JP6642592B2 - 送液方法、ならびにこれを行う検出システムおよび検出装置 - Google Patents

送液方法、ならびにこれを行う検出システムおよび検出装置 Download PDF

Info

Publication number
JP6642592B2
JP6642592B2 JP2017563479A JP2017563479A JP6642592B2 JP 6642592 B2 JP6642592 B2 JP 6642592B2 JP 2017563479 A JP2017563479 A JP 2017563479A JP 2017563479 A JP2017563479 A JP 2017563479A JP 6642592 B2 JP6642592 B2 JP 6642592B2
Authority
JP
Japan
Prior art keywords
liquid
pipette tip
liquid injection
pipette
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017563479A
Other languages
English (en)
Other versions
JPWO2017130359A1 (ja
Inventor
洋一 青木
洋一 青木
淳夫 岩下
淳夫 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2017130359A1 publication Critical patent/JPWO2017130359A1/ja
Application granted granted Critical
Publication of JP6642592B2 publication Critical patent/JP6642592B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1011Control of the position or alignment of the transfer device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • B01L9/527Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for microfluidic devices, e.g. used for lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/11Filling or emptying of cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0481Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/021Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0346Capillary cells; Microcells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6482Sample cells, cuvettes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Optical Measuring Cells (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は、微細流路に液体を供給する送液方法、ならびにこれを行う検出システムおよび検出装置に関する。
生化学検査において抗原抗体反応などの生化学反応が利用されている。たとえば、蛍光免疫測定法(以下、「FIA」とも称する)では、被検出物質(抗原)に蛍光物質を含む標識物質を反応させる。その後、標識物質で標識された被検出物質に励起光を照射して、蛍光物質が発する蛍光を検出する。そして、検出された蛍光の強度などから、被検出物質の量を特定する。このようなFIAの中でも、特に高感度に被検出物質の検出を行うことが可能な方法として、表面プラズモン励起増強蛍光分光測定方法(Surface Plasmon-field enhanced Fluorescence Spectroscopy、以下「SPFS」とも称する)が知られている。
SPFSでは、被検出物質に特異的に結合できる第1の捕捉体(例えば1次抗体)を金属膜上に固定して、被検出物質を捕捉するための反応場を形成する。通常、反応場は、微細な流路内に形成される。そして、この流路に被検出物質を含む液体(検体)を注入することで、第1の捕捉体に被検出物質を結合させる。次いで、蛍光物質で標識された第2の捕捉体(例えば2次抗体)を流路に注入することで、1次抗体に結合している被検出物質に、第2の捕捉体をさらに結合させる。つまり、被検出物質を、間接的に蛍光物質で標識する。この状態で金属膜に励起光を照射すると、蛍光物質が表面プラズモン共鳴(以下、「SPR」とも称する)により増強された局在場光により励起され、蛍光を放出する。そして、蛍光物質が放出した蛍光を検出することで、被検出物質を検出できる。
ここで、被検出物質を極少量含む検体を用いる場合、流路内において検体を往復送液することで、被検出物質と第1の捕捉体との接触機会を増やすことができ、第1の捕捉体に十分な量の被検出物質を結合させることができる。流路を洗浄するための洗浄液や、第2の捕捉体についても、同様に往復送液することが好ましい。しかしながら、図1Aに示されるように、流路44内に気泡64が発生してしまうと、第1の捕捉体60を気泡64が覆ってしまい、被検出物質61が気泡64に覆われた第1の捕捉体60に結合できなくなることがある。同様に、図1Bに示されるように、流路44内に気泡64が発生してしまうと、第2の捕捉体62が気泡64に覆われた被検出物質61に結合できなくなることがある。また、蛍光検出時に流路44内に気泡64が存在すると、屈折などの影響で蛍光を適切に検出できなくなってしまう。
このような気泡の発生を防ぐために、検体や洗浄液、第2の抗体などの液体を流路内において往復送液するときに、液体の注入および吸引のタイミングを調整することが提案されている(例えば特許文献1参照)。
国際公開第2011/027851号
特許文献1に記載の発明では、図2Aに示されるように、所定の位置に固定されたピペット(ピペットチップ134)を用いて、流路44内への液体63の注入および流路44内からの液体63の吸引を行っている。このように所定の位置に固定されたピペットチップ134を用いて流路44内の液体63を除去する場合、図2Bに示されるように、流路44のピペットチップ134側の端部近傍に液体63がわずかに残ってしまう。この状態で、液体63を吸引したピペットチップ134を取り出し、新たな液体63’を保持するピペットチップ134を所定の位置まで挿入すると、図2Cに示されるように、残っていた液体63が流路44内に押し出される。このままピペットチップ134から流路44内に新たな液体63’を注入すると、図2Dに示されるように、流路44内において残っていた液体63と新たに注入された液体63’との間に気泡64が発生してしまうこととなる。前述のとおり、流路44内に気泡64が存在すると、流路44内において適切に反応を行うことができなくなるおそれ、また蛍光を適切に検出できなくなるおそれがある(図12および図13参照)。
このように、特許文献1に記載の発明は、流路内において液体を往復送液する間の気泡の発生を抑制することができるが、特許文献1に記載の発明には、流路内の液体を交換するときにおける気泡の発生を抑制する観点からは改善の余地がある。
本発明の目的は、流路内に気泡を発生させることなく、流路内の液体の除去および流路内への液体の導入を行うことができる送液方法、ならびにこれを行う検出システムおよび検出装置を提供することである。
本発明の一実施形態に係る送液方法は、流路と、前記流路の一端に接続され、かつ開口部を有する液体注入部とを有する検出用チップの前記液体注入部に前記開口部から挿入されたピペットチップにより、前記開口部と前記ピペットチップとの間に隙間が無い状態で前記液体注入部内の液体を吸引して、前記流路内の液体を除去する第1工程と、前記第1工程の後に、前記開口部と前記ピペットチップとの間に隙間が生じないように、前記ピペットチップを前記ピペットチップの軸方向に沿って2回以上往復移動させるとともに、その間に少なくとも1回は前記ピペットチップにより前記液体注入部内の流体を吸引する第2工程と、前記第2工程の後に、前記開口部と前記ピペットチップとの間に隙間が無い状態で、前記ピペットチップから前記液体注入部内に液体を注入して、前記流路内に液体を導入する第3工程と、を有する。
また、本発明の一実施形態に係る検出システムは、流路と、前記流路の一端に接続され、かつ開口部を有する液体注入部とを有する検出用チップと、その先端にピペットチップを装着された、前記液体注入部内に液体を注入、および前記液体注入部から液体を吸引するためのピペットと、前記ピペットを制御するためのピペット制御部と、を有し、前記流路内に液体を導入する場合、前記ピペット制御部は、前記開口部と前記ピペットチップとの間に隙間が生じないように前記液体注入部に前記ピペットチップが前記開口部から挿入されている状態で、前記ピペットに前記液体注入部内に液体を注入させ、前記流路内から液体を除去する場合、前記ピペット制御部は、前記開口部と前記ピペットチップとの間に隙間が生じないように前記液体注入部に前記ピペットチップが前記開口部から挿入されている状態で、前記ピペットに前記液体注入部内の液体を吸引させ、次いで、前記開口部と前記ピペットチップとの間に隙間が生じないように、前記ピペットに前記ピペットチップを前記ピペットチップの軸方向に沿って2回以上往復移動させるとともに、その間に少なくとも1回は前記液体注入部内の流体を吸引させる。
