JPWO2015182619A1 - マイクロレンズアレイ及びマイクロレンズアレイを含む光学系 - Google Patents

マイクロレンズアレイ及びマイクロレンズアレイを含む光学系 Download PDF

Info

Publication number
JPWO2015182619A1
JPWO2015182619A1 JP2016523513A JP2016523513A JPWO2015182619A1 JP WO2015182619 A1 JPWO2015182619 A1 JP WO2015182619A1 JP 2016523513 A JP2016523513 A JP 2016523513A JP 2016523513 A JP2016523513 A JP 2016523513A JP WO2015182619 A1 JPWO2015182619 A1 JP WO2015182619A1
Authority
JP
Japan
Prior art keywords
microlens
plane
microlens array
array
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016523513A
Other languages
English (en)
Other versions
JP6664621B2 (ja
Inventor
大介 関
関  大介
佳代子 藤村
佳代子 藤村
岡野 正登
正登 岡野
幸暢 西尾
幸暢 西尾
智仁 桑垣内
智仁 桑垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nalux Co Ltd
Original Assignee
Nalux Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nalux Co Ltd filed Critical Nalux Co Ltd
Publication of JPWO2015182619A1 publication Critical patent/JPWO2015182619A1/ja
Application granted granted Critical
Publication of JP6664621B2 publication Critical patent/JP6664621B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/002Refractors for light sources using microoptical elements for redirecting or diffusing light
    • F21V5/004Refractors for light sources using microoptical elements for redirecting or diffusing light using microlenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0043Inhomogeneous or irregular arrays, e.g. varying shape, size, height
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • G02B27/425Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application in illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Lenses (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

単一のマイクロレンズの開口の回折に起因するものを含む光の強度分布のむらを低減するように、配列または形状をばらつかせたマイクロレンズアレイを提供する。本発明によるマイクロレンズアレイは、xy平面上に配置されたN個のマイクロレンズからなるマイクロレンズアレイである。それぞれのマイクロレンズのレンズ頂点のxy平面への投影点は、所定の方向の格子間隔が、Mを正の整数としてD/M(ミリメータ)であるxy平面上の基準格子構造の格子点の近傍に配置され、マイクロレンズの境界線をレンズの辺としてマイクロレンズの対向する二辺の間隔はほぼDに等しく、レンズ頂点のxy平面への投影点から辺のxy平面への投影線までの距離がD/2+εiであり、それぞれのマイクロレンズの材料の屈折率をn、中心近傍の該所定の方向の曲率半径をR(ミリメータ)、焦点距離をf(ミリメータ)として、以下の関係を満たす。

Description

本発明は、マイクロレンズアレイ及びマイクロレンズアレイを含む光学系に関する。
拡散される光の滑らかな強度分布を実現するための拡散素子は、室内灯などの一般照明、工業用途の光センサの光源系、画像表示用のスクリーンなど幅広い用途において需要がある。
