JPWO2016088624A1 - 13族元素窒化物層の分離方法および複合基板 - Google Patents
13族元素窒化物層の分離方法および複合基板 Download PDFInfo
- Publication number
- JPWO2016088624A1 JPWO2016088624A1 JP2016516109A JP2016516109A JPWO2016088624A1 JP WO2016088624 A1 JPWO2016088624 A1 JP WO2016088624A1 JP 2016516109 A JP2016516109 A JP 2016516109A JP 2016516109 A JP2016516109 A JP 2016516109A JP WO2016088624 A1 JPWO2016088624 A1 JP WO2016088624A1
- Authority
- JP
- Japan
- Prior art keywords
- group
- nitride layer
- element nitride
- composite substrate
- sapphire substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 170
- 229910052795 boron group element Inorganic materials 0.000 title claims abstract description 118
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 117
- 239000002131 composite material Substances 0.000 title claims abstract description 84
- 238000000926 separation method Methods 0.000 title 1
- 239000010980 sapphire Substances 0.000 claims abstract description 84
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 84
- 239000013078 crystal Substances 0.000 claims abstract description 30
- 229910002601 GaN Inorganic materials 0.000 claims abstract description 18
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 12
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims abstract description 12
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 8
- 230000001678 irradiating effect Effects 0.000 claims abstract description 6
- 230000014509 gene expression Effects 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 36
- 238000007716 flux method Methods 0.000 claims description 11
- 239000000155 melt Substances 0.000 claims description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 2
- 239000010410 layer Substances 0.000 description 86
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 239000002585 base Substances 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002346 layers by function Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 239000012808 vapor phase Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000005092 sublimation method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 235000005811 Viola adunca Nutrition 0.000 description 1
- 240000009038 Viola odorata Species 0.000 description 1
- 235000013487 Viola odorata Nutrition 0.000 description 1
- 235000002254 Viola papilionacea Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- -1 carbon Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/01—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C23C16/303—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4418—Methods for making free-standing articles
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B19/00—Liquid-phase epitaxial-layer growth