また、本発明の一実施形態に係る検出装置は、流路と、前記流路の一端に接続され、かつ開口部を有する液体注入部とを有する検出用チップを保持するためのチップホルダーと、その先端にピペットチップを装着することが可能であり、前記チップホルダーに保持された前記検出用チップの前記液体注入部内に液体を注入、および前記液体注入部から液体を吸引するためのピペットと、前記ピペットを制御するためのピペット制御部と、を有し、前記流路内に液体を導入する場合、前記ピペット制御部は、前記開口部と前記ピペットチップとの間に隙間が生じないように前記液体注入部に前記ピペットチップが前記開口部から挿入されている状態で、前記ピペットに前記液体注入部内に液体を注入させ、前記流路内から液体を除去する場合、前記ピペット制御部は、前記開口部と前記ピペットチップとの間に隙間が生じないように前記液体注入部に前記ピペットチップが前記開口部から挿入されている状態で、前記ピペットに前記液体注入部内の液体を吸引させ、次いで、前記開口部と前記ピペットチップとの間に隙間が生じないように、前記ピペットに前記ピペットチップを前記ピペットチップの軸方向に沿って2回以上往復移動させるとともに、その間に少なくとも1回は前記液体注入部内の流体を吸引させる。
本発明によれば、流路内に気泡を発生させることなく、流路内の液体の除去および流路内への液体の導入を行うことができる。
図1Aおよび図1Bは、気泡の影響を説明するための模式図である。 図2A〜Dは、従来の送液方法を説明するための模式図である。 図3は、本発明の一実施形態に係る検出装置(SPFS装置)の構成を示す模式図である。 図4は、検出チップの断面図である。 図5は、本発明の一実施の形態に係る送液方法のフローチャートである。 図6A〜Dは、本発明の一実施の形態に係る送液方法を示す模式図である。 図7A〜Dは、本実施の形態の変形例に係る送液方法を説明するための模式図である。 図8A〜Dは、本実施の形態の変形例に係る送液方法を説明するための模式図である。 図9は、本発明の一実施形態に係る検出方法のフローチャートであり、検出装置の動作手順の一例を示すフローチャートである。 図10は、ピペットチップ内の圧力の経時的変化を示すグラフである。 図11は、ピペットチップ内の圧力の経時的変化を示すグラフである。 図12は、1次反応のときの流路の測定領域における気泡の面積と、シグナル値の低下率との関係を示すグラフである。 図13は、シグナル測定時における流路の測定領域における気泡の面積と、シグナル値の低下率との関係を示すグラフである。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、以下の説明では、本発明に係る検出装置および検出システムの代表例として、本発明の一実施の形態に係る送液方法を実施可能なSPFS装置について説明するが、本発明に係る検出装置および検出システムはこれに限定されない。以下の説明において、検出チップおよびピペットチップが装着されていない状態のSPFS装置が本発明の一実施の形態に係る検出装置に該当し、検出チップおよびピペットチップが装着されている状態のSPFS装置が本発明の一実施の形態に係る検出システムに該当する。
図3は、本発明の一実施の形態に係るSPFS装置100の構成を示す模式図である。図3に示されるように、SPFS装置100は、励起光照射ユニット110、蛍光検出ユニット120、送液ユニット130、搬送ユニット140、および制御部150を有する。SPFS装置100では、搬送ユニット140のチップホルダー142に検出チップ10を装着した状態で、検出チップ10の金属膜30に表面プラズモン共鳴が発生するように励起光αを照射し、表面プラズモン共鳴に基づく局在場光を発生させる。そして、当該局在場光により、金属膜30上に存在する蛍光物質を励起させ、蛍光物質が発する蛍光βを検出することで、検体中の被検出物質の有無や量を測定する。なお、本実施の形態では、検出チップ10は、検出装置のチップホルダーに取り外し可能に装着されている。
以下では、検出チップ10およびSPFS装置100(検出システムおよび検出装置)について先に説明し、その後、検出チップ10に各種液体を送液する方法(送液方法)およびSPFS装置100を用いた被検出物質の検出方法について説明する。
(検出チップ)
図3に示されるように、検出チップ10は、入射面21、成膜面22、および出射面23を有するプリズム20と、プリズム20の成膜面22に形成された金属膜30と、プリズム20の成膜面22または金属膜30上に配置された流路蓋40とを有する。この後説明するように、検出チップ10は、さらに、液体注入部45と、流路44と、流路44の一端に接続された貯留部46と、流路44の他端に接続された貯留部46も有する。本実施の形態では、流路蓋40は、両面テープなどの接着層50を介して金属膜30(またはプリズム20)に接着されており、接着層50は流路44の側面形状を規定する役割も担っている。流路蓋40は、接着層50を用いずに、レーザー溶着、超音波溶着、クランプ部材を用いた圧着などにより、検出チップ10の金属膜30(またはプリズム20)に接合されていてもよい。この場合は、流路44の側面形状は、流路蓋40により規定される。
プリズム20は、励起光αに対して透明な誘電体からなり、図3に示されるように、入射面21、成膜面22および出射面23を有する。入射面21は、励起光照射ユニット110からの励起光αをプリズム20の内部に入射させるための面である。また、成膜面22上には、金属膜30が配置されており、プリズム20の内部に入射した励起光αは、金属膜30の裏面、より具体的にはプリズム20と金属膜30との界面(成膜面22)にて反射する。一方、出射面23は、成膜面22にて反射した反射光をプリズム20の外部に出射させるための面である。
プリズム20の形状は、特に限定されない。本実施の形態では、プリズム20の形状は、台形を底面とする柱体である。台形の一方の底辺に対応する面が成膜面22であり、一方の脚に対応する面が入射面21であり、他方の脚に対応する面が出射面23である。底面となる台形は、等脚台形であることが好ましい。これにより、入射面21と出射面23とが対称になり、励起光αのS波成分がプリズム20内に滞留しにくくなる。
入射面21は、励起光αが励起光照射ユニット110に戻らないように形成される。励起光αの光源がレーザーダイオード(以下「LD」ともいう)である場合、励起光αがLDに戻ると、LDの励起状態が乱れてしまい、励起光αの波長や出力が変動してしまう。そこで、理想的な共鳴角または増強角を中心とする走査範囲において、励起光αが入射面21に垂直に入射しないように、入射面21の角度が設定される。ここで「共鳴角」とは、金属膜30に対する励起光αの入射角を走査した場合に、出射面23から出射される反射光の光量が最小となるときの、入射角を意味する。また、「増強角」とは、金属膜30に対する励起光αの入射角を走査した場合に、検出チップ10の上方に放出される励起光αと同一波長の散乱光(以下「プラズモン散乱光」という)γの光量が最大となるときの、入射角を意味する。本実施形態では、入射面21と成膜面22との角度および成膜面22と出射面23との角度は、いずれも約80°である。
なお、検出チップ10の設計により、共鳴角(およびその極近傍にある増強角)が概ね決まる。設計要素は、プリズム20の屈折率や、金属膜30の屈折率、金属膜30の膜厚、金属膜30の消衰係数、励起光αの波長などである。金属膜30上に第1の捕捉体を介して捕捉された被検出物質によって共鳴角および増強角がシフトするが、その量は数度未満である。
プリズム20は、複屈折特性を少なからず有する。プリズム20の材料の例には、樹脂およびガラスが含まれる。プリズム20の材料は、好ましくは、屈折率が1.4〜1.6であり、かつ複屈折が小さい樹脂である。
金属膜30は、プリズム20の成膜面22上に配置されている。これにより、成膜面22に全反射条件で入射した励起光αの光子と、金属膜30中の自由電子との間で相互作用(SPR)が生じ、金属膜30の表面上に局在場光(一般に「エバネッセント光」または「近接場光」とも呼ばれる)が生じる。
金属膜30の材料は、表面プラズモン共鳴を生じさせうる金属であれば特に限定されない。金属膜30の材料の例には、金、銀、銅、アルミニウムおよびこれらの合金が含まれる。金属膜30の形成方法は、特に限定されない。金属膜30の形成方法の例には、スパッタリング、蒸着、めっきが含まれる。金属膜30の厚みは、特に限定されないが、30〜70nmの範囲内であることが好ましい。
図4は、図3とは別の方向から見た検出チップ10の断面図である。図4に示されるように、流路蓋40は、枠体41、液体注入部被覆フィルム42および貯留部被覆フィルム43を有する。枠体41には、2つの貫通孔が形成されている。一方の貫通孔の一方の開口部が金属膜30(またはプリズム20)により塞がれ、他方の開口部が液体注入部被覆フィルム42により塞がれることで、この貫通孔は液体注入部45として機能する。他方の貫通孔の一方の開口部が金属膜30(またはプリズム20)により塞がれ、他方の開口部が貯留部被覆フィルム43により塞がれることで、この貫通孔は貯留部46として機能する。貯留部被覆フィルム43には、通気孔47が設けられている。
前述のとおり、本実施の形態では、流路蓋40(枠体41)は、両面テープなどの接着層50を介して金属膜30(またはプリズム20)に接着されており、接着層50は流路44の側面形状を規定する役割も担っている。すなわち、接着層50には細長い形状の貫通孔が設けられており、この貫通孔の一方の開口部が金属膜30(またはプリズム20)により塞がれ、他方の開口部が枠体41により塞がれることで、一方の端部が液体注入部45に開口し、他方の端部が貯留部46に開口する流路44が形成される。流路蓋40が接着層50を用いずに金属膜30(またはプリズム20)に接合される場合は、枠体41の金属膜30側の面には、流路44の形状を規定する溝が形成される。この場合は、溝の開口部が金属膜30(またはプリズム20)により塞がれることで、一方の端部が液体注入部45に開口し、他方の端部が貯留部46に開口する流路44が形成される。
枠体41は、光(例えば、蛍光βおよびプラズモン散乱光γ)に対して透明な材料で形成されている。ただし、後述の検出方法における光の取り出しの妨げにならない限り、枠体41の一部は光に対して不透明な材料で形成されていてもよい。光に対して透明な材料の例には、樹脂が含まれる。
液体注入部被覆フィルム42は、ピペットチップ134を挿入可能であり、かつピペットチップ134を挿入した際には、ピペットチップ134の外周に隙間なく密着することが可能なフィルムである。たとえば、液体注入部被覆フィルム42は、弾性フィルムおよび粘着フィルムの2層フィルムである。液体注入部被覆フィルム42には、ピペットチップ134を挿入するための微細な貫通孔を設けられていてもよい。本実施の形態では、液体注入部被覆フィルム42に外径が1.2mmの貫通孔が設けられている。