拡散される光の滑らかな強度分布を実現するための光学素子として、入射してきた光線を屈折させることでガウス分布の拡散分布を実現させるガウス拡散素子が良く知られている。ガウス拡散素子は、完全にランダムな高さ分布を備えた連続な粗面からなる。ガウス拡散素子として、ガラスなどの母材を砂掛けにより粗面としたものを金型として用い、プラスチック材料の上に凹凸を転写したものや、コヒーレント光源からの光を干渉させることで得られるスペックルと呼ばれるランダムな光量分布を露光することで得られる母材を金型として用い、プラスチック材料の上に凹凸を転写したものなどが公知である。これらのガウス拡散素子は自然で滑らかな光の強度分布が得られる反面、その分布は概略でガウス分布の範囲から外れることがないので設計の自由度が小さい上に、広い配光角を実現しようとすると透過率が低下する。また、ガウス拡散素子には、表面が粒状感のあるざらついた質感に見えたり、スペックルが生じやすかったりという特性があるので、表面の見た目や質感が滑らかであることが要求されるスクリーンのような用途には適当でない。
より高い透過率やガウス分布から外れた分布が要求される用途に対して、ガウス拡散板の代わりに、マイクロレンズアレイを用いる技術が数多く提案されている。マイクロレンズアレイにおいては、マイクロレンズの形状を調整することで発散される光の強度分布をコントロールすることができる。また、粗面と比べて高い透過率を得ることが可能である。しかしながら、マイクロレンズの間隔が小さいマイクロレンズアレイは、それぞれのマイクロレンズからの光の波面が干渉した結果、その配列の周期構造による回折波が生じ、光の強度分布にむらが発生するという欠点がある。また、マイクロレンズの曲率半径が小さくなると、マイクロレンズの開口自体で発生する回折により発散される光の強度分布にむらが生じるという問題もある。
そこで、マイクロレンズの配列、面形状や開口の形状をばらつかせることで、干渉や回折による光の強度分布のむらを低減させたマイクロレンズアレイが提案されている。たとえば、マイクロレンズの配列にランダム性を持たせることで、マイクロレンズアレイの周期構造由来の回折による拡散輝度のむらを抑制する、カメラのピント合わせ用の焦点板が開発されている(特許文献1及び特許文献2)。また、マイクロレンズの配列、面形状や開口の形状などの様々な要素にランダム性を備えさせたマイクロレンズアレイが開発されている(特許文献3)。
しかし、上記の特許文献を含む先行技術は、光の強度分布のむらを低減させるために配列及び形状をどのようにばらつかせるについて十分に開示していない。また、小型の素子で発散角の大きな分布を達成するには曲率半径の小さなマイクロレンズが必要となるので、レンズアレイの周期構造ではなく単一のマイクロレンズの開口の回折による光の強度分布のむらが問題となる。しかし、単一のマイクロレンズの開口の回折に起因するものを含む光の強度分布のむらを低減するように、配列または形状をばらつかせたマイクロレンズアレイ及びマイクロレンズアレイを含む光学系は開発されていない。
特開昭62−56005号公報(特許2503485) 特開平3−192232号公報(特許2881877) 特表2006−500621号公報
したがって、単一のマイクロレンズの開口の回折に起因するものを含む光の強度分布のむらを低減するように、配列または形状をばらつかせたマイクロレンズアレイ及びマイクロレンズアレイを含む光学系に対するニーズがある。
本発明の第1の態様によるマイクロレンズアレイは、xy平面上に配置されたN個のマイクロレンズからなるマイクロレンズアレイである。それぞれのマイクロレンズのレンズ頂点のxy平面への投影点は、所定の方向の格子間隔が、Mを正の整数としてD/M(ミリメータ)であるxy平面上の基準格子構造の格子点の近傍に配置され、マイクロレンズの境界線をレンズの辺としてマイクロレンズの対向する二辺の間隔はほぼDに等しく、レンズ頂点のxy平面への投影点から辺のxy平面への投影線までの距離が
Figure 2015182619
であり、
Figure 2015182619
とし、それぞれのマイクロレンズの材料の屈折率をn、中心近傍の該所定の方向の曲率半径をR(ミリメータ)、焦点距離をf(ミリメータ)として、
Figure 2015182619
Figure 2015182619
を満たす。
本態様のマイクロレンズアレイによれば、マイクロレンズの開口に相当する、対向するレンズ境界線をなす二辺の間隔を適切にばらつかせることにより、単一のマイクロレンズの開口の回折に起因するものを含む光の強度分布のむらを低減することができる。
本発明の第1の態様の第1の実施形態によるマイクロレンズアレイは、xy平面上の該基準格子構造が矩形配列または六方配列である。
基準格子構造が矩形配列の場合には、M=1であり、基準格子構造が六方配列の場合には、M=2である。
本発明の第1の態様の第2の実施形態によるマイクロレンズアレイにおいては、レンズ頂点位置が格子点から該所定の方向にηだけずれて配置されることで、隣接するマイクロレンズ間に生じる境界によって形成されるマイクロレンズの開口がε変化し、
Figure 2015182619
である。
本実施形態によれば、隣接するマイクロレンズの境界は、マイクロレンズが軸対象の場合には、隣接するレンズ頂点を結ぶ線分の垂直二等分線となり、境界において隣接するレンズ面の段差が生じることはない。
本発明の第1の態様の第3の実施形態によるマイクロレンズアレイにおいては、xy平面上の該基準格子構造は、x方向の間隔がDx、y方向の間隔がDyの矩形配列であり、それぞれのマイクロレンズの頂点のxy平面への投影点の位置が、対応する格子位置から(ηxi,ηyi)だけずれるように配置されている。
本発明の第1の態様の第4の実施形態によるマイクロレンズアレイにおいては、xy平面上の該基準格子構造がx方向及びy方向の矩形配列であり、それぞれのマイクロレンズの中心近傍の、x方向の曲率半径がRx(ミリメータ)であり、y方向の曲率半径がRy(ミリメータ)である.
