JPWO2016121152A1 - 酸化物半導体膜および半導体デバイス - Google Patents

酸化物半導体膜および半導体デバイス Download PDF

Info

Publication number
JPWO2016121152A1
JPWO2016121152A1 JP2016552545A JP2016552545A JPWO2016121152A1 JP WO2016121152 A1 JPWO2016121152 A1 JP WO2016121152A1 JP 2016552545 A JP2016552545 A JP 2016552545A JP 2016552545 A JP2016552545 A JP 2016552545A JP WO2016121152 A1 JPWO2016121152 A1 JP WO2016121152A1
Authority
JP
Japan
Prior art keywords
oxide semiconductor
semiconductor film
film
oxide
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016552545A
Other languages
English (en)
Other versions
JP6551414B2 (ja
Inventor
宮永 美紀
美紀 宮永
研一 綿谷
研一 綿谷
英章 粟田
英章 粟田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of JPWO2016121152A1 publication Critical patent/JPWO2016121152A1/ja
Application granted granted Critical
Publication of JP6551414B2 publication Critical patent/JP6551414B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/006Compounds containing, besides tungsten, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/465Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/467Chemical or electrical treatment, e.g. electrolytic etching using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/477Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/263Amorphous materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Thin Film Transistor (AREA)

Abstract

ナノ結晶酸化物またはアモルファス酸化物で構成される酸化物半導体膜であって、インジウム、タングステンおよび亜鉛を含有し、酸化物半導体膜中のインジウム、タングステンおよび亜鉛の合計に対するタングステンの含有率が0.5原子%より大きく、5原子%以下であり、電気抵抗率が10-1Ωcm以上である酸化物半導体膜(14)、並びにこれを含む半導体デバイス(10)が提供される。