- C30B19/02—Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/02—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/04—After-treatment of single crystals or homogeneous polycrystalline material with defined structure using electric or magnetic fields or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/06—Joining of crystals
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B9/00—Single-crystal growth from melt solutions using molten solvents
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B9/00—Single-crystal growth from melt solutions using molten solvents
- C30B9/04—Single-crystal growth from melt solutions using molten solvents by cooling of the solution
- C30B9/08—Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
- C30B9/10—Metal solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02639—Preparation of substrate for selective deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
- H01L33/007—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0093—Wafer bonding; Removal of the growth substrate
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Led Devices (AREA)
- Chemical Vapour Deposition (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
サファイア基板と、サファイア基板上に設けられた13族元素窒化物層とを備える複合基板を準備する。13族元素窒化物層が窒化ガリウム、窒化アルミニウムまたは窒化ガリウムアルミニウムからなる。複合基板が関係式(1)(2)および(3)を満足する。複合基板に対して、サファイア基板側からレーザー光を照射することで、サファイア基板と13族元素窒化物層との界面の結晶格子結合を分解する。 5.0≦(13族元素窒化物層の平均厚さ(μm)/前記サファイア基板の直径(mm)≦10.0・・・・(1): 0.1≦前記複合基板の反り(mm)×(50/前記複合基板の直径(mm))2≦0.6・・・・(2): 1.10≦前記13族元素窒化物層の厚さの最大値(μm)/前記13族元素窒化物層の厚さの最小値(μm)・・・・(3)
【選択図】 図1
【選択図】 図1
Description
本発明は、13族元素窒化物層をサファイア基板から分離する方法および複合基板に関するものである。
サファイア基板やGaNテンプレート(template)などのサファイア基板上にGaN結晶を成長させて複合基板を得た後、レーザーリフトオフ(laser lift off)などの方法でGaN結晶をサファイア基板から分離することによって、自立型のGaN結晶を得ることが知られている。
この方法では、サファイア基板と窒化ガリウム膜との間の熱膨張率差によって複合基板が反り、レーザーリフトオフ法で窒化ガリウム膜を分離するときに反りやクラックが発生する。
このため、特許文献1では、サファイア基板上に窒化物単結晶を気相法(HVPE、MOCVD、MBE)によってチャンバー内で形成し、そのまま同じチャンバー(chamber)内で同じ温度で連続的にレーザーリフトオフ法を実施することにより、複合基板の反りによる影響を無くし、クラックの発生を防止している。
また、本出願人は、サファイア基板上に窒化ガリウム層を設けるのに際して、窒化ガリウム層の育成初期にインクルージョン(inclusion)含有層を設けることで、レーザーリフトオフ時のクラック抑制に成功している(特許文献2)。
しかし、特許文献1記載の方法では、チャンバー内で赤外線透窓からレーザー光を透過させてレーザーリフトオフを実施する。このため、特別な設備が必要である上、レーザーリフトオフ時の照射光の利用効率が低く、照射時の位置合わせや焦点合わせも難しいので、生産性が低い。また、フラックス法などの液相法では、圧力が高く、こうした赤外線透過窓付きのチャンバーを使用できないので、適用範囲が狭い。
特許文献2記載の方法は、特定の微構造を有する複合基板にしか適用できないので、これも適用範囲を広げることができない。
本発明の課題は、サファイア基板に対してレーザー光を照射して特定の13族元素窒化物層を分離するのに際して、13族元素窒化物層のクラックを抑制できるようにすることである。
本発明は、サファイア基板と、このサファイア基板上に設けられた13族元素窒化物層とを備える複合基板を準備し、この際13族元素窒化物層が窒化ガリウム、窒化アルミニウムまたは窒化ガリウムアルミニウムからなり、複合基板が以下の関係式(1)、(2)および(3)を満足しており、複合基板に対して、サファイア基板側からレーザー光を照射することで、サファイア基板と13族元素窒化物層との界面の結晶格子結合を分解することを特徴とする。
5.0≦(13族元素窒化物層の平均厚さ(μm)/前記サファイア基板の直径(mm)≦10.0・・・・(1)
