JPWO2016042599A1 - 前照灯用光軸制御装置 - Google Patents

前照灯用光軸制御装置 Download PDF

Info

Publication number
JPWO2016042599A1
JPWO2016042599A1 JP2016548462A JP2016548462A JPWO2016042599A1 JP WO2016042599 A1 JPWO2016042599 A1 JP WO2016042599A1 JP 2016548462 A JP2016548462 A JP 2016548462A JP 2016548462 A JP2016548462 A JP 2016548462A JP WO2016042599 A1 JPWO2016042599 A1 JP WO2016042599A1
Authority
JP
Japan
Prior art keywords
vehicle
acceleration
angle
optical axis
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016548462A
Other languages
English (en)
Other versions
JP6073535B2 (ja
Inventor
光昭 赤座
光昭 赤座
山下 利幸
利幸 山下
大澤 孝
孝 大澤
亘 辻田
亘 辻田
恭彦 伊藤
恭彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6073535B2 publication Critical patent/JP6073535B2/ja
Publication of JPWO2016042599A1 publication Critical patent/JPWO2016042599A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • B60Q1/10Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to vehicle inclination, e.g. due to load distribution
    • B60Q1/115Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to vehicle inclination, e.g. due to load distribution by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/657Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by moving light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/10Indexing codes relating to particular vehicle conditions
    • B60Q2300/11Linear movements of the vehicle
    • B60Q2300/112Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/10Indexing codes relating to particular vehicle conditions
    • B60Q2300/11Linear movements of the vehicle
    • B60Q2300/114Vehicle acceleration or deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/10Indexing codes relating to particular vehicle conditions
    • B60Q2300/11Linear movements of the vehicle
    • B60Q2300/116Vehicle at a stop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/10Indexing codes relating to particular vehicle conditions
    • B60Q2300/13Attitude of the vehicle body
    • B60Q2300/132Pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/30Indexing codes relating to the vehicle environment
    • B60Q2300/32Road surface or travel path
    • B60Q2300/324Road inclination, e.g. uphill or downhill

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

前照灯用光軸制御装置10の制御部15は、予め設定された上下方向および前後方向の基準加速度の情報を有し、加速度センサ2によって車両の走行中に検出された上下方向の加速度信号と上下方向の基準加速度との差分に対する、車両の走行中に検出された前後方向の加速度信号と前後方向の基準加速度との差分の比から路面に対する車両の傾斜角度である車両角度を算出し、前後方向の差分を第一軸に設定すると共に車両角度を第二軸に設定した座標上に当該算出した車両角度を複数個プロットして前後方向の加速度変化量が零のときに相当する車両角度を導出し、当該導出した車両角度に基づいて前照灯5L,5Rの光軸を操作する信号を生成する。