Description

本発明は、酸化物半導体膜、およびこれを含む半導体デバイスに関する。
従来、液晶表示装置、薄膜EL(エレクトロルミネッセンス)表示装置、有機EL表示装置等において、半導体デバイスであるTFT(薄膜トランジスタ)のチャネル層として機能する半導体膜として、アモルファスシリコン(a−Si)膜が主に使用されてきた。
近年では、a−Siに代わる材料として、インジウム(In)、ガリウム(Ga)および亜鉛(Zn)を含有する複合酸化物、すなわちIn−Ga−Zn系複合酸化物(「IGZO」とも呼ばれる。)が注目されている。IGZO系酸化物半導体はa−Siと比較して、より高いキャリア移動度が期待できる。
国際公開第2005/088726号(特許文献1)は、電子キャリア濃度が1018/cm3未満であるアモルファス酸化物によれば、これをTFTのチャネル層に用いた場合、0.5〜10cm2/Vs程度の電界効果移動度が得られることを開示する。
特開2008−192721号公報(特許文献2)は、酸化物半導体膜をスパッタ法等により形成する際に好適に用いられる材料として、主としてインジウムからなりタングステンを含む酸化物焼結体を開示する。
国際公開第2005/088726号 特開2008−192721号公報 特許第5172918号
カラー液晶ディスプレイ(堀 浩雄,鈴木 幸治,共立出版株式会社,発行年月:2001年6月) Tetsufumi Kawamura他,"Low-Voltage Operating Amorphous Oxide TFTs",IDW2009 AMD8-1,P1689-1692
特許文献1に記載のアモルファス酸化物は、電界効果移動度が高くても10cm2/Vs程度である点において課題を有する。
また、特許文献2に記載の酸化物焼結体を用いて作製した酸化物半導体膜をチャネル層として含むTFTは、閾値電圧Vthが4Vよりも大きいという問題がある。上記の非特許文献1によれば、これまでディスプレイ用途に用いられてきたTFTの半導体材料であるa−Siにおいては、Vthは2〜4Vが一般的である。半導体材料を酸化物半導体へ代替させた場合もこれと同じ範囲のVthにて動作可能であることが、デバイス設計の簡便性から望ましい。
本発明は、良好な閾値電圧および電界効果移動度を示す半導体デバイスを与えることができる酸化物半導体膜、ならびにこれを含む半導体デバイスの提供を目的とする。
本発明の一態様に係る酸化物半導体膜は、ナノ結晶酸化物またはアモルファス酸化物で構成される酸化物半導体膜であって、インジウム、タングステンおよび亜鉛を含有し、酸化物半導体膜中のインジウム、タングステンおよび亜鉛の合計に対するタングステンの含有率が0.5原子%より大きく、5原子%以下であり、電気抵抗率が10-1Ωcm以上である。
本発明の別の態様に係る半導体デバイスは、上記態様の酸化物半導体膜を含む。
上記によれば、良好な閾値電圧および電界効果移動度を示す半導体デバイスを与えることができる酸化物半導体膜、ならびにこれを含む半導体デバイスを提供できる。
本発明の一態様に係る半導体デバイスの一例を示す概略図であり、(A)は概略平面図を示し、(B)は(A)に示されるIB−IB線における概略断面図を示す。 本発明の一態様に係る半導体デバイスの他の一例を示す概略断面図である。 本発明の一態様に係る半導体デバイスのさらに他の一例を示す概略断面図である。 図1に示される半導体デバイスの製造方法の一例を示す概略断面図である。 図2に示される半導体デバイスの製造方法の一例を示す概略断面図である。
<本発明の実施形態の説明>
まず、本発明の実施態様を列記して説明する。
[1]本発明の一実施形態に係る酸化物半導体膜は、ナノ結晶酸化物またはアモルファス酸化物で構成される酸化物半導体膜であり、インジウム、タングステンおよび亜鉛を含有し、酸化物半導体膜中のインジウム、タングステンおよび亜鉛の合計に対するタングステンの含有率が0.5原子%より大きく、5原子%以下であり、電気抵抗率が10-1Ωcm以上である。本実施形態に係る酸化物半導体膜によれば、これをチャネル層として含む半導体デバイス(たとえばTFT)において、閾値電圧Vthを0〜4V(さらには2〜4V)にすることができるとともに、高い電界効果移動度を実現することができる。また、本実施形態に係る酸化物半導体膜によれば、これをチャネル層として含む半導体デバイス(たとえばTFT)において、そのOFF電流を小さくしながら、上記の良好な閾値電圧Vthおよび電界効果移動度を実現することも可能になる。OFF電流が小さくなることにより、低い駆動電圧でOFF電流に対するON電流の比を高くすることができる。
[2]本実施形態に係る酸化物半導体膜は、膜厚が2nm以上25nm以下であることができる。膜厚をこの範囲内とすることは、電界効果移動度の向上、閾値電圧Vthの低減、および/またはOFF電流の低減に有利である。
[3]本実施形態に係る酸化物半導体膜において、該酸化物半導体膜中のタングステンに対する亜鉛の原子比(Zn/W比)は、0.5以上30以下であることができる。Zn/W比をこの範囲内とすることは、電界効果移動度の向上、閾値電圧Vthの低減、および/またはOFF電流の低減に有利である。
[4]本実施形態に係る酸化物半導体膜は、スパッタリング法により成膜する工程を含む製造方法によって得ることができる。このことは、酸化物半導体膜をチャネル層として含む半導体デバイス(たとえばTFT)において、閾値電圧Vthを0〜4V(さらには2〜4V)にするとともに、高い電界効果移動度を実現するうえで有利である。また、酸化物半導体膜をチャネル層として含む半導体デバイス(たとえばTFT)において、そのOFF電流を小さくしながら、上記の良好な閾値電圧Vthおよび電界効果移動度を実現するうえで有利である。
[5]本実施形態に係る酸化物半導体膜は、スパッタリング法による成膜後に加熱処理するか、またはスパッタリング法により成膜を行いながら加熱処理することによって得ることができる。このことは、酸化物半導体膜をチャネル層として含む半導体デバイス(たとえばTFT)において、閾値電圧Vthを0〜4V(さらには2〜4V)にするとともに、高い電界効果移動度を実現するうえで有利である。また、酸化物半導体膜をチャネル層として含む半導体デバイス(たとえばTFT)において、そのOFF電流を小さくしながら、上記の良好な閾値電圧Vthおよび電界効果移動度を実現するうえで有利である。
[6]本発明の別の実施形態に係る半導体デバイスは、上記実施形態に係る酸化物半導体膜を含む。本実施形態の半導体デバイスは、上記実施形態に係る酸化物半導体膜を含むため、閾値電圧Vthを0〜4V(さらには2〜4V)にすることができるとともに、高い電界効果移動度を実現することができる。また、本実施形態の半導体デバイスにおいて、そのOFF電流を小さくしながら、上記の良好な閾値電圧Vthおよび電界効果移動度を実現することも可能になる。半導体デバイスとは、特に制限はないが、上記実施形態に係る酸化物半導体膜をチャネル層として含むTFT(薄膜トランジスタ)が好適な例である。
[7]本実施形態に係る半導体デバイスは、酸化物半導体膜の少なくとも一部と接して配置される層をさらに含むことができる。この場合において当該層は、ナノ結晶層およびアモルファス層の少なくともいずれか1つであることができる。当該層をさらに含むことは、半導体デバイスにおいて、閾値電圧Vthを0〜4V(さらには2〜4V)にするとともに、高い電界効果移動度を実現するうえで有利である。また、半導体デバイスにおいて、そのOFF電流を小さくしながら、上記の良好な閾値電圧Vthおよび電界効果移動度を実現するうえで有利である。
[8]本実施形態に係る半導体デバイスにおいて、酸化物半導体膜の少なくとも一部と接して配置される上記層は、シリコンおよびアルミニウムの少なくともいずれか1つを含む酸化物層であることができる。当該層がシリコンおよびアルミニウムの少なくともいずれか1つを含む酸化物層であることは、半導体デバイスにおいて、閾値電圧Vthを0〜4V(さらには2〜4V)にするとともに、高い電界効果移動度を実現するうえで有利である。また、半導体デバイスにおいて、そのOFF電流を小さくしながら、上記の良好な閾値電圧Vthおよび電界効果移動度を実現するうえで有利である。
<本発明の実施形態の詳細>
[実施形態1:酸化物半導体膜]
本実施形態に係る酸化物半導体膜は、ナノ結晶酸化物またはアモルファス酸化物で構成される酸化物半導体膜であり、インジウム、タングステンおよび亜鉛を含有し、酸化物半導体膜中のインジウム、タングステンおよび亜鉛の合計に対するタングステンの含有率が0.5原子%より大きく、5原子%以下であり、電気抵抗率が10-1Ωcm以上である。本実施形態に係る酸化物半導体膜によれば、これをチャネル層として含む半導体デバイス(たとえばTFT)において、閾値電圧Vthを0〜4V(さらには2〜4V)にすることができるとともに、高い電界効果移動度を実現することができる。また、本実施形態に係る酸化物半導体膜によれば、これをチャネル層として含む半導体デバイス(たとえばTFT)において、そのOFF電流を小さくしながら、上記の良好な閾値電圧Vthおよび電界効果移動度を実現することも可能になる。OFF電流が小さくなることにより、低い駆動電圧でOFF電流に対するON電流の比を高くすることができる。