0.1≦前記複合基板の反り(mm)×(50/前記複合基板の直径(mm))2≦0.6 (2)
1.10≦前記13族元素窒化物層の厚さの最大値(μm)/前記13族元素窒化物層の厚さの最小値(μm)・・・・(3)
5.0≦(13族元素窒化物層の平均厚さ(μm)/前記サファイア基板の直径(mm)≦10.0・・・・(1)
0.1≦前記複合基板の反り(mm)×(50/前記複合基板の直径(mm))2≦0.6 (2)
1.10≦前記13族元素窒化物層の厚さの最大値(μm)/前記13族元素窒化物層の厚さの最小値(μm)・・・・(3)
また、本発明は、サファイア基板と、このサファイア基板上に設けられた13族元素窒化物層とを備える複合基板であって、13族元素窒化物層が窒化ガリウム、窒化アルミニウムまたは窒化ガリウムアルミニウムからなり、上記した関係式(1)(2)および(3)を満足することを特徴とする、複合基板に係るものである。
本発明者は、レーザー光をサファイア基板側から複合基板に照射して13族元素窒化物層を分離したときに、13族元素窒化物層中にクラックが発生する原因について詳しく検討し、以下の知見を得た。
すなわち、サファイア基板上に13族元素窒化物層を形成するときには、通常800℃以上の高温となる。こうして得られた複合基板を冷却してからレーザー光を照射するが、この冷却時におけるサファイア基板と13族元素窒化物との熱膨張差によって、複合基板に反りが生じ、また多大な応力が残留する。
サファイア基板と13族元素窒化物層との界面には、サファイア基板を構成する結晶の格子と13族元素窒化物の格子とが結晶格子結合を形成している。レーザー光をサファイア基板側に照射することによって、13族元素窒化物が13族元素金属と窒素とに分解し、結晶格子結合が分解される。
レーザー光を照射して13族元素窒化物層とサファイア基板との界面における結晶格子結合の分解が生じたときに、13族元素窒化物が微視的に見てサファイア基板から空間的に剥離し、トワイマン効果によって逆方向へと瞬間的に反るようである。この瞬間的な反りが生ずると、クラックが発生しやすくなることがわかった。
そこで、本発明においては、前提として、13族元素窒化物層の平均厚さのサファイア基板の直径に対する比率を一定範囲とすると共に、複合基板の反りの複合基板の直径に対する比率も一定範囲に納める。その上で、本発明では、13族元素窒化物層の厚さを一定にせず、膜厚差を生じさせることを想到した。これによって、13族元素窒化物層が微小に変形したときに層内での応力が分散し易くなり、13族元素窒化物層のクラックが抑制されることを見いだし、本発明に到達した。
(複合基板の構成)
本発明においては、サファイア基板と、このサファイア基板上に設けられた13族元素窒化物層とを備えており、反りを有する複合基板を用いる。
本発明においては、サファイア基板と、このサファイア基板上に設けられた13族元素窒化物層とを備えており、反りを有する複合基板を用いる。
例えば図1に示すように、複合基板4は、サファイア基板1Aと、サファイア基板1Aの表面1a上に設けられた13族元素窒化物層3を有する。
ここで、サファイア基板1Aの表面1aには、13族元素窒化物層3を直接形成できるが、表面1a上に13族元素窒化物からなる種結晶膜を形成し、種結晶膜上に更に13族元素窒化物層を形成することもできる。この場合、種結晶膜と13族元素窒化物層3とが同材質で一体化していてもよい。
ここで、複合基板は、式(1)〜(3)を満足する。
まず、13族元素窒化物層の平均厚さ(μm)/前記サファイア基板の直径(mm)を5.0以上、10.0以下とする(式(1))。
まず、13族元素窒化物層の平均厚さ(μm)/前記サファイア基板の直径(mm)を5.0以上、10.0以下とする(式(1))。
13族元素窒化物層の平均厚さ(μm)は、図1に示すTavに該当する。すなわち、13族元素窒化物層3の膜厚には、相対的に厚い部分と相対的に薄い部分とがある。13族元素窒化物層3の膜厚とは、サファイア基板1Aの表面1aから13族元素窒化物層の表面3aまでの距離を意味する。Vは、膜厚Tavに対応する表面位置を示す仮想線である。
ここで、13族元素窒化物層3の平均厚さTav(単位をμmとする)/サファイア基板1Aの直径D(単位をmmとする)を5.0以上とする。すなわち、サファイア基板の直径を考慮した上で、13族元素窒化物層の平均厚さをある程度以上大きくし、強度を保持することによって、クラックを有効に防止できる。この観点からは、13族元素窒化物層3の平均厚さTav(μm)/サファイア基板1Aの直径D(mm)を6.0以上とすることが更に好ましい。
また、サファイア基板の直径を考慮した上で、13族元素窒化物層の平均厚さが大きくなりすぎると、かえってクラックが生じやすくなる。このため、13族元素窒化物層3の平均厚さTav(μm)/サファイア基板1Aの直径D(mm)を10.0以下とする。この観点からは、13族元素窒化物層3の平均厚さTav(μm)/サファイア基板1Aの直径D(mm)を9.0以下とすることが更に好ましい。
また、式(2)では、複合基板の反り(mm)W(R)/(50/複合基板の直径D(mm))2を0.1以上、0.6以下とする。
すなわち、複合基板の直径Dを考慮して正規化した上で、複合基板の反りをある程度以上大きくしておくことによって、前述したようなクラックが発生しにくくなることを見いだした。この観点からは、複合基板の反り(mm)W(R)/(50/複合基板の直径D(mm))2を0.1以上とするが、0.2以上とすることが更に好ましい。
すなわち、複合基板の直径Dを考慮して正規化した上で、複合基板の反りをある程度以上大きくしておくことによって、前述したようなクラックが発生しにくくなることを見いだした。この観点からは、複合基板の反り(mm)W(R)/(50/複合基板の直径D(mm))2を0.1以上とするが、0.2以上とすることが更に好ましい。
一方、複合基板の直径Dを考慮して正規化した上で、複合基板の反りが大きくなりすぎると、クラックが発生し易くなる。この観点からは、複合基板の反り(mm)W(R)/(50/複合基板の直径D(mm))2を0.6以下とするが、0.5以下とすることが更に好ましい。