本発明の第1の態様の第5の実施形態によるマイクロレンズアレイは、
Figure 2015182619
をさらに満たす。
本発明の第1の態様の第6の実施形態によるマイクロレンズアレイは、
Figure 2015182619
をさらに満たす。
本発明の第1の態様の第7の実施形態によるマイクロレンズアレイにおいては、マイクロレンズの頂点位置が、xy平面に垂直な方向に0から0.55/(n-1)(マイクロメータ)の範囲で一様にばらついている。
本実施形態によれば、複数のマイクロレンズの頂点位置をxy平面、すなわち格子面に垂直な方向にも互いにずらすことで、複数のマイクロレンズからの位相をずらすことによって、いわゆるダークスポットを低減することができる。
本発明の第1の態様の第8の実施形態によるマイクロレンズアレイにおいては、εの絶対値の最大値を|εi|maxとして、
Figure 2015182619
が満たされる。
本発明の第2の態様による光学系は、発光する光の波長の最小値がλ(マイクロメータ)である光源とマイクロレンズアレイとを含み、該光源からの光を該マイクロレンズアレイによって発散させるように構成された光学系である。該マイクロレンズアレイは、xy平面上に配置されたN個のマイクロレンズからなり、それぞれのマイクロレンズのレンズ頂点のxy平面への投影点は、所定の方向の格子間隔が、Mを正の整数としてD/M(ミリメータ)であるxy平面上の基準格子構造の格子点の近傍に配置され、マイクロレンズの境界線をレンズの辺としてマイクロレンズの対向する二辺の間隔はほぼDに等しく、レンズ頂点のxy平面への投影点から辺のxy平面への投影線までの距離が
Figure 2015182619
であり、
Figure 2015182619
とし、それぞれのマイクロレンズの材料の屈折率をn、中心近傍の該所定の方向の曲率半径をR(ミリメータ)、焦点距離をf(ミリメータ)として、
Figure 2015182619
Figure 2015182619
を満たすように構成されている。
本態様の光学系によれば、マイクロレンズの開口に相当する、対向するレンズ境界線をなす二辺の間隔を適切にばらつかせることにより、単一のマイクロレンズの開口の回折に起因するものを含む光の強度分布のむらを低減することができる。
本発明の第2の態様の第1の実施形態による光学系は、該マイクロレンズアレイのマイクロレンズが、
Figure 2015182619
をさらに満たす。
本発明の第2の態様の第2の実施形態による光学系は、該マイクロレンズアレイのマイクロレンズが、
Figure 2015182619
をさらに満たす。
本発明の第2の態様の第3の実施形態による光学系においては、マイクロレンズの頂点位置が、xy平面に垂直な方向に0からλ/(n-1)の範囲で一様にばらついている。
本実施形態によれば、複数のマイクロレンズの頂点位置をxy平面、すなわち格子面に垂直な方向にも互いにずらすことで、複数のマイクロレンズからの位相をずらすことによって、いわゆるダークスポットを低減することができる。
本発明の第2の態様の第4の実施形態による光学系においては、n個の異なる波長λ1、λ2、、、λnの光源を備え、λmultiは、λmultiをλiで割った余りをRemiとして、Remi<(λi/10)またはRemi>(9λi/10)を全てのiに対して満たすように定められた定数であるとして、マイクロレンズの頂点位置が、xy平面に垂直な方向に0からλmulti/(n-1)の範囲で一様にばらついている。
本発明の一実施形態によるマイクロレンズアレイを示す図である。 従来技術のマイクロレンズアレイの断面を示す図である。 n=1.5、R=0.075[mm]、D=0.07[mm]のマイクロレンズからなるマイクロレンズアレイの底面に垂直方向に波長550nmの光ビームを入射させ発散さたときに得られる光の強度分布を示す図である。 図3Aの角度θがマイナス11度からマイナス7度の範囲を拡大した図である。 n=1.5、R=0.075[mm]、D=0.05[mm]のマイクロレンズの底面に垂直方向に波長550nmの光ビームを入射させ発散さたときに得られる光による像を示す図である。 n=1.5、R=0.075[mm]、D=0.05[mm]のマイクロレンズの底面に垂直方向に波長550nmの光ビームを入射させ発散さたときに得られる光の強度分布を示す図である。 n=1.5、R=0.075[mm]、D=0.1[mm]のマイクロレンズの底面に垂直方向に波長550nmの光ビームを入射させ発散さたときに得られる光による像を示す図である。 