本明細書において「ナノ結晶酸化物」とは、以下の条件に従うX線回折測定によっても、結晶に起因するピークが観測されずにハローと呼ばれる低角度側に現れるブロードなピークのみが観測され、かつ、透過電子顕微鏡を用い、以下の条件に従って微細領域の透過電子線回折測定を実施した場合、リング状のパターンが観察される酸化物をいう。リング状のパターンとは、スポットが集合してリング状のパターンを形成している場合を含む。
また、本明細書において「アモルファス酸化物」とは、以下の条件に従うX線回折測定によっても、結晶に起因するピークが観測されずにハローと呼ばれる低角度側に現れるブロードなピークのみが観測され、かつ、透過電子顕微鏡を用い、以下の条件に従って微細領域の透過電子線回折測定を実施しても、やはりハローと呼ばれる不明瞭なパターンが観察される酸化物をいう。
(X線回折測定条件)
測定方法:In−plane法(スリットコリメーション法)、
X線発生部:対陰極Cu、出力50kV 300mA、
検出部:シンチレーションカウンタ、
入射部:スリットコリメーション、
ソーラースリット:入射側 縦発散角0.48°
受光側 縦発散角0.41°、
スリット:入射側 S1=1mm*10mm
受光側 S2=0.2mm*10mm、
走査条件:走査軸 2θχ/φ、
走査モード:ステップ測定、走査範囲 10〜80°、ステップ幅0.1°、
ステップ時間 8sec.。
(透過電子線回折測定条件)
測定方法:極微電子線回折法、
加速電圧:200kV、
ビーム径:測定対象である酸化物半導体膜の膜厚と同じか、または同等。
本実施形態に係る酸化物半導体膜がナノ結晶酸化物で構成される場合、上記の条件に従って微細領域の透過電子線回折測定を行うと、上述のようにリング状のパターンが観察され、スポット状のパターンは観察されない。これに対して、たとえば上記特許文献3に開示されるような酸化物半導体膜は、当該膜の表面に対して垂直な方向に沿うようにc軸配向した結晶を含んでおり、このように微細領域中のナノ結晶がある方向に配向している場合には、スポット状のパターンが観察される。本実施形態に係る酸化物半導体膜がナノ結晶酸化物で構成される場合、当該ナノ結晶は、少なくとも膜面内に垂直な面(膜断面)の観察を行った際に、当該膜の表面に対して結晶が配向していない無配向であってランダムな配向性を有している。つまり、膜厚方向に対して結晶軸が配向していない。
本実施形態に係る酸化物半導体膜は、ナノ結晶酸化物またはアモルファス酸化物で構成されるため、これをチャネル層として含む半導体デバイスにおいて、例えば30cm2/Vs以上の高い電界効果移動度を達成することが可能である。移動度を高める上で、本実施形態に係る酸化物半導体膜は、より望ましくはアモルファス酸化物で構成される。
本実施形態に係る酸化物半導体膜は、インジウム(In)、タングステン(W)および亜鉛(Zn)を含有し、酸化物半導体膜に含まれるIn、WおよびZnの合計に対するWの含有率(以下、「W含有率」ともいう。)が0.5原子%より大きく、5原子%以下である。W含有率が0.5原子%よりも大きいことにより、酸化物半導体膜をチャネル層として含む半導体デバイス(たとえばTFT)において、閾値電圧Vthを0〜4V(さらには2〜4V)にすることができる。W含有率が0.5原子%以下の場合には、キャリア濃度が高くなりすぎて、閾値電圧Vthが負側に大きくなってしまう。また、かかる酸化物半導体膜をチャネル層として含む半導体デバイスにおいて、加熱処理時に電界効果移動度が低くなってしまう。閾値電圧Vth、加熱時の電界効果移動度の低下抑制の観点から、W含有率は、好ましくは0.55原子%以上であり、より好ましくは0.6原子%以上であり、さらに好ましくは0.7原子%以上である。W含有率を高める方が、アモルファス酸化物を実現する点で望ましい。
一方、W含有率が5原子%以下であることにより、酸化物半導体膜をチャネル層として含む半導体デバイス(たとえばTFT)において、高い電界効果移動度を実現することができる。W含有率が5原子%を超える場合には、十分に高い電界効果移動度が得られない。電界効果移動度の観点から、W含有率は、好ましくは4原子%以下であり、より好ましくは3原子%以下であり、さらに好ましくは2原子%以下であり、特に好ましくは1.5原子%以下である。
本実施形態に係る酸化物半導体膜は、電気抵抗率が10-1Ωcm以上である。インジウムを含む酸化物は、透明導電膜として知られているが、特開2002−256424号公報に記載されるように、透明導電膜に使用される膜としては電気抵抗率が10-1Ωcmより低いことが一般的である。一方、本発明のように半導体デバイスのチャネル層として用いる場合、酸化物半導体膜は、電気抵抗率が10-1Ωcm以上であることが必要である。当該電気抵抗率を実現するために、酸化物半導体膜の膜厚、W含有率、Zn含有率、Zn/W比を総合的に検討することが好ましい。また、当該電気抵抗率を実現するために、スパッタリング法により酸化物半導体膜を形成した後の加熱処理を酸素を含む雰囲気にて実施するか、および/または、酸化物半導体膜の少なくとも一部と接する層(エッチストッパ層、ゲート絶縁膜、パシベーション膜)に酸化物を用いて、加熱処理を行うことが望ましい。
本実施形態に係る酸化物半導体膜は、膜厚が2nm以上25nm以下であることが好ましい。膜厚が2nm以上25nm以下であると、これをチャネル層として含む半導体デバイスにおいて、高い電界効果移動度を実現しやすくすることができる。膜厚が25nmを超えると、ナノ結晶酸化物またはアモルファス酸化物である酸化物半導体膜を実現できないことがあり、この場合、電界効果移動度が低下してしまう。
膜厚が2nm以上25nm以下であると、ナノ結晶酸化物またはアモルファス酸化物である酸化物半導体膜を実現しやすく、これをチャネル層として含む半導体デバイスにおいて、高い電界効果移動度を達成できる点で有利である。膜厚が2nm以上25nm以下であり、かつナノ結晶酸化物またはアモルファス酸化物で構成される酸化物半導体膜によれば、これをチャネル層として含む半導体デバイスにおいて、例えば30cm2/Vs以上の高い電界効果移動度を達成することが可能である。より高い電界効果移動度を実現する観点から、酸化物半導体膜の膜厚は、好ましくは5nm以上であり、また好ましくは18nm以下である。
酸化物半導体膜の膜厚は、膜断面を透過電子顕微鏡により観察し、膜の最下面から最上面までの距離を測定し、観察倍率にて割ることで算出される。距離の測定は5点にて実施し、その平均値から膜厚を算出する。
本実施形態に係る酸化物半導体膜において、該酸化物半導体膜中のWに対するZnの原子比(Zn/W比)は、0.5以上30以下であることが好ましい。後述するように、本実施形態に係る酸化物半導体膜は、たとえば、スパッタリング法による成膜後に加熱処理するか、またはスパッタリング法により成膜を行いながら加熱処理することによって得ることができるが、この加熱処理の温度が高くなるに従って電界効果移動度が低くなる傾向にある。Zn/W比が0.5以上であることにより、加熱処理の温度が高くなっても電界効果移動度を高く維持することができる。すなわち、Zn/W比が0.5以上であることにより、加熱処理の温度上昇に伴う電界効果移動度の低下を好適に抑制することができる。Zn/W比が0.5未満である場合には、加熱処理の温度上昇に伴う電界効果移動度の低下の抑制が十分でない傾向にあり、その低下度は、たとえばZnの含有量がゼロであるときと同等となり得る。電界効果移動度の観点から、Zn/W比は、より好ましくは0.6以上であり、さらに好ましくは1以上であり、特に好ましくは3以上であり、最も好ましくは5以上である。
一方、Zn/W比が30以下であることにより、酸化物半導体膜をチャネル層として含む半導体デバイス(たとえばTFT)において、そのOFF電流を小さくすることができる。OFF電流を小さくする観点から、Zn/W比は、より好ましくは20以下である。また、W含有率の増加、Zn/W比の増加により、より大きい膜厚までナノ結晶酸化物またはアモルファス酸化物を維持することが可能となる。しかし、Zn/(In+Zn)原子比の場合において、0.2より小さいことが電界効果移動度を高くする観点から望ましい。
酸化物半導体膜におけるIn、WおよびZnの含有量は、RBS(ラザフォード後方散乱分析)により測定される。この測定結果に基づいて、W含有率およびZn/W比が算出される。RBSでの分析を実施できない場合は、TEM−EDX(エネルギー分散型ケイ光X線分析計を付帯する透過型電子顕微鏡)により測定される。化学組成測定の正確性から、RBSでの測定が望ましい。TEM−EDXを用いる場合はまず、検量線作成用の試料として、In、W、ZnおよびOからなり、測定対象の酸化物半導体膜に近い組成を有し、かつ、RBSでの分析を実施可能な酸化物半導体膜を少なくとも3個以上用意する。次いで、これらの試料について、RBSによってIn、WおよびZnの含有量を測定するとともに、TEM−EDXによってIn、WおよびZnの含有量を測定する。これらの測定値から、TEM−EDXによるIn、WおよびZnの含有量の測定値と、RBSによるIn、WおよびZnの含有量の測定値との関係を示す検量線を作成する。そして、測定対象の酸化物半導体膜について、TEM−EDXによってIn、WおよびZnの含有量を測定した後、この測定値を、上記検量線に基づきRBSによるIn、WおよびZnの含有量の測定値に変換する。この変換された値が、測定対象の酸化物半導体膜についてのIn、WおよびZnの含有量である。
本実施形態に係る酸化物半導体膜は、スパッタリング法により成膜する工程を含む製造方法によって得ることができる。このことは、酸化物半導体膜をチャネル層として含む半導体デバイス(たとえばTFT)において、閾値電圧Vthを0〜4V(さらには2〜4V)にするとともに、高い電界効果移動度を実現するうえで有利である。また、酸化物半導体膜をチャネル層として含む半導体デバイス(たとえばTFT)において、そのOFF電流を小さくしながら、上記の良好な閾値電圧Vthおよび電界効果移動度を実現するうえで有利である。スパッタリング法による成膜は、中でも、電界効果移動度を高めるうえで有効である。
スパッタリング法とは、成膜室内に、ターゲットと基板とを対向させて配置し、ターゲットに電圧を印加して、希ガスイオンでターゲットの表面をスパッタリングすることにより、ターゲットからターゲットを構成する原子を放出させて基板上に堆積させることによりターゲットを構成する原子で構成される膜を形成する方法をいう。
酸化物半導体膜を形成する方法としては、スパッタリング法のほか、パルスレーザー蒸着(PLD)法、加熱蒸着法などが提案されているが、スパッタリング法を用いることが上記の理由から好ましい。
スパッタリング法としては、マグネトロンスパッタリング法、対向ターゲット型マグネトロンスパッタリング法などを用いることができる。スパッタリング時の雰囲気ガスとして、Arガス、Krガス、Xeガスを用いることができ、これらのガスとともに酸素ガスを混合して用いることもできる。
また、本実施形態に係る酸化物半導体膜は、スパッタリング法による成膜後に加熱処理するか、またはスパッタリング法により成膜を行いながら加熱処理することによって得ることもできる。これにより、ナノ結晶酸化物またはアモルファス酸化物で構成される酸化物半導体膜が得られやすくなる。また、この方法により得られる酸化物半導体膜は、これをチャネル層として含む半導体デバイス(たとえばTFT)において、閾値電圧Vthを0〜4V(さらには2〜4V)にするとともに、高い電界効果移動度を実現するうえで有利である。また、酸化物半導体膜をチャネル層として含む半導体デバイス(たとえばTFT)において、そのOFF電流を小さくしながら、上記の良好な閾値電圧Vthおよび電界効果移動度を実現するうえで有利である。上記方法による酸化物半導体膜の形成は、中でも、電界効果移動度を高めるうえで有効である。
スパッタリング法による成膜を行いながら実施する加熱処理は、当該成膜中に基板を加熱することによって実施できる。基板温度は、好ましくは100℃以上250℃以下である。加熱処理の時間は成膜時間に相当し、成膜時間は形成する酸化物半導体膜の膜厚に依存するが、たとえば10秒〜10分程度であることができる。
スパッタリング法による成膜後に実施する加熱処理も同様に、基板を加熱することによって実施できる。基板温度は、好ましくは100℃以上250℃以下である。加熱処理の雰囲気は、大気中、窒素ガス中、窒素ガス−酸素ガス中、Arガス中、Ar−酸素ガス中、水蒸気含有大気中、水蒸気含有窒素中など、各種雰囲気であってよい。雰囲気圧力は、大気圧のほか、減圧条件下(たとえば0.1Pa未満)、加圧条件下(たとえば0.1Pa〜9MPa)であることができるが、好ましくは大気圧である。加熱処理の時間は、たとえば3分〜2時間程度であることができ、好ましくは10分〜90分程度である。本実施形態に係る半導体デバイスにおいて、酸化物半導体膜の少なくとも一部に酸化物層(エッチストッパ層、ゲート絶縁膜、パシベーション膜)が接しない場合、酸素を含む雰囲気で加熱処理することが望ましい。この酸素を含む雰囲気で加熱することにより得られる酸化物半導体膜は、10-1Ωcm以上の電気抵抗率を得るうえで有利である。また、これをチャネル層として含む半導体デバイス(たとえばTFT)において、閾値電圧Vthを0〜4V(さらには2〜4V)にするとともに、高い電界効果移動度を実現するうえでも有利である。また、酸化物半導体膜をチャネル層として含む半導体デバイス(たとえばTFT)において、そのOFF電流を小さくしながら、上記の良好な閾値電圧Vthおよび電界効果移動度を実現するうえでも有利である。
[実施形態2:半導体デバイス]
本実施形態に係る半導体デバイスは、実施形態1の酸化物半導体膜を含む。本実施形態の半導体デバイスは、実施形態1の酸化物半導体膜を含むため、閾値電圧Vthを0〜4V(さらには2〜4V)にすることができるとともに、高い電界効果移動度を実現することができる。また、本実施形態の半導体デバイスにおいて、そのOFF電流を小さくしながら、上記の良好な閾値電圧Vthおよび電界効果移動度を実現することも可能になる。半導体デバイスとは、特に制限はないが、実施形態1の酸化物半導体膜をチャネル層として含むTFTが好適な例である。
図1〜図3は、本実施形態に係る半導体デバイス(TFT)のいくつかの例を示す概略図である。図1に示される半導体デバイス10は、基板11と、基板11上に配置されたゲート電極12と、ゲート電極12上に絶縁層として配置されたゲート絶縁膜13と、ゲート絶縁膜13上にチャネル層として配置された酸化物半導体膜14と、酸化物半導体膜14上に互いに接触しないように配置されたソース電極15およびドレイン電極16と、を含む。
図2に示される半導体デバイス20は、酸化物半導体膜14上に配置され、コンタクトホールを有するエッチストッパ層17と、エッチストッパ層17、ソース電極15およびドレイン電極16上に配置されるパシベーション膜18とをさらに含むこと以外は、図1に示される半導体デバイス10と同様の構成を有する。図2に示される半導体デバイス20において、図1に示される半導体デバイス10のように、パシベーション膜18を省略することもできる。図3に示される半導体デバイス30は、酸化物半導体膜14、ソース電極15およびドレイン電極16上に配置されるパシベーション膜18をさらに含むこと以外は、図1に示される半導体デバイス10と同様の構成を有する。
本実施形態に係る半導体デバイスは、実施形態1の酸化物半導体膜を含み、かつ、この酸化物半導体膜の少なくとも一部と接して配置される層であって、ナノ結晶層およびアモルファス層の少なくともいずれか1つである層(以下、この層を「隣接層」ともいう。)をさらに含むことが好ましい。当該隣接層を設けることにより、それと接して形成される酸化物半導体膜14が、隣接層の結晶性の影響を受けて、ナノ結晶酸化物またはアモルファス酸化物で構成される膜となりやすくなり、またこれに伴って半導体デバイスに良好な電界効果移動度を付与することができる。当該隣接層を含む半導体デバイスによれば、上述の加熱処理の温度が高い場合であっても、高い電界効果移動度を維持することができる。加熱処理の温度がより高い場合であってもアモルファス酸化物で構成される膜を維持できる場合、高い電界効果移動度を保持できる。
上記隣接層は、その全体がナノ結晶およびアモルファスの少なくともいずれか1つであってもよいし、酸化物半導体膜と接する部分がナノ結晶およびアモルファスの少なくともいずれか1つであってもよい。後者の場合において、ナノ結晶およびアモルファスの少なくともいずれか1つである部分は、隣接層における膜面方向にわたって全体であってもよいし、酸化物半導体膜と接する表面の一部でもよい。
ナノ結晶層およびアモルファス層の少なくともいずれか1つである隣接層は、酸化物半導体膜14の下地(下層)として酸化物半導体膜14に接して形成される層であってもよいし、酸化物半導体膜14の上に接して形成される上層であってもよい。また、本実施形態に係る半導体デバイスは、隣接層を2層以上含むことができ、この場合、これらの隣接層は、酸化物半導体膜14の下層と上層とであることができる。
たとえば図1に示される半導体デバイス10においては、ゲート絶縁膜13が上記隣接層であってよい。図2に示される半導体デバイス20においては、ゲート絶縁膜13および/またはエッチストッパ層17が上記隣接層であってよい。図3に示される半導体デバイス30においては、ゲート絶縁膜13および/またはパシベーション膜18が上記隣接層であってよい。
上記隣接層は、シリコンおよびアルミニウムの少なくともいずれか1つを含む酸化物層であることが好ましい。隣接層がシリコンおよびアルミニウムの少なくともいずれか1つを含む酸化物層であることは、電気抵抗率を10-1Ωcm以上にするために有利である。また、半導体デバイスに良好な電界効果移動度を付与するうえでも有利であり、とりわけ、上述の加熱処理の温度が高い場合であっても、高い電界効果移動度を維持できる半導体デバイスを提供するうえで有利である。また、隣接層がシリコンおよびアルミニウムの少なくともいずれか1つを含む酸化物層であることは、OFF電流の低減にも有利となり得る。シリコンおよびアルミニウムの少なくともいずれか1つを含む酸化物としては、特に制限されないが、酸化シリコン(SiOx)、酸化アルミニウム(Almn)等を挙げることができる。
次に、本実施形態に係る半導体デバイスの製造方法について説明する。まず、図1に示される半導体デバイス10の製造方法について説明すると、この製造方法は、特に制限されないが、効率よく高特性の半導体デバイス10を製造する観点から、図4を参照して、基板11上にゲート電極12を形成する工程(図4(A))と、ゲート電極12上に絶縁層としてゲート絶縁膜13を形成する工程(図4(B))と、ゲート絶縁膜13上にチャネル層として酸化物半導体膜14を形成する工程(図4(C))と、酸化物半導体膜14上にソース電極15およびドレイン電極16を互いに接触しないように形成する工程(図4(D))と、を含むことが好ましい。
(1)ゲート電極を形成する工程
図4(A)を参照して、基板11上にゲート電極12を形成する。基板11は、特に制限されないが、透明性、価格安定性、および表面平滑性を高くする観点から、石英ガラス基板、無アルカリガラス基板、アルカリガラス基板等であることが好ましい。ゲート電極12は、特に制限されないが、耐酸化性が高くかつ電気抵抗が低い点から、Mo電極、Ti電極、W電極、Al電極、Cu電極等であることが好ましい。ゲート電極12の形成方法は、特に制限されないが、基板11の主面上に大面積で均一に形成できる点から、真空蒸着法、スパッタリング法等であることが好ましい。
(2)ゲート絶縁膜を形成する工程
図4(B)を参照して、ゲート電極12上に絶縁層としてゲート絶縁膜13を形成する。ゲート絶縁膜13の形成方法は、特に制限はないが、大面積で均一に形成できる点および絶縁性を確保する点から、プラズマCVD(化学気相堆積)法等であることが好ましい。
ゲート絶縁膜13の材質は、特に制限されないが、絶縁性の観点からは、酸化シリコン(SiOx)、窒化シリコン(SiNy)等であることが好ましい。また、ゲート絶縁膜13を上述の隣接層とする場合、酸化シリコン(SiOx)、酸化アルミニウム(Almn)等のシリコンおよびアルミニウムの少なくともいずれか1つを含む酸化物であることが好ましい。
(3)酸化物半導体膜を形成する工程
図4(C)を参照して、ゲート絶縁膜13上にチャネル層として酸化物半導体膜14を形成する。上述のように、酸化物半導体膜14は、スパッタリング法により成膜する工程を含んで形成されることが好ましく、たとえばスパッタリング法による成膜後に加熱処理するか、またはスパッタリング法により成膜を行いながら加熱処理することによって形成されることが好ましい。スパッタリング法の原料ターゲットとしては、In−W−Zn−O焼結体を用いる。焼結体ターゲットとしては、たとえば特願2014−164142号、特願2014−061493号に記載のものを用いることができる。
(4)ソース電極およびドレイン電極を形成する工程
図4(D)を参照して、酸化物半導体膜14上にソース電極15およびドレイン電極16を互いに接触しないように形成する。ソース電極15およびドレイン電極16は、特に制限はないが、耐酸化性が高く、電気抵抗が低く、かつ酸化物半導体膜14との接触電気抵抗が低いことから、Mo電極、Ti電極、W電極、Al電極、Cu電極等であることが好ましい。ソース電極15およびドレイン電極16を形成する方法は、特に制限はないが、酸化物半導体膜14が形成された基板11の主面上に大面積で均一に形成できる点から、真空蒸着法、スパッタリング法等であることが好ましい。ソース電極15およびドレイン電極16を互いに接触しないように形成する方法は、特に制限はないが、大面積で均一なソース電極15とドレイン電極16のパターンを形成できる点から、フォトレジストを使ったエッチング法による形成であることが好ましい。
次に、図2に示される半導体デバイス20の製造方法について説明すると、この製造方法は、コンタクトホール17aを有するエッチストッパ層17を形成する工程およびパシベーション膜18を形成する工程をさらに含むこと以外は図1に示される半導体デバイス10の製造方法と同様であることができ、具体的には、図4および図5を参照して、基板11上にゲート電極12を形成する工程(図4(A))と、ゲート電極12上に絶縁層としてゲート絶縁膜13を形成する工程(図4(B))と、ゲート絶縁膜13上にチャネル層として酸化物半導体膜14を形成する工程(図4(C))と、酸化物半導体膜14上にエッチストッパ層17を形成する工程(図5(A))と、エッチストッパ層17にコンタクトホール17aを形成する工程(図5(B))と、酸化物半導体膜14およびエッチストッパ層17上にソース電極15およびドレイン電極16を互いに接触しないように形成する工程(図5(C))と、エッチストッパ層17、ソース電極15およびドレイン電極16上にパシベーション膜18を形成する工程(図5(D))を含むことが好ましい。
エッチストッパ層17の材質は、特に制限されないが、絶縁性の観点からは、酸化シリコン(SiOx)、窒化シリコン(SiNy)、酸化アルミニウム(Almn)等であることが好ましい。また、エッチストッパ層17を上述の隣接層とする場合、酸化シリコン(SiOx)、酸化アルミニウム(Almn)等のシリコンおよびアルミニウムの少なくともいずれか1つを含む酸化物であることが好ましい。エッチストッパ層17は、異なる材質からなる膜の組み合わせであってもよい。エッチストッパ層17の形成方法は、特に制限はないが、大面積で均一に形成できる点および絶縁性を確保する点から、プラズマCVD(化学気相堆積)法、スパッタリング法、真空蒸着法等であることが好ましい。
ソース電極15、ドレイン電極16は、酸化物半導体膜14に接触させる必要があることから、エッチストッパ層17を酸化物半導体膜14上に形成した後、エッチストッパ層17にコンタクトホール17aを形成する(図5(B))。コンタクトホール17aの形成方法としては、ドライエッチングまたはウェットエッチングを挙げることができる。当該方法によりエッチストッパ層17をエッチングしてコンタクトホール17aを形成することで、エッチング部において酸化物半導体膜14の表面を露出させる。
図2に示される半導体デバイス20の製造方法においては、図1に示される半導体デバイス10の製造方法と同様にして、酸化物半導体膜14およびエッチストッパ層17上にソース電極15およびドレイン電極16を互いに接触しないように形成した後(図5(C))、エッチストッパ層17、ソース電極15およびドレイン電極16上にパシベーション膜18を形成する(図5(D))。
パシベーション膜18の材質は、特に制限されないが、絶縁性の観点からは、酸化シリコン(SiOx)、窒化シリコン(SiNy)、酸化アルミニウム(Almn)等であることが好ましい。また、パシベーション膜18を上述の隣接層とする場合、酸化シリコン(SiOx)、酸化アルミニウム(Almn)等のシリコンおよびアルミニウムの少なくともいずれか1つを含む酸化物であることが好ましい。パシベーション膜18は、異なる材質からなる膜の組み合わせであってもよい。パシベーション膜18の形成方法は、特に制限はないが、大面積で均一に形成できる点および絶縁性を確保する点から、プラズマCVD(化学気相堆積)法、スパッタリング法、真空蒸着法等であることが好ましい。
また、図3に示される半導体デバイス30のように、エッチストッパ層17を形成することなくバックチャネルエッチ(BCE)構造を採用し、酸化物半導体膜14、ソース電極15およびドレイン電極16の上に、パシベーション膜18を直接形成してもよい。この場合におけるパシベーション膜18については、図2に示される半導体デバイス20が有するパシベーション膜18についての上の記述が引用される。
<実施例1〜実施例16、比較例1〜比較例2>
(1)酸化物半導体膜を備える半導体デバイス(TFT)の作製
次の手順で図3に示される半導体デバイス30と類似の構成を有するTFTを作製した。図4(A)を参照して、まず、基板11として50mm×50mm×厚み0.6mmの合成石英ガラス基板を準備し、その基板11上にスパッタリング法によりゲート電極12として厚み100nmのMo電極を形成した。
図4(B)を参照して、次に、ゲート電極12上にプラズマCVD法によりゲート絶縁膜13として、アモルファス酸化物層である厚み200nmのSiOx膜またはSiNy膜を形成した。下記の表1における「GI層」の欄には、各実施例および比較例で用いたゲート絶縁膜13の材質を記載している。
図4(C)を参照して、次に、ゲート絶縁膜13上に、DC(直流)マグネトロンスパッタリング法により、厚み10nmの酸化物半導体膜14を形成した。ターゲットの直径3インチ(76.2mm)の平面がスパッタ面であった。用いたターゲットは、In−W−Zn−Oの焼結体であり、酸化物半導体膜14中のW含有率およびZn/W比が表1に示されるとおりとなるように焼結体中のW含有量およびZn含有量を調整しておいた。
酸化物半導体膜14の形成についてより具体的に説明すると、スパッタリング装置(図示せず)の成膜室内の水冷されている基板ホルダ上に、上記ゲート電極12およびゲート絶縁膜13が形成された基板11をゲート絶縁膜13が露出されるように配置した。上記ターゲットをゲート絶縁膜13に対向するように90mmの距離で配置した。成膜室内を6×10-5Pa程度の真空度として、ターゲットを次のようにしてスパッタリングした。
まず、ゲート絶縁膜13とターゲットとの間にシャッターを入れた状態で、成膜室内へAr(アルゴン)ガスとO2(酸素)ガスとの混合ガスを0.5Paの圧力まで導入した。混合ガス中のO2ガス含有率は20体積%であった。ターゲットに110WのDC電力を印加してスパッタリング放電を起こし、これによってターゲット表面のクリーニング(プレスパッタ)を5分間行った。
次いで、同じターゲットに110WのDC電力を印加して、成膜室内の雰囲気をそのまま維持した状態で、上記シャッターを外すことにより、ゲート絶縁膜13上に酸化物半導体膜14を成膜した。なお、基板ホルダに対しては、特にバイアス電圧は印加しなかった。また、基板ホルダを水冷または加熱し、成膜時および成膜後の基板11の温度を調整した。実施例および比較例のうち、下記の表1における「加熱処理」の欄に「成膜時」と記載されている例では、成膜時において基板ホルダを加熱して基板温度を表1における「処理温度」の欄に記載されている温度に調整することにより成膜と同時に加熱処理を実施した。この場合において加熱処理の時間は、成膜時間に相当する。一方、実施例および比較例のうち、下記の表1における「加熱処理」の欄に「成膜後」と記載されている場合は、成膜時においては基板ホルダを水冷して基板温度を20℃程度とし、成膜後(後述するように、具体的にはソース電極15およびドレイン電極16形成後)に基板ホルダを加熱して基板温度を表1における「処理温度」の欄に記載されている温度に調整することにより加熱処理を実施した。この場合において成膜時間は、たとえば酸化物半導体膜14の膜厚が5nmの場合(実施例16)で約14秒であり、酸化物半導体膜14の膜厚が25nmの場合(実施例1)で約70秒であった。いずれの実施例および比較例においても、酸化物半導体膜14の厚みが表1に示されるとおりとなるように成膜時間を調整した。
以上のようにして、酸化物焼結体から加工されたターゲットを用いたDC(直流)マグネトロンスパッタリング法により酸化物半導体膜14を形成した。酸化物半導体膜14は、TFTにおいてチャネル層として機能する。各実施例および比較例で形成した酸化物半導体膜14の膜厚を表1に示す。酸化物半導体膜の膜厚は、膜断面を透過電子顕微鏡により観察し、膜の最下面から最上面までの距離を測定し、観察倍率にて割ることで算出した。距離の測定は5点にて実施し、その平均値から膜厚を算出した。
次に、形成された酸化物半導体膜14の一部をエッチングすることにより、ソース電極形成用部14s、ドレイン電極形成用部14d、およびチャネル部14cを形成した。ソース電極形成用部14sおよびドレイン電極形成用部14dの主面の大きさは50μm×50μm、チャネル長さCL(図1(A)および(B)を参照して、チャネル長さCLとは、ソース電極15とドレイン電極16との間のチャネル部14cの距離をいう。)は30μm、チャネル幅CW(図1(A)および(B)を参照して、チャネル幅CWとは、チャネル部14cの幅をいう。)は40μmとした。チャネル部14cは、TFTが75mm×75mmの基板主面内に3mm間隔で縦25個×横25個配置されるように、75mm×75mmの基板主面内に3mm間隔で縦25個×横25個配置した。
酸化物半導体膜14の一部のエッチングは、体積比でシュウ酸:水=5:95であるエッチング水溶液を調製し、ゲート電極12、ゲート絶縁膜13および酸化物半導体膜14がこの順に形成された基板11を、そのエッチング水溶液に40℃で浸漬することにより行った。
図4(D)を参照して、次に、酸化物半導体膜14上にソース電極15およびドレイン電極16を互いに分離して形成した。
具体的にはまず、酸化物半導体膜14のソース電極形成用部14sおよびドレイン電極形成用部14dの主面のみが露出するように、酸化物半導体膜14上にレジスト(図示せず)を塗布、露光および現像した。次いでスパッタリング法により、酸化物半導体膜14のソース電極形成用部14sおよびドレイン電極形成用部14dの主面上に、それぞれソース電極15、ドレイン電極16である厚み100nmのMo電極を形成した。その後、酸化物半導体膜14上のレジストを剥離した。ソース電極15としてのMo電極およびドレイン電極16としてのMo電極はそれぞれ、TFTが75mm×75mmの基板主面内に3mm間隔で縦25個×横25個配置されるように、一つのチャネル部14cに対して1つずつ配置した。
実施例および比較例のうち、下記の表1における「加熱処理」の欄に「成膜後」と記載されている場合は、ソース電極15およびドレイン電極16形成後に基板ホルダを加熱して基板温度を表1における「処理温度」の欄に記載されている温度に調整することにより大気雰囲気中で加熱処理を実施した。加熱処理の時間は、約14分とした。
図3を参照して、次に、酸化物半導体膜14、ソース電極15およびドレイン電極16の上にパシベーション膜18を形成した。パシベーション膜18は、アモルファス酸化物層である厚み100nmのSiOx膜をプラズマCVD法により形成した後、その上に厚み200nmのSiNy膜をプラズマCVD法により形成した構成、またはアモルファス酸化物層である厚み100nmのAlmn膜をスパッタリング法により形成した後、その上に厚み200nmのSiNy膜をプラズマCVD法により形成した構成とした。アモルファス酸化物層がSiOx膜である場合、下記の表1における「PV層」の欄には「SiOx」と記載し、アモルファス酸化物層がAlmn膜である場合、「PV層」の欄には「Almn」と記載している。
次に、ソース電極15、ドレイン電極16上のパシベーション膜18を反応性イオンエッチングによりエッチングしてコンタクトホールを形成することによってソース電極15、ドレイン電極16の表面の一部を露出させた。
最後に、窒素雰囲気中250℃30分間のアニール処理(熱処理)を実施した。このアニール処理は、すべての実施例および比較例について行ったが、実施例においては、窒素雰囲気中250℃30分間のアニール処理に引き続いて、窒素雰囲気中300℃30分間のアニール処理も実施した。以上により、酸化物半導体膜14をチャネル層として備えるTFTを得た。
(2)酸化物半導体膜の結晶性、W含有率およびZn/W比
作製したTFTが備える酸化物半導体膜14の結晶性を上述の測定方法および定義に従って評価した。表1における「結晶性」の欄には、ナノ結晶である場合には「ナノ結晶」と、アモルファスである場合には、「アモルファス」と記載している。また、酸化物半導体膜14中のIn、WおよびZnの含有量を、RBS(ラザフォード後方散乱分析)により測定した。これらの含有量に基づいて酸化物半導体膜14のW含有率(原子%)およびZn/W比(原子数比)をそれぞれ算出した。結果を表1に示す。
(3)酸化物半導体膜の電気抵抗率の測定
ソース電極15とドレイン電極16に測定針を接触させた。次に、ソース−ドレイン電極間に電圧を1Vから20Vに変化させて印加しながら、ソース−ドレイン間電流Idsを測定した。Ids−Vgsのグラフを描いたときの傾きが抵抗Rである。この抵抗Rと、チャネル長さCL(30μm)、チャネル幅CW(40μm)、膜厚tから、電気抵抗率は、R×CW×t/CLとして求めることができる。実施例の酸化物半導体膜は全て10-1Ωcm以上であることを確認した。一方、比較例の酸化物半導体膜は全て10-1Ωcm未満であることを確認した。
(4)半導体デバイスの特性評価
半導体デバイス10であるTFTの特性を次のようにして評価した。まず、ゲート電極12、ソース電極15およびドレイン電極16に測定針を接触させた。ソース電極15とドレイン電極16との間に0.3Vのソース−ドレイン間電圧Vdsを印加し、ソース電極15とゲート電極12との間に印加するソース−ゲート間電圧Vgsを−10Vから15Vに変化させて、そのときのソース−ドレイン間電流Idsを測定した。そして、ソース−ゲート間電圧Vgsとソース−ドレイン間電流Idsの平方根〔(Ids1/2〕との関係をグラフ化した(以下、このグラフを「Vgs−(Ids1/2曲線」ともいう。)。Vgs−(Ids1/2曲線に接線を引き、その接線の傾きが最大となる点を接点とする接線がx軸(Vgs)と交わる点(x切片)を閾値電圧Vthとした。また、ソース−ゲート間電圧Vgsが−5Vのときのソース−ドレイン間電流IdsをOFF電流とした。閾値電圧VthおよびOFF電流は、窒素雰囲気中250℃30分間のアニール処理を実施した後(窒素雰囲気中300℃30分間のアニール処理前)のTFTについて測定した。
また下記式〔a〕:
m=dIds/dVgs 〔a〕
に従って、ソース−ドレイン間電流Idsをソース−ゲート間電圧Vgsについて微分することによりgmを導出した。そしてVgs=8.0Vにおけるgmの値を用いて、下記式〔b〕:
μfe=gm・CL/(CW・Ci・Vds) 〔b〕
に基づいて、電界効果移動度μfeを算出した。上記式〔b〕におけるチャネル長さCLは30μmであり、チャネル幅CWは40μmである。また、ゲート絶縁膜13のキャパシタンスCiは3.4×10-8F/cm2とし、ソース−ドレイン間電圧Vdsは0.3Vとした。
窒素雰囲気中250℃30分間のアニール処理を実施した後の電界効果移動度μfeを、表1の「移動度(250℃)」の欄に示している。また、実施例について測定した窒素雰囲気中300℃30分間のアニール処理を実施した後の電界効果移動度μfeを、表1の「移動度(300℃)」の欄に示している。表1に示されるように、Zn/W比が大きい方が、移動度(250℃)と移動度(300℃)との差が小さいことがわかる。
Figure 2016121152
今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
10,20,30 半導体デバイス(TFT)、11 基板、12 ゲート電極、13 ゲート絶縁膜、14 酸化物半導体膜、14c チャネル部、14d ドレイン電極形成用部、14s ソース電極形成用部、15 ソース電極、16 ドレイン電極、17 エッチストッパ層、17a コンタクトホール、18 パシベーション膜。

Claims (8)

  1. ナノ結晶酸化物またはアモルファス酸化物で構成される酸化物半導体膜であって、
    インジウム、タングステンおよび亜鉛を含有し、
    前記酸化物半導体膜中のインジウム、タングステンおよび亜鉛の合計に対するタングステンの含有率が0.5原子%より大きく、5原子%以下であり、
    電気抵抗率が10-1Ωcm以上である、酸化物半導体膜。
  2. 膜厚が2nm以上25nm以下である、請求項1に記載の酸化物半導体膜。
  3. 前記酸化物半導体膜中のタングステンに対する亜鉛の原子比(Zn/W比)が0.5以上30以下である、請求項1に記載の酸化物半導体膜。
  4. スパッタリング法により成膜する工程を含む製造方法によって得られる、請求項1〜請求項3のいずれか1項に記載の酸化物半導体膜。
  5. スパッタリング法による成膜後に加熱処理するか、またはスパッタリング法により成膜を行いながら加熱処理することによって得られる、請求項4に記載の酸化物半導体膜。
  6. 請求項1〜請求項5のいずれか1項に記載の酸化物半導体膜を含む、半導体デバイス。
  7. 前記酸化物半導体膜の少なくとも一部と接して配置される層をさらに含み、
    前記層は、ナノ結晶層およびアモルファス層の少なくともいずれか1つである、請求項6に記載の半導体デバイス。
  8. 前記層は、シリコンおよびアルミニウムの少なくともいずれか1つを含む酸化物層である、請求項7に記載の半導体デバイス。
JP2016552545A 2015-01-26 2015-08-21 酸化物半導体膜および半導体デバイス Active JP6551414B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015012150 2015-01-26
JP2015012150 2015-01-26
JP2015035297 2015-02-25
JP2015035297 2015-02-25
PCT/JP2015/073478 WO2016121152A1 (ja) 2015-01-26 2015-08-21 酸化物半導体膜および半導体デバイス