この上で、式(3)に示すように、13族元素窒化物層の厚さの最大値(μm)/13族元素窒化物層の厚さの最小値(μm)を1.10以上とする。13族元素窒化物層の厚さの最大値は図1に示すTmaxであり、13族元素窒化物層の厚さの最小値はTminである。このように、13族元素窒化物層の厚さを一定にせず、膜厚差を生じさせることによって、13族元素窒化物層のクラックが抑制される。
この観点からは、13族元素窒化物層の厚さの最大値(μm)/13族元素窒化物層の厚さの最小値(μm)を1.14以上とすることが更に好ましい。また、膜厚比が大きくなりすぎるとかえってクラックが増え易いことから、13族元素窒化物層の厚さの最大値(μm)/13族元素窒化物層の厚さの最小値(μm)を1.6以下とすることが好ましく、1.5以下とすることが更に好ましい。
好適な実施形態においては、式(4)に示すように、13族元素窒化物層の平均厚さTav(mm)/サファイア基板の厚さTsub(mm)を1.0以下とする。13族元素窒化物層の平均厚さをサファイア基板の厚さ以下とすることによって、両者の界面における過大な応力集中を抑制しやすい。この観点からは、13族元素窒化物層の平均厚さ/サファイア基板の厚さTsubを0.9以下とすることが更に好ましい。
また、サファイア基板の厚さに比べて13族元素窒化物層の平均厚さが小さすぎると、13族元素窒化物層の強度不足によるクラックが生じやすくなる。これを防止するという観点からは、13族元素窒化物層の平均厚さTav/サファイア基板の厚さTsubを0.2以上とするが、0.3以上とすることが更に好ましい。
複合基板を得るには、例えば図2(a)に示すように、サファイア基板1の主面1aに種結晶層を形成する。次いで、種結晶層上に13族元素窒化物層3をフラックス法で形成する。
このようにして得られた複合基板14には、フラックス法による成膜と冷却に起因する反りが生じている。その反りは、一般に、図3(a)に模式的に示すように、サファイア基板を下にしたときに、上側に凸形状となっている。反りの大きさを調整する場合には、例えば、図2(b)に示すように、サファイア基板1の底面1bを十分に研磨することによって、研磨済の支持基板1Aを形成することによって、支持基板の組織に加工歪みを導入し、反りを低減することができる。
(サファイア基板)
サファイアのウルツ鉱構造は、c面、a面、およびm面を有する。これらの各結晶面は結晶学的に定義されるものである。下地層、種結晶層、およびフラックス法によって育成される13族元素窒化物層の育成方向は、c面の法線方向であってよく、またa面、m面それぞれの法線方向であってもよい。
サファイアのウルツ鉱構造は、c面、a面、およびm面を有する。これらの各結晶面は結晶学的に定義されるものである。下地層、種結晶層、およびフラックス法によって育成される13族元素窒化物層の育成方向は、c面の法線方向であってよく、またa面、m面それぞれの法線方向であってもよい。
本発明の観点からは、13族元素窒化物層の剥離を抑制するため、サファイア基板の厚さは、300〜1600μmとすることが好ましく、400〜1300μmとすることが更に好ましい。
(種結晶)
種結晶は、13族元素窒化物結晶からなることが好ましい。ここでいう13族元素とは、IUPACが策定した周期律表による第13族元素のことである。13族元素は、具体的にはガリウム、アルミニウム、インジウム、タリウム等である。この13族元素窒化物は、特に好ましくは、GaN、AlN、GaAlNである。
種結晶膜は、一層であってよく、あるいはサファイア基板側にバッファ層を含んでいて良い。
種結晶は、13族元素窒化物結晶からなることが好ましい。ここでいう13族元素とは、IUPACが策定した周期律表による第13族元素のことである。13族元素は、具体的にはガリウム、アルミニウム、インジウム、タリウム等である。この13族元素窒化物は、特に好ましくは、GaN、AlN、GaAlNである。
種結晶膜は、一層であってよく、あるいはサファイア基板側にバッファ層を含んでいて良い。
種結晶膜の形成方法は気相成長法が好ましいが、有機金属化学気相成長(MOCVD: Metal Organic Chemical Vapor Deposition)法、ハイドライド気相成長(HVPE)法、パルス励起堆積(PXD)法、MBE法、昇華法を例示できる。有機金属化学気相成長法が特に好ましい。また、成長温度は、950〜1200℃が好ましい。
(13族元素窒化物層)
13族元素窒化物層の製法は特に限定されないが、有機金属化学気相成長(MOCVD: Metal Organic Chemical Vapor Deposition)法、ハイドライド気相成長(HVPE)法、パルス励起堆積(PXD)法、MBE法、昇華法などの気相法、フラックス法などの液相法を例示できる。
13族元素窒化物層の製法は特に限定されないが、有機金属化学気相成長(MOCVD: Metal Organic Chemical Vapor Deposition)法、ハイドライド気相成長(HVPE)法、パルス励起堆積(PXD)法、MBE法、昇華法などの気相法、フラックス法などの液相法を例示できる。
この結晶層を構成する13族元素窒化物は、窒化ガリウム、窒化アルミニウムまたは窒化ガリウムアルミニウムからなる。また、この13族元素窒化物への添加剤としては、炭素や、低融点金属(錫、ビスマス、銀、金)、高融点金属(鉄、マンガン、ゲルマニウム、亜鉛、チタン、クロムなどの遷移金属)が挙げられる。
好適な実施形態においては、13族元素窒化物結晶層をフラックス法によって育成する。この際、フラックスの種類は、13族元素窒化物を生成可能である限り、特に限定されない。好適な実施形態においては、アルカリ金属とアルカリ土類金属の少なくとも一方を含むフラックスを使用し、ナトリウム金属を含むフラックスが特に好ましい。
フラックスには、13族元素の原料物質を混合し、使用する。この原料物質としては、単体金属、合金、化合物を適用できるが、13族元素の単体金属が取扱いの上からも好適である。
融液における13族元素/フラックス(例えばナトリウム)の比率(mol比率)は、本発明の観点からは、高くすることが好ましく、13mol%以上が好ましく、18mol%以上が更に好ましい。ただし、この割合が大きくなり過ぎると結晶品質が落ちる傾向があるので、40mol%以下が好ましい。