n=1.5、R=0.075[mm]、D=0.1[mm]のマイクロレンズの底面に垂直方向に波長550nmの光ビームを入射させ発散さたときに得られる光の強度分布を示す図である。 n=1.5、R=0.15[mm]、D=0.1[mm]のマイクロレンズの底面に垂直方向に波長550nmの光ビームを入射させ発散さたときに得られる光による像を示す図である。 n=1.5、R=0.15[mm]、D=0.1[mm]のマイクロレンズの底面に垂直方向に波長550nmの光ビームを入射させ発散さたときに得られる光の強度分布を示す図である。 マイクロレンズの中心曲率と周期αとの関係を示す図である。 マイクロレンズの開口幅Dと周期αとの関係を示す図である。 マイクロレンズの材料及び周囲の媒体の屈折率差と周期αとの関係を示す図である。 入射ビームの波長λと周期αとの関係を示す図である。 マイクロレンズアレイ100の断面を示す図である。 式(17)及び式(19)を満たす開口幅D及び発散の角度θの領域を示す図である。 正方配列の基準格子の格子点にマイクロレンズの頂点を固定し、開口幅を変化させた状態を示す図である。 最初に矩形配列の基準格子の格子点に複数のマイクロレンズの頂点を配置し、その後、格子面内において複数のマイクロレンズの頂点を格子点から移動させた状態を示す図である。 最初に六方配列の基準格子の格子点に複数のマイクロレンズの頂点を配置し、その後、格子面内において複数のマイクロレンズの頂点を格子点から移動させた状態を示す図である。 図14Bの円で囲った部分の拡大図である。
実施例1のマイクロレンズアレイの底面に垂直方向に波長0.5876マイクロメータの光ビームを入射させ発散さたときに得られる光の強度分布を示す図である。 実施例2の光学系の構成を示す図である。 実施例2の光学系によって得られるx軸方向(水平方向)光の強度分布を示す図である。 実施例2の光学系によって得られるy軸方向(鉛直方向)光の強度分布を示す図である。 実施例3の光学系の構成を示す図である。 実施例3の光学系の光源光学系の構成を示す図である。
図1は、本発明の一実施形態によるマイクロレンズアレイを示す図である。マイクロレンズアレイは、平面に配置されたほぼ同一形状の複数のマイクロレンズを含む。本発明のマイクロレンズアレイの特徴的な構成については後で説明する。
図2は、従来技術のマイクロレンズアレイ100Aの断面を示す図である。図2の左側の平面に垂直に入射した光が、図2のマイクロレンズ1000Aの凸面によって屈折される。図2の左側の平面をマイクロレンズアレイ100Aの底面と呼称する。マイクロレンズ1000Aの頂点を通り、底面に垂直な直線をz軸とする。z軸の正の方向は、光の進む方向とする。マイクロレンズ1000Aの頂点を通り、z軸に垂直な面内に互いに直交するx軸及びy軸を定める。図2は、マイクロレンズ1000Aのz軸を含む断面を示す図である。図2においてz軸をOPで示す。
マイクロレンズ1000Aの凸面は、一例として以下の式で表現されるものであってもよい。
Figure 2015182619
ここで、rはレンズのz軸からの距離であり、cはレンズの中心曲率であって中心曲率半径Rと以下の関係を満たす。αは係数である。
Figure 2015182619
また、マイクロレンズ1000Aの凸面は、他の例として以下の式で表現されるものであってもよい。
Figure 2015182619
ここで、rはz軸からの距離である。
Figure 2015182619
cは軸対称項の中心曲率である。x軸方向の中心曲率半径Rx及びy軸方向の中心曲率半径Ryは、2次の係数αnmも考慮して以下の式で表現される。
Figure 2015182619
図2において、マイクロレンズアレイ100Aの底面に垂直に入射し、マイクロレンズ1000Aの周縁を通過する光線L1及びL2がz軸となす角度は等しい。この角度を発散の角度と呼称し、θで表す。マイクロレンズ1000Aの焦点距離をf、開口幅をDとすると、角度θは以下の式で表せる。
Figure 2015182619
また、マイクロレンズ1000Aの焦点距離fはマイクロレンズアレイの材料の屈折率をn、中心曲率をRとすれば、以下の式で表せる。
Figure 2015182619
ところで、従来技術のマイクロレンズアレイによって光ビームを発散させた場合に、複数のマイクロレンズの配列に起因する干渉及び単一のマイクロレンズの開口に起因する回折によって、発散された光の強度分布にむらが生じることが知られている。このような光の強度分布にむらは、レーザーダイオードなどのコヒーレントな光源を用いたときに特に顕著に現れる。
