JPWO2017006969A1 - 検出装置および検出方法 - Google Patents

検出装置および検出方法 Download PDF

Info

Publication number
JPWO2017006969A1
JPWO2017006969A1 JP2017527481A JP2017527481A JPWO2017006969A1 JP WO2017006969 A1 JPWO2017006969 A1 JP WO2017006969A1 JP 2017527481 A JP2017527481 A JP 2017527481A JP 2017527481 A JP2017527481 A JP 2017527481A JP WO2017006969 A1 JPWO2017006969 A1 JP WO2017006969A1
Authority
JP
Japan
Prior art keywords
pipette
container
sample
tip
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017527481A
Other languages
English (en)
Other versions
JP6801656B2 (ja
Inventor
洋一 青木
洋一 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2017006969A1 publication Critical patent/JPWO2017006969A1/ja
Application granted granted Critical
Publication of JP6801656B2 publication Critical patent/JP6801656B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1011Control of the position or alignment of the transfer device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0429Sample carriers adapted for special purposes
    • G01N2035/0434Sample carriers adapted for special purposes in the form of a syringe or pipette tip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/103General features of the devices using disposable tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1048General features of the devices using the transfer device for another function
    • G01N2035/1058General features of the devices using the transfer device for another function for mixing
    • G01N2035/106General features of the devices using the transfer device for another function for mixing by sucking and blowing

Abstract

検体に含まれる被検出物質を検出する検出装置は、ピペットチップが着脱可能であり、容器内の検体を吸引または吐出するピペットと、ピペットを移動させるピペット移動部と、ピペットおよびピペット移動部を制御する制御部とを有し、ピペット移動部がピペットチップの先端を容器の下方側の位置aまで移動させた状態でピペットが容器内の少なくも一部の検体を吸引した後、ピペット移動部がピペットチップの先端を位置aよりも上の位置bまで移動させた状態でピペットが吸引した検体を前記容器内に吐出して検体を攪拌するように、制御部がピペットおよびピペット移動部を制御する。

Description

本発明は、検出装置および検出方法に関する。
臨床検査などにおいて、血液などの検体中のタンパク質やDNAなどの微量の被検出物質を高感度かつ定量的に検出できれば、患者の状態を迅速に把握して治療を行うことが可能となる。このため、検体中の微量の被検出物質を高感度かつ定量的に検出できる方法および装置が求められている。
検体中の被検出物質を高感度に検出できる方法として、表面プラズモン共鳴(Surface Plasmon Resonance:以下「SPR」と略記する)法および表面プラズモン励起増強蛍光分光法(Surface Plasmon-field enhanced Fluorescence Spectroscopy:以下「SPFS」と略記する)が知られている。これらの方法では、所定の条件で光を金属膜に照射すると表面プラズモン共鳴(SPR)が生じることを利用する(例えば特許文献1参照)。
たとえば、SPFSでは、被検出物質に特異的に結合できる捕捉体(例えば1次抗体)を金属膜上に固定化して、被検出物質を特異的に捕捉するための反応場を形成する。この反応場に被検出物質を含む検体(例えば血液)を提供すると、被検出物質は反応場に結合する。次いで、蛍光物質で標識された捕捉体(例えば2次抗体)を反応場に提供すると、反応場に結合した被検出物質は蛍光物質で標識される。この状態で金属膜に励起光を照射すると、被検出物質を標識する蛍光物質は、SPRにより増強された電場により励起され、蛍光を放出する。したがって、蛍光を検出することで、被検出物質の存在またはその量を検出することができる。SPFSでは、SPRにより増強された電場により蛍光物質を励起するため、高感度で被検出物質を検出することができる。
一方、SPR法やSPFSなどに限らず、各種検出方法で液体中の被検出物質を測定する場合、通常、検出値は、液体の単位体積当たりの被検出物質の質量や、それに相当するシグナル量などで示される。したがって、検体として血液を用いる場合、検出値は、血液中の液体成分(血漿または血清)の単位体積当たりの被検出物質の質量や、それに相当するシグナル量などで示される。血液中の液体成分の割合は個々人で異なるため、血液の検出値を一律に液体成分の検出値に変換することはできない。このため、検体として血液を用いる場合は、その血液のヘマトクリット値(血液中の血球の体積の割合)を別途測定し、ヘマトクリット値を用いて血液の検出値を液体成分(血漿または血清)の検出値に変換することが行われている。
また、血液は一定時間放置されると血球が沈降しやすい。したがって、ユーザーが血液を容器にセットした後、検出を行うまでの時間が長いと、血球が沈降し、血液を採取する位置によってヘマトクリット値が変動しやすい。その結果、採取された血液中のヘマトクリット値も本来の値とは異なり、液体成分中の被検出物質の量を正しく検出できないことがある。
血球の沈降を抑制するためには、検出を行う前に、血液を撹拌することが有効と考えられる。攪拌機構を有する装置として、試薬搬送用のピペットチップの先端を容器の底面近傍に固定した状態で、検体の吸引・吐出を繰り返すことにより検体を攪拌する免疫検査装置が知られている(例えば特許文献2参照)。
特開平10−307141号公報 国際公開第1997/44671号
しかしながら、特許文献2に示されるような攪拌方法では、十分な攪拌効果が得られない。
また、ユーザーが容器にセットする検体の量とピペットチップの容量とが大きく異なる場合、以下のような問題が発生する。例えば、100μL吸引可能なピペットチップを用いる場合に、容器にセットされた検体の量が500μLであると、100μLだけ吸引吐出を行っても検体はほとんど撹拌されない。一方、500μL吸引可能なピペットチップを用いる場合に、容器にセットされた検体の量が100μLしかないと、空気も吸引しやすい。そのため、攪拌によって容器内に気泡が多量に混入し、検体を採取する際の定量性が確保できない。さらに、500μL吸引可能なピペットチップを用いると、装置が大型化するという問題もある。このように、容器にセットされる検体の量とピペットチップの容量とが大きく異なる場合であっても、容器内の検体を十分に攪拌できることが望まれる。
本発明の目的は、検体を十分に撹拌することができ、検体に含まれる被検出物質を正確に検出できる検出装置および検出方法を提供することである。
上記課題を解決するため、本発明の一実施の形態に係る検出装置は、検体に含まれる被検出物質を検出する検出装置であって、ピペットチップが着脱可能であり、容器内の検体を吸引または吐出するピペットと、前記ピペットを移動させるピペット移動部と、前記ピペットおよび前記ピペット移動部を制御する制御部と、を有し、前記ピペット移動部が前記ピペットチップの先端を前記容器の下方側の位置aまで移動させた状態で前記ピペットが前記容器内の少なくも一部の検体を吸引した後、前記ピペット移動部が前記ピペットチップの先端を前記位置aよりも上の位置bまで移動させた状態で前記ピペットが吸引した検体を前記容器内に吐出して前記検体を攪拌するように、前記制御部が前記ピペットおよび前記ピペット移動部を制御する。
上記課題を解決するため、本発明の一実施の形態に係る検出方法は、ピペットに装着されたピペットチップの先端を検体が収容された容器の下方側の位置aまで移動させた状態で前記ピペットが前記容器内の検体の少なくとも一部を吸引した後、前記ピペットチップの先端を前記位置aよりも上の位置bまで移動させた状態で前記ピペットが吸引した検体を吐出して前記容器内の検体を攪拌する工程と、攪拌された検体に含まれる被検出物質を検出する工程とを含む。
本発明によれば、検体を十分に撹拌することができ、検体に含まれる被検出物質を正確に検出できる検出装置および検出方法を提供することができる。
図1は、本実施の形態に係るSPFS装置の構成を示す模式図である。 図2は、本実施の形態に係るSPFS装置の動作手順の一例を示すフローチャートである。 図3A〜Dは、本実施の形態に係る攪拌工程の一例を示す模式図である。 図4Aは、容器内で血液を放置した時間と、放置後に容器の下方側から採取した血液のヘマトクリット値との関係の一例を示すグラフであり、図4Bは、容器内で血液を放置した時間と、放置後に容器の下方側から採取した血液中のシグナル値との関係の一例を示すグラフである。 図5は、容器内での血液を放置した時間と、容器の下方側から採取した血液中のヘマトクリット値との関係の一例を示すグラフである。 図6は、回折格子を含む金属膜の斜視図である。
以下、本発明の一実施の形態について、図面を参照して詳細に説明する。本発明に係る検出装置の代表例として、表面プラズモン励起増強蛍光分光法(Surface Plasmon-field enhanced Fluorescence Spectroscopy:以下「SPFS」と略記する)を利用した検出装置(SPFS装置)について説明する。
[SPFS装置および検出チップの構成]
図1は、本実施の形態に係るSPFS装置100の構成を示す模式図である。図1に示されるように、SPFS装置100は、光照射部110、光検出部120、送液部130、搬送部140および制御部150を有する。SPFS装置100は、搬送部140のチップホルダー(ホルダー)142に検出チップ10を装着した状態で使用される。そこで、先に検出チップ10について説明し、その後にSPFS装置100について説明する。
(検出チップ)
検出チップ10は、入射面21、成膜面22および出射面23を有するプリズム20と、成膜面22上に配置され、被検出物質を補足するための捕捉体が固定化された金属膜30と、金属膜30上に配置された流路蓋40とを有する。検出チップ10は、好ましくは各片の長さが数mm〜数cmの構造物であるが、「チップ」の範疇に含まれないようなより小型の構造物、またはより大型の構造物であってもよい。
プリズム20は、励起光αに対して透明な誘電体からなる。プリズム20は、入射面21、成膜面22および出射面23を有する。入射面21は、光照射部110からの励起光αをプリズム20の内部に入射させる。成膜面22上には、金属膜30が配置されている。プリズム20の内部に入射した励起光αは、金属膜30の裏面で反射されて反射光(不図示)となる。より具体的には、励起光αは、プリズム20と金属膜30との界面(成膜面22)で反射されて反射光となる。出射面23は、反射光をプリズム20の外部に出射させる。
プリズム20の形状は、特に限定されない。本実施の形態では、プリズム20の形状は、台形を底面とする柱体である。台形の一方の底辺に対応する面が成膜面22であり、一方の脚に対応する面が入射面21であり、他方の脚に対応する面が出射面23である。底面となる台形は、等脚台形であることが好ましい。これにより、入射面21と出射面23とが対称になり、励起光αのS波成分がプリズム20内に滞留しにくくなる。
入射面21は、励起光αが光照射部110に戻らないように形成される。励起光αの光源がレーザーダイオード(以下「LD」ともいう)である場合、励起光αがLDに戻ると、LDの励起状態が乱れてしまい、励起光αの波長や出力が変動してしまう。そこで、理想的な共鳴角または増強角を中心とする走査範囲において、励起光αが入射面21に垂直に入射しないように、入射面21の角度が設定される。
ここで「共鳴角」とは、金属膜30に対する励起光αの入射角を走査した場合に、出射面23から出射される反射光の光量が最小となるときの、入射角を意味する。また、「増強角」とは、金属膜30に対する励起光αの入射角を走査した場合に、検出チップ10の上方に放出される励起光αと同一波長の散乱光(以下「プラズモン散乱光」という)γの光量が最大となるときの、入射角を意味する。本実施の形態では、入射面21と成膜面22との角度および成膜面22と出射面23との角度は、いずれも約80°である。
なお、検出チップ10の設計により、共鳴角(およびその極近傍にある増強角)が概ね決まる。設計要素は、プリズム20の屈折率や、金属膜30の屈折率、金属膜30の膜厚、金属膜30の消衰係数、励起光αの波長などである。金属膜30上に捕捉された被検出物質によって共鳴角および増強角がシフトするが、その量は数度未満である。
プリズム20は、複屈折特性を少なからず有する。プリズム20の材料の例には、樹脂およびガラスが含まれる。プリズム20の材料は、好ましくは、屈折率が1.4〜1.6であり、かつ複屈折が小さい樹脂である。
金属膜30は、プリズム20の成膜面22上に配置されている。これにより、成膜面22に全反射条件で入射した励起光αの光子と、金属膜30中の自由電子との間で表面プラズモン共鳴(Surface Plasmon Resonance:以下「SPR」と略記する)が生じ、金属膜30の表面上に局在場光(一般に「エバネッセント光」または「近接場光」とも呼ばれる)を生じさせることができる。本実施の形態では、金属膜30は、成膜面22の全面に形成されている。
金属膜30の材料は、表面プラズモン共鳴を生じさせうる金属であれば特に限定されない。金属膜30の材料の例には、金、銀、銅、アルミニウム、これらの合金が含まれる。本実施の形態では、金属膜30は、金薄膜である。金属膜30の形成方法は、特に限定されない。金属膜30の形成方法の例には、スパッタリング、蒸着、メッキが含まれる。金属膜30の厚みは、特に限定されないが、30〜70nmの範囲内が好ましい。
金属膜30のプリズム20と対向しない面には、被検出物質を補足するための捕捉体が固定化されている。捕捉体の種類は、被検出物質を捕捉することができれば特に限定されない。たとえば、捕捉体は、被検出物質に特異的に結合する抗体またはその断片である。また、乾燥による変性を防止する観点から、通常、捕捉体は、検出チップ10の未使用時において保護層により保存される。
流路蓋40は、金属膜30上に配置されている。金属膜30がプリズム20の成膜面22の一部にのみ形成されている場合、流路蓋40は、成膜面22上に配置されていてもよい。本実施の形態では、流路蓋40は、金属膜30の上に配置されている。金属膜30上に流路蓋40を配置することで液体を収容するための収容部(微小空間)が形成される。収容部の形状や大きさなどは、液体を収容することができれば特に限定されない。たとえば、収容部は、液体を収容するウェルであってもよいし、液体が連続して供給される流路であってもよい。本実施の形態では、収容部は、液体が流れる流路41である。流路41は、裏面に流路溝が形成された流路蓋40が、金属膜30(およびプリズム20)上に配置されることで形成されている。流路41の底面には、被検出物質を補足するための捕捉体が固定化された金属膜30が露出している。流路41の両端は、流路蓋40の上面に形成された不図示の注入口および排出口とそれぞれ接続されている。
流路蓋40は、金属膜30上から放出される蛍光βおよびプラズモン散乱光γに対して透明な材料からなることが好ましい。流路蓋40の材料の例には、ガラスおよび樹脂が含まれる。蛍光βおよびプラズモン散乱光γを外部に取り出す部分が蛍光βおよびプラズモン散乱光γに対して透明であれば、流路蓋40の他の部分は、不透明な材料で形成されていてもよい。流路蓋40は、例えば、両面テープや接着剤などによる接着や、レーザー溶着、超音波溶着、クランプ部材を用いた圧着などにより金属膜30またはプリズム20に接合されている。
検出チップ10の金属膜30に対して励起光αをSPRが生じる角度で照射することで、金属膜30上に局在場光を生じさせることができる。局在場光により、金属膜30上に存在する被検出物質を標識する蛍光物質が励起され、蛍光βが金属膜30の流路41側の面の近傍から放出される。SPFS装置100は、蛍光物質から放出された蛍光βの光量を測定することで、被検出物質を測定することができる。
(SPFS装置)
次に、SPFS装置100の各構成要素について説明する。前述のとおり、SPFS装置100は、光照射部110、光検出部120、送液部130、搬送部140および制御部150を有する。
光照射部110は、チップホルダー142に保持された検出チップ10に励起光αを照射する。蛍光βまたはプラズモン散乱光γの検出時には、光照射部110は、金属膜30でSPRが発生するように、金属膜30に対するP波のみを入射面21に向けて出射する。ここで「励起光」とは、金属膜30上にプラズモン散乱光γを生じさせる光であり、蛍光物質を直接もしくは間接的に励起させる光でもある。光照射部110は、光源ユニット111、角度調整部112および光源制御部113を含む。
光源ユニット111は、コリメートされ、かつ波長および光量が一定の光を、金属膜30の裏面における照射スポットの形状が略円形となるように出射する。光源ユニット111は、例えば、光源、ビーム整形光学系、APC機構および温度調整部(いずれも不図示)を含む。
光源の種類は、特に限定されず、例えばレーザーダイオード(LD)である。光源の他の例には、発光ダイオードや水銀灯などのレーザー光源が含まれる。光源から出射される励起光αがビームでない場合は、励起光αは、レンズや鏡、スリットなどによりビームに変換される。また、光源から出射される励起光αが単色光でない場合は、励起光αは、回折格子などにより単色光に変換される。さらに、光源から出射される励起光αが直線偏光でない場合は、励起光αは、偏光子などにより直線偏光の光に変換される。
ビーム整形光学系は、例えば、コリメーターやバンドパスフィルター、直線偏光フィルター、半波長板、スリット、ズーム手段などを含む。ビーム整形光学系は、これらのすべてを含んでいてもよいし、一部を含んでいてもよい。コリメーターは、光源から出射された励起光αをコリメートする。バンドパスフィルターは、光源から出射された励起光αを中心波長のみの狭帯域光にする。光源から出射された励起光αは、若干の波長分布幅を有しているためである。直線偏光フィルターは、光源から出射された励起光αを完全な直線偏光の光にする。半波長板は、金属膜30にP波成分が入射するように光の偏光方向を調整する。スリットおよびズーム手段は、金属膜30の裏面における照射スポットの形状が所定サイズの円形となるように、光源から出射された励起光αのビーム径や輪郭形状などを調整する。
APC機構は、光源の出力が一定となるように光源を制御する。より具体的には、APC機構は、励起光αから分岐させた光の光量を不図示のフォトダイオードなどで検出する。そして、APC機構は、回帰回路で投入エネルギーを制御することで、光源の出力を一定に制御する。
温度調整部は、例えば、ヒーターやペルチェ素子などである。光源から出射された励起光αの波長およびエネルギーは、温度によって変動することがある。このため、温度調整部で光源の温度を一定に保つことにより、光源から出射された励起光αの波長およびエネルギーを一定に制御する。
角度調整部112は、金属膜30(プリズム20と金属膜30との界面(成膜面22))に対する、光源から出射された励起光αの入射角を調整する。角度調整部112は、プリズム20を介して金属膜30の所定の位置に向けて所定の入射角で光を照射するために、光源から出射された励起光αの光軸とチップホルダー142とを相対的に回転させる。
たとえば、角度調整部112は、光源ユニット111を光源から出射された励起光αの光軸と直交する軸(図1の紙面に対して垂直な軸)を中心として回動させる。このとき、入射角を走査しても金属膜30上での照射スポットの位置がほとんど変化しないように、回転軸の位置を設定する。特に、回転中心の位置を、入射角の走査範囲の両端における2つの光源から出射された励起光αの光軸の交点近傍(成膜面22上の照射位置と入射面21との間)に設定することで、照射位置のズレを極小化することができる。
前述のとおり、金属膜30に対する光源から出射された励起光αの入射角のうち、プラズモン散乱光γの光量が最大となる角度が増強角である。光源から出射された励起光αの入射角を増強角またはその近傍の角度に設定することで、高強度の蛍光βおよびプラズモン散乱光γを検出することが可能となる。プリズム20の材料および形状、金属膜30の膜厚、流路41内の液体の屈折率などにより、光源から出射された励起光αの基本的な入射条件が決まるが、流路41内の捕捉体の種類および量、プリズム20の形状誤差などにより、最適な入射条件はわずかに変動する。このため、測定ごとに最適な増強角を求めることが好ましい。
光源制御部113は、光源ユニット111に含まれる各種機器を制御して、光源ユニット111からの励起光αの出射を制御する。光源制御部113は、例えば、演算装置、制御装置、記憶装置、入力装置および出力装置を含む公知のコンピュータやマイコンなどによって構成される。
光検出部120は、光照射部110が金属膜30へ光を照射することにより検出チップ10から放出される光を検出する。光検出部120は、流路41を通過したプラズモン散乱光γと、光照射部110が検出チップ10の金属膜30へ励起光αを照射したときに反応場の蛍光物質から放出された蛍光βとを検出する。光検出部120は、受光光学系ユニット121、位置切り替え部122およびセンサー制御部123を含む。
受光光学系ユニット121は、検出チップ10の金属膜30の法線方向に配置される。受光光学系ユニット121は、第1レンズ124、光学フィルター125、第2レンズ126および受光センサー127を含む。
第1レンズ124は、例えば、集光レンズであり、金属膜30上から出射される光を集光する。第2レンズ126は、例えば、結像レンズであり、第1レンズ124で集光された光を受光センサー127の受光面に結像させる。両レンズの間の光路は、略平行な光路になっている。光学フィルター125は、両レンズの間に配置されている。
光学フィルター125は、蛍光成分のみを受光センサー127に導き、高いS/N比で蛍光βを検出するために、励起光成分(プラズモン散乱光γ)を除去する。光学フィルター125の例には、励起光反射フィルター、短波長カットフィルターおよびバンドパスフィルターが含まれる。光学フィルター125は、例えば、所定の光成分(所定の波長成分の光)を反射する多層膜を含むフィルター、または所定の光成分を吸収する色ガラスフィルターである。
受光センサー127は、蛍光βおよびプラズモン散乱光γを検出する。受光センサー127は、微量の被検出物質からの微弱な蛍光βを検出することが可能な、高い感度を有する。受光センサー127は、例えば、光電子増倍管(PMT)やアバランシェフォトダイオード(APD)などである。
位置切替え部122は、光学フィルター125の位置を、受光光学系ユニット121における光路上または光路外に切り替える。具体的には、受光センサー127が蛍光βを検出する時には、光学フィルター125を受光光学系ユニット121の光路上に配置し、受光センサー127がプラズモン散乱光γを検出する時には、光学フィルター125を受光光学系ユニット121の光路外に配置する。
センサー制御部123は、受光センサー127の出力値の検出や、検出した出力値による受光センサー127の感度の管理、適切な出力値を得るための受光センサー127の感度の変更、などを制御する。センサー制御部123は、例えば、演算装置、制御装置、記憶装置、入力装置および出力装置を含む公知のコンピュータやマイコンなどによって構成される。
送液部130は、チップホルダー142に保持された検出チップ10の流路41内に、検体、標識液、および洗浄液などの各種液体を供給する。送液部130は、一定時間放置したときに濃度分布を生じやすい検体を用いる場合、さらに容器131内の検体を攪拌することが好ましい。送液部130は、容器131内の液体を吸引または吐出するピペット132と、ピペット132を移動させるピペット移動部133と、送液ポンプ駆動部134とを含む。
容器131は、各種液体を収容する容器である。容器131としては、通常、複数の容器が液体の種類に応じて配置されるか、または複数の容器が一体化したチップが配置される。
容器131に収容される液体の例には、被検出物質を含む検体(例えば、血液、血液の希釈液、血清、血漿、尿、鼻孔液、唾液、精液など)、蛍光物質で標識された捕捉体を含む標識液、洗浄液(緩衝液)、装置校正用のモデリング液(比重の異なる複数種類の緩衝液の混合液)などが含まれる。血液を希釈するための液体の例には、リン酸緩衝液(PBS)、Tris[tris(hydroxymethyl) aminomethane](TBS:Tris-Buffered Saline) 、HEPES [2- [4- (2-Hydroxyethyl) -1-piperazinyl] ethanesulfonicacid]などが挙げられる。また、これらの液体に、界面活性剤tween20をさらに添加したものを使用する場合もある。
ピペット132は、シリンジ135と、シリンジ135内を往復動作可能なプランジャー136と、シリンジ135に接続されたピペットノズル137とを含む。プランジャー136の往復運動によって、液体の吸引および吐出が定量的に行われる。ピペットノズル137には、ピペットチップ138が装着される。
ピペット移動部133は、ピペット132またはピペットノズル137を、ピペット132の軸方向(例えば鉛直方向)と軸方向を横断する方向(例えば水平方向)とに自在に移動させる。ピペット移動部133は、例えばロボットアーム、2軸ステージまたは上下動自在なターンテーブルによって構成される。
送液ポンプ駆動部134は、プランジャー136を往復移動させて、ピペット132に液体を吸引または吐出させる。送液ポンプ駆動部134は、例えば、ステッピングモーターを含む。ステッピングモーターを含む駆動装置は、ピペット132の送液量や送液速度を管理できるため、検出チップ10の残液量を管理する観点から好ましい。
送液部130は、容器131から吸引した液体を検出チップ10の流路41に供給する。また、液体を検出チップ10の流路41に供給した後、プランジャー136を動かすことで、流路41内で液体を往復させて、流路41内の液体を攪拌することができる。それにより、流路41内で液体の濃度分布を均一にしたり、流路41内における反応(例えば、1次反応および2次反応)を促進したりすることができる。このような操作を行う観点から、検出チップ10の注入口は多層フィルムで保護されており、かつピペットチップ138がこの多層フィルムを貫通した時に注入口を密閉できるように、検出チップ10およびピペット132が構成されていることが好ましい。
流路41内の液体は、再びピペット132で吸引され、容器131などに排出される。これらの動作の繰り返しにより、各種液体による反応、洗浄などを実施し、流路41内に、蛍光物質で標識された被検出物質などを配置することができる。
送液部130は、一定時間放置したときに濃度分布を生じやすい検体を用いる場合、さらに容器131内の検体を攪拌することが好ましい。
一定時間放置したときに濃度分布を生じやすい検体とは、比重の異なる複数種類の物質(固体/液体、液体/液体)を含む検体でありうる。そのような検体の例には、血液、血液の希釈液、血漿、装置校正用のモデリング液(複数種類の緩衝液の混合液)などが含まれる。
具体的には、ピペット移動部133がピペットチップ138の先端を容器131の下方側の位置aまで移動させた状態でピペット132が容器131内の検体の少なくとも一部を吸引した後、ピペットチップ138の先端を位置aよりも上の位置bまで移動させた状態でピペット132が吸引した検体を容器131内に吐出して検体を攪拌するように、制御部150がピペット132およびピペット移動部133を制御する(後述する図3A〜図3D参照)。これらの操作を1回以上繰り返すことで、容器131内の検体を良好に攪拌することができる。それにより、検出チップ10の流路41に供給される液体の濃度分布を均一にすることができる。
容器131内の検体を攪拌するとき、制御部150は、必要に応じてピペット132が検体を吸引および吐出することの繰り返し回数や、検体を吸引または吐出するときのピペットチップ138の先端の位置を、検体の種類や量に応じて切り替えてもよい。
搬送部140は、検出チップ10を、設置位置、検出位置または送液位置に搬送し、固定する。ここで、「設置位置」とは、検出チップ10をSPFS装置100に設置するための位置である。また、「検出位置」とは、光照射部110が検出チップ10に光を照射し、それに伴い発生する蛍光βまたはプラズモン散乱光γを光検出部120が検出する位置である。さらに、「送液位置」とは、送液部130が検出チップ10の流路41内に液体を供給するか、または検出チップ10の流路41内の液体を除去する位置である。
搬送部140は、搬送ステージ141およびチップホルダー142を含む。チップホルダー142は、搬送ステージ141に固定されており、検出チップ10を着脱可能に保持する。チップホルダー142の形状は、検出チップ10を保持することができ、かつ励起光αや反射光、蛍光β、プラズモン散乱光γなどの光の光路を妨げない形状である。たとえば、チップホルダー142には、励起光αや反射光、蛍光β、プラズモン散乱光γなどの光が通過するための開口が設けられている。搬送ステージ141は、チップホルダー142を一方向およびその逆方向に移動させる。搬送ステージ141の形状も、励起光αや反射光、蛍光β、プラズモン散乱光γなどの光の光路を妨げない形状である。搬送ステージ141は、例えば、ステッピングモーターなどで駆動される。
制御部150は、角度調整部112、光源制御部113、位置切替え部122、センサー制御部123、ピペット移動部133、送液ポンプ駆動部134、および搬送ステージ141を制御する。制御部150は、光検出部120(受光センサー127)の検出結果を処理する処理部としても機能する。制御部150は、例えば、演算装置、制御装置、記憶装置、入力装置および出力装置を含む公知のコンピュータやマイコンなどによって構成される。
[SPFS装置の検出動作]
次に、本実施の形態に係るSPFS装置100の検出動作(本発明の実施の形態に係る検出方法)について説明する。図2は、SPFS装置100の動作手順の一例を示すフローチャートである。本実施の形態では、検体が、比重の異なる複数種類の物質を含む検体である例で説明する。
まず、検出の準備をする(工程S310)。具体的には、SPFS装置100の設置位置に配置されたチップホルダー142に、検出チップ10を設置する。また、検体を収容した容器131をSPFS装置100にセットする。容器131に収容される検体の量は、容器131のデッドボリュームよりも多く、かつ容器131の最大容量よりも少ない量とする。デッドボリュームとは、ピペット132により吸引しきれずに容器131内に残る量をいう。
次いで、金属膜30(成膜面22)に対する光源から出射された励起光αの入射角を増強角に設定する(工程S320)。具体的には、制御部150は、搬送ステージ141を制御して、検出チップ10を設置位置から検出位置に移動させる。この後、制御部150は、光源制御部113および角度調整部112を制御して、光源ユニット111から励起光αを金属膜30(成膜面22)の所定の位置に照射しながら、金属膜30(成膜面22)に対する励起光αの入射角を走査する。このとき、制御部150は、位置切替え部122を制御して、光学フィルター125を受光光学系ユニット121の光路外に移動させる。これとともに、制御部150は、センサー制御部123を制御して、受光センサー127でプラズモン散乱光γを検出する。制御部150は、励起光αの入射角とプラズモン散乱光γの強度との関係を含むデータを得る。そして、制御部150は、データを解析して、プラズモン散乱光γの強度が最大となる入射角(増強角)を決定する。最後に、制御部150は、角度調整部112を制御して、金属膜30(成膜面22)に対する励起光αの入射角を増強角に設定する。なお、増強角を測定するときに検出したプラズモン散乱光γの検出値は、ブランク値として制御部150に記録しておいてもよい。
なお、増強角は、プリズム20の素材および形状、金属膜30の厚み、流路41内の液体の屈折率などにより決まるが、流路41内の液体の種類および量、プリズム20の形状誤差などの各種要因によりわずかに変動する。このため、測定を行うたびに増強角を決定することが好ましい。増強角は、0.1°程度のオーダーで決定される。
次いで、容器131中の検体を攪拌する(攪拌;工程S330)。図3は、本実施の形態に係る攪拌工程の一例を示す模式図である。図3Aに示されるように、制御部150は、ピペット移動部133を制御して、ピペットチップ138の先端を容器131の下方側の位置aまで移動させる(図3A参照)。そして、ピペットチップ138の先端を位置aに固定した状態で、制御部150は、送液ポンプ駆動部134を制御して、ピペット132に容器131内の検体の少なくとも一部を吸引させる(図3B参照)。
「位置a」は、ピペット132が容器131内の検体の少なくとも一部を吸引するときのピペットチップ138の先端の位置である。具体的には、位置aは、比重の異なる複数種類の物質を含む検体を容器131内で一定時間放置したときに、比重が相対的に高い物質が偏在する領域内の位置を示す。比重が相対的に高い物質が偏在した領域内とは、例えば検体が血液である場合、血球が沈降した領域をいう。
次いで、制御部150は、ピペット移動部133を制御して、ピペットチップ138の先端を、位置aよりも上の位置bまで移動させる(図3C参照)。そして、ピペットチップ138の先端を位置bに固定した状態で、制御部150は、送液ポンプ駆動部134を制御して、ピペット132に、吸引した検体を容器131内に吐出させる(図3D参照)。
「位置b」は、ピペット132が吸引した検体を容器131内に吐出するときのピペットチップ138の先端の位置である。具体的には、位置bは、比重の異なる複数種類の物質を含む検体を容器131内で一定時間放置したときに、容器131内の比重が相対的に高い物質が偏在した領域よりも上の位置を示す。位置bは、容器131内の検体の液面よりも上であることが好ましく、検体の液面から0mmを超えて15mm以下離れていることが好ましい。位置bが、容器131内の検体の液面から15mm以下の高さにあると、容器131の周囲に検体が飛び散って、装置を汚染するのを抑制できる。このように、ピペット132が、吸引した検体を容器131内の検体の液面よりも上から吐出することで、気液界面の衝突により高い攪拌効果を得ることができる。
位置aおよび位置bは、検体の種類や量、容器131の形状などによって異なるが、例えば位置aを、容器131の底面からの高さが、容器131の高さの1/3以下となるように設定し;位置bを、容器131の底面からの高さが、容器131の高さの1/3超となるように設定してもよい。
ピペット移動部133は、ピペット132を鉛直方向に移動させることが好ましい。また、ピペット132が吸引した検体を吐出するとき、ピペットチップ138の先端は、検体が容器131内の検体の液面の中央部に吐出されるように位置決めされることが好ましい。容器131内の検体の液面の中央部とは、容器131内の検体の液面において、液面の中心を円中心とする半径rの領域をいう。半径rは、液面の中心と容器131の内壁面との間の長さのうち、最短の長さの1/2、好ましくは1/3としうる。
ピペット132が吸引または吐出する検体の量は、容器131に収容された検体の量の20体積%以上であることが好ましく、50体積%以上であることがより好ましい。吸引または吐出する検体の量を一定以上とすることで、容器131内を流動する検体の割合が増えるので、高い攪拌効果が得られやすい。
ピペット132が吸引した検体を吐出するときの吐出速度は、1000〜15000μl/minであることが好ましい。吐出速度を一定以上とすることで、容器131内を流動する検体の流速が高まるので、高い攪拌効果が得られやすい。
図3A〜3Dまでの操作を1回以上、好ましくは複数回繰り返すことで、容器131内の検体を良好に攪拌することができる。
次いで、検体中の被検出物質と金属膜30上の捕捉体とを反応させる(1次反応;工程S340)。具体的には、制御部150は、搬送ステージ141を制御して、検出チップ10を検出位置から送液位置に移動させる。この後、制御部150は、送液ポンプ駆動部134を制御して、容器131中の検体を流路41内に供給する。これにより、検体中に被検出物質が存在する場合は、被検出物質の少なくとも一部は金属膜30上の捕捉体により捕捉される。この後、流路41内を緩衝液などで洗浄して、捕捉体に捕捉されなかった物質を除去する。
次いで、プリズム20を介して励起光αを金属膜30(成膜面22)に照射して、蛍光βと同じ波長の光の光量(光学ブランク値)を測定する(工程S350)。「光学ブランク値」とは、蛍光値の測定(工程S370)において蛍光βとともに測定される背景光の光量を意味する。具体的には、制御部150は、搬送ステージ141を制御して、検出チップ10を送液位置から検出位置に移動させる。制御部150は、位置切替え部122を制御して、光学フィルター125を受光光学系ユニット121の光路上に移動させる。次いで、制御部150は、光源制御部113を制御して、金属膜30(成膜面22)に向けて光源ユニット111から励起光αを出射させる。これと同時に、制御部150は、センサー制御部123を制御して、受光センサー127で蛍光βと同じ波長の光の光量を検出する。これにより、受光センサー127は、正確にノイズとなる光の光量(光学ブランク値)を測定することができる。測定値は、制御部150に送信され、光学ブランク値として記録される。
次いで、金属膜30上の捕捉体に捕捉された被検出物質を蛍光物質で標識する(2次反応;工程S360)。具体的には、制御部150は、搬送ステージ141を制御して、検出チップ10を検出位置から送液位置に移動させる。この後、制御部150は、送液ポンプ駆動部134を制御して、容器131中の蛍光標識液を流路41内に供給する。これにより、被検出物質を蛍光物質で標識することができる。蛍光標識液は、例えば、蛍光物質で標識された抗体(2次抗体)を含む緩衝液である。この後、流路41内を緩衝液などで洗浄し、遊離の蛍光物質などを除去する。
次いで、流路41の底面(金属膜30)上に直接的または間接的に、蛍光物質で標識された被検出物質が存在する状態で、プリズム20を通して励起光αを金属膜30(成膜面22)に照射して、反応場の被検出物質を標識する蛍光物質からの蛍光値を測定する(工程S370)。具体的には、制御部150は、搬送ステージ141を制御して、検出チップ10を送液位置から検出位置に移動させる。この後、制御部150は、光源制御部113を制御して、金属膜30(成膜面22)に向けて光源ユニット111から励起光αを出射させる。これと同時に、制御部150は、センサー制御部123を制御して、受光センサー127で蛍光βと同じ波長の光の光量を検出する。これにより、受光センサー127は、正確に蛍光量を測定することができる。測定値は、制御部150に送信され、蛍光値として記録される。
最後に、被検出物質の存在または量を示すシグナル値を算出する(工程S380)。蛍光値は、主として、被検出物質を標識する蛍光物質に由来する蛍光成分(シグナル値)と、光学ブランク値とを含む。したがって、制御部150は、工程S370で得られた蛍光値から工程S350で得られた光学ブランク値を引くことで、被検出物質の量に相関するシグナル値を算出することができる。シグナル値は、あらかじめ作成しておいた検量線により、被検出物質の量や濃度などに換算される。
(効果)
以上のように、本実施の形態に係る検出方法およびSPFS装置100では、容器131内で検体を十分に攪拌した後、1次反応に必要な量の検体を検出チップ10の流路41内に供給する。それにより、検出チップ10の流路41内に供給される検体の濃度分布が、本来の検体の濃度分布と大きく異ならないので、検体に含まれる被検出物質の量を正確に検出することができる。
本実施の形態で得られる効果を、検体が血液である例で具体的に説明する。まず、容器131内で検体を攪拌する工程(例えば工程S330)を行わない場合について説明する。図4Aは、容器131内で血液を放置した時間と、放置後に容器131の下方側から採取した血液のヘマトクリット値との関係の一例を示すグラフである。図4Bは、容器131内で血液を放置した時間と、放置後に容器の下方側から採取した血液中のシグナル値との関係の一例を示すグラフである。図4Bにおけるシグナル値(%)は、血液を放置した時間を0minとしたときのシグナル値(血球沈降がない状態でのシグナル値)を100%としたときの相対値を示す。血液を放置した時間が長いほど、採取された血液中のヘマトクリット値は増加し(図4A参照)、シグナル値は減少することが示される(図4B参照)。ヘマトクリット値が増加したのは、時間の経過に伴い、血球の自然沈降が進んだためであると考えられる。シグナル値が減少したのは、採取された血液中のヘマトクリット値が増加した分、被検出物質を含む液体成分の割合が減少したためであると考えられる。これらの傾向は、ヘマトクリット値が低い検体において顕著であることが示される。
次に、容器131内で検体を攪拌する工程(例えば工程S330)を行う場合について説明する。図5は、容器131内での血液を放置した時間と、容器131の下方側から採取した血液中のヘマトクリット値との関係の一例を示すグラフである。図5に示されるように、攪拌を行わない場合やピペットチップの先端を容器の下方側の位置に固定したまま血液の吸引・吐出を行った場合、血液を放置した時間が長いと、採取された血液中のヘマトクリット値が増加することが示される。これに対し、容器131内で検体を攪拌する工程(工程S330)を行った場合、血液を放置した時間が長くても、採取された血液中のヘマトクリット値はほぼ変わらないことが示される。これらの結果から、容器131内で検体を攪拌する工程を行うことで、検出チップ10に供給される血液中の液体成分の割合が、本来の液体成分の割合と大きく異ならないので、血液中の被検出物質の量を正確に検出できる。
特に、容器131内の検体を攪拌する工程(工程S330)において、ピペットチップ138の先端を、容器131内の検体の液面よりも上に配置した状態で、吸引した検体の吐出を行うことで、気液界面が衝突し合うため、高い攪拌効果が得られやすい。また、ピペットチップ138の容量が容器131内の検体の量よりも多い場合、ピペットチップ138内に空気も吸い込まれやすい。これに対して、ピペットチップ138の先端を、容器131内の検体の液面よりも上の位置に配置した状態で、吸引した検体の吐出を行うことで、容器131内の検体に気泡が混入するのを抑制できる。したがって、容器131内の検体の量とピペットチップ138の容量が大きく異なる場合であっても、容器131内の検体に気泡を混入させることなく、十分に攪拌することができる。容器131内の検体の量とピペットチップ138の容量とが大きく異なる場合とは、例えばピペットチップの容量/容器131内の検体の量、または容器131内の検体の量/ピペットチップの容量が、2/1〜5/1の範囲となる場合をいう。
なお、上記実施の形態では、容器131と検出チップ10とを別体とした検出装置および検出方法について説明した。しかし、本発明に係る検出装置および検出方法は、この態様に限定されず、容器131と検出チップ10とが一体化したチップを用いてもよい。
また、上記実施の形態では、ピペット移動部133が、ピペット132を搬送ステージ141に対して移動させる検出装置および検出方法について説明した。しかし、本発明に係る検出装置および検出方法は、この態様に限定されず、ピペット132に対して搬送ステージ141を移動させてもよい。例えば、工程S330において、ピペット132を固定した状態で、搬送ステージ141を上下方向に移動させて容器131内の検体を攪拌してもよい。
また、上記実施の形態では、金属膜30が形成されたプリズム20を使用し、光子と表面プラズモンとを結合(カップリング)させるプリズムカップリング(PC)−SPFSを用いる検出装置および検出方法について説明したが、本発明に係る検出装置および検出方法は、この態様に限定されない。図6は、回折格子を含む金属膜30’の斜視図である。本発明に係る検出装置および検出方法では、図6に示されるように、回折格子を含む金属膜30’を有する検出チップを使用してもよい。この場合も、光子と表面プラズモンとを結合させ、金属膜30’からプラズモン散乱光γを放出させることができる。この場合、プリズム20は不要である。また、光照射部110は、検出チップの金属膜30’側に配置され、蛍光βの検出工程およびプラズモン散乱光γの検出工程では、回折格子に向けて励起光αを照射する。
また、上記実施の形態では、SPFS装置の検出動作において、入射角を増強角に設定する工程(工程S320)、攪拌を行う工程(工程S330)、1次反応を行う工程(工程S340)および光学ブランク値を測定する工程(工程S350)をこの順番に行う態様について説明した。しかし、本発明に係る検出方法および検出装置では、これらの順番に限定されず、たとえば1次反応を行った後に入射角を増強角に設定してもよいし、光学ブランク値を測定した後に1次反応を行ってもよい。
また、上記実施の形態では、検体に含まれる被検出物質の検出工程を、SPFS法により行う態様について説明した。しかし、本発明に係る検出方法および検出装置では、これに限定されず、たとえばELISA法(Enzyme-Linked Immuno Sorbent Assay)、反射干渉分光法(Reflectometric Interference Spectroscopy(RIfS法)、表面プラズモン共鳴法(SPR法)および水晶振動子マイクロバランス解析(QCM法)などにより検出工程を行ってもよい。
以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
<実施例1>
(1)ヘマトクリット値の測定
ヘマトクリット値40%の全血サンプルを、容器に500μL注入し、30分間放置し、血球を沈降させた。血球が沈降したサンプルを収容した容器を、本実施の形態に係るSPFS装置にセットした。そして、ピペットチップの先端を、容器の底面から容器の高さの1/7の高さにある位置(血球が沈降した領域内)まで移動させた状態で容器内のサンプルを200μL吸引した後、ピペットチップの先端をサンプルの液面よりも2mm上まで移動させた状態で、吸引したサンプル200μLを容器内に吐出した。サンプルの吐出速度は、10000μL/minとした。この攪拌操作を5回行った。撹拌後、容器の底面から容器の高さの1/7の高さにある位置から容器内のサンプルを100μL採取し、ミクロヘマトクリット法にてヘマトクリット値を測定した。その結果、ヘマトクリット値は42%であり、本来のヘマトクリット値(40%)からの大きなズレはみられなかった。
(2)被検出物質の検出
(検出チップの準備)
金属膜上の反応場に捕捉体として抗トロポニンI抗体(抗cTnI抗体)が固定されている検出チップを準備した。準備した検出チップを、上記SPFS装置のチップホルダーに設置した。
(全血サンプルの攪拌・検出)
1)抗原としてトロポニンI(cTnI)を含むヘマトクリット値40%の全血サンプルを容器に500μL注入した。サンプルを収容した容器を上記SPFS装置にセットし、前記(1)と同じ条件で撹拌した。その後、容器の底面から容器の高さの1/7の高さにある位置(血球が沈降した領域内)からサンプルを100μL採取し、検出チップの流路に供給し、サンドイッチイムノアッセイ法にてアッセイを行った。それにより、シグナル値S1を得た。
2)前記1)と同じ全血サンプルを容器に500μL注入した。その直後に、容器の底面から容器の高さの1/7の高さにある位置からサンプルを100μL採取し、検出チップの流路に供給して前記1)と同様のアッセイを行い、シグナル値S2を得た。シグナル値S2は、血球が沈降していない状態でのシグナル値に対応する。
3)前記1)と2)で得られたシグナル値を下記式に当てはめて、シグナル値の低下率を算出した。
シグナル値の低下率(%)={(シグナル値S2−シグナル値S1)/シグナル値S2)}×100
その結果、シグナル値の低下率は2%であり、血球の沈降がない場合と比べて、ほとんど変わらないことがわかった。
<比較例1>
(1)ヘマトクリット値の測定
容器内のサンプルの撹拌を行わなかった以外は実施例1と同様にしてヘマトクリット値を測定した。その結果、ヘマトクリット値は62%であり、本来のヘマトクリット値(40%)とは大きく異なることがわかった。
(2)被検出物質の検出
容器内のサンプルの攪拌を行わなかった以外は実施例1と同様にしてアッセイを行った。その結果、シグナル値の低下率は30%程度であり、血球の沈降がない状態と比べてシグナル値の低下率が大きいことがわかった。
<比較例2>
(1)ヘマトクリット値の測定
ピペットチップの先端を容器の底面から容器の高さの1/7の高さにある位置(血球が沈降した領域内)に固定した状態で、容器内のサンプルを200μL吸引した後、吸引したサンプルを容器内に吐出する撹拌操作を5回行った以外は実施例1と同様にしてヘマトクリット値を測定した。その結果、ヘマトクリット値は60%であり、本来のヘマトクリット値(40%)とは大きく異なることがわかった。
(2)被検出物質の検出
1)の工程において、ピペットチップの先端を容器の底面から容器の高さの1/7の高さにある位置(血球が沈降した領域内)に固定した状態で、容器内のサンプルを200μL吸引した後、吸引したサンプルを容器内に吐出する撹拌操作を5回行った以外は実施例1と同様にしてアッセイを行った。その結果、シグナル値の低下率は28%程度であり、血球の沈降がない状態と比べてシグナル値の低下が大きいことがわかった。
本出願は、2015年7月7日出願の特願2015−136022に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
10 検出チップ
20 プリズム
21 入射面
22 成膜面
23 出射面
30 金属膜
40 流路蓋
41 流路
100 SPFS装置
110 光照射部
111 光源ユニット
112 角度調整部
113 光源制御部
120 光検出部
121 受光光学系ユニット
122 位置切り替え部
123 センサー制御部
124 第1レンズ
125 光学フィルター
126 第2レンズ
127 受光センサー
130 送液部
131 容器
132 ピペット
133 ピペット移動部
134 送液ポンプ駆動部
135 シリンジ
136 プランジャー
137 ピペットノズル
138 ピペットチップ
140 搬送部
141 搬送ステージ
142 チップホルダー
150 制御部
α 励起光
β 蛍光
γ プラズモン散乱光

Claims (18)

  1. 検体に含まれる被検出物質を検出する検出装置であって、
    ピペットチップが着脱可能であり、容器内の検体を吸引または吐出するピペットと、
    前記ピペットを移動させるピペット移動部と、
    前記ピペットおよび前記ピペット移動部を制御する制御部と、
    を有し、
    前記ピペット移動部が前記ピペットチップの先端を前記容器の下方側の位置aまで移動させた状態で前記ピペットが前記容器内の少なくも一部の検体を吸引した後、前記ピペット移動部が前記ピペットチップの先端を前記位置aよりも上の位置bまで移動させた状態で前記ピペットが吸引した検体を前記容器内に吐出して前記検体を攪拌するように、前記制御部が前記ピペットおよび前記ピペット移動部を制御する、検出装置。
  2. 前記ピペット移動部は、前記ピペットを鉛直方向に移動させる、請求項1に記載の検出装置。
  3. 前記ピペットが吸引した検体を吐出するとき、前記ピペットチップの先端は、前記容器内の検体の液面よりも上にある、請求項1または2に記載の検出装置。
  4. 前記ピペットが吸引した検体を吐出するとき、前記ピペットチップの先端は、前記容器内の検体の液面から0mm超15mm以下離れている、請求項3に記載の検出装置。
  5. 前記ピペットが吸引した検体を吐出するとき、前記ピペットチップの先端は、前記容器内の検体の液面の中央部に吐出されるように位置決めされる、請求項3または4に記載の検出装置。
  6. 前記ピペットが吸引した検体を吐出するときの吐出速度は、1000〜15000μl/minである、請求項1〜5のいずれか一項に記載の検出装置。
  7. 前記ピペットが吸引または吐出する検体の量は、前記容器に収容された検体の量の20体積%以上である、請求項1〜6のいずれか一項に記載の検出装置。
  8. 前記制御部は、前記ピペットが検体を吸引および吐出することの繰り返し回数、および前記ピペットが前記検体を吸引または吐出するときの前記ピペットチップの先端の位置の少なくとも一つを、検体の種類または量に応じて切り替える、請求項1〜7のいずれか一項に記載の検出装置。
  9. 前記検体は、比重の異なる複数種類の物質を含む、請求項1〜8のいずれか一項に記載の検出装置。
  10. 前記検体は、血液または血液の希釈液である、請求項9に記載の検出装置。
  11. 前記ピペットが前記容器内の検体を吸引するとき、前記ピペットチップの先端は、前記容器内の検体のうち比重が相対的に高い物質が偏在した領域内にある、請求項9または10に記載の検出装置。
  12. ピペットに装着されたピペットチップの先端を検体が収容された容器の下方側の位置aまで移動させた状態で前記ピペットが前記容器内の検体の少なくとも一部を吸引した後、前記ピペットチップの先端を前記位置aよりも上の位置bまで移動させた状態で前記ピペットが吸引した検体を吐出して前記容器内の検体を攪拌する工程と、
    攪拌された検体に含まれる被検出物質を検出する工程と、を含む、検出方法。
  13. 前記攪拌する工程において前記ピペットが吸引した検体を吐出するとき、前記ピペットチップの先端は、前記容器内の検体の液面よりも上にある、請求項12に記載の検出方法。
  14. 前記攪拌する工程において前記ピペットが吸引した検体を吐出するときの吐出速度は、1000〜15000μl/minである、請求項12または13に記載の検出方法。
  15. 前記検体は、比重の異なる複数種類の物質を含む、請求項12〜14のいずれか一項に記載の検出方法。
  16. 前記検体は、血液または血液の希釈液である、請求項15に記載の検出方法。
  17. 前記攪拌する工程において前記ピペットが前記容器内の検体を吸引するとき、前記ピペットチップの先端は、前記容器内の検体のうち比重が相対的に高い物質が偏在した領域内にある、請求項15または16に記載の検出方法。
  18. 前記検出する工程は、表面プラズモン共鳴励起増強蛍光分光法(SPFS)により検出を行う、請求項12〜17のいずれか一項に記載の検出方法。
JP2017527481A 2015-07-07 2016-07-06 検出装置および検出方法 Active JP6801656B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015136022 2015-07-07
JP2015136022 2015-07-07
PCT/JP2016/070047 WO2017006969A1 (ja) 2015-07-07 2016-07-06 検出装置および検出方法

Publications (2)

Publication Number Publication Date
JPWO2017006969A1 true JPWO2017006969A1 (ja) 2018-04-19
JP6801656B2 JP6801656B2 (ja) 2020-12-16

Family

ID=57685077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017527481A Active JP6801656B2 (ja) 2015-07-07 2016-07-06 検出装置および検出方法

Country Status (4)

Country Link
US (1) US11366130B2 (ja)
EP (1) EP3321688B1 (ja)
JP (1) JP6801656B2 (ja)
WO (1) WO2017006969A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6805637B2 (ja) * 2016-08-26 2020-12-23 コニカミノルタ株式会社 ヘマトクリット値の測定方法、ヘマトクリット値の測定装置、被測定物質の量の測定方法、および被測定物質の量の測定装置
JP6660910B2 (ja) * 2017-03-30 2020-03-11 株式会社日立製作所 自動検体処理装置
CN108732373A (zh) * 2018-07-31 2018-11-02 东莞市联洲知识产权运营管理有限公司 一种室内甲醛的检测装置
JP7259984B2 (ja) * 2019-10-30 2023-04-18 東洋紡株式会社 有形成分分析装置およびプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184356A (ja) * 1986-02-07 1987-08-12 Seiko Instr & Electronics Ltd 自動生体処理装置
JPS62184357A (ja) * 1986-02-07 1987-08-12 Seiko Instr & Electronics Ltd ピペツトによる液体の撹拌方法
JPH10307141A (ja) * 1997-04-14 1998-11-17 Boehringer Mannheim Gmbh プラズモン共鳴および蛍光検出を用いた生体分子相互作用の同時検出法
JP2006184009A (ja) * 2004-12-24 2006-07-13 Aloka Co Ltd 液体試料の攪拌装置
JP2011107089A (ja) * 2009-11-20 2011-06-02 Hitachi High-Technologies Corp 液体混合方法及び分注装置
WO2011074273A1 (ja) * 2009-12-18 2011-06-23 ベックマン コールター, インコーポレイテッド 自動分析装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2725917B2 (ja) * 1991-10-04 1998-03-11 アロカ株式会社 血液試料の分注方法
JP3328048B2 (ja) * 1994-02-25 2002-09-24 富士写真フイルム株式会社 液体の混合方法
JPH08178824A (ja) * 1994-12-21 1996-07-12 Toa Medical Electronics Co Ltd 粒子測定装置
WO1997031105A1 (fr) * 1996-02-25 1997-08-28 Precision System Science Co., Ltd. Procede de traitement de biopolymeres, de micro-organismes ou de matieres a l'aide de plusieurs types de particules magnetiques
EP0965842B1 (en) 1996-05-20 2010-03-17 Precision System Science Co., Ltd. Method and apparatus for controlling magnetic particles by pipetting machine
EP1065001B1 (en) * 1998-03-19 2008-09-24 Precision System Science Co., Ltd. Apparatus for integrating processing of magnetic particles, and method of controlling the same
JP4141608B2 (ja) 2000-01-17 2008-08-27 プレシジョン・システム・サイエンス株式会社 容器搬送処理システム
DE102006017360A1 (de) * 2006-04-11 2007-10-18 Diasys Diagnostic Systems Gmbh Verfahren zum Dosieren und Mischen
JPWO2012172992A1 (ja) * 2011-06-14 2015-02-23 コニカミノルタ株式会社 検体検出装置に用いられるセンサーチップおよびセンサーチップを用いた検体検出装置
JP6427573B2 (ja) * 2014-07-18 2018-11-21 株式会社日立ハイテクノロジーズ 液体攪拌方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184356A (ja) * 1986-02-07 1987-08-12 Seiko Instr & Electronics Ltd 自動生体処理装置
JPS62184357A (ja) * 1986-02-07 1987-08-12 Seiko Instr & Electronics Ltd ピペツトによる液体の撹拌方法
JPH10307141A (ja) * 1997-04-14 1998-11-17 Boehringer Mannheim Gmbh プラズモン共鳴および蛍光検出を用いた生体分子相互作用の同時検出法
JP2006184009A (ja) * 2004-12-24 2006-07-13 Aloka Co Ltd 液体試料の攪拌装置
JP2011107089A (ja) * 2009-11-20 2011-06-02 Hitachi High-Technologies Corp 液体混合方法及び分注装置
WO2011074273A1 (ja) * 2009-12-18 2011-06-23 ベックマン コールター, インコーポレイテッド 自動分析装置

Also Published As

Publication number Publication date
WO2017006969A1 (ja) 2017-01-12
EP3321688B1 (en) 2019-11-20
JP6801656B2 (ja) 2020-12-16
EP3321688A4 (en) 2018-07-25
US20180196077A1 (en) 2018-07-12
EP3321688A1 (en) 2018-05-16
US11366130B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
JP6369533B2 (ja) 測定方法および測定装置
JP6587024B2 (ja) 検出方法および検出装置
WO2017082089A1 (ja) 表面プラズモン共鳴蛍光分析方法および表面プラズモン共鳴蛍光分析装置
JP6801656B2 (ja) 検出装置および検出方法
JP6638721B2 (ja) 検出方法および反応装置
WO2017057136A1 (ja) 表面プラズモン励起増強蛍光分光測定方法、および測定用キット
JP6648764B2 (ja) 反応方法
JP6520950B2 (ja) 反応方法、検出方法および検出装置
WO2018034208A1 (ja) 測定方法
JPWO2018051863A1 (ja) 測定方法
WO2017134746A1 (ja) 送液方法、ならびにこれを行う検出システムおよび検出装置
JP6888548B2 (ja) 測定方法
JP6642592B2 (ja) 送液方法、ならびにこれを行う検出システムおよび検出装置
WO2017221775A1 (ja) 反応方法、ならびにこれを行う反応システムおよび反応装置
JPWO2018179950A1 (ja) 検体検出システム用センサーチップ
JP6515617B2 (ja) 測定方法および測定装置
WO2021014864A1 (ja) 測定方法および測定装置
JP6493412B2 (ja) 検出装置および検出方法
WO2016093037A1 (ja) 検出装置および検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200610

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200610

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200622

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R150 Certificate of patent or registration of utility model

Ref document number: 6801656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250