フラックス法で成長した13族元素窒化物は、波長330〜385nmの光(例えば水銀ランプの光)を照射したときに、波長440〜470nmにピークを有するブロードな蛍光(青色の蛍光)を発する。これに対して、気相法により作製した13族元素窒化物は、波長330〜385nmの光を照射すると、波長540〜580nmにピークを有するブロードな蛍光(黄色の蛍光)を発する。このため、波長330〜385nmの光を照射したときに発する蛍光の色によって、フラックス法による13族元素窒化物か気相法による13族元素窒化物かを区別することができる。
フラックス法で成長した13族元素窒化物は、波長330〜385nmの光(例えば水銀ランプの光)を照射したときに、波長440〜470nmにピークを有するブロードな蛍光(青色の蛍光)を発する。これに対して、気相法により作製した13族元素窒化物は、波長330〜385nmの光を照射すると、波長540〜580nmにピークを有するブロードな蛍光(黄色の蛍光)を発する。このため、波長330〜385nmの光を照射したときに発する蛍光の色によって、フラックス法による13族元素窒化物か気相法による13族元素窒化物かを区別することができる。
(複合基板の反り)
このようにして得られた複合基板には、フラックス法による成膜と冷却に起因する反りが生じている。その反りは、一般に、図3(a)に模式的に示すように、サファイア基板を下にしたときに、上側に凸形状となっていることが多い。
このようにして得られた複合基板には、フラックス法による成膜と冷却に起因する反りが生じている。その反りは、一般に、図3(a)に模式的に示すように、サファイア基板を下にしたときに、上側に凸形状となっていることが多い。
複合基板の反りは、特許文献3(特開2009−111423)に記載されている方法で測定される値である。
具体的には、図3を参照しつつ述べる。
ここで、図3(a)に示す例では、試料(複合基板)4のサファイア基板1Aの底面1cが凹状となり、13族元素窒化物層が凸状となるように、複合基板が反っている。この反りを正(+の記号で示す)とする。また、図3(b)に示す例では、試料(複合基板)4のサファイア基板1Aの底面1cが凸状となり、13族元素窒化物層が凹状となるように、複合基板が反っている。この反りを負(−の記号で示す)とする。複合基板4の底面1cが形成する曲面を「反り曲面」とする。
ここで、図3(a)に示す例では、試料(複合基板)4のサファイア基板1Aの底面1cが凹状となり、13族元素窒化物層が凸状となるように、複合基板が反っている。この反りを正(+の記号で示す)とする。また、図3(b)に示す例では、試料(複合基板)4のサファイア基板1Aの底面1cが凸状となり、13族元素窒化物層が凹状となるように、複合基板が反っている。この反りを負(−の記号で示す)とする。複合基板4の底面1cが形成する曲面を「反り曲面」とする。
また、反り曲面と平面Pとの距離の平均値が最も小さくなるような平面を想定し、この平面を最適平面Pとする。そして、この反り曲面と最適平面Pとの距離を測定する。すなわち、底面の長さ2インチ(5.08cm)の領域内において、底面1cのうち最適平面P上にある点をzpとする。また、底面1cのうち最適平面Pと最も離れた点をzvとする。点zvと最適平面Pとの距離を反りW(R)とする。11は、試料と平面Pとの隙間である。
言い換えると、反りW(R)は、底面1cにおいて、最適平面Pに最も近い点zpと最も遠い点zvとの高低差である。
複合基板の反りは、レーザー変位計によって測定できる。レーザー変位計とは、レーザー光を複合基板の底面に照射することにより、背面の変位を測定する装置をいう。レーザーの波長を633nmとし、測定方式には表面粗度に応じてレーザーフォーカス(laser focus)方式、光干渉方式を用いることができる。
(レーザー光の照射)
複合基板を保持しつつ、レーザー光をサファイア基板側に照射して13族元素窒化物層とサファイア基板との界面の結晶格子結合を分解する。
複合基板を保持しつつ、レーザー光をサファイア基板側に照射して13族元素窒化物層とサファイア基板との界面の結晶格子結合を分解する。
レーザー光の波長は、剥離するべき13族元素窒化物の材質に合わせて適宜選択するが、一般的には380nm以下であり、好ましくは150〜380nmである。また、ArFエキシマレーザー(eximer laser)、KrFエキシマレーザー、XeClエキシマレーザー、第3高調波Nd:YAGレーザーなどを使用できる。
例えば、以下の材質を剥離させるためには、以下の波長のレーザー光を利用することが好ましい。
GaN: 200〜 360 nm
AlN: 150〜 200 nm
GaAlN: 200〜 250 nm
GaN: 200〜 360 nm
AlN: 150〜 200 nm
GaAlN: 200〜 250 nm
レーザーリフトオフを行う方式も特に限定されない。例えば、レーザー発振器から放出されたレーザービームを、ビームエキスパンダ(beam expander)、柱状レンズないし凸レンズ、ダイクロイックミラー(dichroic mirror)および集光レンズを介して集光レーザービームとし、XYステージ(stage)上の複合基板に照射する。柱状レンズと集光レンズを組み合わせることにより、焦点距離をx方向とy方向とで異なるようにし、例えばx方向において強くフォーカスされ、y方向にはデフォーカスされた楕円形レーザー光を形成することもできる。
また、ビームスキャナを用いたレーザーリフトオフ装置も利用できる。すなわち、レーザー発振器から放出されたレーザービームを、ビームエキスパンダ、柱状レンズないし凸レンズ、反射鏡、ガルバノスキャナおよびfθレンズを介して集光レーザービームとし、移動するXYステージ上の複合基板に照射する。
使用するレーザー光は、複合基板の底面全面をスキャニングしながら照射することができる。あるいは、レーザー光の位置を固定し、複合基板を保持するステージのほうを移動させることによって、複合基板の底面をスキャンすることもできる。