図3Aは、n=1.5、R=0.075[mm]、D=0.07[mm]のマイクロレンズからなるマイクロレンズアレイの底面に垂直方向に波長550nmの光ビームを入射させ発散さたときに得られる光の強度分布を示す図である。
図3Bは、図3Aの角度θがマイナス11度からマイナス7度の範囲を拡大した図である。
図3A及び図3Bの横軸は発散の角度θを表し、図3A及び図3Bの縦軸は光の強度の相対値を表す。角度θの単位は度である。
図3A及び図3Bにおいて、細い線は光の強度を表し、太い線は、光の強度の、幅1度の移動平均を表す。たとえば、−9.0度における太い線の値は、−8.5度から−9.5度の範囲の細い線の値の平均値を表す。図3Bによると、光の強度分布には、細い線で示される、周期が約0.5度の成分と太い線で示される、周期が数度の成分とが存在する。細い線で示される周期が約0.5度の成分は、複数のマイクロレンズの配列に起因する干渉によって生じるものであり、太い線で示される周期が数度の成分は、単一のマイクロレンズの開口に起因する回折によって生じるものである。本例のように、マイクロレンズの開口幅が数10umオーダーを超えるようなスケールのマイクロレンズアレイにおいては、マイクロレンズの開口に起因する回折によって生じる成分の方が大きくなる。
図3Aによると太い線による強度は、約−12度から約+12度の範囲で0.3以上であり、上記の範囲の最も外側、すなわち、角度の絶対値が最も大きい位置の山の頂点とその内側の谷の底との強度差が最も大きい。そこで、角度の絶対値が最も大きい位置の山の頂点と角度の絶対値が二番目に大きい位置の山の頂点との角度差を周期αとし、マイクロレンズアレイによって発散された光の強度分布のパラメータとして使用する。角度の絶対値が最も大きい位置の山の頂点と角度の絶対値が二番目に大きい位置の山の頂点との角度差は、一例として、二つのガウス関数の足しあわせで最少二乗フィットし、二つのガウスピークの間隔を求めることによって定めてもよい。
上述の太い線で示される、周期が数度の成分が、マイクロレンズのどのような形状の影響を受けるのかについて検討する。
図4Aは、n=1.5、R=0.075[mm]、D=0.05[mm]のマイクロレンズの底面に垂直方向に波長550nmの光ビームを入射させ発散さたときに得られる光による像を示す図である。
図4Bは、n=1.5、R=0.075[mm]、D=0.05[mm]のマイクロレンズの底面に垂直方向に波長550nmの光ビームを入射させ発散さたときに得られる光の強度分布を示す図である。図4Bの横軸は発散の角度θを表し、図4Bの縦軸は光の強度の相対値を表す。角度θの単位は度である。
図5Aは、n=1.5、R=0.075[mm]、D=0.1[mm]のマイクロレンズの底面に垂直方向に波長550nmの光ビームを入射させ発散さたときに得られる光による像を示す図である。
図5Bは、n=1.5、R=0.075[mm]、D=0.1[mm]のマイクロレンズの底面に垂直方向に波長550nmの光ビームを入射させ発散さたときに得られる光の強度分布を示す図である。図5Bの横軸は発散の角度θを表し、図5Bの縦軸は光の強度の相対値を表す。角度θの単位は度である。
図6Aは、n=1.5、R=0.15[mm]、D=0.1[mm]のマイクロレンズの底面に垂直方向に波長550nmの光ビームを入射させ発散さたときに得られる光による像を示す図である。
図6Bは、n=1.5、R=0.15[mm]、D=0.1[mm]のマイクロレンズの底面に垂直方向に波長550nmの光ビームを入射させ発散さたときに得られる光の強度分布を示す図である。図6Bの横軸は発散の角度θを表し、図6Bの縦軸は光の強度の相対値を表す。角度θの単位は度である。
図4Bのマイクロレンズと図5Bのマイクロレンズは、開口の幅Dが異なる。光の強度が0.2より大きくなる発散の角度θの範囲は、図4Bにおいては約−10度から約+10であり、図5Bにおいては約−17度から約+17である。周期αは、図4B及び図5Bにおいてともに約3度である。
図5Bのマイクロレンズと図6Bのマイクロレンズは、中心曲率半径Rが異なる。光の強度が0.2より大きくなる発散の角図5Bにおいては約−17度から約+17であり、図6Bにおいては約−9度から約+9である。周期αは、図5Bにおいて約3度であり、図6Bにおいて約2度である。