弾性フィルムの種類は、ピペットチップ134挿入時にピペットチップ134の外周に密着可能であれば特に限定されない。たとえば、弾性フィルムは、引張弾性定数が0.05〜2GPa、引張破断伸度が200〜2000%、引裂強度が80〜3000mNであるポリウレタンフィルムである。弾性フィルムのその他の例には、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、中密度ポリエチレン(MDPE)、ナイロン、無延伸ポリプロピレン(CPP)、エチレン−ビニルアルコール共重合体(EVOH)、シリコーン、ポリビニルアルコール(PVA)およびポリ塩化ビニル(PVC)などからなるフィルムが含まれる。弾性フィルムの厚みは、特に制限されないが、例えば100μm程度である。粘着フィルムの種類は、弾性フィルムと枠体41とを互いに固定可能であれば特に制限されない。
前述のとおり、貯留部被覆フィルム43は、通気孔47を有する。貯留部被覆フィルム43の構成は、特に制限されない。たとえば、貯留部被覆フィルム43は、前述の液体注入部被覆フィルム42と同様の2層フィルムであってもよい。
流路44内に露出している金属膜30には、第1の捕捉体が固定されている。第1の捕捉体は、検体中の被検出物質と特異的に結合するための認識部位を有する物質である。流路44内に第1の捕捉体が固定されていると、流路44内に検体を往復送液したときに、第1の捕捉体に被検出物質が選択的に結合する。つまり、被検出物質が流路44内に捕捉される。これにより、後述のように被検出物質を検出することが可能となる。第1の捕捉体の種類は、被検出物質に特異的に結合するための認識部位を有していれば特に制限されない。第1の捕捉体の例には、被検出物質に特異的に結合可能な抗体(1次抗体)またはその断片、被検出物質に特異的に結合可能な酵素などが含まれる。流路44の幅および高さは、特に制限されず、検出チップ10の用途などに応じて適宜選択される。
液体注入部45には、図6に示されるように、ピペットチップ134が挿入される。このとき、液体注入部45の開口部(液体注入部被覆フィルム42に設けられた貫通孔)はピペットチップ134の外周に隙間なく接触している。このため、ピペットチップ134から液体注入部45内に液体を注入することで流路44内に液体を導入することができ、液体注入部45内の液体をピペットチップ134に吸引することで流路44内の液体を除去することができる。また、液体の注入および吸引を交互に行うことで、流路44内において液体を往復送液することもできる。液体注入部45の形状および容積は、ピペットチップ134の形状などに合わせて適宜選択される。
液体注入部45から流路44内に流路44の容積を超える量の液体が導入された場合、貯留部46には流路44から液体が流入する。また、流路44内において液体を往復送液するときにも、貯留部46には液体が流入する。貯留部46に流入した液体は、貯留部46内で攪拌される。貯留部46内で液体が攪拌されると、流路44を通過する液体(検体や洗浄液など)の成分(例えば被検出物質や洗浄成分など)の濃度が均一になり、流路44内で各種反応が生じやすくなったり、洗浄効果が高まったりする。なお、貯留部46の形状および容積は、液体の往復送液時に液体を十分に貯留可能であれば、特に制限されない。
検出チップ10は、通常、測定のたびに交換される。また、検出チップ10は、好ましくは各片の長さが数mm〜数cmの構造物であるが、「チップ」の範疇に含まれないより小型の構造物またはより大型の構造物であってもよい。
(SPFS装置)
次に、SPFS装置100の検出チップ以外の構成要素について説明する。前述のとおり、SPFS装置100は、励起光照射ユニット110、蛍光検出ユニット120、送液ユニット130、搬送ユニット140および制御部150を有する。
励起光照射ユニット110は、チップホルダー142に保持された検出チップ10に励起光αを照射する。蛍光βまたはプラズモン散乱光γの測定時には、励起光照射ユニット110は、金属膜30に対する入射角がSPRを生じさせる角度となるように、金属膜30に対するP波のみを入射面21に向けて出射する。ここで「励起光」とは、蛍光物質を直接または間接的に励起させる光である。たとえば、励起光αは、プリズム20を介して金属膜30にSPRが生じる角度で照射されたときに、蛍光物質を励起させる局在場光を金属膜30の表面上に生じさせる光である。励起光照射ユニット110は、光源ユニット111、角度調整機構112および光源制御部113を含む。
光源ユニット111は、コリメートされ、かつ波長および光量が一定の励起光αを、金属膜30裏面における照射スポットの形状が略円形となるように出射する。光源ユニット111は、例えば、励起光αの光源、ビーム整形光学系、APC機構および温度調整機構(いずれも不図示)を含む。
光源の種類は、特に限定されず、例えばレーザーダイオード(LD)である。光源の他の例には、発光ダイオード、水銀灯、その他のレーザー光源が含まれる。光源から出射される光がビームでない場合は、光源から出射される光は、レンズや鏡、スリットなどによりビームに変換される。また、光源から出射される光が単色光でない場合は、光源から出射される光は、回折格子などにより単色光に変換される。さらに、光源から出射される光が直線偏光でない場合は、光源から出射される光は、偏光子などにより直線偏光の光に変換される。
ビーム整形光学系は、例えば、コリメーターやバンドパスフィルター、直線偏光フィルター、半波長板、スリット、ズーム手段などを含む。ビーム整形光学系は、これらのすべてを含んでいてもよいし、一部を含んでいてもよい。コリメーターは、光源から出射された励起光αをコリメートする。バンドパスフィルターは、光源から出射された励起光αを中心波長のみの狭帯域光にする。光源からの励起光αは、若干の波長分布幅を有しているためである。直線偏光フィルターは、光源から出射された励起光αを完全な直線偏光の光にする。半波長板は、金属膜30にP波成分が入射するように励起光αの偏光方向を調整する。スリットおよびズーム手段は、金属膜30裏面における照射スポットの形状が所定サイズの円形となるように、励起光αのビーム径や輪郭形状などを調整する。
APC機構は、光源の出力が一定となるように光源を制御する。より具体的には、APC機構は、励起光αから分岐させた光の光量を不図示のフォトダイオードなどで検出する。そして、APC機構は、回帰回路で投入エネルギーを制御することで、光源の出力を一定に制御する。
温度調整機構は、例えば、ヒーターやペルチェ素子などである。光源の出射光の波長およびエネルギーは、温度によって変動することがある。このため、温度調整機構で光源の温度を一定に保つことにより、光源の出射光の波長およびエネルギーを一定に制御する。
角度調整機構112は、金属膜30(プリズム20と金属膜30との界面(成膜面22))に対する励起光αの入射角を調整する。角度調整機構112は、プリズム20を介して金属膜30の所定の位置に向けて所定の入射角で励起光αを照射するために、励起光αの光軸とチップホルダー142とを相対的に回転させる。
たとえば、角度調整機構112は、光源ユニット111を励起光αの光軸と直交する軸(図3の紙面に対して垂直な軸)を中心として回動させる。このとき、入射角を走査しても金属膜30上での照射スポットの位置がほとんど変化しないように、回転軸の位置を設定する。回転中心の位置を、入射角の走査範囲の両端における2つの励起光αの光軸の交点近傍(成膜面22上の照射位置と入射面21との間)に設定することで、照射位置のズレを極小化することができる。
前述のとおり、金属膜30に対する励起光αの入射角のうち、プラズモン散乱光γの光量が最大となる角度が増強角である。励起光αの入射角を増強角またはその近傍の角度に設定することで、高強度の蛍光βを測定することが可能となる。検出チップ10のプリズム20の材料および形状、金属膜30の膜厚、流路44内の液体の屈折率などにより、励起光αの基本的な入射条件が決まるが、流路44内の蛍光物質の種類および量、プリズム20の形状誤差などにより、最適な入射条件はわずかに変動する。このため、測定ごとに最適な増強角を求めることが好ましい。
光源制御部113は、光源ユニット111に含まれる各種機器を制御して、光源ユニット111からの励起光αの出射を制御する。光源制御部113は、例えば、演算装置、制御装置、記憶装置、入力装置および出力装置を含む公知のコンピュータやマイコンなどによって構成される。
蛍光検出ユニット120は、金属膜30への励起光αの照射によって生じた蛍光βを検出する。また、必要に応じて、蛍光検出ユニット120は、金属膜30への励起光αの照射によって生じたプラズモン散乱光γも検出する。蛍光検出ユニット120は、受光ユニット121、位置切り替え機構122およびセンサー制御部123を含む。
受光ユニット121は、検出チップ10の金属膜30の法線方向に配置される。受光ユニット121は、第1レンズ124、光学フィルター125、第2レンズ126および受光センサー127を含む。
第1レンズ124は、例えば、集光レンズであり、金属膜30上から出射される光を集光する。第2レンズ126は、例えば、結像レンズであり、第1レンズ124で集光された光を受光センサー127の受光面に結像させる。両レンズの間の光路は、略平行な光路になっている。光学フィルター125は、両レンズの間に配置されている。
光学フィルター125は、蛍光成分のみを受光センサー127に導き、高いS(シグナル)/N(ノイズ)比で蛍光βを検出するために、励起光成分(プラズモン散乱光γ)を除去する。光学フィルター125の例には、励起光反射フィルター、短波長カットフィルターおよびバンドパスフィルターが含まれる。光学フィルター125は、例えば、所定の光成分を反射する多層膜を含むフィルター、または所定の光成分を吸収する色ガラスフィルターである。
受光センサー127は、蛍光βおよびプラズモン散乱光γを検出する。受光センサー127は、微小量の被検出物質からの微弱な蛍光βを検出することが可能な、高い感度を有する。受光センサー127は、例えば、光電子増倍管(PMT)やアバランシェフォトダイオード(APD)などである。