複合基板上でレーザー光スポットを縦横に移動させ、スキャンすることもできる。また、各スポットの直径は1〜5mmが好ましい。また、スポットの移動速度は、パルスレーザーの繰り返し周波数にもよるが、10〜50mm/secが好ましい。
複合基板上でレーザー光スポットを移動させる際には、隣接するスポットが重なり合うことが好ましく、これによって未照射領域を無くすることができる。
レーザー光のパワーは、加工対象や温度、さらにはレーザ発振波長、パルス幅などに依存するが、一般的には0.1〜0.5J/cm2とすることができる。
また、複合基板を保持するときに、複合基板を加熱することによって、反りを緩和し、あるいは反りの矯正に伴う応力を緩和することができる。こうした加熱温度としては、100〜500℃が好ましく、200〜300℃が更に好ましい。ただし、こうした加熱は必須ではなく、室温でも実施できる。
(機能層および機能素子)
こうして得られた13族元素窒化物層の外周部をベベリング(beveling)加工し、両面を研磨加工して、自立ウエハーを作製し、この上に機能層を気相法で形成する。
こうした機能層は、単一層であってよく、複数層であってよい。また、機能としては、高輝度・高演色性の白色LEDや高速高密度光メモリ用青紫レーザディスク、ハイブリッド自動車用のインバータ用のパワーデバイスなどに用いることができる。
こうして得られた13族元素窒化物層の外周部をベベリング(beveling)加工し、両面を研磨加工して、自立ウエハーを作製し、この上に機能層を気相法で形成する。
こうした機能層は、単一層であってよく、複数層であってよい。また、機能としては、高輝度・高演色性の白色LEDや高速高密度光メモリ用青紫レーザディスク、ハイブリッド自動車用のインバータ用のパワーデバイスなどに用いることができる。
図2に示すような手順にしたがって複合基板4を得た。具体的には、直径50.8mm、75mm、100mmのサファイア基板1上に有機金属化学的気相成長法によって、窒化ガリウム単結晶からなる種結晶膜を形成し、その上に、窒化ガリウム単結晶からなる層3を成長させた。次いでサファイア基板の底面1bを研磨加工した。
得られた複合基板について、サファイア基板の直径(mm)、サファイア基板の厚さ(mm)、複合基板の反り、13族元素窒化物層の平均厚さ(mm)、窒化物層の厚さの最大値、窒化物層の厚さの最小値を測定し、測定結果を表1に示した。
各性質は以下のようにして測定した。
(サファイア基板の厚さ(mm))
接触式のマイクロメーターにてサファイア基板の厚さを測定した。また、非接触式の光学方式にても、サファイア基板の厚さを測定した。
(複合基板の反り)
前述のように測定した。
(サファイア基板の厚さ(mm))
接触式のマイクロメーターにてサファイア基板の厚さを測定した。また、非接触式の光学方式にても、サファイア基板の厚さを測定した。
(複合基板の反り)
前述のように測定した。
(13族元素窒化物層の平均厚さ(μm)、最大値、最小値)
複合基板の厚さを、接触式のマイクロメーター及び非接触式の光学方式にて測定し、予め測定してあったサファイア基板の厚さを減じて13族元素窒化物層の厚さを求めた。
複合基板の厚さを、接触式のマイクロメーター及び非接触式の光学方式にて測定し、予め測定してあったサファイア基板の厚さを減じて13族元素窒化物層の厚さを求めた。
複合基板4を基台上にクッション(cushion)材を挟んでセットした。基台はステンレス製とし、基台の表面は平坦面とした。この状態で基台を駆動ステージの上に配置し、フラッシュランプ(flash lamp)励起QスイッチNd:YAGレーザーの第三高調波(波長355nmの紫外レーザー光)のパルス(繰り返し周波数10Hz、パルス幅5ns)を上から照射しつつステージを動かして、複合基板の端から順に走査した。レーザー光のビームサイズは、ピンホールと凸レンズを用いて整形、集光し、複合基板上で直径3.0mmの円形となるように調整した。1パルスのエネルギーは、0.25mJ/cm2であった。隣接する各パルスの1ショット(shot)領域が少しだけ重なるように走査した。すなわち、速度は27mm/secとした。
レーザー走査が終わった後、複合基板を40℃のお湯に漬けて、サファイア基板と13族元素窒化物層の界面に生じた金属ガリウム(融点29℃)を溶かし、サファイアと13族元素窒化物層を分離したものを得た。その後、分離した13族元素窒化物層の外周部をベベリング加工し、両面を研磨加工して、自立ウエハーを得た。
ここで、サファイア基板と13族元素窒化物層とを分離した後、13族元素窒化物層におけるクラックの有無を目視によって確認し、結果を表に示した。ただし、各例についてそれぞれ10個の試料を準備し、10個のサンプル当たりのクラックの総数を計数した。
以上の結果から分かるように、本発明によって、サファイア基板と13族元素窒化物層とをレーザー光照射によって分離する際におけるクラック発生を防止することに成功した。
Claims (8)
- サファイア基板と、このサファイア基板上に設けられた13族元素窒化物層とを備える複合基板を準備し、この際前記13族元素窒化物層が窒化ガリウム、窒化アルミニウムまたは窒化ガリウムアルミニウムからなり、前記複合基板が以下の関係式(1)、(2)および(3)を満足しており、前記複合基板に対して、前記サファイア基板側からレーザー光を照射することで、前記サファイア基板と前記13族元素窒化物層との界面の結晶格子結合を分解することを特徴とする、13族元素窒化物層の分離方法。
5.0≦(13族元素窒化物層の平均厚さ(μm)/前記サファイア基板の直径(mm)≦10.0・・・・(1)
0.1≦前記複合基板の反り(mm)×(50/前記複合基板の直径(mm))2≦0.6・・・・(2)
1.10≦前記13族元素窒化物層の厚さの最大値(μm)/前記13族元素窒化物層の厚さの最小値(μm)・・・・(3)
- 前記式(3)において、前記13族元素窒化物層の厚さの最大値(μm)/前記13族元素窒化物層の厚さの最小値(μm)が1.60以下であることを特徴とする、請求項1記載の方法。
- 前記複合基板が下記式(4)を満足することを特徴とする、請求項1または2記載の方法。