Description

この発明は、加速度センサによって検出された加速度信号を用いて、車載用前照灯の光軸を制御する前照灯用光軸制御装置に関するものである。
車両に搭載される前照灯において、高いデザイン性および高級感を醸し出しながら、夜間走行時の安全性を高めるために、光源として従来のハロゲン電球に代替して、明るい放電灯あるいは任意の方向を明るく照らすLED(発光ダイオード)が普及している。
上記明るい光源を車両に搭載するにあたっては、例えば、後部座席に搭乗者が乗車、あるいは、トランクに荷物を積載して車両の後部が下がって傾いたとき、換言すれば、車両の前部が上がって前照灯の照射方向が上方に傾いたときには、対向車を運転するドライバを眩惑しないように、また、当前照灯に対峙する歩行者に不快感を与えないように、前照灯の照射方向、つまり前照灯の光軸を下げて、路面に対する光軸を一定に維持する必要がある。要するに、上記明るい光源を使用する車両には、少なくとも搭乗者の乗車あるいはトランクへの荷物の積載によって車両が傾き前照灯の照射方向が上方に変化したときに、当前照灯の照射方向を下げて、変化前の照射方向に戻す前照灯用光軸制御装置の搭載が必須となっている。
なお、搭乗者の乗車あるいは荷物の積載は、車両が停車しているときに行われるものであり、車両が停車しているときの光軸制御が、当前照灯用光軸制御装置の主な制御となる。
ところで、前照灯の光軸制御は、上記のように車両が前後方向に傾斜したときに前照灯の照射方向をもとの方向に戻すべく、路面に対する車両の傾斜角度の変化を相殺するように光軸を上下に操作するものであるため、まず、路面に対する車両の傾斜角度を測定する必要がある。
従来は、車両前後のサスペンション(懸架装置)に取り付けられたストロークセンサを使用して、前後のサスペンションの縮み量、つまり前後の車軸部の沈み込み量を計測し、当前後の沈み込み量の差分とホイールベースの長さとに基づいて、路面に対する車両の傾斜角度を算出していた。
昨今においては、上記サスペンションに取り付けられたストロークセンサを使用する構成以外に、例えば特許文献1のような、加速度センサを使用する構成が検討されている。当加速度センサを使用する構成においては、停車中の車両の傾斜角度の変化を検出することは容易であり、初期の傾斜角度に対して搭乗者の乗り降り等による変化量を累積して現時点の傾斜角度を得ることは容易である。その一方で、当加速度センサの出力にはオフセットおよび当オフセットの経時変化が存在し、上記累積して得た傾斜角度には累積誤差が潜在するため、検出値および変化を累積して得た傾斜角度の確度が低いという問題がある。そのため、前照灯の光軸を長期間にわたって正しい角度に安定して維持するためには、加速度センサによって検出された加速度に対し、何らかの補正を加えて確度を確保する必要がある。
上記特許文献1の光軸制御装置は、車両の前後方向と上下方向の2軸の加速度センサを使用しながら、路面に対する車両の傾斜角度の確度を高め、好適な前照灯の光軸制御を行うために、車両が停車しているときの光軸制御以外に、車両が走行しているときにも加速度を検出して光軸制御を行っている。上記特許文献1の光軸制御装置は、車両が走行しているときに検出した加速度を使用して、加速度の変化方向を時間ごとに求める、あるいは検出タイミングが異なる二つの加速度から加速度の変化方向を求めることで、路面に対する車両の傾斜角度を算出し、当路面に対する傾斜角度の変化に基づいて光軸を制御している。
特開2012−106719号公報
実際の車両においては、加速するときは車両の前方が上がるか後方が下がる方向に傾斜が変化し、減速するときに車両の前方が下がるか後方が上がる方向に傾斜が変化する。そのため、加減速するときの加速度の変化方向は、直線状にはならない。
しかしながら、上記特許文献1では、車両が加速しても減速しても、路面に対する車両の傾斜角度が変化しないことを前提としており、加減速するときの加速度の変化方向を、特許文献1の図4および図6のように直線近似して求めている。つまり、上記特許文献1の方法で求めた傾斜角度には、車両が加減速することによって変化した傾斜が含まれていないため、確度が低いという課題があった。
この発明は、上記のような課題を解決するためになされたもので、車両が加減速することによって変化した傾斜を考慮することにより、路面に対する車両の傾斜角度の確度を高めることを目的とする。
この発明に係る前照灯用光軸制御装置は、車両に搭載された加速度センサによって検出された上下方向および前後方向の加速度信号を用いて、路面に対する車両の傾斜角度を示す車両角度を算出し、前照灯の光軸を操作する信号を生成する制御部を備え、制御部は、予め設定された上下方向および前後方向の基準加速度の情報を有し、加速度センサによって検出された車両の走行中の上下方向の加速度信号と上下方向の基準加速度との差分に対する、車両の走行中の前後方向の加速度信号と前後方向の基準加速度との差分の比から車両角度を算出し、前後方向の加速度信号と基準加速度との差分を第一軸に設定すると共に車両角度を第二軸に設定した座標上に当該算出した車両角度を複数個プロットして前後方向の加速度変化量が零のときに相当する車両角度を導出し、当該導出した車両角度に基づいて前照灯の光軸を操作する信号を生成するものである。
この発明によれば、走行中に検出された加速度信号を複数使用して、前後方向の加速度変化量が零のときに相当する車両角度、つまり停車中または等速走行中の車両角度を導出するようにしたので、車両が加減速することによって車両の傾斜が変化しても確度の高い車両角度を得ることができる。また、加速度変化量を使用するようにしたので、加速度センサの出力に潜在するオフセットおよび当オフセットの経時変化による影響を少なくでき、長期にわたって安定した車両角度を得ることができる。
この発明の実施の形態1に係る前照灯用光軸制御装置の構成例を示すブロック図である。 実施の形態1に係る前照灯用光軸制御装置の車両搭載例を示す図である。 実施の形態1において加速度と車両角度の関係を説明する図である。 実施の形態1において加速度と車両角度の関係を説明する図であり、加速度の大きさによって車両角度が異なる様子を示す。 実施の形態1において加減速により変化する車両の傾斜を説明する図である。 実施の形態1においてX軸方向の加速度変化量に対する車両角度の関係を示すグラフである。 実施の形態1に係る前照灯用光軸制御装置の動作を示すフローチャートである。 実施の形態1において加速度センサに潜在するオフセットを説明する図である。 実施の形態1において加速度センサに潜在するオフセットの経時変化を説明する図である。 実施の形態1に係る前照灯用光軸制御装置によるオフセット補正方法を説明する図である。 実施の形態1に係る前照灯用光軸制御装置の初期設定方法を示すフローチャートである。 実施の形態1に係る前照灯用光軸制御装置の初期設定方法を説明する図である。 実施の形態1に係る前照灯用光軸制御装置の取り付け角度の設定方法を示すフローチャートである。 この発明の実施の形態3に係る前照灯用光軸制御装置が車両角度の算出に使用する範囲を説明する図である。 実施の形態3において車両が振動したときの加速度の変化を説明する図である。
以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
図1は、実施の形態1に係る前照灯用光軸制御装置10の構成例を示すブロック図である。実施の形態1に係る前照灯用光軸制御装置10は、電源部11、加速度信号入力部12、速度信号入力部13、車両情報入力部14、および制御部15を含んでいる。制御部15は、CPU(Central Processing Unit)16、半導体メモリ等で構成された記憶部17、および光軸操作信号出力部18を含んでいる。
図2は、前照灯用光軸制御装置10を車両7に搭載した例を示す図である。車両7には、光軸の方向を調整する光軸操作装置6L,6Rを備えた左側の前照灯5Lおよび右側の前照灯5Rと、加速度センサ2と、車速センサ3と、前照灯用光軸制御装置10とが設置されている。加速度センサ2は、車両7に加わる前後方向の加速度と、車両7に加わる上下方向の加速度を検出して、加速度信号を出力する。車速センサ3は、車両7の車速を検出し、速度信号を出力する。
図2(a)の例では、前照灯用光軸制御装置10と加速度センサ2とが別体で構成されている。図2(b)の例では、前照灯用光軸制御装置10の内部に加速度センサ2が収容されて一体に構成されている。図2(c)の例では、加速度センサ2と一体に構成された前照灯用光軸制御装置10が、他の車載電装品8の内部に収容されている。
前照灯用光軸制御装置10は、車両7の前方を照らす左右の前照灯5L,5Rの上下方向の光軸を一定に保つものである。
電源部11は、車載バッテリ1の電源を制御部15へ供給する。加速度信号入力部12は、加速度センサ2が出力した前後・上下方向の加速度信号をCPU16へ入力する。速度信号入力部13は、車速センサ3が出力した速度信号をCPU16へ入力する。車両情報入力部14は、イグニッションスイッチ、ライティングスイッチ、あるいはディマースイッチ等で構成された車両7のスイッチ4に対してドライバが行った操作内容を示す車両情報を、CPU16へ入力する。CPU16は、前後・上下方向の加速度信号と速度信号を用いて、路面に対する車両7の傾斜角度(以下、車両角度とも呼ぶ)を算出し、傾斜角度の変化を相殺するための光軸操作信号を生成する。光軸操作信号出力部18は、CPU16が算出した光軸操作信号を光軸操作装置6L,6Rへ出力する。
光軸操作装置6L,6Rは、前照灯用光軸制御装置10から入力される光軸操作信号に応じて、前照灯5L,5Rの光軸の角度を操作することによって、車両7の傾斜角度の変化を相殺するように光軸制御を行う。これにより、車両7の傾斜角度が変化しても光軸が一定に保たれる。
図3および図4は、加速度と車両角度の関係を説明する図である。
本発明の説明においては、車両7の上下方向をZ軸、車両7の前後方向をX軸とした加速度の計測系を使用し、図3(a)および図4(a)〜図4(d)に示すように、車両7(当計測系)に加わる加速度の方向と大きさをばねに吊り下げた錘の位置によって表現する。
また、路面に接地した前後左右それぞれの車輪の中心点を4個の頂点とした平面状の四角形を仮想的な台車としてみれば、当仮想的な台車の面は路面に対して平行になることを念頭において、図3(b)には、車両7の当仮想的な台車(即ち道路側)から見た、当車両7に加わる加速度(ばねに吊り下げた錘)の挙動を示す。なお、当図においては、当仮想的な台車の上下方向をZα軸、前後方向をXα軸とする。
また、図4(a)は停車時であって加速度が零、図4(b)〜図4(d)は走行時であって加速度が図4(b)、図4(c)、図4(d)の順に大きくなる様子を示す。加速度が大きくなるにつれ、車両7の回転(矢印101で示す)も大きくなる。
図3(b)に示すように、仮想的な台車(即ち道路側)から車両7に加わる加速度(ばねに吊り下げた錘)を見た場合、車両7が加速するときには、水平な道路でも坂道でも、錘は道路面に対して平行に移動する。つまり、走行による加速度の変化は路面に平行な矢印100のようになる。
一方、図3(a)に示すように、計測系から車両7に加わる加速度(ばねに吊り下げた錘)を見た場合、車両7の加速によって、錘は、車両7の計測系の前後方向のX軸とは異なる方向に移動する。このとき、前後方向のX軸と車両7の加速による錘の移動方向(矢印100)とがなす角度θが、路面に対する車両7(計測系)の傾斜角度、つまり車両角度となる。
従って、車両7に設置された加速度の計測系においては、予め設定した錘の位置を基準にして、道路面に対して平行に移動する錘の移動方向を観測すれば、走行している道路の勾配に関係なく車両角度を算出することができる。
換言すれば、車両7に設置された加速度の計測系においては、下式(1)のように、予め設定したZ,X軸上の加速度を基準にして、道路面に対して平行に移動するZ,X軸の加速度の変化を観測すれば、走行している道路の勾配に関係なく車両角度を算出することができる。
θ=tan−1(ΔZ/ΔX) (1)
ここで、図4に示すように、加速度計測系の計測上の原点をOとし、錘の位置を計測上の基準点Pとし、計測上の原点OからのX,Z軸方向の加速度をX,Zとする。直前の錘の位置を実質的な基準点P1とすると、X軸の加速度の変化量ΔXは、加速度センサ2が検出した前後方向の加速度Xと、実質的な基準点P1となる前後方向の加速度との差分である。Z軸の加速度の変化量ΔZは、加速度センサ2が検出した上下方向の加速度Zと、実質的な基準点P1となる上下方向の加速度との差分である。
図5(c)は上記図4の補足であり当図に示すように、実際の車両7が加速するときには、車両7が矢印101で示す方向に回転角度θ1だけ回転し、車両7の前方が上がるか後方が下がる方向に傾斜する。減速するときには、図5(a)に示すように車両7の前方が下がるか後方が上がる方向に傾斜する。図5(b)は、車両7が停車している状態、あるいは等速走行している状態を示す。
つまり、上記図4(b)、図4(c)、図4(d)、および、図5に示すように、車両角度θには、車両7が加減速することによって変化した傾斜(回転角度θ1)が含まれる。
そのため、Z,X軸1組の加速度から得た車両角度θの確度は低い。従って、前照灯の光軸制御に、Z,X軸1組の加速度から得た車両角度θをそのまま使用することは適切ではない。
そこで、実施の形態1では、車両7が加減速することによって車両7の傾斜が変化した場合でも確度の高い車両角度を得るために、走行中のZ,Y軸の加速度を複数組使用する。
実施の形態1では、車両角度θは、下式(1A)により算出される。
ここで、図4に示すように、停車時あるいは等速走行時(つまり、加速度が零のとき)の錘の位置を基準点P0とし、基準となる加速度として、車両7が停車しているときの車両7に加わる上下方向の加速度Z0と、前後方向の加速度X0を使用する。車両7が走行しているときに加速度センサ2が検出する上下方向の加速度をZn、前後方向の加速度をXnとすると、車両角度θは、式(1A)より求まる。これにより、走行している道路の勾配による影響を受けることなく車両角度を算出することができる。
θ=tan−1(ΔZ0/ΔX0) (1A)
即ち、ΔZ0=Zn−Z0,ΔX0=Xn−X0である。
図4(a)において、停車時あるいは等速走行時の錘の位置(基準点P0)は、路面に対する計測軸(X軸)の傾斜角度θ3と、水平面に対する路面の傾斜角度θ4との合計角度θ2である。
例えば、CPU16が、車速センサ3の速度信号に基づいて車両7が停車しているか否かを判断し、停車していると判断したときの加速度センサ2の加速度信号を、基準となる加速度として記憶部17に記憶しておく。光軸制御時、CPU16は、速度信号に基づいて車両7が走行していると判断したとき、記憶部17に記憶されている加速度を基準に用いて、新たに加速度センサ2から入力される加速度信号から車両角度θを算出する。
図6は、X軸方向の加速度変化量ΔX0に対する車両角度θを示すグラフである。
CPU16は、X軸方向の加速度変化量ΔX0を第一軸に設定し、車両角度θを第二軸に設定した座標上に、走行中に加速度センサ2が検出したZ,X軸方向の加速度を用いて算出した車両角度θをプロットする。図6の星印は、プロットした車両角度θを示す。X軸方向の加速度変化量ΔX0は、加速度センサ2によって検出されたX軸方向の加速度信号Xnと、基準となる加速度X0との差分である。
CPU16は、プロットした複数個の車両角度θによって形成される、代表的な直線110あるいは曲線を導く。CPU16は、導いた直線110上の加速度変化量ΔX0が零に位置する値を、車両7が停車しているとき、あるいは等速度で走行しているときの車両角度θ5(以下、停車中の車両角度と呼ぶ)として扱う。
なお、上記代表的な直線110あるいは曲線とは、算出された車両角度θが2個であれば、両者を通る直線あるいは曲線であり、算出された車両角度θの個数が多ければ、最小2乗法等の算術的な手法で導けばよい。
ちなみに、上記加速度に対する車両角度θの代表的な特性が曲線状になるのは、車両7のサスペンションに使用するばねの特性が非線形であることが要因の一つである。
図6に示した算出方法においては、加速度の変化量を使用して停車中の車両角度θ5を求めているため、加速度センサ2の加速度信号に存在するオフセットの影響がなく、当オフセットが経時的に変化しても問題ない。
加速度センサ2のオフセットとその経時変化については、後述する。
次に、図7のフローチャートを用いて、前照灯用光軸制御装置10の動作を説明する。
CPU16は、電源が投入されて動作を開始すると、図7のフローチャートを実施する。
CPU16は、まず、加速度信号入力部12を介して加速度センサ2から入力される上下・前後方向の加速度信号を取得する(ステップST1)。続いてCPU16は、速度信号入力部13を介して車速センサ3から入力される速度信号に基づいて、車両7が停車中か走行中かを判定する(ステップST2)。図7の動作例では、車両7が停車しているときの光軸制御(ステップST3〜ST9)と、車両7が走行しているときの光軸制御(ステップST12〜ST16)とを切り替えて行う。
車両7が停車しているとき(ステップST2“YES”)、CPU16は、ステップST1で取得した加速度信号を使用して、水平方向に対する車両7の傾斜角度(対水平車両角度)を算出する(ステップST3)。加速度センサの出力を使用する対水平車両角度の算出方法は、周知の方法を用いればよいため、説明を省略する。
CPU16は、停車中に搭乗者の乗り降り、あるいは荷物の積み下ろしによって車両7の傾斜が変化したか否かを判定するために、変化前の対水平車両角度が記憶部17に記憶されているか否かを示す1回目フラグを持つ。
CPU16は、1回目フラグがセットされているか否かを確認し(ステップST4)、1回目フラグがセットされていない場合(ステップST4“YES”)、1回目フラグをセットし(ステップST5)、ステップST3で算出した対水平車両角度を1回目対水平車両角度として記憶部17に記憶させ(ステップST6)、ステップST1に戻る。
1回目フラグがセットされている場合(ステップST4“NO”)、CPU16は、記憶部17から1回目対水平車両角度を読み出し、ステップST3で算出した対水平車両角度を減じて、傾斜角度差を算出する(ステップST7)。傾斜角度差が有る場合(ステップST8“YES”)、搭乗者の乗り降り、あるいは荷物の積み下ろし等によって車両7の傾斜が変化し光軸も変化しているため、CPU16は車両角度と傾斜角度差とを加算して、変化後の車両角度を算出する(ステップST9)。傾斜角度差が無い場合(ステップST8“NO”)、車両7の傾斜角度は変化しておらず光軸も変化していないため、ステップST1に戻る。
ステップST10は、搭乗者の乗り降り、あるいは荷物の積み下ろし等によって車両7の対水平車両角度が変化したときに、光軸が初期位置に戻るように、当変化した角度を相殺する光軸操作角度を求める処理である。
ステップST10において、CPU16は、車両7が停車した直後(停車後1回目)の対水平車両角度に対して、その後(停車後2回目以降)の対水平車両角度が変化したときに、変化した傾斜角度差を相殺した上で初期位置に戻す光軸操作角度を算出し光軸制御に使用する。ちなみに、停車後1回目の対水平車両角度は、搭乗者の乗り降り、あるいは荷物の積み下ろし等がない、走行しているときの車両角度に対応する角度であり、停車中の傾斜角度の変化を観測するための基準として好都合である。
停車中の光軸制御においては、例えば、予め車両7を水平な路面に停車させて、光軸を俯角側に1%(光軸が100m前方で1m下がる角度)に設定しておく。設定後は、搭乗者の乗り降り、あるいは荷物の積み下ろし等によって変化する車両角度の差分に応じて、前照灯5L,5Rの光軸が初期位置(俯角側1%)に戻るように、車両角度の変化量を相殺する方向に光軸を操作することができる。
一例として、光軸操作角度は、予め記憶部17に記憶されている光軸補正角度と、予め記憶部17に記憶されている車両角度基準値と、ステップST8で算出した車両角度とから求まる。(車両角度基準値−車両角度)により車両角度の変化量が相殺され、この値に(光軸補正角度+車両角度基準値)が加算されることで光軸が初期位置に戻る。
光軸補正角度および車両角度基準値は後述する。
CPU16は、ステップST10で求めた光軸操作角度から光軸操作信号を生成し、光軸操作信号出力部18を介して光軸操作装置6L,6Rへ出力する(ステップST11)。光軸操作装置6L,6Rは、光軸操作信号に従って前照灯5L,5Rの光軸を操作する。
他方、車両7が走行しているとき(ステップST2“NO”)、CPU16は、1回目フラグをリセットする(ステップST12)。続いてCPU16は、ステップST1で取得した走行時の加速度信号を使用して上式(1A)より車両角度θを算出し、図6に示した加速度変化量に対する車両角度の座標上に車両角度θをプロットして直線110を求める。CPU16は、この座標において、前後方向の加速度変化量が零のときに相当する直線110上の値を、車両7が停車しているときの車両角度θ5とする(ステップST13)。
車両角度θの有効なプロット数が足らず停車中の車両角度θ5を算出できなかった場合(ステップST14“NO”)、CPU16はステップST1へ戻る。
一方、停車中の車両角度θ5を算出できた場合(ステップST14“YES”)、CPU16はステップST15へ進む。
このステップST15は、加速度センサ2のオフセットと感度の補正を行うステップであり、その処理は後述する。
ステップST15の後、CPU16は、ステップST13で算出した停車中の車両角度を車両角度として用いて(ステップST16)、ステップST10にて光軸操作角度を算出し、ステップST11にて光軸操作信号を生成し光軸操作信号出力部18を介して光軸操作装置6L,6Rへ出力する。
このように、走行中の車両7に加わるX,Z軸方向の加速度を複数使用して、X軸方向の加速度変化量が零のとき、つまり停車中または等速走行中の車両角度を算出することで、走行する道路の勾配による影響、ならびに加減速することにより変化する車両7の傾斜の影響を受けることなく、停車中の車両角度を導くことができる。
次に、ステップST15の加速度センサ2のオフセットと感度の補正方法を説明する。
上述したように、加速度センサ2の出力にはオフセットが潜在し、そのオフセットは経時的に変化する可能性がある。また、車両7が停車しているときの対水平車両角度を使用する光軸制御(ステップST3〜ST9)は変化した角度を延々と蓄積する方式であるため、誤差が蓄積する可能性がある。そのため、対水平車両角度を使用する光軸制御においては、経時的に光軸がずれる可能性がある。
ここで、図8を用いて加速度センサ2のオフセットを説明し、図9を用いてオフセットの経時変化を説明する。図8は、加速度センサ2初期設定時の、鉛直方向および水平方向から見た計測系と錘を説明する図であり、縦軸が鉛直方向、横軸は水平方向である。X軸とZ軸の交点が加速度センサ2の原点であり、鉛直方向と水平方向の交点が車両7(計測系)からみた計測上の原点Oである。
車両7に対する加速度センサ2の取り付け角度が既知の場合、X軸方向のオフセットXoffとZ軸方向のオフセットZoffは、下式(2)、(3)で表される。
Xoff=X−{1・sin(θoff)} (2)
Zoff=Z−{1・cos(θoff)} (3)
ここで、鉛直方向に対する取り付け角度のずれ(既知)をθoff、重力加速度を1G、加速度センサ2が検出する加速度信号をX,Zとする。
長時間が経過すると、車両7の走行振動等により、図9の矢印120で示すように車両7(計測系)に対する加速度センサ2の取り付け位置および取り付け角度がずれていく。これにより、オフセットXoff,Zoffが変化し、停車時の加速度信号から求まる対水平車両角度もずれてしまう。オフセットを修正するためには、オフセットの変化による車両角度のずれをΔθoffとした場合にΔθoff=0となるようにXoff,Zoffを増減する必要がある。
オフセットXoff,Zoffの修正により、計測上の原点OがO1に修正され、車両角度のずれもΔθoff=0に修正される。
実施の形態1では、経時的に変化する加速度センサ2のオフセットの影響を軽減するために、ステップST15でオフセットを修正する。ステップST15においてCPU16は、停車中の対水平車両角度がステップST13で得られた停車中の車両角度と同等になるように、下記手段によって加速度センサ2の加速度信号のオフセットを修正する。
図10は、ステップST15のオフセット補正方法を説明する図である。グラフの縦軸は車両角度θ、横軸はX軸方向の加速度変化量ΔX0である。ただし、停車時の加速度信号から算出した車両角度θ(星印で示す)は、実際にはΔX0=0の直線上に並ぶが、図10では出現頻度を表現するために星印をΔX0軸方向へ積み上げたヒストグラムとして表現した。
水平方向に対する車両7の傾斜角度を確認するためには、車両7を水平な路面上に停車して、そのとき得られる加速度信号を使用することが最良ではあるが、ユーザに水平な路面を探させて対応させることは実現しがたい。そこで、CPU16は、車両7が停車しているときの加速度信号から算出した車両角度θを複数収集し、ステップST15において収集した停車時の車両角度θを図10のグラフのようにプロットして、平均的な、あるいは出現頻度が高い代表的な車両角度θ6を求める。この代表的な車両角度θ6を対水平車両角度に代用する。
上述したように、走行中の加速度信号から算出した停車中の車両角度θ5にはオフセットが含まれないため、この停車中の車両角度θ5と代表的な車両角度θ6との差分が、オフセットの変化による車両角度のずれΔθoffとなる。CPU16は、Δθoff=0となるように、つまり対水平車両角度が車両角度θ6と同等になるように、上式(2)、(3)のオフセットXoff,Zoffを増減する。CPU16は、修正したオフセットXoff,Zoffを記憶部17に格納しておき、これ以降に加速度センサ2から入力される加速度信号のオフセットを補正して対水平車両角度の算出に使用する。
なお、オフセット修正のタイミングは、ステップST15に限定されるものではない。
次に、図11のフローチャートを用いて、前照灯用光軸制御装置10の初期設定の方法を説明する。ここでは、図2(b)または図2(c)に示したように、加速度センサ2が前照灯用光軸制御装置10に組み込まれた構成を例に用いる。
製造工場において、前照灯用光軸制御装置10の完成後にCPU16の1回目フラグをリセットしておく(ステップST21)。作業者は、加速度センサ2が組み込まれた前照灯用光軸制御装置10を3方向以上に傾け、加速度センサ2がその都度の上下・前後方向の加速度を測定して加速度信号を出力する(ステップST22)。CPU16は、入力された加速度信号に基づいて、加速度センサ2のオフセットと感度を推定する(ステップST23)。
ここで、図12(a)は、初期設定時の、鉛直方向および水平方向から見た計測系と錘を説明する図であり、縦軸が鉛直方向、横軸は水平方向である。図12(b)に示すように、加速度センサ2を組み込んだ前照灯用光軸制御装置10を回転させたとき、図12(a)に示すように、加速度センサ2により検出された加速度(ばねに吊り下げされた錘)が描く円の中心がオフセット、円の大きさが感度である。
続いて作業者は、前照灯用光軸制御装置10を水平な面上に固定し、前照灯用光軸制御装置10に対する加速度センサ2の取り付け角度の設定を行う(ステップST24)。前照灯用光軸制御装置10は、外部から設定用信号が入力されると、ステップST23の加速度センサ2のオフセットと感度と、ステップST24の取り付け角度の設定値を記憶部17に格納する。
なお、上記各種設定値を格納する設定用信号としては、外部装置との通信による設定信号の他に、たとえば、車両情報入力部14に、特定の入力パターンを入力することで代用する。ちなみに、当特定な入力パターンとは、たとえば、変速機の選択レバーを「R」に設定、かつ、ライティングスイッチを「オン」に設定、かつ、パッシングスイッチの「オン」を3回繰り返す等の暗号的な組み合わせである。もちろん、入力パターン用の信号の組み合わせは上記以外でも構わない。
図13に、取り付け角度の設定方法を示す。水平面上に固定された状態で、加速度センサ2が加速度を測定し(ステップST24−1)、CPU16が対水平車両角度を算出し(ステップST24−2)、算出した対水平車両角度を車両角度基準値として記憶部17に格納する(ステップST24−3)。最後に、CPU16は、光軸操作角度(取り付け角度設定時は0度とする)から車両角度基準値を減じて光軸補正角度を算出し、記憶部17に格納する(ステップST24−4)。取り付け角度設定時は、加速度センサ2が水平な面上に固定されているため、前照灯用光軸制御装置10の出力する光軸操作角度として中央値(=0度)を用いる。
ステップST24−4の光軸補正角度=(取り付け角度設定時の光軸操作角度−車両角度基準値)を変形すると、取り付け角度設定時の光軸操作角度=(光軸補正角度+車両角度基準値)となる。光軸補正角度と車両角度基準値は記憶部17に格納され、図7のフローチャートにおいて使用される。
続いてCPU16は、取り付け角度設定時の光軸操作角度から光軸操作信号を生成して出力する(ステップST25)。作業者は、この光軸操作信号が正しい値になっているか確認する(ステップST26)。
ステップST27〜ST30の処理は、車両の製造工場または整備工場において実施される。作業者は、前照灯用光軸制御装置10を車両7に搭載し(ステップST27)、車両7を水平な路面に停車した状態で車両7に対する加速度センサ2の取り付け角度の設定を行う(ステップST28)。ステップST28,ST29の処理は、ステップST24,ST25と同じである。
ステップST28では、図13のステップST24−1〜24−4と同様の手順で取り付け角度設定を行う。作業者は、車両7を水平な路面に停車させて対水平車両角度、即ち、図8に示した加速度センサ2の取り付け角度のずれθoffを前照灯用光軸制御装置10に認識させ、車両7に対する加速度センサ2の取り付け角度のずれを補正させる(ステップST24−4の光軸補正角度の設定)。このθoffは記憶部17に格納され、図7のフローチャートにおいて使用される。
以上の前照灯用光軸制御装置10の電気的な設定を済ませた後で、作業者がスパナあるいはドライバを使用して前照灯5L,5Rの光軸を機械的に調整することにより、光軸を初期位置(例えば、俯角側1%)に設定する(ステップST30)。これにより、光軸操作角度(=光軸補正角度+車両角度基準値)が0度のとき、前照灯5L,5Rの光軸が俯角側1%の初期位置になる。
以上より、実施の形態1によれば、前照灯用光軸制御装置10の制御部15は、予め設定された上下方向および前後方向の基準加速度の情報を有し、加速度センサ2によって検出された車両7の走行中の上下方向の加速度信号と上下方向の基準加速度との差分に対する、車両7の走行中の前後方向の加速度信号と前後方向の基準加速度との差分の比から車両角度を算出し、前後方向の差分を第一軸に設定すると共に車両角度を第二軸に設定した座標上に当該算出した車両角度を複数個プロットして前後方向の加速度変化量が零のときに相当する車両角度を導出し、当該導出した車両角度に基づいて前照灯5L,5Rの光軸を操作する光軸操作信号を生成する構成にした。走行中に検出された加速度信号を複数使用して、前後方向の加速度変化量が零のときの車両角度、つまり停車中または等速走行中の車両角度を導出するようにしたので、車両7が加減速することによって車両7の傾斜が変化しても確度の高い車両角度を得ることができる。また、加速度変化量を使用することにより、加速度センサ2の出力に潜在するオフセットおよび当オフセットの経時変化による影響を少なくでき、長期にわたって安定した車両角度を得ることができる。
また、実施の形態1によれば、制御部15は、加速度センサ2によって検出された車両7が停車しているときの上下方向および前後方向の加速度信号を用いて、対水平車両角度を算出し、複数個の対水平車両角度から代表的な対水平車両角度を導き、代表的な対水平車両角度と前後方向の加速度変化量が零のときに相当する車両角度とが異なる場合に両者が等しくなるように加速度センサ2によって検出される加速度信号を補正する構成にした。このため、加速度センサ2に潜在するオフセットおよびその経時変化を修正することで、より確度の高い対水平車両角度を得ることができる。その結果、停車時にも安定した前照灯の光軸制御ができる前照灯用光軸制御装置10を実現できる。
また、実施の形態1によれば、図2(b)のように、加速度センサ2を前照灯用光軸制御装置10と一体に構成することにより、配線を省略する等でき、簡素な構成の前照灯用光軸制御装置10を実現できる。
また、実施の形態1によれば、図2(c)のように、前照灯用光軸制御装置10を光軸制御とは異なる機能の車載電装品8と一体に構成することにより、独立した前照灯用光軸制御装置10が存在しないため、車両7に搭載されるシステム構成が簡素になる。
実施の形態2.
上記実施の形態1では、基準となる加速度として、車両7が停車しているときに加速度センさ2によって検出された車両7に加わる上下方向の加速度Z0と、前後方向の加速度X0を使用したが、基準となる加速度はこれ以外であってもよい。
なお、実施の形態2に係る前照灯用光軸制御装置は、図面上は図1の構成と同じであるため、図1を援用して説明する。
例えば、CPU16は、基準となる加速度として、車両7が等加速度で走行しているときの、車両7に加わる上下方向の加速度Zsと、前後方向の加速度Xsを使用してもよい。
また例えば、CPU16は、基準となる加速度として、車両7が等速度で走行しているときの、車両7に加わる上下方向の加速度Zcと、前後方向の加速度Xcを使用してもよい。
また例えば、CPU16は、基準となる加速度として、予め設定した時間(例えば、100ms)前に加速度センサ2が検出した上下方向の加速度Z−100と、前後方向の加速度X−100を使用してもよい。
さらに、基準となる加速度として、複数の値を切り替えて使用してもよい。CPU16は、基準となる加速度として、走行開始から予め設定した時間(例えば、走行開始時の急加速が終わるまでの5秒間)はZ0とX0を使用する。それ以降は、基準となる加速度として、Z−100とX−100を使用しながら、車両7が等加速度で走行しているタイミングがあればZsとXsに切り替え、車両7が等速度で走行しているタイミングがあればZcとXcに切り替える等、適宜組み合わせても構わない。
図4(d)に示したように、計測上の原点Oを基準とする「加速度X」、停車時あるいは等速走行時の加速度(基準点P0)を基準とする「加速度変化量ΔX0」、走行中の直前(例えば、100ms)の加速度(基準点P1)を基準とする「実質的な加速度変化量ΔX」のうちのいずれを使用しても、それぞれの基準となる加速度は、加速度センサ2の感度が描く円周上に並び、加速度の変化がほとんど当円の接線方向に発生する。そのため、それぞれのZ軸方向の変化量となる「加速度Z」、「加速度変化量ΔZ0」、および「実質的な加速度変化量ΔZ」との比(ΔZ0/ΔX0)にはほとんど影響しない。
従って、基準加速度は、ΔX0,ΔZ0でもよいし、Xs,Zsでもよいし、Xc,Zcでもよいし、X−100,Z−100でもよい。
実施の形態3.
上記実施の形態1では、停車中の車両角度の算出に、加速度センサ2から入力された加速度信号をすべて使用していたが、本実施の形態3では、予め設定された範囲内の加速度信号のみ使用する構成とする。
なお、実施の形態3に係る前照灯用光軸制御装置は、図面上は図1の構成と同じであるため、図1を援用して説明する。
図14は、実施の形態3に係る前照灯用光軸制御装置10が車両角度の算出に使用する範囲200を説明する図である。グラフの横軸はX軸方向の加速度変化量ΔX0、縦軸は車両角度θであり、走行中に検出された加速度信号から算出された車両角度θが星印でプロットされている。
図15には、車両7が振動したときの加速度の変化を示す。車輪が溝に嵌ったり石に乗り上げたりして車両7が振動すると、加速度センサ2が出力する加速度信号には当振動による加速度210が重畳することがある。当振動による加速度210が重畳した場合、実際の加速度より大きな値の加速度信号、あるいは小さな加速度信号(マイナス側も含む)が出力される。その結果、振動があるときの加速度変化量211が、振動がないときの加速度変化量212からずれてしまう。
また、車両7が急加速あるいは急停車等して大きな加速度が検出されるときは、車両7の挙動も異常になることがある。一方、加速度が小さなときは、車両角度θを算出する上式(1A)の分母となるΔX0が小さく、算出結果が異常になることがある。
従って、CPU16は、想定外に大きな加速度信号あるいは小さな加速度信号が入力された場合、当加速度信号から算出した車両角度θを、停車中の車両角度θ5の算出に使用しない。
CPU16は、例えば図14の範囲200のように、入力された加速度信号が−2Gから−0.5G、あるいは、0.5Gから2Gの間にあれば、それらの車両角度θから代表的な直線201あるいは曲線202を算出し、停車中の車両角度θ5を導く。一方、当範囲200外の加速度信号の車両角度θは算出には使用しない。
また、範囲200をさらに厳選してもよい。例えば、CPU16は、入力された加速度信号が、直前の加速度信号に対して1.1倍以上、あるいは0.9倍以下であるときは、当入力された加速度信号の車両角度θを、代表的な直線201あるいは曲線202の算出に使用しない。
また、上記説明では、前後方向の加速度信号に対して範囲200を設定したが、上下方向の加速度信号に対して設定してもよい。
以上より、実施の形態3によれば、制御部15は、加速度センサ2によって検出された上下方向および前後方向の少なくとも一方の加速度信号が予め設定された範囲外である場合、当該加速度信号を、前後方向の加速度変化量が零のときに相当する車両角度の導出に使用しない構成にした。このため、異常な加速度信号を排除することができ、確度の高い前照灯の光軸制御ができる前照灯用光軸制御装置10を実現できる。
実施の形態4.
上記実施の形態3では、車両角度の算出に、予め設定された範囲内の加速度信号のみ使用したが、本実施の形態4では、車両の速度信号に基づいて使用可否を判断する構成とする。
なお、実施の形態4に係る前照灯用光軸制御装置は、図面上は図1の構成と同じであるため、図1を援用して説明する。
図15において、車両7の振動による外乱がなければ、車速センサ3の速度信号を微分して得られる加速度変化量と、加速度センサ2の加速度信号から得られる加速度変化量212とが同等になる。
従って、速度信号から得た加速度変化量と、加速度信号から得た加速度変化量とが同等であれば、加速度信号には振動による加速度210が重畳されていないと判断でき、加速度センサ2の加速度信号の信憑性を確認することができる。即ち、両者の加速度変化量が同等であれば、加速度センサ2の加速度信号を停車中の車両角度の算出に使用しても問題はないと判断できる。
CPU16は、速度信号を微分して加速度変化量を算出すると共に、(ΔZ0+ΔX0)の平方根を演算して速度信号から得られる加速度変化量に相当する加速度信号の加速度変化量を求め、両者を比較する。
ちなみに、速度信号から得た加速度変化量と加速度信号から得た加速度変化量とが同等とは、例えば、0.9倍から1.1倍の範囲である。
以上より、実施の形態4によれば、制御部15は、車両7の速度を加速度の変化量に変換し、当該変換した加速度の変化量と、加速度センサ2によって検出された上下方向および前後方向の加速度信号の変化量との差が、予め設定された範囲内である場合、当該加速度信号を、前後方向の加速度変化量が零のときに相当する車両角度の導出に使用する構成にした。このため、異常な加速度信号を排除することができ、確度の高い前照灯の光軸制御ができる前照灯用光軸制御装置10を実現できる。
なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、各実施の形態の任意の構成要素の変形、または各実施の形態の任意の構成要素の省略が可能である。
この発明に係る前照灯用光軸制御装置は、加速度センサを使用しながらも高い確度で前照灯の光軸を制御できるようにしたので、LED等の明るい光源を使用した前照灯の光軸制御装置などに用いるのに適している。
1 車載バッテリ、2 加速度センサ、3 車速センサ、4 スイッチ、5L,5R 前照灯、6L,6R 光軸操作装置、7 車両、8 車載電装品、10 前照灯用光軸制御装置、11 電源部、12 加速度信号入力部、13 速度信号入力部、14 車両情報入力部、15 制御部、16 CPU、17 記憶部、18 光軸操作信号出力部。

Claims (7)

  1. 車両に搭載された加速度センサによって検出された上下方向および前後方向の加速度信号を用いて、路面に対する前記車両の傾斜角度を示す車両角度を算出し、前照灯の光軸を操作する信号を生成する制御部を備えた前照灯用光軸制御装置であって、
    前記制御部は、予め設定された前記上下方向および前記前後方向の基準加速度の情報を有し、前記加速度センサによって検出された前記車両の走行中の前記上下方向の加速度信号と前記上下方向の基準加速度との差分に対する、前記車両の走行中の前記前後方向の加速度信号と前記前後方向の基準加速度との差分の比から車両角度を算出し、前記前後方向の加速度信号と基準加速度との差分を第一軸に設定すると共に車両角度を第二軸に設定した座標上に当該算出した車両角度を複数個プロットして前記前後方向の加速度変化量が零のときに相当する車両角度を導出し、当該導出した車両角度に基づいて前記前照灯の光軸を操作する信号を生成することを特徴とする前照灯用光軸制御装置。
  2. 前記上下方向および前記前後方向の基準加速度は、
    前記加速度センサによって検出された、前記車両が停車しているときの前記上下方向および前記前後方向の加速度信号、
    あるいは、前記車両が等加速度で走行しているときの前記上下方向および前記前後方向の加速度信号、
    あるいは、前記車両が等速度で走行しているときの前記上下方向および前記前後方向の加速度信号、
    あるいは、予め設定された時間前の前記上下方向および前記前後方向の加速度信号であることを特徴とする請求項1記載の前照灯用光軸制御装置。
  3. 前記制御部は、前記加速度センサによって検出された前記上下方向および前記前後方向の少なくとも一方の加速度信号が予め設定された範囲外である場合、当該加速度信号を前記前後方向の加速度変化量が零のときに相当する車両角度の導出に使用しないことを特徴とする請求項1記載の前照灯用光軸制御装置。
  4. 前記制御部は、前記車両の速度を加速度の変化量に変換し、当該変換した加速度の変化量と、前記加速度センサによって検出された前記上下方向および前記前後方向の加速度信号の変化量との差が、予め設定された範囲内である場合、当該加速度信号を前記前後方向の加速度変化量が零のときに相当する車両角度の導出に使用することを特徴とする請求項1記載の前照灯用光軸制御装置。
  5. 前記制御部は、前記加速度センサによって検出された前記車両が停車しているときの前記上下方向および前記前後方向の加速度信号を用いて、水平方向に対する前記車両の傾斜角度を示す対水平車両角度を算出し、複数個の前記対水平車両角度から代表的な対水平車両角度を導き、前記代表的な対水平車両角度と前記前後方向の加速度変化量が零のときに相当する車両角度とが異なる場合に両者が等しくなるように前記加速度センサによって検出される加速度信号を補正することを特徴とする請求項1記載の前照灯用光軸制御装置。
  6. 前記加速度センサと一体に構成されていることを特徴とする請求項1記載の前照灯用光軸制御装置。
  7. 前記車両に搭載される車載電装品と一体に構成されていることを特徴とする請求項1記載の前照灯用光軸制御装置。
JP2016548462A 2014-09-16 2014-09-16 前照灯用光軸制御装置 Active JP6073535B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/074410 WO2016042599A1 (ja) 2014-09-16 2014-09-16 前照灯用光軸制御装置

Publications (2)

Publication Number Publication Date
JP6073535B2 JP6073535B2 (ja) 2017-02-01
JPWO2016042599A1 true JPWO2016042599A1 (ja) 2017-04-27

Family

ID=55532670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016548462A Active JP6073535B2 (ja) 2014-09-16 2014-09-16 前照灯用光軸制御装置

Country Status (5)

Country Link
US (1) US10471884B2 (ja)
JP (1) JP6073535B2 (ja)
CN (1) CN106715194B (ja)
DE (1) DE112014006958B4 (ja)
WO (1) WO2016042599A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107206928B (zh) * 2015-01-14 2020-11-10 株式会社小糸制作所 车辆用灯具的控制装置和车辆用灯具系统
US10471885B2 (en) 2015-03-12 2019-11-12 Mitsubishi Electric Corporation Headlight optical axis control apparatus
CN107614323B (zh) 2015-05-27 2020-05-22 三菱电机株式会社 前照灯用光轴控制装置
WO2017082177A1 (ja) * 2015-11-09 2017-05-18 三菱電機株式会社 投射光学機器及び前照灯装置
FR3057222B1 (fr) * 2016-10-07 2020-05-29 Aml Systems Procede et dispositif autonomes de determination d'une assiette d'un vehicule automobile.
WO2018094212A2 (en) 2016-11-18 2018-05-24 Polaris Industries Inc. Vehicle having adjustable suspension
JP6936624B2 (ja) 2017-05-19 2021-09-15 スタンレー電気株式会社 車両用灯具の制御装置および車両用灯具システム
US10406884B2 (en) 2017-06-09 2019-09-10 Polaris Industries Inc. Adjustable vehicle suspension system
DE102017216945A1 (de) * 2017-09-25 2019-03-28 Robert Bosch Gmbh Verfahren und System zum automatischen Einstellen eines Neigungswinkels eines Fahrzeugscheinwerfers
JP7037907B2 (ja) * 2017-10-17 2022-03-17 スタンレー電気株式会社 車両用灯具の制御装置および車両用灯具システム
JP6970013B2 (ja) * 2017-12-27 2021-11-24 株式会社小糸製作所 車両用灯具の制御装置
US10987987B2 (en) * 2018-11-21 2021-04-27 Polaris Industries Inc. Vehicle having adjustable compression and rebound damping
WO2020183531A1 (ja) * 2019-03-08 2020-09-17 三菱電機株式会社 光軸制御装置及び調整方法
JP6873347B2 (ja) * 2019-03-08 2021-05-19 三菱電機株式会社 光軸制御装置
EP4183629B1 (en) 2021-11-23 2024-02-14 C.R.F. Società Consortile per Azioni System and method for adjusting the emission direction of a motor-vehicle headlight unit
IT202200008477A1 (it) 2022-04-28 2023-10-28 Fiat Ricerche "Sistema e procedimento per regolare la direzione di emissione di un gruppo proiettore di autoveicolo"

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347882A (ja) * 2000-04-03 2001-12-18 Denso Corp 車両用前照灯光軸方向自動調整装置
JP5134527B2 (ja) * 2008-12-25 2013-01-30 川崎重工業株式会社 自動二輪車のバンク角検知装置およびヘッドランプ装置
JP5787649B2 (ja) 2010-10-26 2015-09-30 株式会社小糸製作所 車両用灯具の制御装置および車両用灯具システム
JP5713784B2 (ja) * 2011-04-22 2015-05-07 株式会社小糸製作所 車両用灯具の制御装置、および車両用灯具システム
JP2014000876A (ja) * 2012-06-18 2014-01-09 Yamaha Motor Co Ltd リーン姿勢で旋回する車両用のサブヘッドライトユニット及びサブヘッドライトシステム、並びにリーン姿勢で旋回する車両
JP6271943B2 (ja) 2012-10-24 2018-01-31 株式会社小糸製作所 車両用灯具の制御装置
JP6004917B2 (ja) 2012-11-26 2016-10-12 株式会社小糸製作所 車両用灯具の制御装置
JP6005491B2 (ja) 2012-11-30 2016-10-12 株式会社小糸製作所 車両用灯具の制御装置及び車両用灯具システム

Also Published As

Publication number Publication date
DE112014006958B4 (de) 2020-01-02
CN106715194B (zh) 2018-03-06
US20170129390A1 (en) 2017-05-11
CN106715194A (zh) 2017-05-24
DE112014006958T5 (de) 2017-06-22
WO2016042599A1 (ja) 2016-03-24
US10471884B2 (en) 2019-11-12
JP6073535B2 (ja) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6073535B2 (ja) 前照灯用光軸制御装置
JP6180690B2 (ja) 前照灯用光軸制御装置
JP5787649B2 (ja) 車両用灯具の制御装置および車両用灯具システム
JP2021062868A (ja) Ecu
JP7084514B2 (ja) 車両用灯具の制御装置
JP6129461B2 (ja) 前照灯用光軸制御装置
JP2010143424A (ja) 車両用ランプのオートレベリングシステム
JP6285260B2 (ja) 車両用灯具の制御装置
JP6223223B2 (ja) 前照灯用光軸制御装置
JP5758738B2 (ja) 車両用灯具の制御装置
JP6916038B2 (ja) 車両用灯具の制御装置および車両用灯具システム
WO2019097724A1 (ja) 傾斜角度計測装置及び光軸制御装置
JP6417098B2 (ja) 車両姿勢制御装置
EP4194268B1 (en) Control device for a vehicle lamp and a vehicle lamp system
JP2015174572A (ja) 車両用前照灯の光軸制御装置、車両用前照灯システム

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170104

R150 Certificate of patent or registration of utility model

Ref document number: 6073535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250