位置切り替え機構122は、光学フィルター125の位置を、受光ユニット121における光路上または光路外に切り替える。具体的には、受光センサー127が蛍光βを検出する時には、光学フィルター125を受光ユニット121の光路上に配置し、受光センサー127がプラズモン散乱光γを検出する時には、光学フィルター125を受光ユニット121の光路外に配置する。
センサー制御部123は、受光センサー127の出力値の検出や、検出した出力値による受光センサー127の感度の管理、適切な出力値を得るための受光センサー127の感度の変更、などを制御する。センサー制御部123は、例えば、演算装置、制御装置、記憶装置、入力装置および出力装置を含む公知のコンピュータやマイコンなどによって構成される。
送液ユニット130は、チップホルダー142に保持された検出チップ10の液体注入部45内に各種液体を注入して流路44内に液体を導入する。また、送液ユニット130は、チップホルダー142に保持された検出チップ10の液体注入部45から各種液体を吸引して流路44内の液体を除去する。また、送液ユニット130は、液体注入部45内への液体の注入および液体注入部45内の液体の吸引を交互に繰り返すことで、流路44内において液体を往復送液する。本実施の形態では、送液ユニット130は、例えば検体や、洗浄液、蛍光物質で標識された第2の捕捉体を含む標識液(以下「標識液」ともいう)などの注入および吸引を行う。送液ユニット130は、液体チップ131、ピペット132およびピペット制御部133を含む。
液体チップ131は、検体や洗浄液、標識液などの液体をそれぞれ収容するための容器である。液体チップ131としては、通常、複数の容器が液体の種類に応じて配置されるか、または複数の容器が一体化したチップが配置される。
ピペット132は、ピペットチップ134およびシリンジポンプ135を有する。シリンジポンプ135内のプランジャーの往復運動によって、シリンジポンプ135(ピペット132)の先端に装着されたピペットチップ134における液体の吸引および排出が定量的に行われる。ピペットチップ134が交換可能であると、ピペットチップ134の洗浄が不要となる。このため、不純物の混入などを防止する観点から好ましい。ピペットチップ134が交換可能に構成されていない場合は、ピペットチップ134内を洗浄する構成をさらに付加することにより、ピペットチップ134を交換せずに使用することが可能となる。この場合は、ピペットチップ134とシリンジポンプ135とが固定または一体化されていてもよい。
本実施の形態では、ピペットチップ134を検出チップ10の液体注入部45内に挿入したときに、液体注入部45の開口部(液体注入部被覆フィルム42に設けられた貫通孔)とピペットチップ134の外周とが隙間なく接触する必要がある。そこで、ピペットチップ134のうち、検出チップ10の液体注入部被覆フィルム42と接触する領域は、外径が一定であることが好ましく、円柱形状であることが好ましい。なお、液体注入部被覆フィルム42と接触しない領域では、外径が一定である必要はなく、任意の形状とすることができる。また、図6Cに示されるように、ピペットチップ134を数百μm程度上下方向(ピペットチップ134の軸方向)に移動させても、液体注入部45の開口部(液体注入部被覆フィルム42に設けられた貫通孔)とピペットチップ134の外周との間に隙間が生じないということであれば、ピペットチップ134の外形形状は、特に限定されず、例えば円錐台形状であってもよい。
ピペット制御部133は、シリンジポンプ135の駆動装置、およびピペット132の移動装置を含む。シリンジポンプ135の駆動装置は、シリンジポンプ135のプランジャーを往復運動させるための装置であり、例えば、ステッピングモーターを含む。ステッピングモーターを含む駆動装置は、ピペット132の送液量や送液速度を管理できるため、検出チップ10の残液量を管理する観点から好ましい。ピペット132の移動装置は、例えば、ピペット132を、ピペットチップ134の軸方向(例えば垂直方向)と、軸方向を横断する方向(例えば水平方向)との二方向に自在に動かす。ピペット132の移動装置は、例えば、ロボットアーム、2軸ステージまたは上下動自在なターンテーブルによって構成される。
ピペット制御部133は、シリンジポンプ135を駆動して、液体チップ131から各種液体をピペットチップ134内に吸引させる。そして、ピペット制御部133は、ピペット132を移動させて、検出チップ10の液体注入部45内に開口部(液体注入部被覆フィルム42に設けられた貫通孔)からピペットチップ134を挿入させるとともに、シリンジポンプ135を駆動して、ピペットチップ134内の液体を液体注入部45内に注入させる。また、液体の供給後、ピペット制御部133は、シリンジポンプ135を駆動して、液体注入部45内の液体をピペットチップ134内に吸引させる。ピペット制御部133は、シリンジポンプ135を駆動して、液体の注入および液体の吸引を交互に繰り返させることで、流路44内において液体を往復送液させる。このように往復送液することによって、流路44内を洗浄したり、流路44内において第1の捕捉体と被検出物質を反応させたり、被検出物質と蛍光物質で標識された第2の捕捉体とを反応させたりする。流路44内の液体を除去する場合は、この後説明するように、ピペット制御部133は、液体注入部45内の液体をピペットチップ134内に吸引させた後、ピペット132を移動させて、ピペットチップ134をその軸方向に沿って2回以上往復移動させる。このようにすることで、流路44内における気泡の発生を抑制することができる。
搬送ユニット140は、検出チップ10を測定位置または送液位置に搬送し、固定する。ここで「測定位置」とは、励起光照射ユニット110が検出チップ10に励起光αを照射し、それに伴い発生する蛍光βまたはプラズモン散乱光γを蛍光検出ユニット120が検出する位置である。また、「送液位置」とは、送液ユニット130が検出チップ10の液体注入部45内に液体を注入するか、または検出チップ10の流路44内の液体を液体注入部45から吸引する位置である。搬送ユニット140は、搬送ステージ141およびチップホルダー142を含む。チップホルダー142は、搬送ステージ141に固定されており、検出チップ10を着脱可能に保持する。チップホルダー142の形状は、検出チップ10を保持することが可能であり、かつ励起光α、蛍光βおよびプラズモン散乱光γの光路を妨げない形状である。たとえば、チップホルダー142には、励起光α、蛍光βおよびプラズモン散乱光γが通過するための開口が設けられている。搬送ステージ141は、チップホルダー142を一方向およびその逆方向に移動させる。搬送ステージ141も、励起光α、蛍光βおよびプラズモン散乱光γの光路を妨げない形状である。搬送ステージ141は、例えば、ステッピングモーターなどで駆動される。
制御部150は、角度調整機構112、光源制御部113、位置切り替え機構122、センサー制御部123、ピペット制御部133および搬送ステージ141を制御する。制御部150は、例えば、演算装置、制御装置、記憶装置、入力装置および出力装置を含む公知のコンピュータやマイコンなどによって構成される。
(液体の送液方法)
次に、上記検出チップ10の流路44に各種液体を送液する方法について説明する。説明の便宜上、流路44内に液体63が注入されており、流路44内において液体63が往復送液されている状態から説明を開始する。
図5は、本実施の形態に係る送液方法のフローチャートである。また、図6A〜Dは、本実施の形態に係る送液方法を説明するための模式図である。図6A〜Dのそれぞれにおいて、上の図は、液体注入部45近傍における検出チップ10の部分拡大縦断面図であり、下の図は、液体注入部45の底部近傍における検出チップ10の部分拡大横断面図である。
図6Aに示されるように、流路44内において往復送液している状態では、液体注入部被覆フィルム42とピペットチップ134との間に隙間が生じないように、液体注入部45に開口部(液体注入部被覆フィルム42に設けられた貫通孔)からピペットチップ134が挿入されている。この状態でピペットチップ134により液体注入部45内の液体63の吸引および液体注入部45内への液体63の注入を交互に繰り返すことで、流路44内において液体63が往復送液される。このとき、貯留部被覆フィルム43に通気孔47が設けられているため、液体注入部45内に液体63を注入すると、液体注入部45、流路44および貯留部46内の圧力が過度に高まることなく、液体63は流路44内を進行し、貯留部46内に到達する。また、液体注入部45内の液体63を吸引すると、液体注入部45、流路44および貯留部46内の圧力が過度に下がることなく、貯留部46内の液体63は流路44内を進行し、液体注入部45内に到達する。
次いで、図6Bに示されるように、液体注入部45に挿入されているピペットチップ134により液体注入部45内の液体63を吸引して、流路44内の液体63を除去する(工程S110)。この工程も、液体注入部被覆フィルム42とピペットチップ134との間に隙間が生じない状態で行われる。この工程により、液体注入部45、流路44および貯留部46内の液体63の大部分が除去されるが、ピペットチップ134の位置が固定されているため、液体注入部45の底や流路44の液体注入部45側の端部に液体63がわずかに残ってしまうことが多い。前述のとおり、このまま新しい液体の注入を行うと流路44内において気泡64が発生してしまうこととなる(図2Cおよび図2D参照)。このように流路44内において気泡64が発生してしまうと、流路44内において適切に反応を生じさせることができなくなったり、蛍光を適切に検出できなくなったりするおそれがある(図12および図13参照)。そこで、本実施の形態に係る送液方法では、この気泡64の発生を防ぐために、次工程でピペットチップの往復移動を行う。
次いで、図6Cに示されるように、ピペットチップ134をピペットチップ134の軸方向に沿って2回以上往復移動(上下移動)させる(工程S120)。また、この間に少なくとも1回は、ピペットチップ134により液体注入部45内の流体(残っている液体63および空気)を吸引する。この工程も、液体注入部被覆フィルム42とピペットチップ134との間に隙間が生じない状態で行われる。ピペットチップ134を往復移動させることで、液体注入部45内の圧力が変動して液体注入部45または流路44に残った液体63の位置が変わる。これにより、ピペットチップ134が届かなかった液体63も吸引できるようになる。また、図6Bの下の図に示されるように、流路44内に残った液体63により流路44が塞がれていたとしても、図6Cの下の図に示されるように、空気の通り道が形成される。その結果、液体注入部45および流路44内に残った液体63の量が減少するとともに、この後新しい液体の注入を行っても流路44内において気泡64が発生することがなくなる。
なお、本明細書において「ピペットチップの往復移動」とは、上方への移動および下方への移動を交互に繰り返すことを意味する。たとえば、往復移動を2回行う場合は、上方への移動、下方への移動、上方への移動および下方への移動をこの順で行うか、または下方への移動、上方への移動、下方への移動および上方への移動をこの順で行う。このように、ピペットチップを最初に移動させる方向は、上方であってもよいし下方であってもよい。また、往復移動前のピペットチップの位置と往復移動後のピペットチップの位置は、同じであってもよいし異なっていてもよい。
往復移動の回数は、2回以上であれば特に限定されないが、往復移動の効果を十分に発揮させる観点からは5回以上であることが好ましい。また、往復移動におけるピペットチップ134の上下方向の移動距離(液体注入部45の底に最も接近している時のピペットチップ134の先端の位置と、液体注入部45の底から最も離れている時のピペットチップ134の先端の位置との距離)は、特に限定されないが、往復移動の効果を十分に発揮させる観点からは200μm以上であることが好ましい。
また、ピペットチップ134の先端が液体注入部45の底に接触しないようにピペットチップ134を往復移動させてもよいし、ピペットチップ134の先端が液体注入部45の底に接触するようにピペットチップ134を往復移動させてもよい。後者の場合は、ピペットチップ134の先端と液体注入部45の底との間で接触と離間とが繰り返されるように、ピペットチップ134を往復移動させる。
液体注入部45内の流体の吸引回数は、1回であってもよいが、複数回であることが好ましく、往復移動の回数と同じ回数であることがより好ましい。また、ピペットチップ134の往復移動中における流体の吸引のタイミングは、特に限定されないが、液体注入部45および流路44内に残った液体63を除去する観点からは、ピペットチップ134が液体注入部45の底に最も接近しているときか、またはピペットチップ134を液体注入部45の底に向けて移動させている間であることが好ましい。また、液体注入部45内の流体の吸引を複数回行う場合、1回あたりの吸引量は、特に限定されないが、液体注入部45および流路44内に残った液体63を除去する観点からは、10μL以上であることが好ましい。
次いで、古い液体63を吸引したピペットチップ134を液体注入部45から取り出し、ピペットチップ134内の古い液体63を排出させる(工程S130)。そして、ピペットチップ134内に新しい液体63’を採取させた後、新しい液体63’を保持するピペットチップ134を液体注入部45に開口部(液体注入部被覆フィルム42に設けられた貫通孔)から挿入する(工程S140)。
次いで、図6Dに示されるように、液体注入部45に挿入されているピペットチップ134から液体注入部45内に液体63’を注入して、流路44内に液体63’を導入する(工程S150)。この工程も、液体注入部被覆フィルム42とピペットチップ134との間に隙間が生じない状態で行われる。前述のとおり、仮に流路44内に古い液体63が残っていたとしても、空気の通り道が形成されているため、ピペットチップ134の挿入および新しい液体63’の注入に伴う液体注入部45内の圧力の増大により古い液体63が貯留部46に向かって押し出されることはない。したがって、古い液体63はその場に留まり、流路44内を進行する新しい液体63’と合わさる。このため、古い液体63と新しい液体63’との間に気泡64が形成されることはない(図2Dと図6Dとを比較参照)。
以上の手順により、流路44内に気泡を発生させることなく、流路44内の液体63の除去および流路44内への液体63の導入を行うことができる。
なお、ピペットチップ134を往復移動させる工程(工程S120)において、ピペットチップ134の先端が液体注入部45の底に接触しないようにピペットチップ134を往復移動させる場合は、その前に行う液体注入部45内の液体63を吸引する工程(工程S110)において、液体注入部45の底の位置を検出しておくことが好ましい。たとえば、図7A〜Dに示されるように、液体注入部45内の液体63を吸引する工程(工程S110)において、ピペットチップ134を液体注入部45の底に少なくとも1回接触させることで液体注入部45の底の位置を検出してもよい。また、図8A〜Dに示されるように、液体注入部45内の液体63を吸引する工程(工程S110)において、ピペットチップ134を液体注入部45の底に向けて移動させながらピペットチップ134内の圧力変化を検出することで液体注入部45の底の位置を検出してもよい。具体的には、液体63を吸引しながらピペットチップ134の先端を液体注入部45の底に向けて移動させると、ピペットチップ134の先端が液体注入部45の底に接触する直前に負圧量が顕著に増大する。この負圧量の変化により、液体注入部45の底の位置を検出することができる。
図7A〜Dは、本実施の形態の変形例に係る送液方法を説明するための模式図である。この変形例では、図7Aに示されるように、液体63の吸引を開始する前に、ピペットチップ134の先端を液体注入部45の底に接触させる。この状態で液体63の吸引を開始する。その後、図7Bに示されるように、ピペットチップ134を液体注入部45の開口部に向けて移動させる。ピペットチップ134の先端が液体注入部45の底に接触している状態では、ピペットチップ134の内部の負圧量が大きいが、ピペットチップ134の先端が液体注入部45の底から離れると、ピペットチップ134の内部の負圧量が顕著に減少する。したがって、ピペットチップ134またはシリンジポンプ135内の圧力を測定することで、液体注入部45の底の位置を検出することができる。このように、本変形例に係る送液方法では、液体注入部45内の液体63を吸引する工程(工程S110)において、液体注入部45の底の位置の検出も同時に行う。図7Cに示されるように、ピペットチップ134を往復移動させる工程(工程S120)では、ピペットチップ134の先端が液体注入部45の底に接触しないようにピペットチップ134を往復移動させる。以後の工程(工程S130〜S150)は、すでに説明した工程と同じである(図7D参照)。
図8A〜Dは、本実施の形態の他の変形例に係る送液方法を説明するための模式図である。この変形例では、図8Aに示されるように、液体63を吸引しながら、ピペットチップ134の先端を液体注入部45の底に向けて移動させる。そして、ピペットチップ134内の負圧量が顕著に増大したときのピペットチップ134の先端の位置を液体注入部45の底の位置と判断する。この後、図8Bに示されるように、ピペットチップ134の先端の位置を液体注入部45の底から離した状態で液体63の吸引を行う(工程S110)。図8Cに示されるように、ピペットチップ134を往復移動させる工程(工程S120)では、ピペットチップ134の先端が液体注入部45の底に接触しないようにピペットチップ134を往復移動させる。以後の工程(工程S130〜S150)は、すでに説明した工程と同じである(図8D参照)。
また、ピペットチップ134を液体注入部45に挿入したままピペットチップ134内の古い液体63を新しい液体63’に交換する場合、または流路44からピペットチップ134内に吸引した古い液体63を再度流路44内に導入する場合は、工程S130および工程S140を省略してもよい。
(検出方法)
次に、SPFS装置100(検出装置、検出システム)を用いた被検出物質の検出方法について説明する。図9は、本実施形態の検出方法を行う際のSPFS装置100の動作手順の一例を示すフローチャートである。
まず、検出の準備をする(工程S10)。具体的には、SPSF装置100のチップホルダー142に前述の検出チップ10を設置する。また、検出チップ10の流路44内に保湿剤が存在する場合には、流路44内を洗浄して保湿剤を除去する。
次いで、検出チップ10の金属膜30(成膜面22)に対する励起光αの入射角を増強角に設定する(工程S20)。具体的には、制御部150が、搬送ステージ141を制御して、検出チップ10を設置位置から検出位置に移動させる。この後、制御部150が、光源制御部113および角度調整部112を制御して、光源ユニット111から励起光αを金属膜30(成膜面22)の所定の位置に照射しながら、金属膜30(成膜面22)に対する励起光αの入射角を走査する。このとき、制御部150は、位置切替え機構122を制御して、光学フィルター125を受光ユニット121の光路外に移動させる。これとともに、制御部150は、センサー制御部123を制御して、受光センサー127でプラズモン散乱光γを検出する。制御部150は、励起光αの入射角とプラズモン散乱光γの強度との関係を含むデータを得る。そして、制御部150は、データを解析して、プラズモン散乱光γの強度が最大となる入射角(増強角)を決定する。最後に、制御部150は、角度調整部112を制御して、金属膜30(成膜面22)に対する励起光αの入射角を増強角に設定する。
増強角は、プリズム20の素材および形状、金属膜30の厚み、流路44内の液体の屈折率などにより決まるが、流路44内の液体の種類および量、プリズム20の形状誤差などの各種要因によりわずかに変動する。このため、検出を行うたびに増強角を決定することが好ましい。増強角は、0.1°程度のオーダーで決定される。
次いで、検出チップ10の流路44に前述の送液方法により検体を提供し、検出チップ10内の金属膜30上に固定された第1の捕捉体に、検体中に含まれる被検出物質を特異的に結合させる(1次反応(工程S30))。なお、被検出物質を結合させた後、流路44内に前述の送液方法により緩衝液などを提供し、流路44内を洗浄して、遊離の被検出物質などを除去する。
検体および被検出物質の種類は、特に限定されない。検体の例には、血液や血清、血漿、尿、鼻孔液、唾液、精液などの体液およびその希釈液が含まれる。またこれらの検体に含まれる被検出物質の例には、核酸(DNAやRNAなど)、タンパク質(ポリペプチドやオリゴペプチドなど)、アミノ酸、糖質、脂質およびこれらの修飾分子が含まれる。