0.2≦前記13族元素窒化物層の平均厚さ(mm)/前記サファイア基板の厚さ(mm)≦1.0・・・・(4)
- 前記13族元素窒化物層の少なくとも一部がフラックス法によって窒素含有雰囲気下に融液から育成されたことを特徴とする、請求項1〜3のいずれか一つの請求項に記載の方法。
- サファイア基板と、このサファイア基板上に設けられた13族元素窒化物層とを備える複合基板であって、前記13族元素窒化物層が窒化ガリウム、窒化アルミニウムまたは窒化ガリウムアルミニウムからなり、以下の関係式(1)、(2)および(3)を満足することを特徴とする、複合基板。
5.0≦(13族元素窒化物層の平均厚さ(μm)/前記サファイア基板の直径(mm)≦10.0・・・・(1)
0.1≦前記複合基板の反り(mm)×(50/前記複合基板の直径(mm))2≦0.6・・・・(2)
1.10≦前記13族元素窒化物層の厚さの最大値(μm)/前記13族元素窒化物層の厚さの最小値(μm)・・・・(3)
- 前記式(3)において、前記13族元素窒化物層の厚さの最大値(μm)/前記13族元素窒化物層の厚さの最小値(μm)が1.60以下であることを特徴とする、請求項5記載の複合基板。
- 前記複合基板が下記式(4)を満足することを特徴とする、請求項5または6記載の複合基板。
0.2≦前記13族元素窒化物層の平均厚さ(mm)/前記サファイア基板の厚さ(mm)≦1.0・・・・(4)
- 前記13族元素窒化物層の少なくとも一部がフラックス法によって窒素含有雰囲気下に融液から育成されたことを特徴とする、請求項5〜7のいずれか一つの請求項に記載の複合基板。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014244648 | 2014-12-03 | ||
JP2014244648 | 2014-12-03 | ||
PCT/JP2015/083089 WO2016088624A1 (ja) | 2014-12-03 | 2015-11-25 | 13族元素窒化物層の分離方法および複合基板 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5986702B1 JP5986702B1 (ja) | 2016-09-06 |
JPWO2016088624A1 true JPWO2016088624A1 (ja) | 2017-04-27 |
Family
ID=56091571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016516109A Active JP5986702B1 (ja) | 2014-12-03 | 2015-11-25 | 13族元素窒化物層の分離方法および複合基板 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9960316B2 (ja) |
JP (1) | JP5986702B1 (ja) |
CN (1) | CN107002284B (ja) |
WO (1) | WO2016088624A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6785176B2 (ja) * | 2017-03-28 | 2020-11-18 | 日本碍子株式会社 | 窒化ガリウム結晶からなる自立基板の製造方法 |
JP7117690B2 (ja) * | 2017-09-21 | 2022-08-15 | 国立大学法人大阪大学 | Iii-v族化合物結晶の製造方法および半導体装置の製造方法 |
JP2019112261A (ja) | 2017-12-22 | 2019-07-11 | 昭和電工株式会社 | SiC単結晶の加工方法及びSiCインゴットの製造方法 |
US20210381125A1 (en) * | 2019-03-08 | 2021-12-09 | Seagate Technology Llc | Epitaxial directed ald crystal growth |
DE102022122315A1 (de) | 2022-09-02 | 2024-03-07 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Verfahren und vorrichtung zur herstellung einer tragstruktur, tragstruktur und optisches gerät mit einer tragstruktur |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100616656B1 (ko) | 2005-01-03 | 2006-08-28 | 삼성전기주식회사 | 질화갈륨계 단결정 기판의 제조방법 및 제조장치 |
JP5317521B2 (ja) | 2007-04-24 | 2013-10-16 | パナソニック株式会社 | 光学ガラス組成物、プリフォーム及び光学素子 |
JP5051455B2 (ja) * | 2008-01-16 | 2012-10-17 | 日立電線株式会社 | エピタキシャル成長用窒化物半導体基板の製造方法 |
JP4380791B2 (ja) | 2009-01-23 | 2009-12-09 | 住友電気工業株式会社 | GaN結晶基板およびその製造方法 |
TWI508327B (zh) * | 2010-03-05 | 2015-11-11 | Namiki Precision Jewel Co Ltd | An internal modified substrate for epitaxial growth, a multilayer film internal modified substrate, a semiconductor device, a semiconductor bulk substrate, and the like |