図7は、マイクロレンズの中心曲率と周期αとの関係を示す図である。図7の横軸は、マイクロレンズの中心曲率(1/R)を表し、図7の縦軸は周期αを表す。横軸の単位は、1/ミリメータであり、縦軸の単位は度である。なお、図7の点線は、中心曲率(1/R)と周期αとの関係を以下の式でフィッティングした曲線を示す。
Figure 2015182619
このように、周期αの二乗と中心曲率(1/R)とは比例する。
図8は、マイクロレンズの開口幅Dと周期αとの関係を示す図である。図8の横軸は、マイクロレンズの開口幅Dを表し、図8の縦軸は周期αを表す。横軸の単位は、ミリメータであり、縦軸の単位は度である。図8によると、周期αと開口幅Dとの間の顕著な相関は認められない。
図9は、マイクロレンズの材料及び周囲の媒体の屈折率差と周期αとの関係を示す図である。図9の横軸は、マイクロレンズの材料及び周囲の媒体の屈折率差(n−1)を表し、図9の縦軸は周期αを表す。縦軸の単位は度である。なお、図9の点線は、マイクロレンズの材料及び周囲の媒体の屈折率差(n−1)と周期αとの関係を以下の式でフィッティングした曲線を示す。
Figure 2015182619
このように、周期αの二乗とマイクロレンズの材料及び周囲の媒体の屈折率差(n−1)とは比例する。
図10は、入射ビームの波長λと周期αとの関係を示す図である。図10の横軸は、入射ビームの波長λを表し、図10の縦軸は周期αを表す。横軸の単位は、マイクロメータであり、縦軸の単位は度である。なお、図10の点線は、入射ビームの波長λと周期αとの関係を以下の式でフィッティングした曲線を示す。
Figure 2015182619
このように、周期αの二乗と入射ビームの波長λとは比例する。
式(2)及び上記の結果から以下の式が得られる。
Figure 2015182619
ここで、マイクロレンズの開口を定めるマイクロレンズのレンズ面境界の位置がずれることの、発散の角度θへの影響について検討する。
図11は、マイクロレンズアレイ100の断面を示す図である。図11のマイクロレンズアレイ100の底面に入射した光が、図11のマイクロレンズ1000の凸面によって屈折される。マイクロレンズ1000の頂点を通り、底面に垂直な直線をz軸とする。z軸の正の方向は、光の進む方向とする。マイクロレンズ1000の頂点を通り、z軸に垂直な面内に互いに直交するx軸及びy軸を定める。図11は、マイクロレンズ1000z軸を含む断面を示す図である。図11においてz軸をOpで示す。
図11に示されるように、レンズ面の境界位置がε変化することで発散の角度θがΔθだけ変化する。式(1)を使用して、εとΔθの関係は、以下の式で表せる。
Figure 2015182619
Δθは、十分に小さいので以下の関係が成立する。
Figure 2015182619
任意の二つのマイクロレンズを選択したときに、二つのマイクロレンズによる発散の角度の変化Δθの差が、周期αの半分であれば、マイクロレンズの開口に起因する回折によって生じる成分は打ち消しあって小さくなる。すなわち、以下の関係が成立するときにマイクロレンズの開口に起因する回折によって生じる成分は打ち消しあって小さくなる。
Figure 2015182619
式(5)に式(3)及び式(4)を代入して以下の式が得られる。
Figure 2015182619
複数のマイクロレンズからなるマイクロレンズアレイ全体において、複数のマイクロレンズの開口に起因する回折によって生じる成分を小さくするには、レンズ面の境界位置の変化量εをばらつかせるのが好ましい。レンズ面の境界位置の変化量εの分散をσとしたとき、以下の関係を満たすのが好ましい。
Figure 2015182619
ただし、
Figure 2015182619
である。
光源の光の波長としてd線0.5876umを想定すれば、以下の関係を満たすのが好ましい。
Figure 2015182619
式(7)、(8)の下限を満たさないと、開口に起因する回折によって生じる成分を十分に小さくすることができない。また式(7)、(8)の上限を超えると発散される光の強度分布の一様性が低下し、また、マイクロレンズの接線角がきつくなり製造が困難になる。
さらに、以下の関係を満たすのがより好ましい。
Figure 2015182619
Figure 2015182619
また、さらに以下の関係を満たすのがより好ましい。
Figure 2015182619
Figure 2015182619
レンズ面の境界位置の変化量εの絶対値の最大値を|ε|maxとして以下の関係を満たすのが好ましい。
Figure 2015182619
また、以下の関係を満たすのがより好ましい。
Figure 2015182619
ここで、図3A及び図3Bにおいて細い線で表される、複数のマイクロレンズの配列に起因する干渉によって生じる成分の周期βについて検討する。配列の周期すなわちマイクロレンズの開口幅をD(ミリメータ)、光の波長をλ(マイクロメータ)とすると、回折の式よりβは以下のように示すことができる。
Figure 2015182619
単一のマイクロレンズの開口に起因する回折によって生じる成分の周期αと、複数のマイクロレンズの配列に起因する干渉によって生じる成分の周期βとの比をMとすると、式(3)及び式(15)を使用して、Mは以下の式で表すことができる。
Figure 2015182619
式(1)を使用して以下の式が得られる。
Figure 2015182619
本発明が有効となるには、αがβより明らかに大きくなければならず、Mが3より大きいのが好ましい。したがって、以下の関係が成立するのが好ましい。
Figure 2015182619
光源の光の波長としてd線0.5876umを想定すれば、以下の関係が成立するのが好ましい。
Figure 2015182619
また、Mが10より大きいのがより好ましい。したがって、以下の関係が成立するのがより好ましい。
Figure 2015182619

Figure 2015182619
図12は、式(17)及び式(19)を満たす開口幅D及び発散の角度θの領域を示す図である。図12の横軸は開口幅Dを表し、図12の縦軸は発散の角度θを表す。横軸の単位はミリメータであり、縦軸の単位は度である。本発明はマイクロレンズの開口幅Dが数10umのオーダーでも、発散の角度θが広い場合には非常に効果的であることが判る。
式(1)を使用して、式(16)乃至式(19)からθを消去すれば、式(20)乃至式(23)が得られる。
Figure 2015182619
Figure 2015182619
Figure 2015182619
Figure 2015182619
たとえば、式(7)を満たすように、複数のマイクロレンズの開口幅Dを変化させる方法について説明する。
図13は、正方配列の基準格子の格子点にマイクロレンズの頂点を固定し、開口幅を変化させた状態を示す図である。この場合は隣り合うマイクロレンズの境界に不連続な段差が生じる。このような段差は不必要な迷光の原因となったり、射出成型で製造する際に離型に悪影響を与えたりすることがある。
図14Aは、最初に、格子間隔がDx及びDyである矩形配列の基準格子の格子点に複数のマイクロレンズの頂点を配置し、その後、格子面内において複数のマイクロレンズの頂点を格子点から移動させた状態を示す図である。この場合に、隣接するマイクロレンズの境界は、マイクロレンズが軸対象の場合には、隣接するレンズ頂点を結ぶ線分の垂直二等分線となり、境界において隣接するレンズ面の段差が生じることはない。マイクロレンズが軸非対称の場合には、垂直二等分線からずれが生じるが、そのずれ量は、εの格子と直交する成分が格子間隔DxまたはDyよりも十分に小さければ無視できる量である。マイクロレンズの境界を辺と呼称する。矩形配列の基準格子の場合に、マイクロレンズの対向する2辺の間隔は、ほぼDxまたはDyに等しい。
このとき、マイクロレンズアレイの格子方向への位置ずれ量をη、ηi+1、、、とすれば以下の関係が成立する。ここで、iはそれぞれの格子を識別する整数である。
Figure 2015182619
したがって、レンズ頂点の位置ずれの分散σηを開口の位置ずれに必要な分散σの2の平方根倍とすれば適当な開口ずれが得られることが判る。
図14Bは、最初に六方配列の基準格子の格子点に複数のマイクロレンズの頂点を配置し、その後、格子面内において複数のマイクロレンズの頂点を格子点から移動させた状態を示す図である。ここで、格子の方向をl、m及びnで表すと、3種類の格子間隔は、Dl/2、Dm/2及びDn/2で表せる。この場合に、マイクロレンズの対向する2辺の間隔は、ほぼ、Dl、DmまたはDnに等しい。
図14Cは、図14Bの円で囲った部分の拡大図である。
マイクロレンズのレンズ面形状はいわゆる自由曲面でもよく、その場合の開口の変化量は周期的な基準レンズ配列方向ごとにマイクロレンズ断面の曲率を算出して定めてやればよい。
