JPWO2018154627A1 - 固体光検出器 - Google Patents

固体光検出器 Download PDF

Info

Publication number
JPWO2018154627A1
JPWO2018154627A1 JP2019501783A JP2019501783A JPWO2018154627A1 JP WO2018154627 A1 JPWO2018154627 A1 JP WO2018154627A1 JP 2019501783 A JP2019501783 A JP 2019501783A JP 2019501783 A JP2019501783 A JP 2019501783A JP WO2018154627 A1 JPWO2018154627 A1 JP WO2018154627A1
Authority
JP
Japan
Prior art keywords
functional layer
light receiving
solid
light
surface film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019501783A
Other languages
English (en)
Inventor
朋宏 柄澤
哲夫 古宮
直司 森谷
竜太 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of JPWO2018154627A1 publication Critical patent/JPWO2018154627A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Abstract

この固体光検出器(10)では、機能層(13)は、各波面の互いに進行方位もしくは波面形状の少なくともいずれかが一致せず、各波面が相互に干渉しないように構成されている。

Description

本発明は、固体光検出器に関する。
従来、受光した光の強度に応じた信号を出力する受光部を備える固体撮像装置(固体光検出器)が開示されている。このような固体光検出器は、たとえば、米国特許出願公開第2010/0148289号明細書、特開2016−58507号公報および特表2013−518414号公報に開示されている。
米国特許出願公開第2010/0148289号明細書に記載の表面入射型の固体撮像装置は、受光した光の強度に応じた信号を出力する受光部を含む半導体基板と、受光面と受光面上に配置される読出し配線部とを備えている。また、受光部および読出し配線部は、表面膜で覆われおり、光は、受光部面(表面)側から表面膜を介して受光部に入射される。
しかしながら、米国特許出願公開第2010/0148289号明細書に記載の表面入射型の固体撮像装置では、受光部の表面で反射した光と、表面膜の光入射面の異なる箇所(反射した光が入射された箇所とは異なる箇所)から入射した光とが干渉(多重反射干渉)し、感度が不安定になるという問題点があった。
また、特開2016−58507号公報の裏面入射型の固体撮像装置では、半導体基板の表面側の表面膜に設けられる遮光膜を凹凸形状に形成している。これにより、遮光膜によって反射される光の位相が、凹凸形状により変化するので、遮光膜により反射される光の位相と、半導体基板の異なる箇所から受光面(裏面)に入射する光の位相とを異ならせることができる。その結果、受光部の受光面に入射する光と、遮光膜側で反射された光とが干渉(半導体基板における多重反射干渉)するのが抑制される。これにより、光の干渉に起因して、受光部により検出される信号の強度が変動するのが抑制される。
また、特表2013−518414号公報の裏面入射型の固体撮像装置では、受光部の受光面(半導体基板の裏面)に耐火金属酸化物またはフッ化物誘電体からなる縞抑制層が設けられている。これにより、受光部の受光面(半導体基板の裏面)に入射する光と、半導体基板の表面側(受光面とは反対側の面)で反射された光とが干渉すること(半導体基板における多重反射干渉)が、縞抑制層により抑制される。その結果、光の干渉に起因して、受光部により検出される信号の強度が変動するのが抑制される。
米国特許出願公開第2010/0148289号明細書 特開2016−58507号公報 特表2013−518414号公報
しかしながら、特開2016−58507号公報および特表2013−518414号公報による干渉の抑制方法は、半導体基板を介して受光面とは反対側の面で反射された光と受光面に入射した光の干渉(半導体基板内における多重反射干渉)の抑制方法であり、表面入射型の固体撮像装置における受光部の表面上に設けられる表面膜内で生じる干渉(多重反射干渉)については、光の干渉を抑制する効果が得られない。
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、受光面を保護する表面膜における多重反射干渉を抑制することが可能な固体光検出器を提供することである。
上記目的を達成するために、この発明の一の局面における固体光検出器は、受光した光の強度に応じた信号を出力する複数の受光部と、受光部を保護するための表面膜と、表面膜の表面上に設けられる機能層とを備え、機能層は、機能層に入射した光の平面波が、受光面から受光部内に浸透した第一の波面と、受光部に浸透せず受光面にて反射した後に機能層表面にて反射し、再度受光部内に浸透する第二の波面、および、第二の波面が発生するまでに機能層および表面膜内に存在する屈折率境界面にて反射した後に受光部内へ浸透する各波面とが、互いに進行方位もしくは波面形状の少なくともいずれかが一致せず、各波面が相互に干渉しないよう構成されている。なお屈折率境界は、必ずしも物質境界を示すものではなく、物質境界が存在する場合にも、実質的に振幅反射率が0.002以下であれば、屈折率境界として考慮する必要はない。
この発明の一の局面による固体光検出器では、上記のように、表面膜の表面へ入射する光の平面波が、機能層および表面膜内に存在する屈折率境界面により反射した後に受光部に浸透する各波面および、機能層内部に入射した後に屈折率境界で反射せずに受光部に浸透する光の波面とが、互いに進行方位もしくは波面形状の少なくともいずれかが一致しないように構成されている機能層が設けられている。これにより、従来構成において表面膜にて発生する、入射光および表面膜で生じた反射光とが互いに強め合うこと(または、弱め合うこと)、すなわち干渉が抑制される。その結果、受光面を保護する表面膜における多重反射干渉を抑制することができる。これにより、感度が不安定になることを抑制することができる。
上記一の局面による固体光検出器において、好ましくは、機能層の屈折率と、表面膜の屈折率とは、略等しい、または、機能層と表面膜とは、同一物質で構成される。このように構成すれば、機能層と表面膜との界面において光が反射するのを抑制することができる。これにより、表面膜における多重反射干渉をより抑制することができる。
上記一の局面による固体光検出器において、好ましくは、機能層は、レンズ形状を有する。このように構成すれば、レンズ形状により、平面波は、機能層表面に入射し、機能層入射後に受光面で反射し、さらに機能層表面で反射する波面と、機能層表面に入射した他の波面とは、進行方位と波面形状が同時に一致することはない。
この場合、好ましくは、レンズ形状を有する機能層は、機能層に入射する平行光束を受光面にて集光する機能を有する。このように構成すれば、機能層の付与により、より小さい受光部面積で入射する光を受光することができ、受光部(フォトダイオード)から発生する暗電流が低減され、より性能の高い固体光検出器を提供できる。
上記機能層がレンズ形状を有する固体光検出器において、好ましくは、機能層は、1つのレンズ形状を有する。このように構成すれば、1つのレンズ形状の機能層を容易に形成することができる。
上記機能層がレンズ形状を有する固体光検出器において、好ましくは、機能層は、複数のレンズ形状を有する。このように構成すれば、機能層の厚みを薄くすることができ、より厚みの薄い固体光検出器を提供できる。
また、機能層および受光部は、それぞれ、繰り返しの構造を有し、機能層の繰り返し構造と、受光部の繰り返し構造とは、一致していなくてもよい。このように構成すれば、機能層の繰り返し構造と受光部の繰り返し構造とを、一致させるように形成する場合と比べて、機能層の形成が容易になる。
上記一の局面による固体光検出器において、好ましくは、表面膜と機能層とは、一体的に構成されている。このように構成すれば、表面膜と機能層とを同一の工程で製造することができるので、固体光検出器の製造工程を簡略化することができる。
上記一の局面による固体光検出器において、好ましくは、機能層は、機能層に入射した光の平面波が、受光面から受光部内に浸透した第一の波面と、受光部に浸透せず受光面にて反射した後に機能層の表面にて反射し、再度受光部内に浸透する第二の波面、および、第二の波面が発生するまでに機能層および表面膜内に存在する屈折率境界面にて反射した後に受光部内へ浸透する各波面とが、互いに進行方位もしくは波面形状の少なくともいずれかが一致せず、各波面が相互に干渉しないよう予め形成されている。このように構成すれば、予め形成された機能層を表面膜に配置するだけで、容易に、多重反射干渉を抑制することができる。
この場合、機能層と表面膜との間に設けられ、予め形成された機能層と表面膜とを接合するための接合層をさらに備えていてもよい。このように構成すれば、予め形成された機能層を、容易に、表面膜の表面上に配置することができる。
上記接合層が設けられる固体光検出器において、接合層と表面膜との間に、表面膜の厚さに対して大きい厚み有する厚膜をさらに備えていてもよい。このように構成すれば、機能層と表面膜との屈折率が大きく異なる場合でも、多重反射干渉を抑制することができる。
上記厚膜が設けられる固体光検出器において、表面膜と厚膜との間に設けられ表面膜と厚膜と接合するための接合層と、機能層と厚膜との間に設けられ機能層と厚膜と接合するための接合層とのうちの少なくとも一方の接合層が設けられていてもよい。このように構成すれば、表面膜と厚膜(機能層と厚膜)を容易に接合することができる。
この場合、接合層は、表面膜と厚膜との間、および、機能層と厚膜との間の両方に設けられていてもよい。このように構成すれば、表面膜と厚膜との接合と、機能層と厚膜との接合との両方を容易に行うことができる。
上記接合層が設けられる固体光検出器において、機能層と表面膜との間に設けられる接合層に面する機能層の表面が平坦面(平面)ではなくてもよい。このように構成すれば、受光面と接合層に面する機能層の接合面とが、平行平面として機能しないので、多重反射干渉の発生を抑制することができる。
本発明によれば、上記のように、受光面を保護する表面膜における光の干渉を抑制することができる。
第1実施形態による固体光検出器の断面図である。 第1実施形態による固体光検出器(受光部)の平面図である。 波長と透過率との関係を説明するための図(1)である。 波長と透過率との関係を説明するための図(2)である。 振幅反射率と透過率変化率との関係を説明するための図である。 従来と同じ構成における固体光検出器の表面膜における光の干渉を説明するための図である。 波長と透過率との関係を説明するための図である。 第1実施形態による固体光検出器の表面膜における光の干渉を説明するための図(1)である。 第1実施形態による固体光検出器の表面膜における光の干渉を説明するための図(2)である。 第1実施形態による固体光検出器の表面膜における光の干渉を説明するための図(3)である。 第2実施形態による固体光検出器の断面図である。 第3実施形態による固体光検出器の平面図である。 第3実施形態の変形例による固体光検出器の平面図である。 第4実施形態による固体光検出器の断面図である。 第4実施形態の変形例(1)による固体光検出器の断面図である。 第4実施形態による固体光検出器の機能層の効果を説明するための図(1)である。 第4実施形態による固体光検出器の機能層の効果を説明するための図(2)である。 第4実施形態による固体光検出器の機能層の効果を説明するための図(3)である。 第4実施形態の変形例(2)による固体光検出器の断面図である。 第1変形例による固体光検出器の断面図である。 第2変形例による固体光検出器の断面図である。
以下、本発明を具体化した実施形態を図面に基づいて説明する。
[第1実施形態]
図1〜図10を参照して、本発明の第1実施形態による固体光検出器10の構成について説明する。
(固体光検出器の構成)
固体光検出器10は、たとえば、受光部11(フォトダイオード)を含むCMOS(complementary metal oxide semiconductor)センサおよびCCD(Charge Coupled Device)センサからなる。第1実施形態では、固体光検出器10は、配線パターン8が設けられる側から光が入射される表面入射型である。
図1に示すように、表面入射型の固体光検出器10は、受光部11を備えている。図2に示すように、受光部11は、複数設けられている。複数の受光部11は、平面視において(受光面11a側から見て)、マトリクス状に配置されている。
また、図1に示すように、受光部11は、受光面11aを有する。そして、受光部11は、受光面11aから受光部11に入射した光の強度に応じた信号を出力するように構成されている。また、受光部11は、たとえばフォトダイオードにより構成されている。フォトダイオードは、半導体基板11bに含まれるPN接合部に光が照射されることにより電荷を発生するように構成されている。
また、受光面11aの表面上には、受光面11aを保護するための表面膜12が設けられている。表面膜12は、たとえば、シリコン酸化物、シリコン窒化物、サファイアなどの材料からなる。また、表面膜12の中には配線パターン8が形成されている。なお、表面膜12の厚みd0は略一定(平坦)である。
ここで、第1実施形態では、表面膜12の表面(受光部11側とは反対側の面)上には、機能層13が設けられている。機能層13は、機能層13に入射した光の平面波が、受光面11aから受光部11内に浸透した第一の波面と、受光部11に浸透せず受光面11aにて反射した後に機能層13表面にて反射し、再度受光部11内に浸透する第二の波面、および、第二の波面が発生するまでに機能層13および表面膜12内に存在する屈折率境界面にて反射した後に受光部11内へ浸透する各波面とが、互いに進行方位もしくは波面形状の少なくともいずれかが一致せず、各波面が相互に干渉しないよう構成されている。なお、機能層13の機能の詳細な説明は後述する。
また、第1実施形態では、機能層13は、レンズ形状を有する。具体的には、機能層13は、光が入射する側に突出する凸レンズ形状を有している。また、複数の受光部11に対して、1つの凸レンズ形状の機能層13の部分が対応している。
また、第1実施形態では、機能層13の屈折率と、表面膜12の屈折率とは、略等しい。具体的には、機能層13は、表面膜12と同じ材料(たとえば、シリコン酸化物、シリコン窒化物、サファイアなどの材料)から構成されている。なお、屈折率が略等しければ、機能層13の材料と、表面膜12の材料とは異なっていてもよい。
ここで、図3〜図5を参照して、機能層13の屈折率と表面膜12の屈折率の差がどの程度であれば屈折率境界として実効的に考慮する必要がないかを定量的に示す。表面膜12の上に機能層13を積層しても、その屈折率が大きく異なる場合は、表面膜12内で多重反射干渉が生じて、図3の実線(Ripple)のプロットのように、干渉リプルが発生してしまう。一方、屈折率が十分に近い場合は、表面膜12内で多重反射干渉は生じず、図3の破線(No Ripple)のように干渉リプルは発生しない。
図4は、厚みdが1umの表面膜12の上に、厚みが10mmの機能層13を設けて、機能層13の屈折率を、1.505、1.510、1.520、1.530、1.550、および、表面膜12と同一(1.500、「No Ripple」のデータ)と変化させた場合の透過率を、1nmの刻みで計算し、プロットしたグラフである。計算では表面膜12内で生じる干渉リプルのみを確認するために、機能層13の厚みを表面膜12の厚みに比べて十分に大きくし、機能層13内において生じる多重反射干渉あるいは表面膜12および機能層13において生じる多重反射干渉による干渉リプルが刻みに対して十分に小さくなる(無視できる)条件にしている。図4より、機能層13の屈折率が、表面膜12の屈折率に近いほど干渉リプルの影響が小さくなっていることが確認された。
図5は、図4のグラフ中の波長224nmのピークに着目して、その波長における透過率の変化を振幅反射率に対してプロットしたものである。振幅反射率は、表面膜12の屈折率と機能層13の屈折率とによって決まるので、機能層13の屈折率変化と振幅反射率とは1対1の関係を有する。図5の縦軸は、透過率の変化率(No Rippleの透過率に対する変化率)である。図5のプロットは左から、機能層の屈折率が1.502、1.505、1.510、1.520、1.530、1.550、そして機能層13無しの場合のときの透過率の変化率を示している。このプロットを2次曲線で近似して、機能層13無しの場合の透過率変化率に対して1%となるときの振幅反射率を求めたところ、その値は約0.002であった。つまり機能層13と表面膜12との界面における振幅反射率が0.002以下であるような場合は、機能層13と表面膜12との界面は多重反射干渉がほぼ生じない屈折率界面とみなすことが可能である。
また、機能層13は、表面膜12の表面上に機能層13の元となる層(図示せず)を形成した後、機能層13の元となる層をエッチングすることなどにより形成される。また、予め形成された機能層13を、表面膜12の表面上に接合してもよい。
(機能層の機能の説明)
次に、図6〜図10を参照して機能層13の機能について説明する。
まず、図6に示すように、機能層13が設けられない、すなわち、従来と同じ構成における固体光検出器200では、表面膜212に入射した光(単色光)の平面波は、その一部が表面膜212の表面上(空気層との境界)において反射される。表面膜212に入射した光波の一部は、表面膜212の内部に浸透する。また、表面膜212の内部に浸透した光波の一部は、表面膜212と受光部211との境界において反射される。また、表面膜212の内部に浸透した光波の一部は、受光部211の内部に浸透する(波面W1”)。
また、表面膜212と受光部211との境界において反射された光波は、空気層と表面膜212との境界で反射して再び表面膜212を介して受光部211側に向かって進み、受光部211の内部に浸透する(波面W2")。ここで、これまでの入射境界および反射境界は全て平面であり、かつ相互に平行となっているため、波面W1"と波面W2"とは、進行方位は同一で、いずれも平面波となっている。このため、波面W1"と波面W2"とは干渉する(互いに強め合う、または、互いに弱め合う)。
次に、図7を参照して、半導体基板(シリコン(Si)基板)上に形成された表面膜(シリコン酸化物(SiO2)膜)の光の干渉について説明する。図7では、横軸は、光の波長を表し、縦軸は、空気層からSi基板へ通過する光に対するSiO2膜の透過率を表す。
光の干渉(多重反射干渉)がある場合は、透過率が振動波形のように激しく振動(リプル)している。このため、受光部211に到達する光の強度が変動してしまうので、受光部211から出力される信号が安定し難くなる。
次に、図8および図9を参照して、第1実施形態の固体光検出器10のように、表面膜12の表面上に機能層13を設けた場合の光の干渉について説明する。なお、図8および図9では、表面膜12の屈折率と機能層13の屈折率が等しい場合の光の反射・屈折の状態が表されている。
