記一般式(1)で表される構造を有する化合物として、例えば、“BYK”−3550、“BYK”−SILXLEAN3700(いずれもビックケミー社製)等を挙げることができる。これらを2種以上含有してもよい。
(C2)含フッ素熱分解性界面活性剤とは、熱分解性を有するフッ素含有界面活性剤を指す。ここで、「熱分解性」とは、150〜300℃のいずれかの環境下に30分間晒すことにより熱分解することを指す。例えば、カルボキシル基を有する(C2)含フッ素熱分解性界面活性剤の場合、150〜300℃の環境下に30分間晒すことにより、カルボキシル基をブロックした構造が脱離し、カルボキシル基が発生する。(C2)含フッ素熱分解性界面活性剤としては、例えば、重合性単量体の重合体構造を有する主鎖と、フッ素化アルキル基および/またはポリ(パーフルオロアルキレンエーテル)鎖を有する側鎖と、下記一般式(2)で表される構造を有する基を有する側鎖とを有するものが挙げられる。
上記一般式(2)中、R、RおよびRはそれぞれ独立に水素原子または炭素原子数1〜18の1価の有機基を表す。Rは炭素原子数1〜18の1価の有機基を表す。ただし、RとRはたがいに結合してYをヘテロ原子とする複素環を形成してもよい。Yは酸素原子またはイオウ原子を表す。炭素原子数1〜18の1価の有機基としては、アルキル基、シクロアルキル基が好ましい。R、RおよびRは水素原子が好ましく、Rは炭素原子数1〜18のアルキル基または炭素原子数1〜18のシクロアルキル基が好ましい。
(C2)含フッ素熱分解性界面活性剤の主鎖を構成する重合性単量体としては、下記一般式(3)で表される重合性単量体、カルボキシル基を有する重合性単量体などが挙げられる。下記一般式(3)におけるRfが、(C2)含フッ素熱分解性界面活性剤中において、前述のフッ素化アルキル基および/またはポリ(パーフルオロアルキレンエーテル)鎖を有する側鎖を構成する。
上記一般式(3)中、Rは水素原子またはメチル基を表し、Lは炭素原子数1〜18のポリエーテル、ポリウレタンまたはポリオールを表し、Rfは炭素原子数1〜18のフッ素化アルキル基または炭素原子数1〜18のポリ(パーフルオロアルキレンエーテル)鎖を表す。透明樹脂組成物を塗布した際のムラをより抑制する観点から、Rfはフッ素原子が直接結合した炭素原子数が1〜6のフッ素化アルキル基が好ましい。
(C2)含フッ素熱分解性界面活性剤としては、市販されているものを用いてもよく、重合性単量体の重合体構造を有する主鎖と、フッ素化アルキル基および/またはポリ(パーフルオロアルキレンエーテル)鎖を有する側鎖と、前記一般式(2)で表される構造を有する基を有する側鎖とを有するものとして例えば、“DS−21”(DIC(株)製)等を挙げることができる。
(C2)含フッ素熱分解性界面活性剤は、例えば、フッ素化アルキル基および/またはポリ(パーフルオロアルキレンエーテル)鎖を有する重合性単量体とカルボキシル基を有する重合性単量体とを重合させて得られた重合体に対して、ビニルエーテル化合物を、酸触媒の存在下、20〜100℃程度に加熱し、カルボキシル基にブロック化させることにより得ることができる。例えば、特開2016−17172号に記載の方法が挙げられる。
本発明の透明樹脂組成物における(C1)シリコン変性アクリル系界面活性剤および(C2)含フッ素熱分解性界面活性剤の総含有量は、透明樹脂組成物中50ppm以上500ppm以下である。これらの総含有量が50ppm未満であると、透明樹脂組成物の表面張力が増大するため、塗膜乾燥時にベナードセルなどのムラが発生しやすくなる。一方、これらの総含有量が500ppmを超えると、塗液の表面張力が低下しすぎるため、乾燥ムラやガラス基板端部における透明被膜の薄膜化が生じる。これらの総含有量は400ppm以下が好ましい。
本発明の着色樹脂組成物における(C1)シリコン変性アクリル系界面活性剤の含有量は、透明樹脂組成物中25ppm以上300ppm以下が好ましく、接触角を後述する好ましい範囲に容易に調整することができる。(C1)シリコン変性アクリル系界面活性剤の含有量は、25ppm以上150ppm以下がより好ましい。
本発明の着色樹脂組成物における(C2)含フッ素熱分解性界面活性剤の含有量は、透明樹脂組成物中25ppm以上300ppm以下が好ましく、表面張力を後述する好ましい範囲に容易に調整することができる。(C2)含フッ素熱分解性界面活性剤の含有量は、25ppm以上150ppm以下がより好ましい。
(C1)シリコン変性アクリル系界面活性剤の含有量に対する(C2)含フッ素熱分解性界面活性剤の含有量比率(C2)/(C1)は、塗膜乾燥時のムラをより抑制する観点から、0.25以上が好ましく、0.50以上がより好ましい。一方、(C2)/(C1)は、ガラス基板端部におけるムラをより抑制する観点から、4.0以下が好ましく、2.0以下がより好ましい。
(A)シロキサン樹脂とは、シロキサン骨格を有する繰り返し単位を有するポリマーを言う。下記一般式(4)で表される構造を有するオルガノシラン化合物の加水分解縮合物が好ましい。
一般式(4)中、Xは、水素原子、フッ素原子、炭素原子数1〜20の1価の有機基、もしくは、B原子、N原子、Al原子、P原子、Si原子、Ge原子またはTi原子を含む基を表す。Xは加水分解性基を表す。nは0〜2の整数を表し、nが2のとき、各Xは同一でも異なっていてもよく、nが0〜2のとき、各Xは同一でも異なっていてもよい。
加水分解性基Xとしては、例えば、アルコキシ基、ハロゲン基、アセトキシ基、イソシアネート基、ヒドロキシル基等が挙げられる。これらの中でも、透明樹脂組成物の液状安定性や塗布性の観点から、アルコキシ基が好ましい。
(A)シロキサン樹脂は、ラジカル重合性基を有することが好ましく、ラジカル重合性基とカルボキシル基および/またはジカルボン酸無水物基を有することがより好ましい。ラジカル重合性基を有することにより、ガラス基板をより強化することができ、感光性により透明被膜を容易にパターン加工することができる。さらにカルボキシル基および/またはジカルボン酸無水物基を有することにより、透明被膜のパターン加工時の溶解性が向上するため、より微細なパターンを加工することができる。なお、ラジカル重合性基やカルボキシル基を有する(A)シロキサン樹脂は、加水分解縮合するオルガノシラン化合物として、これらの基を有するオルガノシラン化合物を用いることにより得ることができる。
ラジカル重合性基としては、例えば、ビニル基、α−メチルビニル基、アリル基、スチリル基、(メタ)アクリロイル基などが挙げられる。透明被膜の硬度やパターン加工時の感度をより向上させる観点から、(メタ)アクリロイル基が好ましい。一方、アルカリ可溶性基を有するシロキサン樹脂に加えて、感光剤として光酸発生剤を含有することにより、露光部のアルカリ溶解性を相対的に高めて、ポジ型の感光性を付与することができる。
ラジカル重合性基を有するオルガノシラン化合物としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(メトキシエトキシ)シラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、ビニルメチルジ(メトキシエトキシ)シラン、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリ(メトキシエトキシ)シラン、アリルメチルジメトキシシラン、アリルメチルジエトキシシラン、アリルメチルジ(メトキシエトキシ)シラン、スチリルトリメトキシシラン、スチリルトリエトキシシラン、スチリルトリ(メトキシエトキシ)シラン、スチリルメチルジメトキシシラン、スチリルメチルジエトキシシラン、スチリルメチルジ(メトキシエトキシ)シラン、γ−アクリロイルプロピルトリメトキシシラン、γ−アクリロイルプロピルトリエトキシシラン、γ−アクリロイルプロピルトリ(メトキシエトキシ)シラン、γ−メタクリロイルプロピルトリメトキシシラン、γ−メタクリロイルプロピルトリエトキシシラン、γ−メタクリロイルプロピルトリ(メトキシエトキシ)シラン、γ−メタクリロイルプロピルメチルジメトキシシラン、γ−メタクリロイルプロピルメチルジエトキシシラン、γ−アクリロイルプロピルメチルジメトキシシラン、γ−アクリロイルプロピルメチルジエトキシシラン、γ−メタクリロイルプロピル(メトキシエトキシ)シランなどが挙げられる。これらを2種以上用いてもよい。これらのうち、硬化膜の硬度やパターン加工時の感度をより向上させる観点から、γ−アクリロイルプロピルトリメトキシシラン、γ−アクリロイルプロピルトリエトキシシラン、γ−メタクリロイルプロピルトリメトキシシラン、γ−メタクリロイルプロピルトリエトキシシランが好ましい。
カルボキシル基を有するオルガノシラン化合物としては、下記一般式(5)で表されるウレア基含有オルガノシラン化合物、下記一般式(6)で表されるウレタン基含有オルガノシラン化合物、後述する一般式(10)で表されるオルガノシラン化合物などが挙げられる。これらを2種以上用いてもよい。
上記一般式(5)〜(6)中、R、R10およびR14は、炭素数1〜20の2価の有機基を表す。Rは、水素原子または炭素数1〜3のアルキル基を表す。R11〜R13は、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、フェニル基、フェノキシ基、炭素数2〜6のアルキルカルボニルオキシ基またはそれらの置換体を表す。ただし、R11〜R13のうち、少なくとも一つはアルコキシ基、フェノキシ基またはアセトキシ基である。
上記一般式(5)〜(6)におけるRおよびR14の好ましい例としては、メチレン基、エチレン基、n−プロピレン基、n−ブチレン基、フェニレン基、−CH−C−CH−、−CH−C−などの炭化水素基が挙げられる。これらの中でも、耐熱性の観点から、フェニレン基、−CH−C−CH−、−CH−C−などの芳香族環を有する炭化水素基が好ましい。
上記一般式(6)におけるRは、反応性の観点から、水素またはメチル基が好ましい。
上記一般式(5)〜(6)におけるR10としては、例えば、メチレン基、エチレン基、n−プロピレン基、n−ブチレン基、n−ペンチレン基などの炭化水素基や、オキシメチレン基、オキシエチレン基、オキシn−プロピレン基、オキシn−ブチレン基、オキシn−ペンチレン基などが挙げられる。これらの中でも、合成の容易性の観点から、メチレン基、エチレン基、n−プロピレン基、n−ブチレン基、オキシメチレン基、オキシエチレン基、オキシn−プロピレン基、オキシn−ブチレン基が好ましい。
上記一般式(5)〜(6)におけるR11〜R13のうち、アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基などが挙げられる。合成の容易性の観点から、メチル基またはエチル基が好ましい。また、アルコキシ基の具体例としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基などが挙げられる。合成の容易性の観点から、メトキシ基またはエトキシ基が好ましい。また、置換体の置換基としては、メトキシ基、エトキシ基などが挙げられる。具体的には、1−メトキシプロピル基、メトキシエトキシ基などが挙げられる。
上記一般式(5)で表されるウレア基含有オルガノシラン化合物は、下記一般式(7)で表されるアミノカルボン酸化合物と、下記一般式(9)で表されるイソシアネート基含有オルガノシラン化合物から、公知のウレア化反応により得ることができる。また、上記一般式(6)で表されるウレタン基含有オルガノシラン化合物は、下記一般式(8)で表されるヒドロキシカルボン酸化合物と、下記一般式(9)で表されるイソシアネート基を有するオルガノシラン化合物から、公知のウレタン化反応により得ることができる。
上記一般式(7)〜(9)中、R、R10およびR14は、炭素数1〜20の2価の有機基を表す。Rは、水素原子または炭素数1〜3のアルキル基を表す。R11〜R13は、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、フェニル基、フェノキシ基、炭素数2〜6のアルキルカルボニルオキシ基またはそれらの置換体を表す。ただし、R〜Rのうち、少なくとも一つはアルコキシ基、フェノキシ基またはアセトキシ基である。R〜R14の好ましい例は、一般式(5)〜(6)におけるR〜R14について先に説明したとおりである。
上記一般式(10)中、R15は、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、フェニル基、フェノキシ基、炭素数2〜6のアルキルカルボニルオキシ基またはそれらの置換体を表す。ただし、lが2以上の場合、複数のR15は同じでも異なっていてもよく、少なくとも一つはアルコキシ基、フェノキシ基またはアセトキシ基である。lは1〜3の整数を表す。mは2〜20の整数を表す。
ジカルボン酸無水物基を有するオルガノシラン化合物の具体例としては、下記一般式(11)〜(13)のいずれかで表されるオルガノシラン化合物が挙げられる。これらを2種以上用いてもよい。
上記式中、R16〜R18、R20〜R22およびR24〜R26は、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、フェニル基、フェノキシ基、炭素数2〜6のアルキルカルボニルオキシ基またはそれらの置換体を表す。R19、R23およびR27は、単結合、鎖状脂肪族炭化水素基、環状脂肪族炭化水素基、カルボニル基、エーテル基、エステル基、アミド基、芳香族基またはこれらのいずれかを有する2価の基を表す。これらの基は置換されていてもよい。hおよびkは0〜3の整数を表す。
19、R23およびR27の具体例としては、−C−、−C−、−C−、−O−、−COCHCH(OH)CHC−、−CO−、−CO−、−CONH−、以下に挙げる有機基などが挙げられる。
上記一般式(11)で表されるオルガノシラン化合物の具体例としては、3−トリメトキシシリルプロピルコハク酸無水物、3−トリエトキシシシリルプロピルコハク酸無水物、3−トリフェノキシシリルプロピルコハク酸無水物などが挙げられる。上記一般式(12)で表されるオルガノシラン化合物の具体例としては、3−トリメトキシシシリルプロピルシクロヘキシルジカルボン酸無水物などが挙げられる。上記一般式(13)で表されるオルガノシラン化合物の具体例としては、3−トリメトキシシシリルプロピルフタル酸無水物などが挙げられる。
(A)シロキサン樹脂は、前述のラジカル重合性基、カルボキシル基を有するオルガノシランと、その他のオルガノシランとの加水分解縮合物であってもよい。他のオルガノシラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ(メトキシエトキシ)シラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、3−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、3−クロロプロピルトリメトキシシラン、3−(N,N−ジグリシジル)アミノプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、β−シアノエチルトリエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α−グリシドキシエチルトリメトキシシラン、α−グリシドキシエチルトリエトキシシラン、β−グリシドキシエチルトリメトキシシラン、β−グリシドキシエチルトリエトキシシラン、α−グリシドキシプロピルトリメトキシシラン、α−グリシドキシプロピルトリエトキシシラン、β−グリシドキシプロピルトリメトキシシラン、β−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリプロポキシシシラン、γ−グリシドキシプロピルトリイソプロポキシシシラン、γ−グリシドキシプロピルトリブトキシシラン、γ−グリシドキシプロピルトリ(メトキシエトキシ)シラン、α−グリシドキシブチルトリメトキシシラン、α−グリシドキシブチルトリエトキシシラン、β−グリシドキシブチルトリメトキシシラン、β−グリシドキシブチルトリエトキシシラン、γ−グリシドキシブチルトリメトキシシラン、γ−グリシドキシブチルトリエトキシシラン、δ−グリシドキシブチルトリメトキシシラン、δ−グリシドキシブチルトリエトキシシラン、(3,4−エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4−エポキシシクロヘキシル)メチルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリプロポキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリブトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリフェノキシシラン、3−(3,4−エポキシシクロヘキシル)プロピルトリメトキシシラン、3−(3,4−エポキシシクロヘキシル)プロピルトリエトキシシラン、4−(3,4−エポキシシクロヘキシル)ブチルトリメトキシシラン、4−(3,4−エポキシシクロヘキシル)ブチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、グリシドキシメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α−グリシドキシエチルメチルジメトキシシラン、α−グリシドキシエチルメチルジエトキシシラン、β−グリシドキシエチルメチルジメトキシシラン、β−グリシドキシエチルメチルジエトキシシラン、α−グリシドキシプロピルメチルジメトキシシラン、α−グリシドキシプロピルメチルジエトキシシラン、β−グリシドキシプロピルメチルジメトキシシラン、β−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルメチルジプロポキシシラン、β−グリシドキシプロピルメチルジブトキシシラン、γ−グリシドキシプロピルメチルジ(メトキシエトキシ)シラン、γ−グリシドキシプロピルエチルジメトキシシラン、γ−グリシドキシプロピルエチルジエトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルメチルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、オクタデシルメチルジメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、パーフルオロプロピルトリメトキシシラン、パーフルオロプロピルトリエトキシシラン、パーフルオロペンチルトリメトキシシラン、パーフルオロペンチルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、トリデカフルオロオクチルトリプロポキシシラン、トリデカフルオロオクチルトリイソプロポキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン、ビス(トリフルオロメチル)ジメトキシシラン、ビス(トリフルオロプロピル)ジメトキシシラン、ビス(トリフルオロプロピル)ジエトキシシラン、トリフルオロプロピルメチルジメトキシシラン、トリフルオロプロピルメチルジエトキシシラン、トリフルオロプロピルエチルジメトキシシラン、トリフルオロプロピルエチルジエトキシシラン、ヘプタデカフルオロデシルメチルジメトキシシランなどが挙げられる。これらを2種以上用いてもよい。これらのうち、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシランなどが挙げられる。これらを2種以上使用してもよい。
(A)シロキサン樹脂は、オルガノシラン化合物を加水分解縮合することにより得ることができる。例えば、オルガノシラン化合物を加水分解した後、得られたシラノール化合物を(B)有機溶媒の存在下または無溶媒で縮合反応させることによって得ることができる。
加水分解反応の各種条件は、反応スケール、反応容器の大きさ、形状などを考慮して適宜設定することができる。例えば、溶媒中、オルガノシラン化合物に酸触媒および水を1〜180分間かけて添加した後、室温〜110℃で1〜180分間反応させることが好ましい。このような条件で加水分解反応を行うことにより、急激な反応を抑制することができる。反応温度は、より好ましくは30〜105℃である。
加水分解反応は、酸触媒の存在下で行うことが好ましい。酸触媒としては、蟻酸、酢酸、リン酸を含む酸性水溶液が好ましい。酸触媒の添加量は、加水分解反応時に使用される全オルガノシラン化合物100重量部に対して、0.1〜5重量部が好ましい。酸触媒の量を上記範囲とすることにより、加水分解反応をより効率的に進めることができる。
オルガノシラン化合物の加水分解反応によりシラノール化合物を得た後、反応液をそのまま50℃以上、溶媒の沸点以下で1〜100時間加熱し、縮合反応を行うことが好ましい。また、ポリシロキサンの重合度を上げるために、再加熱または塩基触媒添加を行ってもよい。
オルガノシラン化合物の加水分解反応およびシラノール化合物の縮合反応に用いられる有機溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、t−ブタノール、ペンタノール、4−メチル−2−ペンタノール、3−メチル−2−ブタノール、3−メチル−3−メトキシ−1−ブタノール、1−t−ブトキシ−2−プロパノール、ダイアセトンアルコールなどのアルコール類;エチレングリコール、プロピレングリコールなどのグリコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチルエーテルなどのエーテル類;メチルエチルケトン、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、2−ヘプタノンなどのケトン類;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類;エチルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3−メトキシブチルアセテート、3−メチル−3−メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類;トルエン、キシレン、ヘキサン、シクロヘキサンなどの芳香族あるいは脂肪族炭化水素、γ−ブチロラクトン、N−メチル−2−ピロリドン、ジメチルスルホキシドなどを挙げることができる。硬化膜の透過率、耐クラック性などの点から、ダイアセトンアルコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノt−ブチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、γ−ブチロラクトンなどが好ましく用いられる。
加水分解反応によって溶媒が生成する場合には、無溶媒で加水分解させることも可能である。反応終了後に、さらに溶媒を添加することにより、樹脂組成物として適切な濃度に調整することも好ましい。また、目的に応じて加水分解後に、生成アルコールなどを加熱および/または減圧下にて適量を留出、除去し、その後好適な溶媒を添加してもよい。
加水分解反応において使用する溶媒の量は、全オルガノシラン化合物100重量部に対して80重量部以上、500重量部以下が好ましい。溶媒の量を上記範囲とすることにより、加水分解反応をより効率的に進めることができる。
また、加水分解反応に用いる水は、イオン交換水が好ましい。水の量は、シラン原子1モルに対して、1.0〜4.0モルが好ましい。
(B)有機溶媒としては、例えば、脂肪族炭化水素、カルボン酸エステル、ケトン、エーテル、アルコール類などが挙げられる。これらを2種以上含有してもよい。各成分を均一に溶解し、得られる塗布膜の透明性を向上させる観点から、アルコール性水酸基を有する化合物、カルボニル基を有する環状化合物が好ましい。
アルコール性水酸基を有する化合物としては、例えば、アセトール、3−ヒドロキシ−3−メチル−2−ブタノン、4−ヒドロキシ−3−メチル−2−ブタノン、5−ヒドロキシ−2−ペンタノン、4−ヒドロキシ−4−メチル−2−ペンタノン(ダイアセトンアルコール)、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn−プロピルエーテル、プロピレングリコールモノn−ブチルエーテル、プロピレングリコールモノt−ブチルエーテル、3−メトキシ−1−ブタノール、3−メチル−3−メトキシ−1−ブタノールなどが挙げられる。これらの中でも、保存安定性の観点から、ダイアセトンアルコール、3−メチル−3−メトキシ−1−ブタノールが好ましい。
カルボニル基を有する環状化合物の具体例としては、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、炭酸プロピレン、N−メチルピロリドン、シクロヘキサノン、シクロヘプタノンなどが挙げられる。これらの中でも、γ−ブチロラクトンが特に好ましく用いられる。
脂肪族炭化水素としては、例えば、キシレン、エチルベンゼン、ソルベントナフサなどが挙げられる。
カルボン酸エステルとしては、例えば、ベンジルアセテート、エチルベンゾエート、γ−ブチロラクトン、メチルベンゾエート、マロン酸ジエチル、2−エチルヘキシルアセテート、2−ブトキシエチルアセテート、3−メトキシ−3−メチル−ブチルアセテート、シュウ酸ジエチル、アセト酢酸エチル、シクロヘキシルアセテート、3−メトキシ−ブチルアセテート、アセト酢酸メチル、エチル−3−エトキシプロピオネート、2−エチルブチルアセテート、イソペンチルプロピオネート、プロピレングリコールモノメチルエーテルプロピオネート、プロピレングリコールモノエチルエーテルアセテート、酢酸エチル、酢酸ブチル、酢酸イソペンチル、酢酸ペンチル、プロピレングリコールモノメチルエーテルアセテートなどが挙げられる。
ケトンとしては、例えば、シクロペンタノン、シクロヘキサノンなどが挙げられる。
エーテルとしては、例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールターシャリーブチルエーテル、ジプロピレングリコールモノメチルエーテルなどのプロピレングリコール誘導体などの脂肪族エーテル類などが挙げられる。
スプレー塗布またはインクジェット塗布によりガラス基板に塗布する際の揮発性および乾燥特性を適度に調整し、塗布性をより向上させる観点から、大気圧下における沸点が150℃以上250℃以下の有機溶剤と、大気圧下における沸点が150℃未満の有機溶剤を含有することが好ましい。ノズルにおける塗液の乾燥に起因する(A)シロキサン樹脂の固化を抑制する観点から、(B)有機溶媒の合計100質量部に対して、大気圧下における沸点が150℃以上250℃以下の有機溶剤を10質量部以上含有することが好ましい。一方、曲面ガラス上における塗液の垂れを抑制して膜厚をより均一にする観点から、(B)有機溶剤の合計100質量部に対して、大気圧下における沸点が150℃以上250℃以下の有機溶剤を75質量部以下含有することが好ましい。大気圧下における沸点が150℃以上250℃以下の有機溶剤の沸点は、150℃以上200℃以下がより好ましい。
大気圧下における沸点が150℃以上250℃以下の有機溶剤としては、例えば、4−ヒドロキシ−4−メチル−2−ペンタノン(ダイアセトンアルコール)、乳酸エチル、乳酸ブチル、プロピレングリコールモノt−ブチルエーテル、3−メトキシ−1−ブタノール、3−メチル−3−メトキシ−1−ブタノール、ベンジルアセテート、エチルベンゾエート、メチルベンゾエート、マロン酸ジエチル、2−エチルヘキシルアセテート、2−ブトキシエチルアセテート、3−メトキシ−3−メチル−ブチルアセテート、シュウ酸ジエチル、アセト酢酸エチル、シクロヘキシルアセテート、3−メトキシ−ブチルアセテート、アセト酢酸メチル、エチル−3−エトキシプロピオネート、イソペンチルプロピオネート、プロピレングリコールモノメチルエーテルプロピオネート、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、炭酸プロピレン、N−メチルピロリドン、シクロヘキサノン、シクロヘプタノンなどが挙げられる。これらの中でも、4−ヒドロキシ−4−メチル−2−ペンタノン(ダイアセトンアルコール)、3−メチル−3−メトキシ−1−ブタノール、3−メトキシ−3−メチル−ブチルアセテート、3−メトキシ−ブチルアセテート、γ−ブチロラクトンが特に好ましく用いられる。
大気圧下における沸点が150℃未満の有機溶剤としては、例えば、メチルアセテート、エチルアセテート、イソプロピルアセテート、n−プロピルアセテート、ブチルアセテート、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールエチルエーテル、エチレングリコールメチルエーテル、ブタノール、イソブタノール、n−プロピルアルコール、酢酸エチルなどが挙げられる。これらの中でも、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルが特に好ましく用いられる。
本発明の透明樹脂組成物は、感光性を有することが好ましく、熱硬化に加えて光硬化により塗膜を硬化させることにより透明被膜のストレスを低減し、ガラス基板との密着性をより向上させることができる。透明樹脂組成物にネガ型の感光性を付与するために、さらに反応性モノマおよび光ラジカル重合開始剤を含有することが好ましい。
反応性モノマとしては、単官能または多官能のアクリルモノマやアクリルオリゴマなどが挙げられる。これらを2種以上含有してもよい。これらの中でも、多官能(メタ)アクリレートが好ましい。
多官能(メタ)アクリレートとしては、例えば、2,2−[9H−フルオレン−9,9−ジイルビス(1,4−フェニレン)ビスオキシ]ジエタノールジ(メタ)アクリレート(以下、「MM−1」)、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールノナ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート、ペンタペンタエリスリトールウンデカ(メタ)アクリレート、ペンタペンタエリスリトールドデカ(メタ)アクリレートなどが挙げられる。
本発明の透明樹脂組成物における反応性モノマの含有量は、(A)シロキサン樹脂および反応性モノマの合計含有量100質量部に対して、10〜90質量部が好ましい。
光ラジカル重合開始剤としては、例えば、アルキルフェノン系光ラジカル重合開始剤、アシルホスフィンオキサイド系光ラジカル重合開始剤、オキシムエステル系光ラジカル重合開始剤、ベンゾフェノン系光ラジカル重合開始剤、オキサントン系光ラジカル重合開始剤、イミダゾール系光ラジカル重合開始剤、ベンゾチアゾール系光ラジカル重合開始剤、ベンゾオキサゾール系光ラジカル重合開始剤、カルバゾール系光ラジカル重合開始剤、トリアジン系光ラジカル重合開始剤、安息香酸エステル系光ラジカル重合開始剤、リン系光ラジカル重合開始剤、チタネート等の無機系光ラジカル重合開始剤などが挙げられる。これらを2種以上含有してもよい。
アルキルフェノン系光ラジカル重合開始剤としては、例えば、α−アミノアルキルフェノン系光ラジカル重合開始剤、α−ヒドロキシアルキルフェノン系光ラジカル重合開始剤などが挙げられる。これらのうち、透明被膜の硬度を向上させる観点から、α−アミノアルキルフェノン系光ラジカル重合開始剤、アシルホスフィンオキサイド系光ラジカル重合開始剤、オキシムエステル系光ラジカル重合開始剤、アミノ基を有するベンゾフェノン系光ラジカル重合開始剤、アミノ基を有する安息香酸エステル系光ラジカル重合開始剤が好ましい。これらの化合物は、ラジカル重合性基の架橋反応のみならず、光照射および熱硬化の際に塩基または酸として(A)シロキサン樹脂の架橋にも関与することから、透明被膜の硬度がより向上する。
α−アミノアルキルフェノン系光ラジカル重合開始剤としては、例えば、2−メチル−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン、2−ジメチルアミノ−2−(4−メチルベンジル)−1−(4−モルフォリン−4−イル−フェニル)−ブタン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1などが挙げられる。アシルホスフィンオキサイド系光ラジカル重合開始剤としては、例えば、2,4,6−トリメチルベンゾイルフェニルホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−(2,4,4−トリメチルペンチル)−フォスフィンオキサイドなどが挙げられる。オキシムエステル系光ラジカル重合開始剤としては、例えば、1−フェニル−1,2−プロパンジオン−2−(o−エトキシカルボニル)オキシム、1,2−オクタンジオン,1−[4−(フェニルチオ)−2−(O−ベンゾイルオキシム)]、1−フェニル−1,2−ブタジオン−2−(o−メトキシカルボニル)オキシム、1,3−ジフェニルプロパントリオン−2−(o−エトキシカルボニル)オキシム、エタノン,1−[9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル]−,1−(0−アセチルオキシム)などが挙げられる。アミノ基を有するベンゾフェノン系光ラジカル重合開始剤としては、例えば、4,4−ビス(ジメチルアミノ)ベンゾフェノン、4,4−ビス(ジエチルアミノ)ベンゾフェノンなどが挙げられる。アミノ基を有する安息香酸エステル系光ラジカル重合開始剤としては、例えば、p−ジメチルアミノ安息香酸エチル、2−エチルヘキシル−p−ジメチルアミノベンゾエート、p−ジエチルアミノ安息香酸エチルなどが挙げられる。
本発明の透明樹脂組成物における光ラジカル重合開始剤の含有量は、ラジカル硬化を十分に進める観点から、シロキサン樹脂組成物の固形分中0.01重量%以上が好ましく、0.1重量%以上がより好ましい。一方、光ラジカル重合開始剤の残留を抑制し、耐溶剤性を向上させる観点から、光ラジカル重合開始剤の含有量は、20重量%以下が好ましく、10重量%以下がより好ましい。
本発明の透明樹脂組成物にポジ型の感光性を付与するためには、感光剤として光酸発生剤を含有することが好ましい。ポジ型の感光性を付与することにより、凹凸形状の微細なパターンを有する透明被膜を簡便に作製することができる。光酸発生剤としては、キノンジアジド化合物が好ましい。キノンジアジド化合物としては、フェノール性水酸基を有する化合物とキノンジアジドスルホニル酸クロリドとのエステル化物がより好ましい。アルカリ溶解性を向上させるため、フェノール性水酸基の一部をエステル化せず意図的に残存させてもよい。
本発明の透明樹脂組成物におけるキノンジアジド化合物の含有量は、パターン加工性の観点から、シロキサン樹脂100重量部に対して1〜50重量部が好ましい。
本発明の透明樹脂組成物は、前記(C1)および(C2)以外の(C)界面活性剤を含有してもよく、乾燥時のムラをより抑制し、着色被膜の平坦性を向上させることができる。前記(C1)および(C2)以外の(C)界面活性剤としては、例えば、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミンなどの陰イオン界面活性剤;ステアリルアミンアセテート、ラウリルトリメチルアンモニウムクロライドなどの陽イオン界面活性剤;ラウリルジメチルアミンオキサイド、ラウリルカルボキシメチルヒドロキシエチルイミダゾリウムベタインなどの両性界面活性剤;ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ソルビタンモノステアレートなどの非イオン界面活性剤;ポリジメチルシロキサンなどを主骨格とするシリコーン系界面活性剤;(C2)以外のフッ素系界面活性剤;(C1)以外のアクリル系界面活性剤などが挙げられる。
(C1)および(C2)以外の(C)界面活性剤を含有する場合、その含有量は、(C1)および(C2)の効果を阻害しない範囲が好ましく、具体的には、透明樹脂組成物中300ppm以下が好ましく、200ppm以下がより好ましい。
本発明の透明樹脂組成物は、シランカップリング剤などの密着改良剤を含有することが好ましく、塗膜と下地基板との接着性を向上させることができる。シランカップリング剤としては、ビニル基、エポキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基等の官能基を有するシランカップリング剤が挙げられる。具体的には、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、3−メルカプトプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、3−イソシアネートプロピルトリエトキシシラン、p−スリチルトリメトキシシランなどが好ましい。
本発明の透明樹脂組成物における密着改良剤の含有量は、接着性をより向上させる観点から、透明樹脂組成物の固形分中1重量%以上が好ましく、2重量%以上がより好ましい。一方、本発明の透明樹脂組成物が感光性を有する場合、アルカリ現像によるパターン解像度を向上させる観点から、密着改良剤の含有量は、透明樹脂組成物の固形分中15重量%以下が好ましく、10重量%以下がより好ましい。
本発明の透明樹脂組成物は、各種の硬化剤を含有してもよく、透明樹脂組成物の硬化を促進または容易にすることができる。硬化剤としては、例えば、窒素含有有機物、シリコーン樹脂硬化剤、各種金属アルコレート、各種金属キレート化合物、イソシアネート化合物およびその重合体、メチロール化メラミン誘導体、メチロール化尿素誘導体、オキセタニル基を有するシロキサン化合物などが挙げられる。これらを2種以上含有してもよい。なかでも、硬化剤の安定性、得られた塗布膜の加工性などの観点から、金属キレート化合物、メチロール化メラミン誘導体、メチロール化尿素誘導体が好ましく用いられる。また、有機膜や無機膜との密着性をより向上させる観点からは、オキセタニル基を有するシロキサン化合物が好ましく、オキセタニル基を複数有するシロキサン化合物がより好ましい。
(A)シロキサン樹脂は酸により硬化が促進されるので、透明樹脂組成物中に熱酸発生剤などの硬化触媒を含有してもよい。熱酸発生剤としては、例えば、芳香族ジアゾニウム塩、スルフォニウム塩、ジアリールヨードニウム塩、トリアリールスルフォニウム塩、トリアリールセレニウム塩などの各種オニウム塩系化合物、スルホン酸エステル、ハロゲン化合物などが挙げられる。
本発明の透明樹脂組成物は、無機粒子を含有してもよく、透明被膜の硬度を向上させ、透明被膜の屈折率を適度に調整することができる。無機粒子としては、シリコン化合物粒子、アルミニウム化合物粒子、スズ化合物粒子、チタン化合物粒子、ジルコニウム化合物粒子、バリウム化合物粒子などが挙げられ、用途に応じて適宜選択することができる。屈折率の調整をより容易なものとするためには、シリカ粒子、酸化ジルコニア粒子、酸化チタン粒子が好ましい。無機粒子の平均粒子径は、1〜200nmが好ましく、透明被膜の透明性をより向上させる観点から、1〜70nmがより好ましい。無機粒子の平均粒子径は、走査型電子顕微鏡により測定することができる。
無機粒子は、例えば、適当なナノ粒子粉体を調達し、ビーズミル等の分散機を用いて粉砕又は分散する方法や、ゾルゲル法により製造したナノ粒子分散液の溶媒を置換する方法により得ることができる。市販品のナノ粒子粉体としては、例えば、sicastar(シリカ粒子:コアフロント(株)製)、レオロシール(シリカ粒子;(株)トクヤマ製)、UEP−100(酸化ジルコニウム粒子;第一稀元素化学工業(株)製)、STR−100N(酸化チタン粒子;堺化学工業(株)製)などが挙げられる。調達可能な無機粒子の分散液としては、例えば、IPA−ST、MIBK−ST、IPA−ST−L、IPA−ST−ZL、PGM−STもしくはPMA−ST(以上シリカ粒子、いずれも日産化学工業(株)製)、“オスカル”101、“オスカル”105、“オスカル”106、“カタロイド”−S(以上シリカ粒子;いずれも触媒化成工業(株)製)、“クォートロン”PL−1−IPA、PL−1−TOL,PL−2L−PGME、PL−2L−MEK,PL−2L、GP−2L(以上シリカ粒子、いずれも扶桑化学工業(株)製)、“オプトレイク”(登録商標)TR−502、“オプトレイク”TR−503、“オプトレイク”TR−504、“オプトレイク”TR−513、“オプトレイク”TR−520、“オプトレイク”TR−527、“オプトレイク”TR−528、“オプトレイク”TR−529、“オプトレイク”TR−544、“オプトレイク”TR−550(以上酸化チタン粒子;いずれも日揮触媒化成(株)製)、“バイラール”Zr−C20(酸化チタン粒子;平均粒径=20nm;多木化学(株)製)、ZSL−10A(酸化チタン粒子;平均粒径=60−100nm;第一稀元素化学工業(株)製)、ナノユースOZ−30M(酸化チタン粒子;平均粒径=7nm;日産化学工業(株)製)、SZR−M、SZR−K(以上酸化ジルコニウム粒子;いずれも堺化学(株)製)、HXU−120JC(酸化ジルコニア粒子;住友大阪セメント(株)製)、ZR−010(酸化ジルコニア粒子;(株)ソーラー製)、ZRPMA(ジルコニア粒子;シーアイ化成(株)製)などが挙げられる。
無機粒子の含有量は、透明被膜の膜硬度を向上させ、屈折率をより容易に調整する観点から、透明樹脂組成物の固形分中10重量%以上60重量%以下が好ましく、20重量%以上40重量%以下がより好ましい。
本発明の透明樹脂組成物の固形分濃度は、生産性の観点から、2重量%以上が好ましく、5重量%以上がより好ましい。一方、透明樹脂組成物の固形分濃度は、保存安定性の観点から、60重量%以下が好ましく、30重量%以下がより好ましい。
本発明の透明樹脂組成物の25℃における表面張力は、乾燥後の塗膜のガラス端部における薄膜化をより抑制する観点から、26mN/m以上が好ましく、26.5mN/m以上がより好ましい。一方、本発明の透明樹脂組成物の25℃における表面張力は、乾燥ムラをより抑制する観点から、28mN/m以下が好ましく、27.5mN/m以下がより好ましい。なお、表面張力は、Wilhelmy法(プレート法、垂直板法)により、白金プレートを用いて25℃において測定した値とする。本発明の着色樹脂組成物の25℃における表面張力は、例えば、(C2)含フッ素熱分解性界面活性剤の含有量により調整することができ、表面張力を上記範囲とする方法としては、例えば、(C2)含フッ素熱分解性界面活性剤の含有量を前述の好ましい範囲とする方法が挙げられる。
本発明の透明樹脂組成物の無アルカリガラス上における接触角は、基板端部における膜厚をより均一にする観点から、1°以上が好ましい。一方、本発明の着色樹脂組成物をスプレーやインクジェットにより基板上に塗布する際に、接触角が小さいほど、着弾した液滴を結着させやすく、未塗布領域の発生を抑制することができる。このため、本発明の着色樹脂組成物の無アルカリガラス上における接触角は、12°以下が好ましく、10°以下がより好ましい。なお、接触角は、アルカリ洗剤により洗浄した無アルカリガラス(#1737、コーニング社製)上に透明樹脂組成物を滴下し、ポータブル接触角計を用いて測定した値とする。本発明の透明樹脂組成物の無アルカリガラス上における接触角は、例えば、(C1)シリコン変性アクリル系界面活性剤の含有量により調整することができ、接触角を上記範囲とする方法としては、例えば、(C1)シリコン変性アクリル系界面活性剤の含有量を前述の好ましい範囲とする方法が挙げられる。
本発明の透明樹脂組成物からなる透明被膜の550nmにおける屈折率は、1.46以上が好ましく、1.48以上がより好ましい。一方、屈折率は、1.54以下が好ましく、1.52以下より好ましい。ガラス基板の屈折率(1.48〜1.52)と透明被膜の屈折率差を小さくすることにより、透明被膜の膜厚さに起因するムラを視認しし難くして外観をより向上させることができる。なお、本発明における屈折率は、プリズムカプラー法により測定することができる。
本発明の透明樹脂組成物の25℃における粘度は、傾斜を持つ基板上に透明樹脂組成物を塗布する際にも、インクジェットにより安定して塗布する観点から、3mPa・s以上が好ましく、5mPa・s以上がより好ましい。一方、本発明の透明樹脂組成物の25℃における粘度は、本発明の透明樹脂組成物をスプレーやインクジェットにより基板上に塗布する際に、液滴の流動により、着弾した液滴を結着させやすく、未塗布領域の発生を抑制する観点から、20mPa・s以下が好ましく、15mPa・s以下がより好ましい。なお、粘度は、25.0±0.2℃に温度設定したコーンプレート型の粘度計により測定した25〜100rpmにおける値とする。
次に、本発明の透明樹脂組成物の製造方法について説明する。本発明の透明樹脂組成物の製造方法としては、(A)シロキサン樹脂、(B)有機溶剤、(C)界面活性剤および必要に応じてその他成分を撹拌・混合する方法が一般的である。
本発明の透明樹脂組成物を硬化させることにより、本発明の透明被膜を得ることができる。透明樹脂組成物から透明被膜を形成する方法について、ネガ型感光性を有する透明樹脂組成物を例に挙げて説明する。
感光性透明樹脂組成物をガラス基板上に塗布して、塗膜を得る。ガラス基板としては、例えば、ソーダガラス、無アルカリガラス、石英ガラス、アルミノシリケートガラス、およびこれらガラスを用いた化学強化ガラス等が挙げられる。塗布方法としては、例えば、スピナーを用いた回転塗布、スプレー塗布、インクジェット塗布、ダイコーティング、ロールコーティングなどが挙げられるが、本発明においては、スプレー塗布、インクジェット塗布が好ましい。塗膜の膜厚は、塗布方法等によって適宜選択することができる。乾燥後の膜厚を1〜150μmとすることが一般的である。
得られた塗膜を乾燥して、乾燥膜を得る。乾燥方法としては、例えば、加熱乾燥、風乾、減圧乾燥、赤外線照射等が挙げられる。加熱乾燥装置としては、例えば、オーブン、ホットプレートなどが挙げられる。乾燥温度は50〜150℃が好ましく、乾燥時間は1分間〜数時間が好ましい。
得られた乾燥膜に、所望のパターンを有するマスクを介して化学線を照射しして、露光膜を得る。照射する化学線としては、例えば、紫外線、可視光線、電子線、X線などが挙げられる。本発明の着色樹脂組成物に対しては、水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を照射することが好ましい。
得られた露光膜を、アルカリ性現像液等を用いて現像することにより未露光部を除去し、パターンを得る。アルカリ性現像液に用いられるアルカリ性化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類;エチルアミン、n−プロピルアミン等の1級アミン類;ジエチルアミン、ジ−n−プロピルアミン等の2級アミン類;トリエチルアミン、メチルジエチルアミン等の3級アミン類;テトラメチルアンモニウムヒドロキシド(TMAH)等のテトラアルキルアンモニウムヒドロキシド類、コリン等の4級アンモニウム塩;トリエタノールアミン、ジエタノールアミン、モノエタノールアミン、ジメチルアミノエタノール、ジエチルアミノエタノール等のアルコールアミン類;ピロール、ピペリジン、1,8−ジアザビシクロ[5,4,0]−7−ウンデセン、1,5−ジアザビシクロ[4,3,0]−5−ノナン、モルホリン等の環状アミン類等の有機アルカリ類が挙げられる。
アルカリ性現像液におけるアルカリ性化合物の濃度は0.01〜50質量%が一般的であり、0.02〜1質量%が好ましい。また、現像後のパターン形状をより良好なものとするため、非イオン系界面活性剤等の界面活性剤を0.1〜5質量%添加しても構わない。さらに現像液がアルカリ水溶液の場合には、現像液にエタノール、γ−ブチロラクトン、ジメチルホルムアミド、N−メチル−2−ピロリドン等の水溶性有機溶剤を添加しても構わない。
現像方法としては、例えば、浸漬法、スプレー法、パドル法などが挙げられる。得られたパターンに、純水等を用いてリンス洗浄をしても構わない。
得られたパターンを加熱処理(ポストベーク)することにより、パターニングされた透明被膜を得ることができる。加熱処理は、空気中、窒素雰囲気下、真空状態のいずれで行ってもよい。加熱温度は150〜300℃が好ましく、加熱時間は0.25〜5時間が好ましい。加熱温度を連続的に変化させてもよいし、段階的に変化させてもよい。
透明被膜をパターニングする必要がない場合においても、乾燥膜全面を露光し、透明被膜を光硬化させた後に加熱処理することが好ましい。加熱処理前に光硬化することにより、加熱処理における急激な膜収縮を抑制することができ、透明被膜とガラス基板との密着性をより向上させることができる。
本発明の透明樹脂被覆ガラス基板は、ガラス基板上に、前述の透明被膜を有する。また、本発明の加飾ガラス基板は、透明被膜上にさらに着色層を有する。着色層の材料および形成方法は特に限定されない。また、着色層にかえてまたは着色層とともに、透明屈折率調整層を有してもよい。透明屈折率調整層としては、例えば、無機膜などが挙げられる。透明屈折率調整層の形成方法は特に限定されない。
本発明の透明樹脂組成物は、スマートフォンやタブレットPC等の表示デバイス、車載ディスプレイやインパネの前面に付与されるカバーガラスのガラス強化樹脂層形成に好適に利用できる。
以下、実施例および比較例を用いて、本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。
<評価方法>
「表面張力」
各実施例および比較例により得られた透明樹脂組成物について、自動表面張力計K11(KRUSS社製)を使用して、白金プレートを用いて、25℃において表面張力を測定した。
「接触角」
アルカリ洗剤(ヘモゾールHEM026−058(和研薬(株)製))により洗浄した無アルカリガラス(#1737、コーニング社製)上に、各実施例および比較例により得られた透明樹脂組成物を滴下し、ポータブル接触角計PCA−1(協和界面科学(株)製)を使用して接触角を測定した。
「粘度」
各実施例および比較例により得られた透明樹脂組成物について、温度を25.0±0.2℃に設定した粘度計(東機産業(株)製RE105L)を使用して、50rpmにおける粘度を測定した。
「屈折率」
各実施例および比較例により得られた4インチシリコーンウェハー上の透明被膜について、プリズムカプラー(メトリコン製、PC−2000)を用い、室温23℃において、波長550nmにおける屈折率を測定した。
「透過率」
各実施例および比較例により得られた5cm角のテンパックスガラス基板上のプリベイク膜およびキュア後の透明被膜について、紫外−可視分光光度計UV−2600((株)島津製作所製)を用いて、膜厚1.5μm、測定波長400nmにおける透過率を測定した。
「塗布はじき」
各実施例および比較例により得られた透明被膜を蛍光灯下においてそれぞれ目視観察し、以下の基準により塗布はじきの有無を評価した。工業的利用の観点から、AおよびBを合格とした。
A:蛍光灯下およびNaランプ下での塗膜観察において、ピンホールが確認されない。
B:蛍光灯下での塗膜観察において、ピンホールが確認されないが、Naランプ下での塗膜観察において、ピンホールに起因する凹みが確認される。
C:基板上に未塗布領域がある。
「乾燥ムラ」
各実施例および比較例により得られた透明被膜の中央部を蛍光灯下およびNaランプ下においてそれぞれ目視観察し、以下の基準により乾燥ムラの有無を評価した。工業的利用の観点から、AおよびBを合格とした。
A:蛍光灯下およびNaランプ下での塗膜観察において、ムラが確認されない。
B:蛍光灯下での塗膜観察において、ムラが確認されないが、Naランプ下での塗膜観察において、ムラが確認される。
C:蛍光灯下での塗膜観察において、ムラが確認される。
「ガラス端部ムラ」
各実施例および比較例により得られた透明被膜のガラス端部を蛍光灯下およびNaランプ下においてそれぞれ目視観察し、以下の基準によりガラス端部での干渉ムラの有無を評価した。工業的利用の観点から、AおよびBを合格とした。
A:蛍光灯下およびNaランプ下での塗膜観察において、ムラが確認されない。
B:蛍光灯下での塗膜観察において、ムラが確認されないが、Naランプ下での塗膜観察において、ムラが確認される。
C:蛍光灯下での塗膜観察において、ムラが確認される。
「ガラス面強度」
各実施例および比較例により得られた透明被膜をサポートリング(φ35mm)上に置き、ロードリング(φ17.5mm)を10mm/minの速度で押し込んだ際にガラスが破断する強度を静的試験装置AG−Xplus((株)島津製作所製)により測定し、以下の基準によりガラス面強度を判定した。工業的利用の観点から、AおよびBを合格とした。なお、透明被膜のないガラスのみでのガラス面強度は800MPaであった。
A:ガラス面強度が900MPa以上。
B:ガラス面強度が800以上900MPa未満。
C:ガラス面強度が800MPa未満。
「密着性」
各実施例および比較例により得られた透明被膜の上に、スクリーン印刷機を用いて、黒色インク(帝国インキ製造(株)製、GLS−HF979)を乾燥後膜厚が8μmとなるように塗布し、熱風オーブンにより160℃、1時間加熱して熱硬化させた。透明被膜および黒色膜を積層したガラス基板を沸騰した純水に10分間浸漬し、乾燥後に、JIS「K5400」8.5.2(1990)碁盤目テープ法に準じて透明被膜とガラス基板との密着性を評価した。すなわち、ガラス基板上の透明被膜と黒色インクの積層膜表面に、カッターナイフでガラス板の素地に到達するように、直交する縦横11本ずつの平行な直線を1mm間隔で引いて、1mm×1mmのマス目を100個作製した。切られたITO表面にセロハン粘着テープ(幅=18mm、粘着力=3.7N/10mm)を張り付け、消しゴム(JIS S6050合格品)で擦って密着させ、テープの一端を持ち、板に直角に保ち瞬間的に剥離した際のマス目の残存数を目視によって計数した。マス目の剥離面積により以下のように判定し、4B以上を合格とした。
5B:剥離面積=0%
4B:剥離面積=0%を超え5%未満
3B:剥離面積=5%以上15%未満
2B:剥離面積=15%以上35%未満
1B:剥離面積=35%以上65%未満
0B:剥離面積=65%以上100%未満。
〔合成例1〕
500mLの三口フラスコにメチルトリメトキシシランを47.67g(0.35mol)、フェニルトリメトキシシランを39.66g(0.20mol)、3−トリメトキシシリルプロピルコハク酸を26.23g(0.10mol)、γ−アクリロイルプロピルトリメトキシシランを82.04g(0.35mol)、ダイアセトンアルコール(以下、「DAA」)を180.56g仕込み、40℃のオイルバスに漬けて撹拌しながら、水55.8gにリン酸0.401g(仕込みモノマに対して0.2質量部)を溶かしたリン酸水溶液を滴下ロートで10分間かけて添加した。40℃で1時間撹拌した後、オイルバス温度を70℃に設定して1時間撹拌し、さらにオイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱撹拌した(内温は100〜110℃)。反応中に副生成物であるメタノール及び水が合計120g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40質量%となるようにDAAを加えてポリシロキサン溶液(PS−1)を得た。なお、得られたポリマーの重量平均分子量(以下、「Mw」)をGPCにより測定したところ5000(ポリスチレン換算)であった。
〔合成例2〕
500mLの三口フラスコにテトラエトキシシランを106.54g(0.70mol)、メチルトリメトキシシランを10.87g(0.30mol)、DAAを85.92g仕込み、40℃のオイルバスに漬けて撹拌しながら、水55.8gにリン酸0.401g(仕込みモノマに対して0.2質量部)を溶かしたリン酸水溶液を滴下ロートで10分間かけて添加した。40℃で1時間撹拌した後、オイルバス温度を70℃に設定して1時間撹拌し、さらにオイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱撹拌した(内温は100〜110℃)。反応中に副生成物であるメタノール及び水が合計182g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40質量%となるようにDAAを加えてポリシロキサン溶液(PS−2)を得た。なお、得られたポリマーの重量平均分子量をGPCにより測定したところ3000(ポリスチレン換算)であった。
〔合成例3〕
500mLの三口フラスコにテトラエトキシシランを91.32g(0.60mol)、フェニルトリメトキシシランを56.79g(0.30mol)、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランを24.64g(0.10mol)、DAAを152.91g仕込み、40℃のオイルバスに漬けて撹拌しながら、水55.8gにリン酸0.401g(仕込みモノマに対して0.2質量部)を溶かしたリン酸水溶液を滴下ロートで10分間かけて添加した。40℃で1時間撹拌した後、オイルバス温度を70℃に設定して1時間撹拌し、さらにオイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱撹拌した(内温は100〜110℃)。反応中に副生成物であるメタノール及び水が合計177g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が40質量%となるようにDAAを加えてポリシロキサン溶液(PS−3)を得た。なお、得られたポリマーの重量平均分子量をGPCにより測定したところ4000(ポリスチレン換算)であった。
〔合成例4〕
500mlの三口フラスコにメチルトリメトキシシランを54.48g(0.40mol)、フェニルトリメトキシシランを99.15g(0.50mol)、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランを24.64g(0.10mol)DAAを163.35g仕込み、室温で攪拌しながら水54.0gにリン酸0.535g(仕込みモノマーに対して0.3質量部)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。40℃で1時間撹拌した後、オイルバス温度を70℃に設定して1時間撹拌し、さらにオイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱撹拌した(内温は100〜110℃)。反応中に副生成物であるメタノール及び水が合計177g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が45質量%となるようにDAAを加えてポリシロキサン溶液(PS−4)を得た。なお、得られたポリマーの重量平均分子量をGPCにより測定したところ3000(ポリスチレン換算)であった。
〔合成例5〕
500mlのフラスコに2,2’−アゾビス(イソブチロニトリル)を3g、PGMEAプロピレングリコールメチルエーテルアセテート(以下、「PGMEA」)を50g仕込んだ。その後、メタクリル酸を30g、ベンジルメタクリレートを35g、トリシクロ[5.2.1.02,6]デカン−8−イルメタクリレートを35g仕込み、室温でしばらく撹拌し、フラスコ内を窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを15g、ジメチルベンジルアミンを1g、p−メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、アクリル樹脂溶液(PA−1)を得た。得られたアクリル樹脂溶液(PA−1)に固形分濃度が40重量%になるようにPGMEAを加えた。アクリル樹脂の重量平均分子量は10000、酸価は118mgKOH/gであった。
〔実施例1〕
黄色灯下にてフェニルビス(2,4,6−トリメチルベンゾイル)ホスフィンオキシド(商品名「“イルガキュア”(登録商標)819」(表1中、「IC−819」と略記)チバスペシャリティケミカルズ(株)製)1.58g、ジルコニウムテトラアセチルアセトナート(商品名「オルガチックスZC−150」マツモトファインケミカル(株)製)0.77gを、DAA(沸点=169℃)23.44g、PGMEA(沸点=146℃)1.01g、3−メチル−3−メトキシ−1−ブタノール(沸点=174℃、以下“MMB”)14.80gの混合溶媒に溶解させ、オキセタニル基を有するシロキサン化合物「“アロンオキセタン”(登録商標)OXT−191」0.59g、トリス(2−ヒドロキシエチル)イソシアヌル酸のアクリル酸エステル(商品名「“アロニックス”(登録商標)M−315」東亞合成(株)製)4.52g、3−アミノプロピルトリメトキシシラン(商品名「KBM−903」信越化学工業(株)製)0.45g、ポリシロキサン溶液(PS−1)22.60g、シリカ粒子のPGMEA30重量%分散液(商品名「PMA−ST」日産化学(株)製)30.14g、シリコン変性アクリル系界面活性剤(商品名「“BYK”(登録商標)−3550」ビックケミージャパン(株)製)のPGMEA5重量%溶液0.05g(濃度25ppmに相当)と含フッ素熱分解性界面活性剤(商品名「DS−21」DIC(株)製)のPGMEA5重量%溶液0.05g(濃度25ppmに相当)を加え、撹拌した。次いで1.00μmのフィルターでろ過を行い、固形分濃度26重量%のシロキサン樹脂組成物C−1を調製した。シロキサン樹脂組成物C−1の表面張力は27.9mN/m、接触角は8.5°、粘度は6.5mPa・sであった。
膜厚0.7μmの無アルカリガラス(コーニング製“1737”材)基板上、4インチシリコーンウェハー上、5cm角のテンパックスガラス基板(旭テクノガラス板(株)製)上のそれぞれに、得られた透明樹脂組成物C−1を、インクジェットコーター(ナカンテクノ(株)製、Xaar1002PrintHead)を用いて、DPD(1ドット中の液滴数)=4、スキャン速度=100m/分、電圧+1.25Vの条件で塗布した後、90℃のホットプレートで2分間プリベイクした。なお、プリベイク膜の透過率は97%であった。その後、大日本スクリーン(株)製露光機“XG−5000”を用い、500mJ/cmで露光し、180℃の熱風オーブンで30分間キュアした。このようにして、厚さ1.5μmの透明被膜A−1を作製した。透明被膜A−1について、前述の方法により評価した結果を表2に示す。
〔実施例2〕
シリコン変性アクリル系界面活性剤「“BYK”−3550」のPGMEA5重量%溶液の添加量を0.10g(濃度50ppmに相当)、含フッ素熱分解性界面活性剤「DS−21」のPGMEA5重量%溶液の添加量を0.10g(濃度50ppmに相当)とした以外は実施例1と同様にしてシロキサン樹脂組成物C−2を調製した。シロキサン樹脂組成物C−2の表面張力は27.3mN/m、接触角は8.9°、粘度は6.5mPa・sであり、プリベイク膜の透過率は97%であった。シロキサン樹脂組成物C−2を用いて、実施例1と同様にして透明被膜A−2を作製し、評価した結果を表2に示す。
〔実施例3〕
シリコン変性アクリル系界面活性剤「“BYK”−3550」のPGMEA5重量%溶液の添加量を0.20g(濃度100ppmに相当)、含フッ素熱分解性界面活性剤「DS−21」のPGMEA5重量%溶液の添加量を0.20g(濃度100ppmに相当)とした以外は実施例1と同様にしてシロキサン樹脂組成物C−3を調製した。シロキサン樹脂組成物C−3の表面張力は26.9mN/m、接触角は9.3°、粘度は6.5mPa・sであり、プリベイク膜の透過率は97%であった。シロキサン樹脂組成物C−3を用いて、実施例1と同様にして透明被膜A−3を作製し、評価した結果を表2に示す。
〔実施例4〕
シリコン変性アクリル系界面活性剤「“BYK”−3550」のPGMEA5重量%溶液の添加量を0.40g(濃度200ppmに相当)、含フッ素熱分解性界面活性剤「DS−21」のPGMEA5重量%溶液の添加量を0.40g(濃度200ppmに相当)とした以外は実施例1と同様にしてシロキサン樹脂組成物C−4を調製した。シロキサン樹脂組成物C−4の表面張力は26.4mN/m、接触角は10.1°、粘度は6.5mPa・sであり、プリベイク膜の透過率は97%であった。シロキサン樹脂組成物C−4を用いて、実施例1と同様にして透明被膜A−4を作製し、評価した結果を表2に示す。
〔実施例5〕
シリコン変性アクリル系界面活性剤「“BYK”−3550」のPGMEA5重量%溶液の添加量を0.10g(濃度50ppmに相当)、含フッ素熱分解性界面活性剤「DS−21」のPGMEA5重量%溶液の添加量を0.10g(濃度50ppmに相当)とし、シリコン系界面活性剤(商品名「“BYK”−333」ビックケミージャパン(株)製)のPGMEA5重量%溶液0.10g(濃度50ppmに相当)をさらに添加した以外は実施例1と同様にしてシロキサン樹脂組成物C−5を調製した。シロキサン樹脂組成物C−5の表面張力は26.8mN/m、接触角は10.2°、粘度は6.5mPa・sであり、プリベイク膜の透過率は97%であった。シロキサン樹脂組成物C−5を用いて、実施例1と同様にして透明被膜A−5を作製し、評価した結果を表2に示す。
〔実施例6〕
シリコン変性アクリル系界面活性剤「“BYK”−3550」のPGMEA5重量%溶液の添加量を0.30g(濃度150ppmに相当)、含フッ素熱分解性界面活性剤「DS−21」のPGMEA5重量%溶液の添加量を0.10g(濃度50ppmに相当)とした以外は実施例1と同様にしてシロキサン樹脂組成物C−6を調製した。シロキサン樹脂組成物C−6の表面張力は27.6mN/m、接触角は8.6°、粘度は6.5mPa・sであり、プリベイク膜の透過率は97%であった。シロキサン樹脂組成物C−6を用いて、実施例1と同様にして透明被膜A−6を作製し、評価した結果を表2に示す。
〔実施例7〕
シリコン変性アクリル系界面活性剤「“BYK”−3550」のPGMEA5重量%溶液の添加量を0.10g(濃度50ppmに相当)、含フッ素熱分解性界面活性剤「DS−21」のPGMEA5重量%溶液添加量を0.30g(濃度150ppmに相当)とした以外は実施例1と同様にしてシロキサン樹脂組成物C−7を調製した。シロキサン樹脂組成物C−7の表面張力は26.2mN/m、接触角は9.8°、粘度は6.5mPa・sであり、プリベイク膜の透過率は97%であった。シロキサン樹脂組成物C−7を用いて、実施例1と同様にして透明被膜A−7を作製し、評価した結果を表2に示す。
〔実施例8〕
ポリシロキサン溶液(PS−2)65.00gを、PGMEA19.80g、MMB14.80gに溶解させ、シリコン変性アクリル系界面活性剤「“BYK”−3550」のPGMEA5重量%溶液0.20g(濃度100ppmに相当)と含フッ素熱分解性界面活性剤「DS−21」のPGMEA5重量%溶液0.20g(濃度100ppmに相当)を加え、撹拌した。次いで0.45μmのフィルターでろ過を行い、固形分濃度26重量%のシロキサン樹脂組成物C−8を調製した。シロキサン樹脂組成物C−8の表面張力は26.9mN/m、接触角は9.2°、粘度は5.7mPa・sであり、プリベイク膜の透過率は99%であった。シロキサン樹脂組成物C−8を用いて、実施例1と同様にして透明被膜A−8を作製し、評価した結果を表2に示す。
〔実施例9〕
ポリシロキサン溶液(PS−2)52.00gを、DAA13.00g、PGMEA2.47g、MMB14.80gに溶解させ、酸化チタン粒子のPGMEA30重量%分散液(商品名「TR−513」日揮触媒化成(株)製)17.33g、シリコン変性アクリル系界面活性剤(商品名「“BYK”−3550」ビックケミージャパン(株)製)のPGMEA5重量%溶液0.20g(濃度100ppmに相当)と含フッ素熱分解性界面活性剤(商品名「DS−21」DIC(株)製)のPGMEA5重量%溶液0.20g(濃度100ppmに相当)を加え、撹拌した。次いで1.00μmのフィルターでろ過を行い、固形分濃度26重量%のシロキサン樹脂組成物C−9を調製した。シロキサン樹脂組成物C−9の表面張力は27.0mN/m、接触角は9.3°、粘度は5.5mPa・sであり、プリベイク膜の透過率は99%であった。シロキサン樹脂組成物C−9を用いて、実施例1と同様にして透明被膜A−9を作製し、評価した結果を表2に示す。
〔実施例10〕
ポリシロキサン溶液(PS−2)65.00gをポリシロキサン溶液(PS−3)65.00gとしたこと以外は実施例8と同様にして固形分濃度26重量%のシロキサン樹脂組成物C−10を調製した。シロキサン樹脂組成物C−10の表面張力は27.0mN/m、接触角は9.2°、粘度は5.9mPa・sであり、プリベイク膜の透過率は99%であった。シロキサン樹脂組成物C−10を用いて、実施例1と同様にして透明被膜A−10を作製し、評価した結果を表2に示す。
〔実施例11〕
黄色灯下にて下記構造式(14)で表されるキノンジアジド化合物(商品名「TAS−200A」東洋合成(株)製)1.52g、下記構造式(15)で表される架橋促進剤(商品名「MDT」ヘレウス製)0.34gをDAA5.28g、PGMEA9.78g、3−メチル−3−メトキシ−1−ブチルアセテート(沸点=188℃、以下“MMB−AC”)22.20gの混合溶媒に溶解させ、トリス−(トリメトキシシリルプロピル)イソシアヌレート(商品名「KBM−9659」信越化学工業(株)製)0.51g、ポリシロキサン溶液(PS−4)37.49g、シリカ粒子のPGMEA30重量%分散液(商品名「PMA−ST」日産化学(株)製)22.49g、シリコン変性アクリル系界面活性剤(商品名「“BYK”(登録商標)−3550」ビックケミージャパン(株)製)のPGMEA5重量%溶液0.20g(濃度100ppmに相当)と含フッ素熱分解性界面活性剤(商品名「DS−21」DIC(株)製)のPGMEA5重量%溶液0.20g(濃度100ppmに相当)を加え、撹拌した。次いで1.00μmのフィルターでろ過を行い、固形分濃度26重量%のシロキサン樹脂組成物C−11を調製した。
シロキサン樹脂組成物C−11の表面張力は26.5mN/m、接触角は9.5°、粘度は6.9mPa・sであり、露光後の膜の透過率は98%であった。シロキサン樹脂組成物C−11を用いて、実施例1と同様にして透明被膜A−11を作製し、評価した結果を表2に示す。
〔実施例12〕
構造式(15)で表される架橋促進剤(商品名「MDT」ヘレウス製)0.36gをDAA4.00g、PGMEA8.80g、MMB−AC22.20gの混合溶媒に溶解させ、トリス−(トリメトキシシリルプロピル)イソシアヌレート(商品名「KBM−9659」信越化学工業(株)製)0.54g、ポリシロキサン溶液(PS−4)37.49g、シリカ粒子のPGMEA30重量%分散液(商品名「PMA−ST」日産化学(株)製)23.89g、シリコン変性アクリル系界面活性剤(商品名「“BYK”(登録商標)−3550」ビックケミージャパン(株)製)のPGMEA5重量%溶液0.20g(濃度100ppmに相当)と含フッ素熱分解性界面活性剤(商品名「DS−21」DIC(株)製)のPGMEA5重量%溶液0.20g(濃度100ppmに相当)を加え、撹拌した。次いで1.00μmのフィルターでろ過を行い、固形分濃度26重量%のシロキサン樹脂組成物C−12を調製した。
シロキサン樹脂組成物C−12の表面張力は26.5mN/m、接触角は9.7°、粘度は6.6mPa・sであり、プリベイクおよび露光後の膜の透過率は99%であった。シロキサン樹脂組成物C−12を用いて、露光を行わない以外は実施例1と同様にして透明被膜A−12を作製し、評価した結果を表2に示す。
〔比較例1〕
シリコン変性アクリル系界面活性剤「“BYK”−3550」および含フッ素熱分解性界面活性剤「DS−21」を添加せずに、シリコン系界面活性剤(商品名「“BYK”−333」ビックケミージャパン(株)製)のPGMEA5重量%溶液を0.40g(濃度200ppmに相当)添加した以外は実施例1と同様にしてシロキサン樹脂組成物C−13を調製した。シロキサン樹脂組成物C−13の表面張力は25.9mN/m、接触角は12.1°、粘度は6.5mPa・sであり、プリベイク膜の透過率は97%であった。シロキサン樹脂組成物C−13を用いて、実施例1と同様にして透明被膜A−13を作製し、評価した結果を表2に示す。
〔比較例2〕
シリコン変性アクリル系界面活性剤「“BYK”−3550」および含フッ素熱分解性界面活性剤「DS−21」を添加せずに、フッ素系界面活性剤(商品名「F−477」(DIC(株)製)のPGMEA5重量%溶液を0.40g(濃度200ppmに相当)添加した以外は実施例1と同様にしてシロキサン樹脂組成物C−14を調製した。シロキサン樹脂組成物C−14の表面張力は26.2mN/m、接触角は11.5°、粘度は6.5mPa・sであり、プリベイク膜の透過率は97%であった。シロキサン樹脂組成物C−14を用いて、実施例1と同様にして透明被膜A−14を作製し、評価した結果を表2に示す。
〔比較例3〕
シリコン変性アクリル系界面活性剤「“BYK”−3550」のPGMEA5重量%溶液の添加量を0.40g(濃度200ppmに相当)とし、含フッ素熱分解性界面活性剤「DS−21」を添加しなかった以外は実施例1と同様にしてシロキサン樹脂組成物C−15を調製した。シロキサン樹脂組成物C−15の表面張力は28.4mN/m、接触角は7.9°、粘度は6.5mPa・sであり、プリベイク膜の透過率は97%であった。シロキサン樹脂組成物C−15を用いて、実施例1と同様にして透明被膜A−15を作製し、評価した結果を表2に示す。
〔比較例4〕
シリコン変性アクリル系界面活性剤「“BYK”−3550」を添加せずに、含フッ素熱分解性界面活性剤「DS−21」のPGMEA5重量%溶液の添加量を0.40g(濃度200ppmに相当)とした以外は実施例1と同様にしてシロキサン樹脂組成物C−16を調製した。シロキサン樹脂組成物C−16の表面張力は26.2mN/m、接触角は11.0°、粘度は6.5mPa・sであり、プリベイク膜の透過率は97%であった。シロキサン樹脂組成物C−16を用いて、実施例1と同様にして透明被膜A−16を作製し、評価した結果を表2に示す。
〔比較例5〕
シリコン変性アクリル系界面活性剤「“BYK”−3550」のPGMEA5重量%溶液の添加量を0.02g(濃度10ppmに相当)、含フッ素熱分解性界面活性剤「DS−21」のPGMEA5重量%溶液の添加量を0.02g(濃度10ppmに相当)とした以外は実施例1と同様にしてシロキサン樹脂組成物C−17を調製した。シロキサン樹脂組成物C−17の表面張力は28.6mN/m、接触角は8.2°、粘度は6.5mPa・sであり、プリベイク膜の透過率は97%であった。シロキサン樹脂組成物C−17を用いて、実施例1と同様にして透明被膜A−17を作製し、評価した結果を表2に示す。
〔比較例6〕
シリコン変性アクリル系界面活性剤「“BYK”−3550」のPGMEA5重量%溶液の添加量を0.60g(濃度300ppmに相当)、含フッ素熱分解性界面活性剤「DS−21」のPGMEA5重量%溶液の添加量を0.60g(濃度300ppmに相当)とした以外は実施例1と同様にしてシロキサン樹脂組成物C−18を調製した。シロキサン樹脂組成物C−18の表面張力は25.8mN/m、接触角は10.6°、粘度は6.5mPa・sであり、プリベイク膜の透過率は97%であった。シロキサン樹脂組成物C−18を用いて、実施例1と同様にして透明被膜A−18を作製し、評価した結果を表2に示す。
〔比較例7〕
含フッ素熱分解性界面活性剤「DS−21」の代わりにフッ素系界面活性剤(商品名「F−477」(DIC(株)製)のPGMEA5重量%溶液を0.20g(濃度100ppmに相当)添加した以外は実施例3と同様にしてシロキサン樹脂組成物C−19を調製した。シロキサン樹脂組成物C−19の表面張力は26.8mN/m、接触角は11.0°、粘度は6.5mPa・sであり、プリベイク膜の透過率は97%であった。シロキサン樹脂組成物C−19を用いて、実施例1と同様にして透明被膜A−19を作製し、評価した結果を表2に示す。
〔比較例8〕
黄色灯下にてフェニルビス(2,4,6−トリメチルベンゾイル)ホスフィンオキシド「“イルガキュア”819」1.67gを、DAA37.00g、PGMEA3.94g、MMB14.80gの混合溶媒に溶解させ、トリス(2−ヒドロキシエチル)イソシアヌル酸のアクリル酸エステル「“アロニックス”M−315」4.77g、ジペンタエリスリトールヘキサアクリレート(商品名「“カヤラッド”(登録商標)DPHA」新日本化薬(株)製)7.15g、3−アミノプロピルトリメトキシシラン「KBM−903」0.48g、アクリル樹脂溶液(PA−1)29.79g、シリコン変性アクリル系界面活性剤「“BYK”−3550」のPGMEA5重量%溶液0.20g(濃度100ppmに相当)と含フッ素熱分解性界面活性剤「DS−21」のPGMEA5重量%溶液0.20g(濃度100ppmに相当)を加え、撹拌した。次いで1.00μmのフィルターでろ過を行い、固形分濃度26重量%のアクリル樹脂組成物A−1を得た。アクリル樹脂組成物A−1の表面張力は26.9mN/m、接触角は9.1°、粘度は6.0mPa・sであり、プリベイク膜の透過率は96%であった。アクリル樹脂組成物A−1を用いて、実施例1と同様にして透明被膜A−20を作製し、評価した結果を表2に示す。
各実施例および比較例の組成を表1に、評価結果を表2に示す。
実施例において作製した透明樹脂組成物は、インクジェット塗布によりガラス基板上に透明被膜を形成した際に、はじきやムラが抑制され、良好な外観を有しており、さらには透明被膜を形成した際のガラス強度および積層膜を形成した際の密着性が優れていることがわかる。
本発明の透明樹脂組成物は、ガラス基板上にスプレーやインクジェットにより塗布した際においても、はじきやムラを抑制し、外観の良好な透明被膜を容易に提供することが可能となる。さらに、透明樹脂層の上に形成される有機膜および無機膜と優れた密着性を有するため、スマートフォン等の表示デバイス向けの信頼性に優れたカバーガラスを生産効率よく形成することが可能となる。

Claims (10)

  1. 少なくとも(A)シロキサン樹脂、(B)有機溶媒および2種以上の(C)界面活性剤を含有する透明樹脂組成物であって、前記界面活性剤として(C1)シリコン変性アクリル系界面活性剤および(C2)含フッ素熱分解性界面活性剤を含有し、前記界面活性剤(C1)および(C2)の総含有量が、透明樹脂組成物中50ppm以上500ppm以下である透明樹脂組成物。
  2. 前記界面活性剤(C1)の含有量に対する前記界面活性剤(C2)の含有量比率(C2)/(C1)が0.25以上4.0以下である請求項1に記載の透明樹脂組成物。
  3. 透明樹脂組成物から透明被膜を形成したときの550nmにおける屈折率が、1.46〜1.54となる請求項1または2に記載の透明樹脂組成物。
  4. 無アルカリガラス上における接触角が1°以上12°以下である請求項1〜3のいずれか1項に記載の透明樹脂組成物。
  5. 25℃における表面張力が26mN/m以上28mN/m以下である請求項1〜4のいずれか1項に記載の透明樹脂組成物。
  6. 25℃における粘度が3mPa・s以上20mPa・s以下である請求項1〜5のいずれか1項に記載の透明樹脂組成物。
  7. 前記(A)シロキサン樹脂がラジカル重合性基を有し、反応性モノマおよび光ラジカル重合開始剤をさらに含有する請求項1〜6のいずれか1項に記載の感光性透明樹脂組成物。
  8. 請求項1〜7のいずれかに記載の透明樹脂組成物からなる透明被膜。
  9. ガラス基板上に請求項8に記載の透明被膜を有する透明樹脂被覆ガラス基板。
  10. ガラス基板上に請求項8に記載の透明被膜および着色層をこの順に有する加飾ガラス基板。
JP2018526825A 2017-05-24 2018-05-16 透明樹脂組成物、透明被膜および透明樹脂被覆ガラス基板 Active JP6489288B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017102293 2017-05-24
JP2017102293 2017-05-24
PCT/JP2018/018949 WO2018216571A1 (ja) 2017-05-24 2018-05-16 透明樹脂組成物、透明被膜および透明樹脂被覆ガラス基板