TWI525664B (zh) * | 2010-03-05 | 2016-03-11 | Namiki Precision Jewel Co Ltd | A crystalline film, a device, and a method for producing a crystalline film or device |
CN103732809A (zh) * | 2011-08-10 | 2014-04-16 | 日本碍子株式会社 | 13族元素氮化物膜的剥离方法 |
JP6424345B2 (ja) * | 2013-02-08 | 2018-11-21 | アダマンド並木精密宝石株式会社 | GaN基板の製造方法 |
JP2014162713A (ja) * | 2013-02-28 | 2014-09-08 | Sharp Corp | 窒化物半導体基板の製造方法 |
-
2015
- 2015-11-25 JP JP2016516109A patent/JP5986702B1/ja active Active
- 2015-11-25 CN CN201580064055.1A patent/CN107002284B/zh active Active
- 2015-11-25 WO PCT/JP2015/083089 patent/WO2016088624A1/ja active Application Filing
-
2017
- 2017-05-31 US US15/609,704 patent/US9960316B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN107002284A (zh) | 2017-08-01 |
US9960316B2 (en) | 2018-05-01 |
WO2016088624A1 (ja) | 2016-06-09 |
US20170263810A1 (en) | 2017-09-14 |
CN107002284B (zh) | 2019-07-09 |
JP5986702B1 (ja) | 2016-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5986702B1 (ja) | 13族元素窒化物層の分離方法および複合基板 | |
TWI685889B (zh) | 晶圓的生成方法 | |
KR100849779B1 (ko) | 소재 층의 분리 방법 | |
JP6144630B2 (ja) | 複合基板の製造方法、13族元素窒化物からなる機能層の製造方法 | |
KR101362859B1 (ko) | 에피택셜 성장용 내부 개질 기판 및 이를 이용하여 제작되는 결정 성막체, 디바이스, 벌크 기판 및, 그들의 제조 방법 | |
JP5802943B2 (ja) | エピタキシャル成長用内部改質基板の製造方法および多層膜付き内部改質基板の製造方法 | |
KR101254639B1 (ko) | 반도체 발광 소자의 제조 방법 | |
CN1758985A (zh) | 激光加工方法 | |
JP5943921B2 (ja) | 13族元素窒化物膜の剥離方法 | |
JP2009061462A (ja) | 基板の製造方法および基板 | |
JP7117690B2 (ja) | Iii-v族化合物結晶の製造方法および半導体装置の製造方法 | |
Kim et al. | Selective lift-off of GaN light-emitting diode from a sapphire substrate using 266-nm diode-pumped solid-state laser irradiation | |
US20170372889A1 (en) | Methods of producing seed crystal substrates and group 13 element nitride crystals, and seed crystal substrates | |
JP2016060675A (ja) | 13族元素窒化物層の分離方法 | |
US11437233B2 (en) | Base substrate, functional element, and method for manufacturing base substrate | |
US11383328B2 (en) | Method for manufacturing peeled substrate | |
JP5598801B2 (ja) | レーザーダイシング方法、チップの製造方法およびレーザー加工装置 | |
US11245054B2 (en) | Base substrate, functional element, and production method for base substrate | |
JP2012164740A (ja) | レーザスクライブ方法 | |
JP6785176B2 (ja) | 窒化ガリウム結晶からなる自立基板の製造方法 | |
JP2018188363A (ja) | 13族元素窒化物層の分離方法 | |
JP2020038955A (ja) | Iii族窒化物単結晶の切断方法 | |
JP6232186B2 (ja) | 窒化物半導体ウェハのマーキング方法および識別符号付き窒化物半導体ウェハ | |
JP2013258231A (ja) | 光デバイスの加工方法 | |
Paipulas et al. | Rapid delamination of GaN coatings with femtosecond laser lift-off |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160629 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160725 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160805 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5986702 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |