JPWO2017094179A1 - 電力変換システム - Google Patents

電力変換システム Download PDF

Info

Publication number
JPWO2017094179A1
JPWO2017094179A1 JP2017553584A JP2017553584A JPWO2017094179A1 JP WO2017094179 A1 JPWO2017094179 A1 JP WO2017094179A1 JP 2017553584 A JP2017553584 A JP 2017553584A JP 2017553584 A JP2017553584 A JP 2017553584A JP WO2017094179 A1 JPWO2017094179 A1 JP WO2017094179A1
Authority
JP
Japan
Prior art keywords
power
thyristor
conversion system
output terminal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017553584A
Other languages
English (en)
Inventor
豊田 勝
勝 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Publication of JPWO2017094179A1 publication Critical patent/JPWO2017094179A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1227Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to abnormalities in the output circuit, e.g. short circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/521Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inverter Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

この電力変換システムは、負荷(52)に接続される出力端子(TO1)と、第1の端子が交流電源(51)から供給される交流電力を受け、第2の端子が出力端子(TO1)に接続され、交流電源(51)からの交流電圧が正常である第1の場合はオンされ、交流電源(51)からの交流電圧(Vi1)が異常になった第2の場合はオフされるスイッチ(1a)と、第1の場合は交流電源(51)からの交流電力を直流電力に変換して蓄電池(54)に蓄え、第2の場合は蓄電池(54)の直流電力を交流電力に変換して出力端子(TO1)に出力する電力変換器(3)と、出力端子(TO1)に現れる交流電圧(Vo1)に同期して動作し、燃料電池(53)から供給される直流電力を交流電力に変換して出力端子(TO1)に出力する電源転流式のインバータ(2)とを備える。

Description

この発明は電力変換システムに関し、特に、交流電源から供給される交流電力と直流電源から供給される直流電力とを受け、交流電力を負荷に供給する電力変換システムに関する。
特開2013−150369号公報(特許文献1)には、AC/DC変換器、第1のDC/DC変換器、第2のDC/DC変換器、およびDC/AC変換器を備えた電力変換システムが開示されている。AC/DC変換器は、交流電源から供給される交流電圧を第1の直流電圧に変換して直流リンク部に供給する。第1のDC/DC変換器は、直流電源から供給される第2の直流電圧を第1の直流電圧に変換して直流リンク部に供給する。第2のDC/DC変換器は、充電モード時には直流リンク部の直流電力を電力貯蔵装置に蓄え、放電モード時には電力貯蔵装置の直流電力を直流リンク部に供給する。DC/AC変換器は、直流リンク部の第1の直流電圧を交流電圧に変換して負荷に供給する。
特開2013−150369号公報
しかし、特許文献1の電力変換システムでは、4つの電力変換器を備えていたので、装置寸法が大きくなり、装置価格が高くなり、電力損失が大きくなるという問題があった。
それゆえに、この発明の主たる目的は、小型で低価格で低損失の電力変換システムを提供することである。
この発明に係る電力変換システムは、交流電源から供給される交流電力と直流電源から供給される直流電力とを受け、交流電力を負荷に供給する電力変換システムであって、負荷に接続される出力端子と、第1の端子が交流電源から供給される交流電力を受け、第2の端子が出力端子に接続され、交流電源からの交流電圧が正常である第1の場合はオンされ、交流電源からの交流電圧が異常になった第2の場合はオフされるスイッチと、第1の場合は交流電源からスイッチを介して供給される交流電力を直流電力に変換して電力貯蔵装置に蓄え、第2の場合は電力貯蔵装置の直流電力を交流電力に変換して出力端子に出力する電力変換器と、出力端子に現れる交流電圧に同期して動作し、直流電源から供給される直流電力を交流電力に変換して出力端子に出力する電源転流式のインバータとを備えたものである。
この発明に係る電力変換システムは、スイッチと、電力変換器と、電源転流式のインバータとを備えるので、4つの自励式の電力変換器を備えていた従来に比べ、小型で低価格で低損失の電力変換システムを実現することができる。
この発明の一実施の形態による電力変換システムの構成を示す回路ブロック図である。 図1に示したインバータの構成を示す回路ブロック図である。 図2に示した制御回路の構成を示すブロック図である。 図3に示した交流電圧と制御信号の関係を示す図である。 図4に示した制御信号の波形を示す図である。 図1に示した電力変換器の構成を示す回路図である。 図1に示した制御回路の構成を示すブロック図である。 図1に示した電力変換システムの停電発生時における動作を示すタイムチャートである。 実施の形態の変更例を示す回路ブロック図である。 実施の形態の他の変更例を示す回路ブロック図である。 実施の形態のさらに他の変更例を示す回路ブロック図である。 実施の形態のさらに他の変更例を示す回路ブロック図である。
図1は、この発明の一実施の形態による電力変換システムの全体構成を示す回路ブロック図である。図1において、この電力変換システムは、入力端子TI1〜TI3、出力端子TO1〜TO3、スイッチ1a〜1c、インバータ2、電力変換器3、異常検出器4、電流検出器5a〜5c,6a〜6c、および制御回路7を備える。
入力端子TI1〜TI3は、商用交流電源51から供給される三相交流電圧Vi1〜Vi3をそれぞれ受ける。出力端子TO1〜TO3は、負荷52に三相交流電流を供給するために、負荷52に接続される。
スイッチ1a〜1cの第1の端子はそれぞれ入力端子TI1〜TI3に接続され、それらの第2の端子はそれぞれ出力端子TO1〜TO3に接続される。スイッチ1a〜1cの各々は、自己消弧能力を持たないスイッチであり、たとえば1対のサイリスタを含む。一対のサイリスタのうちの一方のサイリスタのアノードおよびカソードはそれぞれ第1および第2の端子に接続され、他方のサイリスタのアノードおよびカソードはそれぞれ第2および第1の端子に接続される。スイッチ1a〜1cの各々が機械スイッチで構成されていてもよい。
スイッチ1a〜1cは、制御回路7によって制御され、商用交流電源51から供給される三相交流電圧Vi1〜Vi3が正常である通常時はオン状態にされ、商用交流電源51から供給される三相交流電圧Vi1〜Vi3が異常になった場合(たとえば停電時)はオフ状態にされる。
インバータ2は、出力端子TO1〜TO3に現れる三相交流電圧Vo1〜Vo3に同期して動作し、燃料電池53(直流電源)から供給される直流電力を三相交流電力に変換して交流ノードN1〜N3に出力する。交流ノードN1はスイッチ1aの第2の端子と出力端子TO1との間のノードであり、交流ノードN2はスイッチ1bの第2の端子と出力端子TO2との間のノードであり、交流ノードN3はスイッチ1cの第2の端子と出力端子TO3との間のノードである。インバータ2は、電源転流式であり、交流ノードN1〜N3に三相交流電圧Vo1〜Vo3が現れているときに運転可能となる。
燃料電池53は、水素と酸素を化学反応させて直流電力を生成する発電装置である。燃料電池53の代わりに、太陽光のエネルギーを直流電力に変換する太陽電池を設けてもよい。
電力変換器3は、制御回路7によって制御される。電力変換器3は、商用交流電源51から供給される三相交流電圧Vi1〜Vi3が正常である通常時は、交流電源51およびインバータ2の少なくともいずれか一方から供給される三相交流電力を直流電力に変換して蓄電池54(電力貯蔵装置)に蓄える。
電力変換器3は、商用交流電源51から供給される三相交流電圧Vi1〜Vi3が異常になった場合は、スイッチ1a〜1cに流れる電流と同極性の第1〜第3の直流電流を交流ノードN1〜N3に出力してスイッチ1a〜1cを迅速に消弧させる。
すなわち、商用交流電源51から供給される三相交流電圧Vi1〜Vi3が異常になった場合は、制御回路7からスイッチ1a〜1cにオフ指令信号が与えられる。スイッチ1a〜1cは自己消弧能力を持たないので、オフ指令信号を与えただけではスイッチ1a〜1cを消弧させることはできず、スイッチ1a〜1cに流れる電流を0にする必要がある。スイッチ1a〜1cに流れる電流と同極性の第1〜第3の直流電流が電力変換器3から交流ノードN1〜N3に出力されると、負荷電流IL1〜IL3の少なくとも一部が電力変換器3から供給されることとなる。これにより、商用交流電源51からスイッチ1a〜1cを介して負荷52に流れる電流Is1〜Is3が減少し、スイッチ1a〜1cが迅速に消弧する。
さらに、電力変換器3は、スイッチ1a〜1cを消弧させた後に、三相交流電流Io1〜Io3を負荷52に出力して交流ノードN1〜N3を定格の三相交流電圧に維持する。これにより、インバータ2の運転が継続され、負荷52の運転が継続される。
異常検出器4は、商用交流電源51から供給される三相交流電圧Vi1〜Vi3が正常であるか否かを検出し、三相交流電圧Vi1〜Vi3が正常である場合は異常検出信号φ4を非活性化レベルの「L」レベルにし、三相交流電圧Vi1〜Vi3が異常になった場合は異常検出信号φ4を活性化レベルの「H」レベルにする。たとえば商用交流電源51からの三相交流電力の供給が停止された停電時には、三相交流電圧Vi1〜Vi3の実効値が低下し、異常検出信号φ4が活性化レベルの「H」レベルにされる。
電流検出器5a〜5cは、入力端子TI1〜TI3とスイッチ1a〜1cの間に設けられ、それぞれスイッチ1a〜1cに流れる電流Is1〜Is3の瞬時値を検出し、検出値を示す信号φ5a〜φ5cを出力する。電流検出器5a〜5cでは、入力端子TI1〜TI3から出力端子TO1〜TO3に向かって流れる電流の極性(すなわち、スイッチ1a〜1cの第1の端子から第2の端子に向かって流れる電流の極性)が正極性とされる。
電流検出器6a〜6cは、電力変換器3と交流ノードN1〜N3との間にそれぞれ設けられ、それぞれ電力変換器3の出力電流Io1〜Io3の瞬時値を検出し、検出値を示す信号φ6a〜φ6cを出力する。電流検出器6a〜6cでは、電力変換器3から交流ノードN1〜N3に向かって流れる電流の極性が正極性とされる。
制御回路7は、異常検出器4の出力信号φ4、電流検出器5a〜5cの出力信号φ5a〜φ5c、電流検出器6a〜6cの出力信号φ6a〜6c、出力端子TO1〜TO3の電圧Vo1〜Vo3の瞬時値、バッテリ電圧VB(蓄電池54の端子間電圧)などに基づいて、スイッチ1a〜1cおよび電力変換器3を制御する。
制御回路7は、異常検出信号φ4が非活性化レベルの「L」レベルである場合は、スイッチ1a〜1cにオン指令信号を与えてオン状態にする。この場合は、商用交流電源51からスイッチ1a〜1cを介して負荷52に三相交流電力が供給されるとともに、燃料電池53によって生成された直流電力が三相交流電力に変換されて負荷52に供給され、負荷52が運転される。さらに、商用交流電源51およびインバータ2のうちの少なくともいずれか一方から供給される三相交流電力が電力変換器3によって直流電力に変換されて蓄電池54に蓄えられる。
制御回路7は、異常検出信号φ4が活性化レベルの「H」レベルにされた場合は、スイッチ1a〜1cにオフ指令信号を与えるとともに、電力変換器3から交流ノードN1〜N3にそれぞれ第1〜第3の直流電流を出力させてスイッチ1a〜1cを迅速に消弧させる。このとき、電力変換器3の出力電流Io1〜Io3の極性はそれぞれスイッチ1a〜1cに流れている電流Is1〜Is3の極性と同じである。
制御回路7は、スイッチ1a〜1cを消弧させた後に、電力変換器3から負荷52に三相交流電力を供給させて負荷52の運転を継続させる。このとき、電力変換器3から交流ノードN1〜N3に三相交流電圧が供給され、これによりインバータ2の電源転流が可能となり、インバータ2から負荷52に三相交流電流が供給される。蓄電池54の端子間電圧VBが低下して放電終止電圧に到達すると、電力変換器3の運転が停止される。これによりインバータ2の電源転流が不可能となり、インバータ2の運転が停止され、負荷52の運転が停止される。
図2は、インバータ2の構成を示す回路ブロック図である。図2において、インバータ2は、サイリスタS1〜S6、電流検出器10a〜10c、リアクトル11a〜11c、および制御回路12を含む。
サイリスタS1〜S3のアノードはともに燃料電池53の正極に接続され、サイリスタS1〜S3のカソードはそれぞれサイリスタS4〜S6のアノードに接続され、サイリスタS4〜S6のカソードはともに燃料電池53の負極に接続される。サイリスタS1〜S6のゲートは、それぞれ制御回路12からの制御信号G1〜G6を受ける。
サイリスタS1〜S3のカソードはそれぞれリアクトル11a〜11cの一方端子に接続され、リアクトル11a〜11cの他方端子はそれぞれ交流ノードN1〜N3に接続される。電流検出器10a〜10cは、それぞれリアクトル11a〜11cに流れる電流Io11〜Io13、すなわちインバータ2の出力電流Io11〜Io13を検出し、検出値を示す信号φ10a〜φ10cをそれぞれ出力する。
制御回路12は、交流ノードN1〜N3に現れる三相交流電圧Vo1〜Vo3に同期して動作し、電流検出器10a〜10cの検出値がそれぞれ電流指令値IC1〜IC3に一致するように制御信号G1〜G6を生成する。
図3は、制御回路12の要部を示す回路ブロック図である。図3において、制御回路12は、電流指令部13、インバータ制御部14、制御信号生成部15、および制御電源16を含む。電流指令部13は、電流指令値IC1〜IC3を出力する。
インバータ制御部14は、電流検出器10a〜10cの検出値Io11〜Io13がそれぞれ電流指令値IC1〜IC3に一致するように、電流指令値IC11〜IC13と電流検出器10a〜10cの検出値Io11〜Io13との偏差IC1−Io11,IC2−Io12,IC3−Io13に応じた値の電圧指令値VC1〜VC3を出力する。
制御信号生成部15は、電圧指令値VC1〜VC3に応じた値の位相制御角α1〜α3を設定し、設定した位相制御角α1〜α3と交流電圧Vo1〜Vo3の位相とに基づいて制御信号G1〜G6を生成する。制御電源16は、サイリスタS1〜S3のカソードの電圧を整流して電源電圧VDCを生成する。電流指令部13、インバータ制御部14、および制御信号生成部15を含む制御回路12は、制御電源16からの電源電圧VDCによって駆動される。
図4は、交流ノードN1〜N3の交流電圧Vo1〜Vo3と制御信号G1〜G6との関係を示す図である。図4において、三相交流電圧Vo1〜Vo3の各々は正弦波状に変化し、三相交流電圧Vo1〜Vo3の位相は120度ずつずれている。交流電圧Vo1,Vo2,Vo3と交流電圧Vo3,Vo1,Vo2との正電圧側の交点をそれぞれP1,P2,P3とし、交流電圧Vo1,Vo2,Vo3と交流電圧Vo3,Vo1,Vo2との負電圧側の交点をそれぞれP4,P5,P6とする。
制御信号G1は、交点P1よりも位相制御角α1だけ遅延して活性化レベルの「H」レベルに立ち上げられ、120度だけ「H」レベルに維持された後に非活性化レベルの「L」レベルに立ち下げられる。制御信号G2は、交点P2よりも位相制御角α2だけ遅延して活性化レベルの「H」レベルに立ち上げられ、120度だけ「H」レベルに維持された後に非活性化レベルの「L」レベルに立ち下げられる。制御信号G3は、交点P3よりも位相制御角α3だけ遅延して活性化レベルの「H」レベルに立ち上げられ、120度だけ「H」レベルに維持された後に非活性化レベルの「L」レベルに立ち下げられる。
制御信号G4は、交点P4よりも位相制御角α1だけ遅延して活性化レベルの「H」レベルに立ち上げられ、120度だけ「H」レベルに維持された後に非活性化レベルの「L」レベルに立ち下げられる。制御信号G5は、交点P5よりも位相制御角α2だけ遅延して活性化レベルの「H」レベルに立ち上げられ、120度だけ「H」レベルに維持された後に非活性化レベルの「L」レベルに立ち下げられる。制御信号G6は、交点P6よりも位相制御角α3だけ遅延して活性化レベルの「H」レベルに立ち上げられ、120度だけ「H」レベルに維持された後に非活性化レベルの「L」レベルに立ち下げられる。
図5(a)は、制御信号G1の波形を示す図である。図5(a)において、制御信号G1は、交点P1よりも位相制御角α1だけ遅延して「H」レベルに立ち上げられ、120度だけ「H」レベルに維持された後に「L」レベルに立ち下げられる。換言すると、制御回路12は、サイリスタS1のゲートを「H」レベルにしてサイリスタS1を点弧させた後、サイリスタS1のゲートを120度だけ「H」レベルに維持する。制御回路12は、電流検出器10aの検出値が電流指令値IC11に一致するように、サイリスタS1を点弧させる位相制御角α1を調整する。なお、交流電圧Voの一周期をT[s]とすると、120度はT/3[s](予め定められた時間)である。
図5(b)は、制御信号G1の他の波形を示す図である。図5(b)において、制御信号G1は、交点P1よりも位相制御角α1だけ遅延して短時間だけ「H」レベルに立ち上げられ、その後は十分に短い角度間隔(時間間隔)で連続的に「H」レベルに立ち上げられ、120度経過した後に「L」レベルにされる。換言すると、制御回路12は、サイリスタS1のゲートにパルス信号を与えてサイリスタを点弧させた後、120度(予め定められた時間)にわたって十分に短い角度間隔でパルス信号をサイリスタS1のゲートに与え続ける。他の制御信号G2〜G6の各々の波形は、制御信号G1の波形と同様である。
一般的には、サイリスタのゲートに1個のパルス信号を与えてサイリスタを点弧させる。この場合は、商用交流電源51からの交流電圧の値が瞬間的に低下したとき(すなわち瞬停時)にサイリスタが消弧してしまう恐れがある。これに対して、本実施の形態では、サイリスタSのゲートを120度に亘って「H」レベルにするか、サイリスタSのゲートに120度に亘ってパルス信号を与え続けるので、瞬停時にサイリスタSが消弧したとしても交流電圧が復帰したときに再度、点弧させることができる。したがって、瞬停が発生した場合でも、インバータ2は安定に動作する。
このような制御信号G1〜G6によってサイリスタS1〜S6は、以下のように点弧および消弧される。サイリスタS1は、交点P1よりも位相制御角α1だけ遅延して点弧され、交点P2よりも位相制御角α2だけ遅延して消弧される。サイリスタS2は、交点P2よりも位相制御角α2だけ遅延して点弧され、交点P3よりも位相制御角α3だけ遅延して消弧される。サイリスタS3は、交点P3よりも位相制御角α3だけ遅延して点弧され、交点P1よりも位相制御角α1だけ遅延して消弧される。
すなわち、サイリスタS1が点弧されるとサイリスタS3が消弧し、サイリスタS2が点弧されるとサイリスタS1が消弧し、サイリスタS3が点弧されるとサイリスタS2が消弧し、サイリスタS1,S2,S3,S1,…が順次オンされる。
サイリスタS4は、交点P4よりも位相制御角α1だけ遅延して点弧され、交点P5よりも位相制御角α2だけ遅延して消弧される。サイリスタS5は、交点P5よりも位相制御角α2だけ遅延して点弧され、交点P6よりも位相制御角α3だけ遅延して消弧される。サイリスタS6は、交点P6よりも位相制御角α3だけ遅延して点弧され、交点P4よりも位相制御角α1だけ遅延して消弧される。
すなわち、サイリスタS4が点弧されるとサイリスタS6が消弧し、サイリスタS5が点弧されるとサイリスタS4が消弧し、サイリスタS6が点弧されるとサイリスタS5が消弧し、サイリスタS4,S5,S6,S4,…が順次オンされる。サイリスタS4,S5,S6は、それぞれサイリスタS1,S2,S3よりも180度だけ遅延してオンされる。サイリスタS1(第1のサイリスタ)とサイリスタS4(第2のサイリスタ)は交互にオンされ、サイリスタS2とサイリスタS5は交互にオンされ、サイリスタS3とサイリスタS6は交互にオンされる。
位相制御角α1は、電流検出器10aの検出値が電流指令値IC1に一致するように調整される。位相制御角α2は、電流検出器10bの検出値が電流指令値IC2に一致するように調整される。位相制御角α3は、電流検出器10cの検出値が電流指令値IC3に一致するように調整される。
このような制御は、交流ノードN1〜N3に三相交流電圧Vo1〜Vo3が現れているときだけ可能となる。したがって、電源転流式のインバータ2は、交流ノードN1〜N3に三相交流電圧Vo1〜Vo3が現れているときだけ運転され、三相交流電流を出力する。
なお、電源転流式のインバータ2の代わりに、サイリスタS1〜S6を強制的に消弧させる強制消弧回路を備えた強制転流式のインバータを設けた場合は、強制消弧回路の分だけ装置価格が高くなり、装置寸法が大きくなり、電力損失が大きくなるという問題が生じる。
電源転流式のインバータ2の代わりに、自己消弧能力を有するIGBT(Insulated Gate Bipolar Transistor)のような半導体素子を用いた自励式のインバータを設けた場合は、半導体素子で大きな損失(導通損失、スイッチング損失)が発生するという問題が生じる。これに対して本実施の形態では、電源転流式のインバータ2が設けられ、サイリスタS1〜S6で導通損失は発生するがスイッチング損失は発生しないので、自励式のインバータと比べ、電力損失を低減化することができる。
図6は、電力変換器3の構成を示す回路図である。図6において、電力変換器3は、トランジスタQ1〜Q6、ダイオードD1〜D6、リアクトル17a〜17c、およびコンデンサ18a〜18cを含む。トランジスタQ1〜Q6の各々は、たとえばIGBT(Insulated Gate Bipolar Transistor)である。トランジスタQ1〜Q3のコレクタはともに蓄電池54の正極に接続され、トランジスタQ1〜Q3のエミッタはそれぞれトランジスタQ4〜Q6のコレクタに接続され、トランジスタQ4〜Q6のエミッタはともに蓄電池54の負極に接続される。トランジスタQ1〜Q6のゲートはそれぞれ制御回路7からの制御信号CNT1〜CNT6を受ける。ダイオードD1〜D6は、それぞれトランジスタQ1〜Q6に逆並列に接続される。
リアクトル17a〜17cの一方端子はそれぞれトランジスタQ1〜Q3のエミッタに接続され、それらの他方端子はそれぞれ交流ノードN1〜N3に接続される。コンデンサ18a〜18cの一方電極はそれぞれリアクトル17a〜17cの他方端子に接続される。コンデンサ18a〜18cの他方電極は、それぞれコンデンサ18b,18c,18aの一方電極に接続される。
リアクトル17a〜17cおよびコンデンサ18a〜18cは、低域通過フィルタを構成し、商用周波数の交流電力を通過させ、トランジスタQ1〜Q6で発生するスイッチング周波数の信号が負荷52に通過することを禁止する。換言すると、リアクトル17a〜17cおよびコンデンサ18a〜18cは、トランジスタQ1〜Q6によって生成された方形波状の三相交流電圧を正弦波状の三相交流電圧に変換して交流ノードN1〜N3に出力する。
トランジスタQ1〜Q6を所定のタイミングでオン/オフさせることにより、交流ノードN1〜N3に所望の位相の三相交流電圧を出力することが可能となっている。異常検出信号φ4が非活性化レベルの「L」レベルである場合において、バッテリ電圧VBが目標バッテリ電圧VBTよりも低いときは、電力変換器3から交流ノードN1〜N3に出力される三相交流電圧の位相を、商用交流電源51からスイッチ1a〜1cを介して交流ノードN1〜N3に供給される三相交流電圧の位相よりも遅らせる。これにより、商用交流電源51からスイッチ1a〜1cおよび電力変換器3を介して蓄電池54に電流が流れ、蓄電池54が充電される。
バッテリ電圧VBが目標バッテリ電圧VBTに到達した場合は、電力変換器3から交流ノードN1〜N3に出力される三相交流電圧の位相を、商用交流電源51からスイッチ1a〜1cを介して交流ノードN1〜N3に供給される三相交流電圧の位相に一致させる。この場合は、蓄電池54の充放電は停止され、電力変換器3はスタンバイ状態にされる。
異常検出信号φ4が活性化レベルの「H」レベルにされた場合は、スイッチ1a〜1cに流れる電流と同極性の第1〜第3の直流電流が電力変換器3から出力され、スイッチ1a〜1cが迅速に消弧される。その後、蓄電池54の直流電力が電力変換器3によって三相交流電力に変換されて負荷52に供給され、交流ノードN1〜N3が所定の三相交流電圧に維持される。これにより、インバータ2の運転が可能となり、電力変換器3およびインバータ2から負荷52に三相交流電力が供給され、負荷52の運転が継続される。
図7は、制御回路7の要部を示すブロック図である。図7において、制御回路7は、スイッチ制御部20、符号判定部21、電流指令部22、電圧指令部23、変換器制御部24、および制御信号生成部25を含む。
スイッチ制御部20は、異常検出信号φ4が非活性化レベルの「L」レベルである場合は、スイッチ1a〜1cにオン指令信号を与えてスイッチ1a〜1cをオン状態にし、異常検出信号φ4が活性化レベルの「H」レベルにされた場合は、スイッチ1a〜1cにオフ指令信号を与えてスイッチ1a〜1cをオフ状態にする。なお、上述の通り、自己消弧能力を持たないスイッチ1a〜1cをオフ状態にするためには、スイッチ1a〜1cにオフ指令信号を与え、かつスイッチ1a〜1cに流れる電流を0にする必要がある。
符号判定部21は、電流検出器5a〜5cの出力信号φ5a〜φ4cに基づいて、スイッチ1a〜1cに流れている電流Is1〜Is3の各々の極性を判定し、判定結果を示す信号D1〜D3を出力する。電流Is1〜Is3が正極性である場合は信号D1〜D3は「H」レベルにされ、電流Is1〜Is3が負極性である場合は信号D1〜D3は「L」レベルにされる。
スイッチ1a〜1cに正常に三相交流電流が流れている場合、信号D1〜D3のうちのいずれか2つの信号が「H」レベルになり、残りの1つの信号が「L」レベルになる場合と、信号D1〜D3のうちのいずれか2つの信号が「H」レベルになり、残りの1つの信号が「L」レベルになる場合とがある。符号判定部21は、スイッチ1a〜1cに流れる電流Is1〜Is3が十分に小さくなって符号の判定が不可能になった場合には、信号D1〜D3をともに「L」レベルにする。
電流指令部22は、異常検出信号φ4が活性化レベルの「H」レベルにされた場合に活性化され、スイッチ1a〜1cに流れる電流Is1〜Is3と同極性の直流電流Io1〜Io3が電力変換器3から出力されるように電流指令値IC11〜IC13を生成する。これにより、負荷電流IL1〜IL3の少なくとも一部が電力変換器3から供給されることとなり、スイッチ1a〜1cに流れる電流Is1〜Is3が減少してスイッチ1a〜1cが迅速に消弧される。
電圧指令部23は、商用交流電源51から供給される三相交流電圧Vi1〜Vi3と同じ周波数で正弦波状に変化する三相の電圧指令値VCA11〜VCA13を出力する。電流指令値IC11〜IC13および電圧指令値VCA11〜VCA13は、変換器制御部24に与えられる。
変換器制御部24は、異常検出信号φ4、電流指令値IC11〜IC13、電圧指令値VCA11〜VCA13、電流検出器6a〜6cの出力信号φ6a〜φ6c、出力電圧Vo1〜Vo3、バッテリ電圧(蓄電池54の端子間電圧)VB、および目標バッテリ電圧VBTに基づいて動作する。
変換器制御部24は、異常検出信号φ4が非活性化レベルの「L」レベルである場合は、目標バッテリ電圧VBTとバッテリ電圧VBとの偏差VBT−VBに応じたレベルの電圧指令値VC11〜VC13を出力する。これにより、バッテリ電圧VBが目標バッテリ電圧VBTに一致するように、電力変換器3の出力電流Io1〜Io3が制御される。
さらに、変換器制御部24は、異常検出信号φ4が非活性化レベルの「L」レベルである場合は、電圧指令値VCA11〜VCA13と出力電圧Vo1〜Vo3との偏差VCA11−Vo1,VCA12−Vo2,VCA13−Vo3に応じたレベルの電圧指令値VC11〜VC13を出力する。これにより、出力電圧Vo1〜Vo3がそれぞれ電圧指令値VCA11〜VCA13に一致するように、電力変換器2a〜2cの出力電流Io1〜Io3が制御され、電力変換器3がスタンバイ状態にされる。
変換器制御部24は、異常検出信号φ4が活性化レベルの「H」レベルにされた場合は、電流指令値IC11〜IC13と電流検出器6a〜6cの検出値Io1〜Io3との偏差IC11−Io1,IC12−Io2,IC13−Io3に応じたレベルの電圧指令値VC11〜VC13を出力する。これにより、電流検出器6a〜6cの検出値Io1〜Io3がそれぞれ電流指令値IC11〜IC13に一致するように電力変換器3の出力電流Io1〜Io3が制御され、スイッチ1a〜1cが迅速に消弧される。
変換器制御部24は、スイッチ1a〜1cを消弧させた後に、電圧指令値VCA11〜VCA13と出力電圧Vo1〜Vo3との偏差VCA11−Vo1,VCA12−Vo2,VCA13−Vo3に応じたレベルの電圧指令値VC11〜VC13を出力する。これにより、出力電圧Vo1〜Vo3がそれぞれ電圧指令値VCA11〜VCA13に一致するように電力変換器3の出力電流Io1〜Io3が制御され、負荷52の運転が継続される。
制御信号生成部25は、電圧指令値VC11〜VC13に従ってそれぞれ制御信号CNT1〜CNT6を生成し、生成した制御信号CNT1〜CNT6を電力変換器3に与える。
次に、この電力変換システムの動作について説明する。商用交流電源51から供給される三相交流電圧Vi1〜Vi3が正常である場合は、異常検出器4によって異常検出信号φ4が非活性化レベルの「L」レベルにされる。異常検出信号φ4が「L」レベルである場合は、スイッチ制御部20からスイッチ1a〜1cにオン指令信号が与えられてスイッチ1a〜1cがオン状態にされ、商用交流電源51からスイッチ1a〜1cを介して負荷52に三相交流電流が供給される。
このとき、燃料電池53によって生成される直流電力がインバータ2によって三相交流電力に変換され、インバータ2から負荷52に三相交流電流が供給される。負荷52は、商用交流電源51およびインバータ2から供給される三相交流電流によって駆動される。さらに、電力変換器3は、商用交流電源51から供給される三相交流電力を直流電力に変換して蓄電池54に蓄える。バッテリ電圧(蓄電池54の端子間電圧)VBが目標バッテリ電圧VBTに到達すると、電力変換器3はスタンバイ状態にされる。
商用交流電源51から供給される三相交流電圧Vi1〜Vi3が異常になった場合は、異常検出器4によって異常検出信号φ4が活性化レベルの「H」レベルにされる。異常検出信号φ4が「H」レベルにされると、スイッチ制御部20からスイッチ1a〜1cにオフ指令信号が与えられるとともに、蓄電池54の直流電力が電力変換器3によって直流電力に変換され、電力変換器3から直流電流Io1〜Io3が出力される。
このとき、直流電流Io1〜Io3の極性は、それぞれスイッチ1a〜1cに流れている電流Is1〜Is3の極性と同じにされる。負荷電流IL1〜IL3の少なくとも一部が直流電流Io1〜Io3によって置換されてスイッチ1a〜1cに流れる電流Is1〜Is3が減少し、スイッチ1a〜1cが迅速に消弧されてオフ状態にされる。
スイッチ1a〜1cがオフ状態にされると、電力変換器3から負荷52に三相交流電流が供給され、交流ノードN1〜N3が所定の三相交流電圧Vo1〜Vo3に維持される。これにより、インバータ2の運転が継続され、インバータ2から負荷52に三相交流電流が供給される。負荷52は、電力変換器3およびインバータ2からの三相交流電流によって駆動される。
したがって、蓄電池54に直流電力が蓄えられている期間は、負荷52の運転が継続される。バッテリ電圧VBが低下して放電終止電圧に到達すると、電力変換器3およびインバータ2の運転が停止され、負荷52の運転が停止される。
図8(a)〜(c)は、停電発生時における電力変換システムの動作を示すタイムチャートである。特に、図8(a)は商用交流電源51から供給される交流電圧Vi1の波形を示し、図8(b)は負荷52に供給される三相交流電圧Vo1〜Vo3の波形を示し、図8(c)は負荷52に供給される三相交流電圧Vo1〜Vo3の実効値Voeを示している。
図8(a)〜(c)では、ある時刻(図中の14ms)で停電が発生した場合が示されている。停電が発生すると、図8(a)に示すように、商用交流電源51からの交流電圧Vi1の振幅が通常時の10分の1程度以下に減少してしまう。上述の通り、本実施の形態の電力変換システムでは、停電が発生すると、スイッチ1a〜1cがオフされて商用交流電源51と負荷52が電気的に切り離され、電力変換器3およびインバータ2から負荷52に三相交流電力が供給される。このため、図8(b)(c)に示すように、負荷52に供給される交流電圧Voの振幅および実効値Voeは瞬間的に通常時の55%程度まで低下するが、交流電圧Voの半サイクル以下の数msで、交流電圧Voは波形歪のない正弦波状に回復する。
以上のように、この実施の形態では、スイッチ1a〜1cと、電源転流式のインバータ2と、電力変換器3とを設けたので、4つの自励式の電力変換器を備えていた従来に比べ、小型で低価格で低損失の電力変換システムを実現することができる。
図9は、本実施の形態の変更例を示す回路ブロック図であって、図1と対比される図である。図9を参照して、この変更例が実施の形態と異なる点は、蓄電池54の代わりに電気二重層コンデンサ55が設けられている点である。この変更例では、実施の形態と比べ、さらに、装置の小型化、低価格化、低損失化を図ることができる。
図10は、本実施の形態の他の変更例を示す回路ブロック図であって、図1と対比される図である。図10を参照して、この変更例が実施の形態と異なる点は、インバータ2Aおよび燃料電池53Aが追加されている点である。インバータ2Aおよび燃料電池53Aは、それぞれインバータ2および燃料電池53と同じである。電源転流式のインバータ2Aは、燃料電池53Aで生成された直流電力を三相交流電力に変換して交流ノードN1〜N3に出力する。
この変更例では、実施の形態と同じ効果が得られる他、1台の燃料電池が故障した場合でも、もう1台の燃料電池によって運転を継続することができる。さらに、複数組のインバータおよび燃料電池を複数の場所に分散配置することができ、装置のレイアウトの自由度が高くなる。なお、この変更例では、2組のインバータおよび燃料電池を設けたが、3組以上のインバータおよび燃料電池を設けてもよい。1組のインバータ2および燃料電池53を複数組の副インバータおよび副燃料電池に分割して分散配置しても構わない。
図11は、本実施の形態のさらに他の変更例を示す回路ブロック図であって、図10と対比される図である。図11を参照して、この変更例が図10の変更例と異なる点は、燃料電池53Aが太陽電池56で置換されている点である。太陽電池56の出力が大きいとき(たとえば昼間)は燃料電池53の出力を小さくし、太陽電池56の出力が小さいとき(たとえば夜間)は燃料電池53の出力を大きくする。この変更例では、実施の形態と同じ効果が得られる他、燃料電池53の燃料消費量を小さく抑制することができる。なお、この変更例では、2種類の直流電源(燃料電池53と太陽電池56)と2つのインバータ2,2Aを設けたが、3種類以上の直流電源と3つ以上のインバータを設けても構わない。1組のインバータ2および燃料電池53を複数組の副インバータおよび副燃料電池に分割して分散配置し、1組のインバータ2Aおよび太陽電池56を複数組の副インバータおよび副太陽電池に分割して分散配置しても構わない。
図12は、本実施の形態のさらに他の変更例を示す回路ブロック図であって、図2と対比される図である。図12を参照して、この変更例が実施の形態と異なる点は、インバータ2がインバータ2Bで置換されている点である。インバータ2Bは、インバータ2のリアクトル11a〜11cを三相変圧器30で置換したものである。サイリスタS1〜S3のカソードは、三相変圧器30の1次巻線31の3つの端子にそれぞれ接続される。三相変圧器30の2次巻線32の3つの端子はそれぞれ交流ノードN1〜N3に接続される。
1次巻線31と2次巻線32は、互いに電磁結合しているが、互いに絶縁されている。2次巻線32の巻回数は、1次巻線31の巻回数よりも大きい。三相変圧器30は、サイリスタS1〜S6によって生成される三相交流電圧を昇圧して交流ノードN1〜N3に供給する。この変更例では、実施の形態と同じ効果が得られる他、燃料電池53の出力電圧が低い場合でも、商用交流電源51と連系して負荷52に三相交流電力を供給することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
TI1〜TI3 入力端子、TO1〜TO3 出力端子、1a〜1c スイッチ、2,2A,2B インバータ、3 電力変換器、4 異常検出器、5a〜5c,6a〜6c,10a〜10c 電流検出器、7,12 制御回路、S1〜S6 サイリスタ、11a〜11c,17a〜17c リアクトル、N1〜N3 交流ノード、13,22 電流指令部、14 インバータ制御部、15 制御信号生成部、16 制御電源、Q1〜Q6 トランジスタ、D1〜D6 ダイオード、18a〜18c コンデンサ、20 スイッチ制御部、21 符号判定部、23 電圧指令部、24 変換器制御部、25 制御信号生成部、30 三相変圧器、51 商用交流電源、52 負荷、53,53A 燃料電池、54 蓄電池、55 電気二重層コンデンサ、56 太陽電池。

Claims (13)

  1. 交流電源から供給される交流電力と直流電源から供給される直流電力とを受け、交流電力を負荷に供給する電力変換システムであって、
    前記負荷に接続される出力端子と、
    第1の端子が前記交流電源から供給される交流電力を受け、第2の端子が前記出力端子に接続され、前記交流電源からの交流電圧が正常である第1の場合はオンされ、前記交流電源からの交流電圧が異常になった第2の場合はオフされるスイッチと、
    前記第1の場合は前記交流電源から前記スイッチを介して供給される交流電力を直流電力に変換して電力貯蔵装置に蓄え、前記第2の場合は前記電力貯蔵装置の直流電力を交流電力に変換して前記出力端子に出力する電力変換器と、
    前記出力端子に現れる交流電圧に同期して動作し、前記直流電源から供給される直流電力を交流電力に変換して前記出力端子に出力する電源転流式のインバータとを備える、電力変換システム。
  2. 前記インバータは、
    アノードが前記直流電源の正極に接続され、カソードが前記出力端子に接続された第1のサイリスタと、
    アノードが前記第1のサイリスタのカソードに接続され、カソードが前記直流電源の負極に接続された第2のサイリスタと、
    前記出力端子に現れる交流電圧に同期して前記第1および第2のサイリスタを交互に点弧させる制御回路とを含む、請求項1に記載の電力変換システム。
  3. 前記制御回路は、
    前記第1のサイリスタのゲートを活性化レベルにして前記第1のサイリスタを点弧させた後、前記第1のサイリスタのゲートを予め定められた時間だけ活性化レベルに維持し、
    前記第2のサイリスタのゲートを活性化レベルにして前記第2のサイリスタを点弧させた後、前記第2のサイリスタのゲートを前記予め定められた時間だけ活性化レベルに維持する、請求項2に記載の電力変換システム。
  4. 前記制御回路は、
    前記第1のサイリスタのゲートにパルス信号を与えて前記第1のサイリスタを点弧させた後、予め定められた時間だけ複数のパルス信号を前記第1のサイリスタのゲートに与え続け、
    前記第2のサイリスタのゲートにパルス信号を与えて前記第2のサイリスタを点弧させた後、予め定められた時間だけ複数のパルス信号を前記第2のサイリスタのゲートに与え続ける、請求項2に記載の電力変換システム。
  5. 前記インバータは、さらに、前記第1のサイリスタのカソードと前記出力端子との間に接続されたリアクトルを含む、請求項2に記載の電力変換システム。
  6. 前記インバータは、さらに、前記第1のサイリスタのカソードと前記出力端子との間に設けられた変圧器を含む、請求項2に記載の電力変換システム。
  7. さらに、前記交流電源からの交流電圧が異常になったことを検出する異常検出器と、
    前記スイッチに流れる電流の瞬時値を検出する電流検出器と、
    前記異常検出器および前記電流検出器の検出結果に基づいて前記スイッチおよび前記電力変換器を制御する制御回路とを備え、
    前記スイッチは自己消弧能力を持たず、
    前記第1の場合は、前記スイッチがオン状態にされ、前記交流電源から前記スイッチを介して前記負荷に交流電流が供給され、
    前記第2の場合は、前記制御回路から前記スイッチにオフ指令信号が与えられるとともに、前記電力変換器から直流電流が出力されて前記スイッチが消弧され、さらに、前記電力変換器から前記負荷に交流電流が供給され、
    前記スイッチの第1の端子から第2の端子に向かって流れる電流の極性を正極性とし、前記電力変換器から前記出力端子に向かって流れる電流の極性を正極性とすると、前記直流電流の極性は前記スイッチに流れている電流の極性と同じである、請求項1に記載の電力変換システム。
  8. 前記直流電源は燃料電池である、請求項1に記載の電力変換システム。
  9. 前記直流電源は太陽電池である、請求項1に記載の電力変換システム。
  10. 前記直流電源は複数の副直流電源を含み、
    前記インバータは、それぞれ前記複数の副直流電源に対応して設けられた複数の副インバータを含み、
    各副インバータは、前記出力端子に接続され、対応する副直流電源で発生した直流電力を交流電力に変換して前記出力端子に出力する、請求項1に記載の電力変換システム。
  11. 前記複数の副直流電源は、燃料電池および太陽電池を含む、請求項10に記載の電力変換システム。
  12. 前記電力貯蔵装置は蓄電池である、請求項1に記載の電力変換システム。
  13. 前記電力貯蔵装置は電気二重層コンデンサである、請求項1に記載の電力変換システム。
JP2017553584A 2015-12-04 2015-12-04 電力変換システム Pending JPWO2017094179A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/084126 WO2017094179A1 (ja) 2015-12-04 2015-12-04 電力変換システム

Publications (1)

Publication Number Publication Date
JPWO2017094179A1 true JPWO2017094179A1 (ja) 2018-08-16

Family

ID=58796574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017553584A Pending JPWO2017094179A1 (ja) 2015-12-04 2015-12-04 電力変換システム

Country Status (4)

Country Link
US (1) US20180278180A1 (ja)
JP (1) JPWO2017094179A1 (ja)
CN (1) CN108351661A (ja)
WO (1) WO2017094179A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11159160B2 (en) 2017-07-27 2021-10-26 Toshiba Mitsubishi-Electric Industrial Systems Corporation AC switch, and uninterruptible power supply and voltage sag compensator including AC switch
EP3503334B1 (en) * 2017-12-20 2022-06-15 Aptiv Technologies Limited A power supply unit for an electronic device
JP6973037B2 (ja) * 2017-12-25 2021-11-24 富士電機株式会社 瞬時電圧低下補償装置および瞬時電圧低下補償システム
CN110323824A (zh) * 2018-03-28 2019-10-11 广州道动新能源有限公司 电源系统的控制方法、装置、计算机设备和存储介质
WO2021001936A1 (ja) * 2019-07-02 2021-01-07 東芝三菱電機産業システム株式会社 電力システム
CN111564858B (zh) * 2020-04-09 2024-01-09 东莞市新瑞能源技术有限公司 一种家庭储能电池兼容多种逆变器的方法
CN112798982B (zh) * 2020-12-29 2021-12-14 武汉大学 基于模型的三相变流器功率管开路故障诊断方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100038A (en) * 1979-01-26 1980-07-30 Tokyo Shibaura Electric Co Electric power converter
JPS6122764A (ja) * 1984-07-11 1986-01-31 Fuji Electric Co Ltd 電圧形インバ−タの並列運転制御方式
JPH07213075A (ja) * 1994-01-13 1995-08-11 Nissin Electric Co Ltd Gtoサイリスタインバータのパルス駆動装置
JPH08242583A (ja) * 1995-03-01 1996-09-17 Toshiba Corp インバータの制御装置
JPH09149651A (ja) * 1995-11-27 1997-06-06 Meidensha Corp 2重化電流形gtoインバータの導通制御方法及び2重化電流形gtoインバータの回路構成
JP2001327080A (ja) * 2000-05-10 2001-11-22 Kansai Electric Power Co Inc:The 電力貯蔵装置及びそれを備えた分散電源システムの制御方法
JP2006042504A (ja) * 2004-07-27 2006-02-09 Univ Of Ryukyus 電流形インバータのpwm制御方法とpwm信号発生装置およびこれらを用いた電力貯蔵装置
JP2013146171A (ja) * 2011-12-15 2013-07-25 Panasonic Corp 電力供給システムおよび充放電用パワーコンディショナ
JP2014183601A (ja) * 2013-03-18 2014-09-29 Mitsubishi Electric Corp 分散型電源装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208935A (zh) * 2012-01-14 2013-07-17 牟英峰 低共模噪声并网逆变电路及无功功率控制方法
CN104917281B (zh) * 2015-06-01 2018-04-20 深圳市盛弘电气股份有限公司 一种逆变器和市电零切换电路及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100038A (en) * 1979-01-26 1980-07-30 Tokyo Shibaura Electric Co Electric power converter
JPS6122764A (ja) * 1984-07-11 1986-01-31 Fuji Electric Co Ltd 電圧形インバ−タの並列運転制御方式
JPH07213075A (ja) * 1994-01-13 1995-08-11 Nissin Electric Co Ltd Gtoサイリスタインバータのパルス駆動装置
JPH08242583A (ja) * 1995-03-01 1996-09-17 Toshiba Corp インバータの制御装置
JPH09149651A (ja) * 1995-11-27 1997-06-06 Meidensha Corp 2重化電流形gtoインバータの導通制御方法及び2重化電流形gtoインバータの回路構成
JP2001327080A (ja) * 2000-05-10 2001-11-22 Kansai Electric Power Co Inc:The 電力貯蔵装置及びそれを備えた分散電源システムの制御方法
JP2006042504A (ja) * 2004-07-27 2006-02-09 Univ Of Ryukyus 電流形インバータのpwm制御方法とpwm信号発生装置およびこれらを用いた電力貯蔵装置
JP2013146171A (ja) * 2011-12-15 2013-07-25 Panasonic Corp 電力供給システムおよび充放電用パワーコンディショナ
JP2014183601A (ja) * 2013-03-18 2014-09-29 Mitsubishi Electric Corp 分散型電源装置

Also Published As

Publication number Publication date
WO2017094179A1 (ja) 2017-06-08
US20180278180A1 (en) 2018-09-27
CN108351661A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2017094179A1 (ja) 電力変換システム
CN107155383B (zh) 不间断电源装置
JP6706390B2 (ja) 電力変換装置
US20200235655A1 (en) Power supply apparatus
JP6577355B2 (ja) 電力変換システム
JP2011120325A (ja) 電力変換装置
US10305322B2 (en) Uninterruptible power supply device
JP2015015782A (ja) 系統連系インバータ装置
JP2015012750A (ja) 電力変換装置
US11336114B2 (en) Uninterruptible power supply apparatus
JP6718019B2 (ja) 電源装置
KR102391590B1 (ko) 전력 변환 장치
JP6148164B2 (ja) 無停電電源システム
Srinithi et al. Symmetric multilevel inverter using DC-DC zeta converter
WO2018037591A1 (ja) 電力変換システム、及び双方向スイッチの消弧方法
US20200014241A1 (en) Power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200804