次いで、光学ブランク値を測定する(工程S40)。具体的には、制御部150が、搬送ステージ141を制御して、検出チップ10を設置位置から検出位置に移動させる。この後、制御部150が、光源制御部113を制御して、金属膜30(成膜面22)に向けて光源ユニット111から、増強角で励起光αを出射させる。これと同時に、制御部150は、センサー制御部123を制御して、受光センサー127で光の光量を検出し、これをブランク値として記録する。
次いで、金属膜30上の第1の捕捉体に結合した被検出物質に、蛍光物質で標識された第2の捕捉体を結合させる(2次反応(工程S50))。具体的には、制御部150が、搬送ステージ141を制御して、検出チップ10を検出位置から送液位置に移動させる。この後、制御部150は、ピペット制御部133を制御して、第2の捕捉体を含む標識液を前述の送液方法により流路44内に提供する。ここで、第2の捕捉体は、被検出物質の、第1の捕捉体が特異的に結合する部位とは異なる部位に、特異的に結合する物質である。また、第2の捕捉体には、蛍光物質が結合している。したがって、標識液を流路44に提供すると、第1の捕捉体に結合している被検出物質に第2の捕捉体が特異的に結合し、被検出物質が、間接的に蛍光物質で標識される。なお、被検出物質を蛍光物質で標識した後、流路44内に前述の送液方法により緩衝液などを提供し、流路44内を洗浄して、遊離の第2の捕捉体などを除去する。
第2の捕捉体は、第1の捕捉体が被検出物質に特異的に結合する部位とは異なる部位に、特異的に結合する物質であればよく、被検出物質に特異的な生体分子であってもよく、その断片などであってもよい。また、第2の捕捉体は、1分子からなるものであってもよく、2以上の分子が結合した複合体であってもよい。
次いで、流路44の底面(金属膜30)上に、蛍光物質で標識された被検出物質が第1の捕捉体を介して配置された状態で、プリズム20を通して励起光αを増強角で金属膜30(成膜面22)に照射する。そして、被検出物質を標識する蛍光物質からの蛍光値を測定する(工程S60)。具体的には、制御部150が、搬送ステージ141を制御して、検出チップ10を送液位置から検出位置に移動させる。この後、制御部150は、光源制御部113を制御して、金属膜30(成膜面22)に向けて光源ユニット111から励起光αを出射させる。これと同時に、制御部150は、センサー制御部123を制御して、受光センサー127で蛍光βと同じ波長の光の光量を検出する。
最後に、被検出物質の存在または量を算出する(工程S70)。蛍光値は、主として、被検出物質を標識する蛍光物質に由来する蛍光成分(シグナル値)と、光学ブランク値とを含む。したがって、制御部150は、工程S60で得られた蛍光値から工程S40で得られた光学ブランク値を引くことで、被検出物質の量に相関するシグナル値を算出することができる。そして、あらかじめ作成しておいた検量線により、被検出物質の量や濃度などに換算する。
以上の手順により、検体に含まれる被検出物質の存在または量を検出することができる。
(効果)
以上のように、本実施の形態の送液方法によれば、流路内に気泡を発生させることなく、流路内の液体の除去および流路内への液体の注入を行うことができる。したがって、本実施の形態の送液方法を利用する検出装置(検出システム)および検出方法では、気泡によるシグナルの低下による影響を抑制して、被検出物質を高精度に検出することができる。
なお、上記実施の形態では、SPFSを利用した検出装置および検出方法について説明したが、検出方法や検出装置は、これらに限定されない。本発明は、ELISA法やRIfS法、SPR法、QCMなどを利用した検出装置および検出方法にも適用できる。
以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。
以下の実施例1〜8では、図4に示される構成の検出チップを用いて、流路内からの液体の除去およびピペットチップの往復移動を行った後に、液体注入部および流路内に残った液体の量を測定した。また、その後に流路内に液体を導入して、流路内に気泡が発生したか否かを観察した。同様に、以下の比較例1,2では、同じ検出チップを用いて、流路内からの液体の除去のみを行った後に、液体注入部および流路内に残った液体の量を測定した。また、その後に流路内に液体を導入して、流路内に気泡が発生したか否かを観察した。
(実施例1)
検出チップの液体注入部の底面から200μmの位置にピペットチップの先端が位置するようにピペットチップを位置決めした状態で、液体注入部内の液体を500μL/分の速度で200μL吸引して流路内の液体を除去した(図6Aおよび図6B参照)。
次いで、ピペットチップを下方に200μm移動させた後、上方に200μm移動させる工程を5回繰り返した(図6C参照)。プログラム上では、ピペットチップを400μm移動させて液体注入部の底面の下200μmの位置まで移動するように設定されているが、実際はピペットチップは200μm下方に移動すると液体注入部の底面にぶつかるため、それ以上下方に移動することはできない。このようにプログラムを設定することで、ピペットチップの先端が液体注入部の底面に確実に接触するように実験を行った。5回の往復移動の間、液体注入部の開口部(液体注入部被覆フィルムに設けられた貫通孔)とピペットとの間に隙間が生じることはなかった。また、ピペットチップを下方に移動させるたびに、液体注入部内の流体を毎回15μL吸引した(移動と吸引が同じタイミング)。
この後、液体注入部および流路内に残った液体の量を測定したところ、残液量は1.5〜3.0μLであった。また、流路内に液体を導入して、流路内に気泡が発生するか否かを観察したところ、流路内に気泡は1つも発生しなかった(表1参照)。
(実施例2)
5回の往復移動の間、ピペットチップを下方に移動させた後に、液体注入部内の流体を毎回15μL吸引した(移動と吸引が異なるタイミング)点を除いては、実施例1と同様の手順で流路内の液体を除去した。
この後、液体注入部および流路内に残った液体の量を測定したところ、残液量は1.5〜3.2μLであった。また、流路内に液体を導入して、流路内に気泡が発生するか否かを観察したところ、流路内に気泡は1つも発生しなかった(表1参照)。
(実施例3)
ピペットチップの往復移動の回数が2回である点を除いては、実施例2と同様の手順で流路内の液体を除去した。
この後、液体注入部および流路内に残った液体の量を測定したところ、残液量は1.7〜3.8μLであった。また、流路内に液体を導入して、流路内に気泡が発生するか否かを観察したところ、流路内に気泡は1つも発生しなかった(表1参照)。
(実施例4)
ピペットチップの往復移動の回数が3回である点を除いては、実施例2と同様の手順で流路内の液体を除去した。
この後、液体注入部および流路内に残った液体の量を測定したところ、残液量は1.7〜3.5μLであった。また、流路内に液体を導入して、流路内に気泡が発生するか否かを観察したところ、流路内に気泡は1つも発生しなかった(表1参照)。
(実施例5)
ピペットチップの往復移動の回数が4回である点を除いては、実施例2と同様の手順で流路内の液体を除去した。
この後、液体注入部および流路内に残った液体の量を測定したところ、残液量は1.6〜3.2μLであった。また、流路内に液体を導入して、流路内に気泡が発生するか否かを観察したところ、流路内に気泡は1つも発生しなかった(表1参照)。
(実施例6)
実施例1と同様の手順で、流路内の液体を除去した(図6Aおよび図6B参照)。次いで、1回ピペットチップを上方に300μm移動させた。次いで、ピペットチップを下方に400μm移動させた後、上方に400μm移動させる工程を5回繰り返した(図6C参照)。5回の往復移動の間、ピペットチップは液体注入部内の底面に接触しなかった。また、5回の往復移動の間、液体注入部の開口部(液体注入部被覆フィルムに設けられた貫通孔)とピペットとの間に隙間が生じることはなかった。実施例2と同様に、5回の往復移動の間、ピペットチップを下方に移動させた後に、液体注入部内の流体を毎回15μL吸引した(移動と吸引が異なるタイミング)。
この後、液体注入部および流路内に残った液体の量を測定したところ、残液量は1.7〜3.4μLであった。また、流路内に液体を導入して、流路内に気泡が発生するか否かを観察したところ、流路内に気泡は1つも発生しなかった(表1参照)。
(実施例7)
検出チップの液体注入部の底面にピペットチップの先端が接触するようにピペットチップを位置決めした状態で、シリンジポンプを4800μL/分の速度で80μL吸引してピペットチップ内部を負圧にした(図7A参照)。プログラム上では、ピペットチップの先端が液体注入部の底面の下100μmとなるように設定されているが、実際はピペットチップは液体注入部の底面より下方に移動することはできない。このようにプログラムを設定することで、ピペットチップの先端が液体注入部の底面に確実に接触するように実験を行った。
次いで、ピペットチップ内の負圧が解消するまでピペットチップを上方に移動させて、液体注入部の底面の位置を検出した。その後、ピペットチップの位置はそのままの状態で、液体注入部内の液体を500μL/分の速度で120μL吸引して流路内の液体を除去した(図7B参照)。図10は、ピペットチップ内の圧力の経時的変化を示すグラフである。横軸は時間を示し、縦軸は大気圧に対する差圧を示している。このグラフから、ピペットチップの先端が液体注入部の底面から離れると(4〜5秒の時点)、ピペットチップ内の負圧が解消することがわかる。
次いで、ピペットチップを上方に400μm移動させた後、下方に400μm移動させる工程を5回繰り返した(図7C参照)。5回の往復移動の間、ピペットチップは液体注入部内の底面に接触しなかった。また、5回の往復移動の間、液体注入部の開口部(液体注入部被覆フィルムに設けられた貫通孔)とピペットとの間に隙間が生じることはなかった。実施例1と同様に、ピペットチップを下方に移動させるたびに、液体注入部内の流体を毎回15μL吸引した(移動と吸引が同じタイミング)。
この後、液体注入部および流路内に残った液体の量を測定したところ、残液量は1.5〜3.0μLであった。また、流路内に液体を導入して、流路内に気泡が発生するか否かを観察したところ、流路内に気泡は1つも発生しなかった(表1参照)。
(実施例8)
検出チップの液体注入部の底面から約500μmの位置にピペットチップの先端が位置するようにピペットチップを位置決めした状態で、液体注入部内の液体を500μL/分の速度で80μL吸引しながらピペットチップを8mm/秒の速度で50μmずつ段階的に下方に移動させた(図8A参照)。そして、ピペットチップ内の負圧が顕著に増大するまでピペットチップを下方に移動させて、液体注入部の底面の位置を検出した。その後、ピペットチップの位置を上方に100μm移動させた後、液体注入部内の液体を500μL/分の速度で120μL吸引して流路内の液体を除去した(図8B参照)。図11は、ピペットチップ内の圧力の経時的変化を示すグラフである。横軸は時間を示し、縦軸は大気圧に対する差圧を示している。このグラフから、ピペットチップの先端が液体注入部の底面に近づくと(15〜17秒の時点)、ピペットチップ内の負圧が顕著に増大することがわかる。
次いで、ピペットチップを上方に400μm移動させた後、下方に400μm移動させる工程を5回繰り返した(図8C参照)。5回の往復移動の間、ピペットチップは液体注入部内の底面に接触しなかった。また、5回の往復移動の間、液体注入部の開口部(液体注入部被覆フィルムに設けられた貫通孔)とピペットとの間に隙間が生じることはなかった。実施例1と同様に、ピペットチップを下方に移動させるたびに、液体注入部内の流体を毎回15μL吸引した(移動と吸引が同じタイミング)。
この後、液体注入部および流路内に残った液体の量を測定したところ、残液量は1.5〜3.0μLであった。また、流路内に液体を導入して、流路内に気泡が発生するか否かを観察したところ、流路内に気泡は1つも発生しなかった(表1参照)。
(比較例1)
5回の往復移動を行わなかった点を除いては、実施例1と同様の手順で流路内の液体を除去した。
この後、液体注入部および流路内に残った液体の量を測定したところ、残液量は3.5〜6.0μLであった。また、流路内に液体を導入して、流路内に気泡が発生するか否かを観察したところ、流路内に気泡が発生した(表1参照)。
(比較例2)
ピペットチップの往復移動の回数が1回である点を除いては、実施例1と同様の手順で流路内の液体を除去した。
この後、液体注入部および流路内に残った液体の量を測定したところ、残液量は2.5〜4.8μLであった。また、流路内に液体を導入して、流路内に気泡が発生するか否かを観察したところ、流路内に気泡が発生した(表1参照)。
Figure 0006642592
これらの実施例および比較例の結果から、液体注入部および流路内の液体を吸引した後に、ピペットチップの往復移動を2回以上行いながら吸引をさらに行うことで、液体注入部および流路内の残液量を低減すること、および流路内における気泡の発生を抑制できることがわかる。また、ピペットチップの往復移動の際に、ピペットチップを下方に移動させながら吸引を行うことで、残液量をより低減できることもわかる(実施例1、実施例7および実施例8)。
図12および図13は、比較例1の手順で送液を行ってSPFSにより被検出物質を検出したときの、シグナル値への気泡の影響を示すグラフである。図12は、1次反応のときの流路の測定領域(第1の捕捉体が固定化されている領域)における気泡の面積と、シグナル値の変化との関係を示すグラフである。点線は、線形近似曲線を示している。図13は、シグナル測定時における流路の測定領域における気泡の面積と、シグナル値の変化との関係を示すグラフである。点線は、多項式近似曲線を示している。図12に示されるグラフから、流路内に気泡が発生すると反応を適切に行うことができず、シグナル値が低下してしまうことがわかる。また、図13に示されるグラフから、流路内に気泡が発生すると蛍光を適切に検出することができず、シグナル値が低下してしまうことがわかる。
本発明に係る送液方法、検出システムおよび検出装置によれば、流路内に気泡を発生させることなく、流路内に液体を導入することができる。したがって、本発明に係る送液方法、検出システムおよび検出装置は、各種被検出物質を検出するための検出装置や、検出装置に検体などを送液する方法などとして、非常に有用である。
10 検出チップ
20 プリズム
21 入射面
22 成膜面
23 出射面
30 金属膜
40 流路蓋
41 枠体
42 液体注入部被覆フィルム
43 貯留部被覆フィルム
44 流路
45 液体注入部
46 貯留部
47 通気孔
50 接着層
60 第1の捕捉体
61 被検出物質
62 第2の捕捉体
63,63’ 液体
64 気泡
100 SPFS装置
110 光照射ユニット
111 光源ユニット
112 角度調整機構
113 光源制御部
120 蛍光検出ユニット
121 受光ユニット
122 位置切り替え機構
123 センサー制御部
124 第1レンズ
125 光学フィルター
126 第2レンズ
127 受光センサー
130 送液ユニット
131 液体チップ
132 ピペット
133 ピペット制御部
134 ピペットチップ
135 シリンジポンプ
140 搬送ユニット
141 搬送ステージ
142 チップホルダー
150 制御部
α 励起光
β 蛍光
γ プラズモン散乱光

Claims (18)

  1. 流路と、前記流路の一端に接続され、かつ開口部を有する液体注入部とを有する検出用チップの前記液体注入部に前記開口部から挿入されたピペットチップにより、前記開口部と前記ピペットチップとの間に隙間が無い状態で前記液体注入部内の液体を吸引して、前記流路内の液体を除去する第1工程と、
    前記第1工程の後に、前記開口部と前記ピペットチップとの間に隙間が生じないように、前記ピペットチップを前記ピペットチップの軸方向に沿って2回以上往復移動させるとともに、その間に少なくとも1回は前記ピペットチップにより前記液体注入部内の流体を吸引する第2工程と、
    前記第2工程の後に、前記開口部と前記ピペットチップとの間に隙間が無い状態で、前記ピペットチップから前記液体注入部内に液体を注入して、前記流路内に液体を導入する第3工程と、
    を有する、送液方法。
  2. 前記第2工程において、前記ピペットチップが前記液体注入部の底に最も接近しているときに、前記ピペットチップにより前記液体注入部内の流体を吸引する、請求項1に記載の送液方法。
  3. 前記第2工程において、前記ピペットチップを前記液体注入部の底に向けて移動させている間に、前記ピペットチップにより前記液体注入部内の流体を吸引する、請求項1に記載の送液方法。
  4. 前記第2工程において、前記ピペットチップを前記液体注入部の底に接触するように往復移動させる、請求項1〜3のいずれか一項に記載の送液方法。
  5. 前記第1工程において、前記ピペットチップを前記液体注入部の底に少なくとも1回接触させることで前記液体注入部の底の位置を検出し、
    前記第2工程において、前記ピペットチップを前記液体注入部の底に接触しないように往復移動させる、請求項1〜3のいずれか一項に記載の送液方法。
  6. 前記第1工程において、前記ピペットチップを前記軸方向に沿って移動させながら前記ピペットチップ内の圧力変化を検出することで前記液体注入部の底の位置を検出し、
    前記第2工程において、前記ピペットチップを前記液体注入部の底に接触しないように往復移動させる、請求項1〜3のいずれか一項に記載の送液方法。
  7. 前記第2工程において、前記ピペットチップを5回以上往復移動させる、請求項1〜6のいずれか一項に記載の送液方法。
  8. 前記第2工程において、前記ピペットチップにより前記液体注入部内の流体を複数回吸引し、
    前記第2工程において、前記ピペットチップによる1回あたりの吸引量は、10μL以上である、
    請求項1〜7のいずれか一項に記載の送液方法。
  9. 前記第2工程において、前記液体注入部の底に最も接近している時の前記ピペットチップの先端の位置と、前記液体注入部の底から最も離れている時の前記ピペットチップの先端の位置との距離は、200μm以上である、請求項1〜8のいずれか一項に記載の送液方法。
  10. 前記開口部は、前記開口部から前記液体注入部に前記ピペットチップが挿入されている状態においては、前記開口部と前記ピペットチップとの間に隙間が生じないように構成されている、請求項1〜9のいずれか一項に記載の送液方法。
  11. 前記開口部は、前記ピペットチップが挿入されている状態においては、前記ピペットチップの外周に隙間なく密着する密着部材をさらに有し、
    前記流路内に液体を導入する、または前記流路内から液体を除去する場合、前記ピペットチップは、前記密着部材を貫通して前記液体注入部に挿入される、
    請求項10に記載の送液方法。
  12. 前記密着部材は、弾性フィルムである、請求項11に記載の送液方法。
  13. 流路と、前記流路の一端に接続され、かつ開口部を有する液体注入部とを有する検出用チップと、
    その先端にピペットチップを装着された、前記液体注入部内に液体を注入、および前記液体注入部から液体を吸引するためのピペットと、
    前記ピペットを制御するためのピペット制御部と、
    を有し、
    前記流路内に液体を導入する場合、前記ピペット制御部は、前記開口部と前記ピペットチップとの間に隙間が生じないように前記液体注入部に前記ピペットチップが前記開口部から挿入されている状態で、前記ピペットに前記液体注入部内に液体を注入させ、
    前記流路内から液体を除去する場合、前記ピペット制御部は、前記開口部と前記ピペットチップとの間に隙間が生じないように前記液体注入部に前記ピペットチップが前記開口部から挿入されている状態で、前記ピペットに前記液体注入部内の液体を吸引させ、次いで、前記開口部と前記ピペットチップとの間に隙間が生じないように、前記ピペットに前記ピペットチップを前記ピペットチップの軸方向に沿って2回以上往復移動させるとともに、その間に少なくとも1回は前記液体注入部内の流体を吸引させ、
    前記開口部は、前記開口部から前記液体注入部に前記ピペットチップが挿入されている状態においては、前記開口部と前記ピペットチップとの間に隙間が生じないように構成されている、
    検出システム。
  14. 前記開口部は、前記ピペットチップが挿入されている状態においては、前記ピペットチップの外周に隙間なく密着する密着部材をさらに有し、
    前記流路内に液体を導入する、または前記流路内から液体を除去する場合、前記ピペットチップは、前記密着部材を貫通して前記液体注入部に挿入される、
    請求項13に記載の検出システム。
  15. 前記密着部材は、弾性フィルムである、請求項14に記載の検出システム。
  16. 流路と、前記流路の一端に接続され、かつ開口部を有する液体注入部とを有する検出用チップを保持するためのチップホルダーと、
    その先端にピペットチップを装着することが可能であり、前記チップホルダーに保持された前記検出用チップの前記液体注入部内に液体を注入、および前記液体注入部から液体を吸引するためのピペットと、
    前記ピペットを制御するためのピペット制御部と、
    を有し、
    前記流路内に液体を導入する場合、前記ピペット制御部は、前記開口部と前記ピペットチップとの間に隙間が生じないように前記液体注入部に前記ピペットチップが前記開口部から挿入されている状態で、前記ピペットに前記液体注入部内に液体を注入させ、
    前記流路内から液体を除去する場合、前記ピペット制御部は、前記開口部と前記ピペットチップとの間に隙間が生じないように前記液体注入部に前記ピペットチップが前記開口部から挿入されている状態で、前記ピペットに前記液体注入部内の液体を吸引させ、次いで、前記開口部と前記ピペットチップとの間に隙間が生じないように、前記ピペットに前記ピペットチップを前記ピペットチップの軸方向に沿って2回以上往復移動させるとともに、その間に少なくとも1回は前記液体注入部内の流体を吸引させ、
    前記開口部は、前記開口部から前記液体注入部に前記ピペットチップが挿入されている状態においては、前記開口部と前記ピペットチップとの間に隙間が生じないように構成されている、
    検出装置。
  17. 前記開口部は、前記ピペットチップが挿入されている状態においては、前記ピペットチップの外周に隙間なく密着する密着部材をさらに有し、
    前記流路内に液体を導入する、または前記流路内から液体を除去する場合、前記ピペットチップは、前記密着部材を貫通して前記液体注入部に挿入される、
    請求項16に記載の検出装置。
  18. 前記密着部材は、弾性フィルムである、請求項17に記載の検出装置。
JP2017563479A 2016-01-28 2016-01-28 送液方法、ならびにこれを行う検出システムおよび検出装置 Active JP6642592B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/052542 WO2017130359A1 (ja) 2016-01-28 2016-01-28 送液方法、ならびにこれを行う検出システムおよび検出装置

Publications (2)

Publication Number Publication Date
JPWO2017130359A1 JPWO2017130359A1 (ja) 2018-11-29
JP6642592B2 true JP6642592B2 (ja) 2020-02-05

Family

ID=59397624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017563479A Active JP6642592B2 (ja) 2016-01-28 2016-01-28 送液方法、ならびにこれを行う検出システムおよび検出装置

Country Status (4)

Country Link
US (1) US10921340B2 (ja)
EP (1) EP3410125B1 (ja)
JP (1) JP6642592B2 (ja)
WO (1) WO2017130359A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7278199B2 (ja) * 2019-11-22 2023-05-19 株式会社日立ハイテク 自動分析装置
CN115200667B (zh) * 2022-09-15 2022-12-06 深圳赛桥生物创新技术有限公司 进出样检测方法、装置、系统及存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2725917B2 (ja) * 1991-10-04 1998-03-11 アロカ株式会社 血液試料の分注方法
JP2599511Y2 (ja) * 1993-08-09 1999-09-13 日本分光株式会社 自動試料吸引器用ニードル
US5840573A (en) * 1994-02-01 1998-11-24 Fields; Robert E. Molecular analyzer and method of use
US20030157503A1 (en) * 2003-04-04 2003-08-21 Mcgarry Mark W Compositions and methods for performing biological reactions
US7479391B2 (en) * 2004-12-10 2009-01-20 Tecan Trading Ag Pipetting apparatus with integrated liquid level and/or gas bubble detection
SE528638C2 (sv) * 2005-04-08 2007-01-09 Boule Medical Ab Anordning för fyllning av en enhet för bestämning av en provvolym
JP4657803B2 (ja) * 2005-05-19 2011-03-23 富士フイルム株式会社 送液システム及びその送液方法並びに流路ユニット。
JP5640980B2 (ja) 2009-09-07 2014-12-17 コニカミノルタ株式会社 マイクロチップ送液システム、検体検出装置、及びマイクロチップ送液システムの送液方法
JP5545233B2 (ja) * 2011-01-31 2014-07-09 コニカミノルタ株式会社 検査システム
US9364826B2 (en) * 2011-01-31 2016-06-14 Konica Minolta, Inc Test chip and test chip unit incorporated with test chip
WO2012153723A1 (ja) * 2011-05-09 2012-11-15 コニカミノルタホールディングス株式会社 マイクロチップ送液システム
EP2722663B1 (en) * 2011-06-14 2019-05-01 Konica Minolta, Inc. Sensor chip used in specimen detection device and specimen detection device using sensor chip
CN103975244A (zh) * 2011-11-25 2014-08-06 凸版印刷株式会社 分注装置使用的移液管吸头组件及使用其对卡盒薄膜开孔的开孔方法
EP3064943B1 (en) * 2013-10-31 2019-01-09 Konica Minolta, Inc. Antigen detection method using sandwich immunoassay method
WO2017044888A1 (en) * 2015-09-09 2017-03-16 Theranos, Inc. Methods and devices for sample collection and sample separation

Also Published As

Publication number Publication date
US20190033335A1 (en) 2019-01-31
EP3410125A4 (en) 2018-12-05
JPWO2017130359A1 (ja) 2018-11-29
WO2017130359A1 (ja) 2017-08-03
EP3410125B1 (en) 2019-12-18
US10921340B2 (en) 2021-02-16
EP3410125A1 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6337905B2 (ja) 表面プラズモン共鳴蛍光分析方法および表面プラズモン共鳴蛍光分析装置
US10495576B2 (en) Surface-plasmon enhanced fluorescence measurement method, surface-plasmon enhanced fluorescence measurement device, and analytical chip
WO2017082089A1 (ja) 表面プラズモン共鳴蛍光分析方法および表面プラズモン共鳴蛍光分析装置
JP6638721B2 (ja) 検出方法および反応装置
JP6801656B2 (ja) 検出装置および検出方法
JP6648764B2 (ja) 反応方法
JP6690655B2 (ja) 送液方法、ならびにこれを行う検出システムおよび検出装置
WO2016132945A1 (ja) 反応方法および反応装置
JP6642592B2 (ja) 送液方法、ならびにこれを行う検出システムおよび検出装置
JP6747455B2 (ja) 検出方法、検出システム、および検出装置
WO2017086128A1 (ja) 検出方法、検出装置および検査用キット
JP6922907B2 (ja) 反応方法、ならびにこれを行う反応システムおよび反応装置
JP6885458B2 (ja) 検体検出システム用センサーチップ
JPWO2016208421A1 (ja) 測定方法、並びにこれに用いる測定チップ、及び測定用キット
JP2016176845A (ja) 測定方法および測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R150 Certificate of patent or registration of utility model

Ref document number: 6642592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250