Publications (2)

Publication Number Publication Date
JPWO2016121152A1 true JPWO2016121152A1 (ja) 2017-09-28
JP6551414B2 JP6551414B2 (ja) 2019-07-31

Family

ID=56542791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016552545A Active JP6551414B2 (ja) 2015-01-26 2015-08-21 酸化物半導体膜および半導体デバイス

Country Status (7)

Country Link
US (1) US10192994B2 (ja)
EP (1) EP3101692A1 (ja)
JP (1) JP6551414B2 (ja)
KR (1) KR101948998B1 (ja)
CN (1) CN106104811A (ja)
TW (1) TWI677990B (ja)
WO (1) WO2016121152A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6119773B2 (ja) * 2014-03-25 2017-04-26 住友電気工業株式会社 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイス
KR101816468B1 (ko) 2014-10-22 2018-01-08 스미토모덴키고교가부시키가이샤 산화물 소결체 및 반도체 디바이스
EP3257827A4 (en) 2015-02-13 2018-10-17 Sumitomo Electric Industries, Ltd. Oxide sintered body and method for producing same, sputter target, and semiconductor device
JP6593257B2 (ja) * 2016-06-13 2019-10-23 住友電気工業株式会社 半導体デバイスおよびその製造方法
US11024744B2 (en) 2016-12-12 2021-06-01 Sumitomo Electric Industries, Ltd. Semiconductor device and method for manufacturing the same
WO2018150622A1 (ja) * 2017-02-20 2018-08-23 住友電気工業株式会社 酸化物焼結体およびその製造方法、スパッタターゲット、ならびに半導体デバイスの製造方法
KR102401708B1 (ko) * 2017-02-20 2022-05-26 스미토모덴키고교가부시키가이샤 산화물 소결체 및 그의 제조 방법, 스퍼터 타겟, 그리고 반도체 디바이스의 제조 방법
WO2018211724A1 (ja) * 2017-05-16 2018-11-22 住友電気工業株式会社 酸化物焼結体およびその製造方法、スパッタターゲット、酸化物半導体膜、ならびに半導体デバイスの製造方法
US10153161B1 (en) * 2017-11-27 2018-12-11 Nanya Technology Corporation Method for manufacturing a semiconductor structure
US10833206B2 (en) 2018-12-11 2020-11-10 Micron Technology, Inc. Microelectronic devices including capacitor structures and methods of forming microelectronic devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081885A1 (ja) * 2007-12-25 2009-07-02 Idemitsu Kosan Co., Ltd. 酸化物半導体電界効果型トランジスタ及びその製造方法
JP2010251604A (ja) * 2009-04-17 2010-11-04 Bridgestone Corp 薄膜トランジスタの製造方法
JP2011077511A (ja) * 2009-09-04 2011-04-14 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
JP2012067387A (ja) * 2010-08-25 2012-04-05 Semiconductor Energy Lab Co Ltd 電子装置とその作製方法およびスパッタリングターゲット
JP2012124446A (ja) * 2010-04-07 2012-06-28 Kobe Steel Ltd 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ
JP2014078645A (ja) * 2012-10-11 2014-05-01 Sumitomo Metal Mining Co Ltd 酸化物半導体薄膜および薄膜トランジスタ
JP2014205608A (ja) * 2013-03-19 2014-10-30 株式会社半導体エネルギー研究所 酸化物半導体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3780932B2 (ja) 2000-12-28 2006-05-31 住友金属鉱山株式会社 透明導電性薄膜作製用焼結体ターゲットおよびその製造方法
JP4620046B2 (ja) 2004-03-12 2011-01-26 独立行政法人科学技術振興機構 薄膜トランジスタ及びその製造方法
JP4544518B2 (ja) * 2004-09-01 2010-09-15 キヤノン株式会社 電界励起型発光素子及び画像表示装置
US8115206B2 (en) * 2005-07-22 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7655566B2 (en) * 2005-07-27 2010-02-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5305630B2 (ja) * 2006-12-05 2013-10-02 キヤノン株式会社 ボトムゲート型薄膜トランジスタの製造方法及び表示装置の製造方法
KR101146574B1 (ko) 2006-12-05 2012-05-16 캐논 가부시끼가이샤 산화물 반도체를 이용한 박막 트랜지스터의 제조방법 및 표시장치
JP4662075B2 (ja) 2007-02-02 2011-03-30 株式会社ブリヂストン 薄膜トランジスタ及びその製造方法
KR101346472B1 (ko) 2008-06-06 2014-01-02 이데미쓰 고산 가부시키가이샤 산화물 박막용 스퍼터링 타겟 및 그의 제조 방법
KR20120004526A (ko) * 2009-04-17 2012-01-12 가부시키가이샤 브리지스톤 박막 트랜지스터 및 박막 트랜지스터의 제조 방법
KR102111264B1 (ko) 2009-09-16 2020-05-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 트랜지스터
JP5920141B2 (ja) 2012-09-21 2016-05-18 三浦工業株式会社 水処理システム
JP2014164142A (ja) 2013-02-26 2014-09-08 Nippon Zeon Co Ltd 配向基材と位相差フィルムとの積層体の製造方法、積層体、位相差フィルムおよび液晶表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081885A1 (ja) * 2007-12-25 2009-07-02 Idemitsu Kosan Co., Ltd. 酸化物半導体電界効果型トランジスタ及びその製造方法
JP2010251604A (ja) * 2009-04-17 2010-11-04 Bridgestone Corp 薄膜トランジスタの製造方法
JP2011077511A (ja) * 2009-09-04 2011-04-14 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
JP2012124446A (ja) * 2010-04-07 2012-06-28 Kobe Steel Ltd 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ
JP2012067387A (ja) * 2010-08-25 2012-04-05 Semiconductor Energy Lab Co Ltd 電子装置とその作製方法およびスパッタリングターゲット
JP2014078645A (ja) * 2012-10-11 2014-05-01 Sumitomo Metal Mining Co Ltd 酸化物半導体薄膜および薄膜トランジスタ
JP2014205608A (ja) * 2013-03-19 2014-10-30 株式会社半導体エネルギー研究所 酸化物半導体

Also Published As

Publication number Publication date
WO2016121152A1 (ja) 2016-08-04
EP3101692A1 (en) 2016-12-07
KR20160120774A (ko) 2016-10-18
US20170012133A1 (en) 2017-01-12
TW201639174A (zh) 2016-11-01
KR101948998B1 (ko) 2019-02-15
JP6551414B2 (ja) 2019-07-31
US10192994B2 (en) 2019-01-29
TWI677990B (zh) 2019-11-21
CN106104811A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
JP6551414B2 (ja) 酸化物半導体膜および半導体デバイス
JP5189674B2 (ja) 酸化物半導体薄膜層を有する積層構造、積層構造の製造方法、薄膜トランジスタ及び表示装置
JP5718072B2 (ja) 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ
JP5186611B2 (ja) 酸化物半導体薄膜層を有する積層構造、積層構造の製造方法、薄膜トランジスタ及び表示装置
JP6394518B2 (ja) 半導体デバイスおよびその製造方法
JP6593257B2 (ja) 半導体デバイスおよびその製造方法
CN110062961B (zh) 半导体器件及其制造方法
JP2014067856A (ja) 薄膜トランジスタの酸化物半導体層の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R150 Certificate of patent or registration of utility model

Ref document number: 6551414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250