図9のように、機能層13(レンズ)に斜めに入射した波面(平面光波)W1は、機能層13の表面で屈折しつつ波面が球面に変換され、受光面11aの表面で反射し、再び機能層13の表面で反射して、再び受光面11aに向かい、一部が反射し光波面W2となり、残りが受光部11内に浸透しW1”となる。受光面11aで反射した光波面W2は機能層13表面で一部が反射し再度、受光面11aに到達、受光部11内に浸透し光波面W2”となる。図から分かるように、波面W1”およびW2”は、その進行方位および波面形状が一致することはない。したがって干渉は生じない。
図10を参照して、機能層13に垂直に光が入射する場合を説明する。機能層13に入射し機能層13の表面で屈折し、波面がほぼ球面となった光波面は、表面膜12を介して、受光部11に入射する。受光部11内で波面W1”は受光面11aを中心とする球面となる(図10(a)参照)。また、この光は、受光面11aで一部が反射し、波面W2となる(図10(b)参照)。その後、波面W2は、機能層13と空気層との界面において、再び受光部11側に反射される(波面W2’)(図10(c)参照)。光の再帰性からレンズとしての機能層13の焦点が受光面11a近傍にある場合、波面W1’と波面W2の曲率は略等しい。一方、レンズ形状の機能層13の曲率は到達した反射波面W2’の曲率とは異なる。このため、機能層13で再び反射した光波面W2’の曲率は入射波面W1’とは異なることになる。このため、これら2つの波面が同一の平面境界(11a)を通過した後の波面W1”とW2”も曲率が異なる(図10(d)参照)。
この波面W1”とW2”も曲率が異なるという現象は、機能層13の焦点が受光面11a近傍にあるかどうかに関わるものではない。W1”とW2”が同一曲率を持つためには、W1’とW2’が同じ曲率を持つ必要があるが、W2が機能層表面で反射した波面がW2’であるため、この波面の曲率が一致するためには機能層13の曲率が機能層13表面における波面W1’およびW2’と等しいことが要求される。この条件はW1’の波面法線が機能層13の曲率の中心に一致する。すなわち機能層13の表面の任意の点で機能層13における屈折角が0度でなければならないことを示している。スネルの法則から、W1の波面入射角も機能層13の表面の任意の点で入射角が0度となり、これは機能層13の表面曲率とW1の曲率が一致している。すなわちW1は平面波ではないことが要求されることから、平面波を入射する条件である限り、波面W1”とW2”の曲率は一致しない。すなわち干渉しないことを示している。
このように、機能層13を付加することで表面膜12における多重反射干渉が原理的に発生しなくなる。なお、機能層13内においても同様に多重反射干渉は生じない。このため、受光部11に到達する入射光の波長に対する表面膜12および機能層13の透過率のリプルは存在せず、入射光の波長がずれても受光部11が受ける光のエネルギーが変化しにくくなる。すなわち、固体光検出器10の感度を安定化させることが可能になる。以上の説明では、表面を球面形成することでレンズ機能を有する機能層13の表面に入射する平面波は、機能層13の表面で屈折し球面波となるとして説明している。厳密に言うと機能層13を通過後の波面は完全な球面ではないが、説明を簡略化するために「球面」と記載しているが、球面でない任意の曲面であっても、上記した2つの波面W1”とW2”が一致しないことは同様である。
(第1実施形態の効果)
第1実施形態では、以下のような効果を得ることができる。
第1実施形態では、上記のように、表面膜12の表面へ入射する光の平面波が、機能層13および表面膜12内に存在する屈折率境界面による反射した後に受光部11に浸透する各波面および、機能層内部に入射した後に屈折率境界で反射せずに受光部11に浸透する光の波面とが、互いに進行方位もしくは波面形状の少なくともいずれかが一致しないように構成されている機能層13が設けられている。これにより、従来構成において表面膜12にて発生するような、受光部11内に浸透する多重反射光が互いに強め合うこと(または、弱め合うこと)が抑制される。その結果、受光面11aを保護する表面膜12における多重反射干渉を抑制することができる。これにより、固体光検出器10の感度が不安定になることを抑制することができる。
また、第1実施形態では、上記のように、機能層13の屈折率と、表面膜12の屈折率とは、略等しい、または、機能層13と表面膜12とは、同一物質で構成される。これにより、機能層13と表面膜12との界面において光が反射するのを抑制している。その結果、表面膜12における多重反射干渉をほぼ完全に抑制することができる。
また、第1実施形態では、上記のように、機能層13は、凸レンズ形状を有する。これにより、機能層13は、機能層13に入射する平行光束を受光面11aにて集光する機能を有するので、光をレンズ中心に効率的に集めることができる。また、レンズ形状により、平面波は、機能層13の表面に入射し、機能層13に入射後に受光面11aで反射し、さらに機能層13の表面で反射する波面と、機能層13の表面に入射した波面とは進行方位と波面形状が同時に一致することはない。
また、第1実施形態では、上記のように、レンズ形状を有する機能層13は、機能層13に入射する平行光束を受光面11aにて集光する機能を有する。これにより、機能層13の付与により、より小さい受光部11の面積で入射する光を受光することができ、受光部11(フォトダイオード)から発生する暗電流を低減することができ、より性能の高い固体光検出器10を提供できる。
[第2実施形態]
次に、図11を参照して、第2実施形態について説明する。この第2実施形態では、機能層43は、シリンドリカルレンズ形状を有する。
図11に示すように、第2実施形態の固体光検出器40では、機能層43は、機能層43に入射する平面波を一軸方向に波面に曲率を持たせるシリンドリカルレンズ形状を有する。具体的には、機能層43は、光が入射する側に突出するシリンドリカルレンズ形状を有している。さらに具体的にはシリンドリカルレンズの焦点は受光面11a近傍に存在する。また、機能層43は、機能層43の元となる層(図示せず)を形成した後、機能層43の元となる層を削り出すことなどにより形成されている。また、予め形成された機能層43を、表面膜12の表面上に接合してもよい。
なお、第2実施形態の効果は、上記第1実施形態と同様である。
[第3実施形態]
次に、図12を参照して、第3実施形態について説明する。この第3実施形態では、複数の受光部11に渡って1つの形状(1つのレンズ形状)の機能層93が設けられている。
図12に示すように、第3実施形態の固体光検出器90では、マトリクス状に配置されている複数の受光部11に渡って、1つの形状の機能層93が設けられている。具体的には、機能層93は、平面視において、略円形状を有しており、マトリクス状に配置されている複数の受光部11を部分的に覆うように設けられている。また、機能層93は、たとえば凸レンズ形状を有する。なお、図12の破線の機能層93aのように、機能層93aを、マトリクス状に配置されている複数の受光部11の全体を覆うように設けてもよい。
また、図13に示す機能層93bのように、機能層93bが、平面視において六角形の複数のレンズ形状を有していてもよい。これにより、機能層93bの厚みを薄くすることができる。また、機能層93bおよび受光部11は、それぞれ、繰り返しの構造を有し、機能層93bの繰り返し構造と、受光部11の繰り返し構造とは、一致していない。すなわち、機能層93bの六角形のピッチと、受光部11のピッチとが異なる。これにより、機能層93bの繰り返し構造と受光部11の繰り返し構造とを、一致させるように形成する場合と比べて、機能層93bの形成が容易になる。なお、機能層93bの平面視における形状は六角形以外(四角形等)を有していてもよい。
(第3実施形態の効果)
第3実施形態では、以下のような効果を得ることができる。
第3実施形態では、上記のように、複数の受光部11に渡って1つの形状の機能層93が設けられている。これにより、受光部11毎に機能層93を形成する場合に比べて、機能層93の大きさが大きくなるので、機能層93を容易に形成することができる。
[第4実施形態]
次に、図14を参照して、第4実施形態について説明する。この第4実施形態では、機能層103と表面膜12とを接合するための接合層104が設けられている。
図14に示すように、第4実施形態の固体光検出器100における機能層103では、入射する光の平面波が、機能層103の表面に入射し、機能層103に入射後に受光面11aで反射し、さらに機能層103の表面で反射する波面と、機能層103の表面に入射した波面とは進行方位と波面形状が同時に一致することはないように予め形成されている。すなわち、機能層103は、受光部11および表面膜12の製造工程(半導体製造工程)とは異なる工程により別部品として予め形成されている。そして、予め形成された機能層103は、接合層104により、表面膜12の表面上に接合される。接合層104の屈折率と表面膜12の屈折率は略等しく、この界面での振幅反射率は0.002より小さい。また、機能層103は、複数の受光部11に渡って設けられている。また、機能層103は、レンズ形状を有する。
また、機能層103および表面膜12は、シリコン酸化物、シリコン窒化物、サファイアなどからなる。また、接合層104は、特定の波長を有する光を透過する材料により構成されている。また、スピン・オン・グラス(SOG)法などを用いて、機能層103を表面膜12の表面上に接合してもよい。
また、機能層103と表面膜12との接合においては、接合層104を用いなくてもよい。すなわち、機能層103と表面膜12とがオプティカルコンタクトなどの方法で、直接接合されていてもよい。
なお、所望の集光性能を確保するために、機能層103の屈折率が上記のシリコン酸化物、シリコン窒化物、サファイアなどの屈折率よりも十分に大きい必要が有る場合、アルミナのような、より屈折率の高い材質を使用してもよい。この場合、機能層103と表面膜12との屈折率が大きく異なってしまうため、表面膜12内において多重反射干渉が生じてしまう。この場合、図15に示す第4実施形態の変形例の固体光検出器110のように、機能層103と厚膜105との間に接合層104aを設け、表面膜12の上に屈折率が表面膜12の屈折率に略等しい接合層104bを設け、さらに、接合層104bに屈折率が略等しく、かつ表面膜12のZ方向の厚みdよりも大幅に大きな厚みd22を有する厚膜105を設けることによって、入射した波面の形状が大きく変化し、干渉が生じなくなる。図16、図17、図18を参照して以下にこの理由について説明する。
図16は、図14に示される固体光検出器100において、機能層103がレンズ状(球状)で、その屈折率が、表面膜12の屈折率とは大きく異なる場合に干渉が生じる原理を示したものである。また、図16には図示していないが、表面膜12の上には、接合層104および機能層103とが配置されている。また、ここでは、表面膜12および接合層104の屈折率は、略等しいとして説明する。
平面波の光が機能層103に入射すると、その波面は平面から球面波に変換される。球面波の状態で機能層103の内部を伝播した光は、接合層104との界面で屈折される。このとき、球面波は界面により波面が変形する一方、その曲率半径が変化するだけで球面波であることには変わりない。このことは、以下の屈折・反射のいずれの場合も成立する。
接合層104と表面膜12とを伝播した球面波は、その後、図16に示すように、一部は表面膜12と受光部11との界面において屈折されて波面W1”となり、一部は反射された後に接合層104と機能層13との界面において更に反射された後に受光部11に再度入射し、その一部は屈折されて受光部11の内部に浸透し、波面W2”になる。
ここで、波面W1”の点I1(表面膜12と受光部11との界面と光線との交点から少し進んだ黒丸の点の位置)での波面の曲率半径をR1とすると、波面W2”の点I2における曲率半径R2は、おおよそR1−2dとなる。なお、球面波はある1点に収束していく性質があるため、波面の曲率半径はその収束点までの距離に等しい。そして、波面W1”よりも波面W2”の方が進んでいる距離(光路長)が長いため、波面W2”の方がその進んだ分だけ曲率半径が小さくなっている。
波面W1”と波面W2”との曲率半径は、それぞれR1とR1−2dである一方、表面膜12+接合層104の厚みdは大きくてもμmオーダーであり、曲率半径R1に比べて十分小さい。このため、R1≒R2とみなすことが可能である。さらに、2つの波面間の距離Wもdと同程度であるため、対象としている波長と同程度のオーダーとなる。したがって、曲率半径のほぼ等しい波面W1”と波面W2”とが、近い距離Wで平行に進んでいるため、干渉が生じる(図17の実線A1参照)。
図18は、図15に示すように機能層103と表面膜12との間に、それぞれ接合層104a、104bを介して厚膜105を配置した場合に干渉が生じなくなる原理を示すものである。波面W1”および波面W2”の関係は、図16と略同じであり、異なるのは多重反射を生じる領域の厚みが、図14の表面膜12のみの厚みdから、表面膜12の厚みdと、接合層104bの厚みd21と、厚膜105の厚みd22を加算した厚みに増加(d+d21+d22)している。この場合、波面W2”の曲率半径R2は、R2≒R1−2(d+d21+d22)となり、(d+d21+d22)はR1に対して無視できない大きさになるため、R1≠R2となる。また、波面W1”と波面W2”との距離Wも同じく(d+d21+d22)に依存するため、大きくなる。したがって、曲率半径の大きく異なる波面W1”と波面W2”とが、互いに離れた状態で平行に進むため、干渉が生じなくなる(図17の点線A2参照)。
また、図15に示す第4実施形態の変形例においても、機能層103および表面膜12と、厚膜105とを接合する方法として接合層104a、104bを介していなくてもよい。第4実施形態と同様に、機能層103および表面膜12の両方あるいはいずれかが厚膜105とオプティカルコンタクトなどの方法で、直接接合されていてもよい。
また、機能層103の屈折率が表面膜12の屈折率より高い場合において、表面膜12内における多重反射干渉を抑制するために、厚膜105を設けるのではなく図19のように機能層103の接合層104に接する面が非平坦面(平面ではない)(平均は表面膜12と平行平面を呈している、また、非平坦面は平均平面とは異なる方位の面から構成される)として形成されていてもよい。さらに具体的には、非平坦面は粗面(本光検出器が受光する波長において散乱面として機能する)で形成されていてもよい。
機能層103の接合層104に接する面が非平坦面であることにより多重反射干渉が抑制される原理は、機能層103の接合層104に接する面と表面膜12の受光面11aに接する面が平行平面とならないことによる。なお、機能層103および接合層104とは屈折率が異なるため、機能層103と接合層104との界面B1は屈折率境界として機能するが、接合層104および表面膜12の屈折率は略等しいため、接合層104と表面膜12との界面B2は屈折率境界として機能しない。したがって表面膜12の受光面11aに接する面と接合層104と表面膜12との界面B2との間で多重反射干渉は発生しない。
(第4実施形態の効果)
第4実施形態では、以下のような効果を得ることができる。
第4実施形態では、上記のように、機能層103は、入射する光の平面波が、機能層103の表面に入射し、機能層103に入射後に受光面11aで反射し、さらに機能層103の表面で反射する波面と、機能層103の表面に入射した波面とは進行方位と波面形状とが同時に一致することがないように予め形成されている。これにより、予め形成された機能層103を表面膜12の表面上に配置するだけで、多重反射干渉が生じる従来の固体光検出器に対しても多重反射干渉が抑制された固体光検出器100を構成することができる。
また、第4実施形態の変形例では、上記のように、機能層103と表面膜12との間に、厚膜105が配置されている。もしくは、機能層103と表面膜12との間に接合層104が配置されており、機能層103の接合層104に接する面が非平坦面となっている。これにより、機能層103により屈折率の高い材質を使用することができ、表面膜12内での多重反射干渉を抑制しつつ機能層103の集光特性を向上することが可能となる。
[変形例]
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
たとえば、上記第1〜第4実施形態では、表面入射型の固体光検出器に本発明の機能層を適用する例を示したが、本発明はこれに限られない。たとえば、配線パターンが設けられる側の反対側から光が入射される裏面入射型の固体光検出器に本発明の機能層(たとえば、機能層13)を設けてもよい。なお、その場合に機能層は裏面(光の入射面)に設けられる。
また、上記第1〜第3実施形態および第4実施形態の一部では、機能層の屈折率と表面膜の屈折率とが略等しい例を示したが、本発明はこれに限られない。たとえば、機能層の屈折率と表面膜の屈折率とがある程度異なっていてもよい。
また、上記第1および第2実施形態では、それぞれ、機能層が、凸レンズ形状およびシリンドリカルレンズ形状を有する例を示したが、本発明はこれに限られない。たとえば、図20の第1変形例に示す固体光検出器130の機能層133のように、機能層133が非球面レンズ形状を有していてもよい。
また、上記第1〜第3実施形態では、機能層と表面膜とは別体として設けられている例を示したが、本発明はこれに限られない。たとえば、図21の第2変形例による固体光検出器150のように、表面膜153が機能層の役割を果たす(表面膜と機能層とが一体的)ように構成されていても良い。これにより、表面膜と機能層の界面が無くなり、より多重反射干渉を抑制することができる。
また、上記第1〜第2実施形態では、機能層をエッチングや削り出しにより形成する例を示したが、本発明はこれに限られない。たとえば、機能層を研磨、蒸着、結晶成長、リソグラフィ、熱成形などにより形成してもよい。
8 配線パターン
10、40、90、100、130、150、200 固体光検出器
11 受光部
11a 受光面
12、153 表面膜
13、43、93、93a、93b、103、133 機能層
104 接合層
上記目的を達成するために、この発明の一の局面における固体光検出器は、受光した光の強度に応じた信号を出力する複数の受光部と、受光部を保護するための表面膜と、表面膜の表面上に、複数の受光部にわたって設けられる1つの凸状の機能層とを備え、機能層は、機能層に入射した光の平面波が、受光面から受光部内に浸透した第一の波面と、受光部に浸透せず受光面にて反射した後に機能層表面にて反射し、再度受光部内に浸透する第二の波面、および、第二の波面が発生するまでに機能層および表面膜内に存在する屈折率境界面にて反射した後に受光部内へ浸透する各波面とが、互いに進行方位もしくは波面形状の少なくともいずれかが一致せず、各波面が相互に干渉しないよう構成されている。なお屈折率境界は、必ずしも物質境界を示すものではなく、物質境界が存在する場合にも、実質的に振幅反射率が0.002以下であれば、屈折率境界として考慮する必要はない。
上記接合層が設けられる固体光検出器において、機能層と表面膜との間に設けられる接合層に面する機能層の表面が平坦面(平面)ではなくてもよい。このように構成すれば、受光面と接合層に面する機能層の接合面とが、平行平面として機能しないので、多重反射干渉の発生を抑制することができる。
上記一の局面による固体光検出器において、好ましくは、機能層は、表面膜の表面上に接合されている。
上記一の局面による固体光検出器において、好ましくは、1つの凸状の機能層は、マトリクス状に配置されている複数の受光部を部分的に、または、全体を覆うように設けられている。

Claims (13)

  1. 受光した光の強度に応じた信号を出力する複数の受光部と、
    前記受光部を保護するための表面膜と、
    前記表面膜の表面上に設けられる機能層とを備え、
    前記機能層は、前記機能層に入射した光の平面波が、受光面から前記受光部内に浸透した第一の波面と、前記受光部に浸透せず前記受光面にて反射した後に前記機能層表面にて反射し、再度前記受光部内に浸透する第二の波面、および、第二の波面が発生するまでに前記機能層および前記表面膜内に存在する屈折率境界面にて反射した後に前記受光部内へ浸透する各波面とが、互いに進行方位もしくは波面形状の少なくともいずれかが一致せず、各波面が相互に干渉しないよう構成されている、固体光検出器。
  2. 前記機能層の屈折率と、前記表面膜の屈折率とは、略等しい、または、前記機能層と前記表面膜とは、同一物質で構成される、請求項1に記載の固体光検出器。
  3. 前記機能層は、レンズ形状を有する、請求項1または2に記載の固体光検出器。
  4. 前記機能層は、1つのレンズ形状を有する、請求項3に記載の固体光検出器。
  5. 前記機能層は、複数のレンズ形状を有する、請求項3に記載の固体光検出器。
  6. 前記機能層および前記受光部は、それぞれ、繰り返しの構造を有し、
    前記機能層の繰り返し構造と、前記受光部の繰り返し構造とは、一致していない、請求項5に記載の固体光検出器。
  7. 前記表面膜と前記機能層とは、一体的に構成されている、請求項1または2に記載の固体光検出器。
  8. 前記機能層は、前記機能層に入射した光の平面波が、前記受光面から前記受光部内に浸透した第一の波面と、前記受光部に浸透せず前記受光面にて反射した後に前記機能層の表面にて反射し、再度前記受光部内に浸透する第二の波面、および、第二の波面が発生するまでに前記機能層および前記表面膜内に存在する屈折率境界面にて反射した後に前記受光部内へ浸透する各波面とが、互いに進行方位もしくは波面形状の少なくともいずれかが一致せず、各波面が相互に干渉しないよう予め形成されている、請求項1または2に記載の固体光検出器。
  9. 前記機能層と前記表面膜との間に設けられ、予め形成された前記機能層と前記表面膜とを接合するための接合層をさらに備える、請求項8に記載の固体光検出器。
  10. 前記表面膜と前記機能層との間に、前記表面膜の厚さに対して大きい厚み有する厚膜をさらに備える、請求項8に記載の固体光検出器。
  11. 前記表面膜と前記厚膜との間に設けられ前記表面膜と前記厚膜と接合するための接合層と、前記機能層と前記厚膜との間に設けられ前記機能層と前記厚膜と接合するための接合層とのうちの少なくとも一方の前記接合層を備える、請求項10に記載の固体光検出器。
  12. 前記接合層は、前記表面膜と前記厚膜との間、および、前記機能層と前記厚膜との間の両方に設けられている、請求項11に記載の固体光検出器。
  13. 前記機能層と前記表面膜との間に設けられる前記接合層に面する前記機能層の表面が平面でない、請求項9に記載の固体光検出器。
JP2019501783A 2017-02-21 2017-02-21 固体光検出器 Pending JPWO2018154627A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/006367 WO2018154627A1 (ja) 2017-02-21 2017-02-21 固体光検出器

Publications (1)

Publication Number Publication Date
JPWO2018154627A1 true JPWO2018154627A1 (ja) 2019-11-07

Family

ID=63253149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019501783A Pending JPWO2018154627A1 (ja) 2017-02-21 2017-02-21 固体光検出器

Country Status (6)

Country Link
US (1) US20200335542A1 (ja)
EP (1) EP3588564A4 (ja)
JP (1) JPWO2018154627A1 (ja)
KR (1) KR20190099075A (ja)
CN (1) CN110326106A (ja)
WO (1) WO2018154627A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202127645A (zh) * 2019-08-30 2021-07-16 日商凸版印刷股份有限公司 光電轉換元件、攝像元件及攝像系統

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258261A (ja) * 1985-09-08 1987-03-13 Canon Inc 光受容部材
JPH06125068A (ja) * 1992-10-14 1994-05-06 Mitsubishi Electric Corp 固体撮像素子
JP2015068853A (ja) * 2013-09-26 2015-04-13 ソニー株式会社 積層体、撮像素子パッケージ、撮像装置および電子機器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310750A (ja) * 1993-04-20 1994-11-04 Sony Corp モノクロームセンサ
JP2003249639A (ja) * 2002-02-22 2003-09-05 Sony Corp 光電変換装置およびその製造方法ならびに固体撮像装置ならびにその製造方法
US7838956B2 (en) 2008-12-17 2010-11-23 Eastman Kodak Company Back illuminated sensor with low crosstalk
JP5468353B2 (ja) * 2009-10-27 2014-04-09 株式会社東芝 固体撮像素子
WO2011091159A1 (en) 2010-01-21 2011-07-28 Roper Scientific, Inc. Solid state back- illuminated photon sensor and its method of fabrication
JP2015216187A (ja) * 2014-05-09 2015-12-03 ソニー株式会社 固体撮像素子および電子機器
JP6306989B2 (ja) 2014-09-09 2018-04-04 浜松ホトニクス株式会社 裏面入射型固体撮像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258261A (ja) * 1985-09-08 1987-03-13 Canon Inc 光受容部材
JPH06125068A (ja) * 1992-10-14 1994-05-06 Mitsubishi Electric Corp 固体撮像素子
JP2015068853A (ja) * 2013-09-26 2015-04-13 ソニー株式会社 積層体、撮像素子パッケージ、撮像装置および電子機器

Also Published As

Publication number Publication date
EP3588564A4 (en) 2020-11-04
CN110326106A (zh) 2019-10-11
WO2018154627A1 (ja) 2018-08-30
KR20190099075A (ko) 2019-08-23
EP3588564A1 (en) 2020-01-01
US20200335542A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
JP4929308B2 (ja) 光センサー装置
US11454808B2 (en) Metalens and optical apparatus including the same
US9590004B2 (en) Solid-state imaging device and imaging apparatus
US8987655B2 (en) Optical module having at least one light receiving element with a wiring part covers a part of a side surface of a mesa part
JP7065033B2 (ja) 光結合素子及び光通信システム
JP2013061587A (ja) ビームスプリッタ及びそれを用いた光通信モジュール
US10677965B2 (en) Optical apparatus for non-visible light applications
TWI759480B (zh) 製造光學裝置的方法
WO2023025223A1 (zh) 光栅耦合器及光学设备
US9312965B2 (en) Optical receiver module
WO2018154627A1 (ja) 固体光検出器
CN107817548B (zh) 成像装置、成像设备和相机系统
JP2020194011A (ja) グレーティングカプラ、グレーティングカプラアレイ、受光アンテナおよび測距センサ
JPS58153388A (ja) 半導体レ−ザ出力光モニタ−方法
JP2810281B2 (ja) 偏光検出装置
JP6989205B1 (ja) 受光装置
JP6856295B1 (ja) 半導体受光素子
JP3213405B2 (ja) 高屈折率媒質から低屈折率媒質へ全反射を生じる角度以下の入射角で入射する入射光を検出する光検出装置
JP6918398B1 (ja) 端面入射型半導体受光素子
JP6941403B1 (ja) 半導体受光素子
JP6989206B1 (ja) 受光装置
FR3071326A1 (fr) Systeme optique integre
JP3377406B2 (ja) 偏光検出器
EP3841325A1 (fr) Systeme optique
JP6972563B2 (ja) 光導波路デバイスの製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210330