Publications (2)

Publication Number Publication Date
JP6489288B1 JP6489288B1 (ja) 2019-03-27
JPWO2018216571A1 true JPWO2018216571A1 (ja) 2019-06-27

Family

ID=64396426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018526825A Active JP6489288B1 (ja) 2017-05-24 2018-05-16 透明樹脂組成物、透明被膜および透明樹脂被覆ガラス基板

Country Status (6)

Country Link
US (1) US11306212B2 (ja)
JP (1) JP6489288B1 (ja)
KR (1) KR102528774B1 (ja)
CN (1) CN110546207B (ja)
TW (1) TWI785051B (ja)
WO (1) WO2018216571A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171024A1 (ja) * 2019-02-21 2020-08-27 Agc株式会社 積層体及び積層体の製造方法
KR102391710B1 (ko) * 2020-06-05 2022-04-28 연세대학교 산학협력단 다공성 투명 실록산계 중합체 기판 및 이의 제조방법

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4502784B2 (ja) * 2004-06-07 2010-07-14 富士フイルム株式会社 カラーフィルター、カラーフィルターの製造方法、及び液晶表示装置
JP4496933B2 (ja) * 2004-11-18 2010-07-07 日本ゼオン株式会社 感光性樹脂組成物及びパターン形成方法
EP2360194B1 (en) * 2008-11-27 2015-03-11 Toray Industries, Inc. Siloxane resin composition and protective film for touch panel using same
KR101815337B1 (ko) * 2010-10-29 2018-01-04 신에츠 폴리머 가부시키가이샤 투명 도전 유리 기판
JP2012155644A (ja) 2011-01-28 2012-08-16 Toppan Printing Co Ltd 加飾カバーガラス一体型タッチパネルの製造方法及び液晶表示装置
JP5896107B2 (ja) 2011-07-29 2016-03-30 セイコーエプソン株式会社 インクジェット用コート液およびこれを用いたインクジェット記録方法
JP5821515B2 (ja) 2011-10-19 2015-11-24 セイコーエプソン株式会社 インクジェット用インクおよびこれを用いたインクジェット記録方法
CN104583918A (zh) 2012-08-23 2015-04-29 旭硝子株式会社 传感器一体型保护玻璃
JP2014114446A (ja) * 2012-11-16 2014-06-26 Toray Ind Inc ポリオルガノシロキサン組成物、その硬化物、蛍光体シート、その製造方法、発光デバイスおよびその製造方法
JP6530582B2 (ja) 2013-05-21 2019-06-12 大日本印刷株式会社 保護板用基板、電極付き表示装置用前面保護板、及び表示装置
JP6313096B2 (ja) * 2014-04-02 2018-04-18 株式会社ダイセル 透明積層フィルム及びその製造方法並びにタッチパネル用電極
JP5878224B2 (ja) * 2014-04-28 2016-03-08 ゼネラル株式会社 インクジェットインク
JP2016017172A (ja) 2014-07-11 2016-02-01 Dic株式会社 含フッ素熱分解性樹脂、レジスト組成物、カラーフィルター保護膜用組成物、レジスト膜及びカラーフィルター保護膜
JP6025008B2 (ja) 2014-10-24 2016-11-16 Dic株式会社 含フッ素熱分解性樹脂、レジスト組成物、カラーフィルター保護膜用組成物、レジスト膜及びカラーフィルター保護膜
JP6375226B2 (ja) 2014-12-26 2018-08-15 富士フイルム株式会社 硬化性組成物、転写フィルム、画像表示装置の前面板、前面板一体型センサー、画像表示装置および画像表示装置の前面板の製造方法
WO2016147719A1 (ja) * 2015-03-18 2016-09-22 リケンテクノス株式会社 透明樹脂積層体
CN107406673B (zh) * 2015-03-30 2019-09-06 东丽株式会社 着色树脂组合物、着色膜、装饰基板及触摸面板
JP2017017172A (ja) * 2015-06-30 2017-01-19 キヤノン株式会社 面発光レーザ、レーザアレイ、固体レーザ、情報取得装置、画像形成装置、及びレーザアレイの製造方法
JP6844121B2 (ja) 2016-02-10 2021-03-17 Dic株式会社 着色硬化性樹脂組成物及びその硬化膜
KR102548098B1 (ko) 2016-02-24 2023-06-27 도레이 카부시키가이샤 착색 수지 조성물
JP6841283B2 (ja) 2016-08-05 2021-03-10 大日本印刷株式会社 着色組成物、カラーフィルタ及びその製造方法、液晶表示装置、並びに、発光表示装置

Also Published As

Publication number Publication date
JP6489288B1 (ja) 2019-03-27
KR102528774B1 (ko) 2023-05-08
CN110546207A (zh) 2019-12-06
US11306212B2 (en) 2022-04-19
US20210009808A1 (en) 2021-01-14
TW201900769A (zh) 2019-01-01
WO2018216571A1 (ja) 2018-11-29
CN110546207B (zh) 2021-10-08
KR20200010213A (ko) 2020-01-30
TWI785051B (zh) 2022-12-01

Similar Documents

Publication Publication Date Title
JP5212571B2 (ja) タッチパネル部材
US8492450B2 (en) Siloxane resin composition and protective film for touch panel using the same
JP5459315B2 (ja) シランカップリング剤、ネガ型感光性樹脂組成物、硬化膜、およびタッチパネル用部材
JP6455636B1 (ja) ネガ型感光性樹脂組成物および硬化膜
JP5407210B2 (ja) シロキサン樹脂組成物およびそれを用いた硬化膜
WO2011129312A1 (ja) ネガ型感光性樹脂組成物、硬化膜、およびタッチパネル用部材
JP5327345B2 (ja) ネガ型感光性樹脂組成物、硬化膜、およびタッチパネル用部材。
JP5902539B2 (ja) 樹脂組成物、それを用いたタッチパネルセンサ用透明膜およびタッチパネル
JP7115054B2 (ja) ガラス強化基板
JP6489288B1 (ja) 透明樹脂組成物、透明被膜および透明樹脂被覆ガラス基板
JP2018120069A (ja) ネガ型感光性樹脂組成物、硬化膜およびタッチパネル部材
JP2018146958A (ja) ネガ型感光性樹脂組成物およびそれを用いた硬化膜
WO2019102655A1 (ja) シロキサン樹脂組成物、硬化膜および表示装置
JP2012158743A (ja) 非感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有するタッチパネル用素子
JP2020100819A (ja) 樹脂組成物、硬化膜およびその製造方法
JP2021063144A (ja) 着色樹脂組成物、着色被膜および着色樹脂被覆ガラス基板
JP2022064302A (ja) ネガ型シロキサン樹脂組成物、硬化膜および素子
JP2023137277A (ja) 感光性樹脂組成物および硬化膜

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181107

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181107

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190211

R151 Written notification of patent or utility model registration

Ref document number: 6489288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151