マイクロレンズの開口に起因する回折による強度分布のむらを打ち消しても、マイクロレンズアレイの周期構造に起因する干渉による強度分布のむらは残る。マイクロレンズの頂点を基準格子の格子点から格子面内でずらした場合、マイクロレンズアレイの周期構造自体が乱れるので、周期構造による強度分布のむらも低減する。しかし、格子面内の位置ずれだけでは低次の回折光の干渉ピークを乱す効果は弱く、結果として0度付近に強度が非常に弱いダークスポットが生じる場合がある。このようなダークスポットを低減するには、複数のマイクロレンズの頂点位置を光軸方向、すなわち格子面に垂直な方向にも互いにずらすことで、複数のマイクロレンズからの位相をずらすことが効果的である。
干渉による強度分布のむらを打ち消すには位相のずれが2πの中に均等に分布していることが望ましい。波長λの光源に対して、位相ずれが均等に分布するには、光軸方向のレンズ位置ずれηを0≦ηzi<mλ/(n-1)の範囲に一様に分布させることで、この条件を満たすことができる。(ただし、mは1以上の整数。)加工や配光の制御を考慮すると、ηは小さい方が有利なので、0≦ηzi<λ/(n-1)の範囲に一様に分布させるのが望ましい。
以下に本発明の実施例について説明する。
実施例1
実施例1は、図1に示すように、球面のマイクロレンズ面を、正方格子を基準格子として配列したマイクロレンズアレイである。実施例1のマイクロレンズアレイの仕様を以下に示す。
マイクロレンズレンズ面中心曲率半径R:0.095mm
基準格子間隔D:0.082mm
素子厚み:1.0mm
材料屈折率(アクリル):1.492
ここで、マイクロレンズの素子厚みとは、頂点から底面までの距離を意味する。
正方格子の直交する2方向をx方向及びy方向として、マイクロレンズのレンズ頂点は、基準格子位置からx方向は±7.6um、y方向は±7.6umの範囲で一様に分布させている。
このとき、D/2f=0.0174となり、式(21)及び式(23)は満たされる。また、σ=0.0076/√6=0.0031mmとなり、
Figure 2015182619
となるので式(8)及び式(10)は満たされる。
図15は、実施例1のマイクロレンズアレイの底面に垂直方向に波長0.5876マイクロメータの光ビームを入射させ発散さたときに得られる光の強度分布を示す図である。図15の横軸は発散の角度θを表し、図15の縦軸は光の強度の相対値を表す。角度θの単位は度である。図15において、細い線は光の強度を表し、太い線は、光の強度の、幅1度の移動平均を表す。
図15の太い線の強度分布を、図3Aの太い線の強度分布と比較すると、図15では、図3Aのαで示される大きな強度差を生じる部分が存在していない。したがって、実施例1のマイクロレンズアレイによって、従来のマイクロレンズアレイよりもより一様な照度分布が得られる。
実施例2
図16は、実施例2の光学系の構成を示す図である。実施例2の光学系は、レーザーダイオード光源200、コリメータレンズ300、及びマイクロレンズアレイ102からなる。レーザーダイオード光源200のレーザの波長は、780ナノメータである。
コリメータレンズ300はBK7を材料とする非球面レンズである。入射面及び射出面は、入射面及び射出面の曲率中心を結ぶ直線をz軸とし、z軸からの距離をrとして以下の式で表せる。
Figure 2015182619

Figure 2015182619
入射面のパラメータは以下のとおりである。
R=2.462mm,k=-1
射出面のパラメータは以下のとおりである。
R=-0.979mm,k=-1
コリメータレンズ300に関するその他の仕様は以下のとおりである。
光源から入射面までの距離:1.0mm
素子厚み:1.0mm
材料の屈折率:1.511
ここで、素子厚みとは、コリメータレンズ300の中心厚を意味する。
マイクロレンズアレイ102は、自由曲面のマイクロレンズ面を、正方格子を基準格子として配列したものである。
レンズ頂点を通り、マイクロレンズアレイ102の底面に垂直な直線をz軸とし、z軸に垂直な面内において、正方格子の2方向をx軸及びy軸として、マイクロレンズ面は、以下の式で表せる。
Figure 2015182619
ここで、rはレンズのz軸からの距離である。
Figure 2015182619
cは軸対称項の中心曲率である。x軸方向の中心曲率半径Rx及びy軸方向の中心曲率半径Ryは、2次の係数も考慮して以下の式で表現される。
Figure 2015182619
自由曲面を定める係数は
1/c=0,k=0
α20=2.0,α02=1.5
他の係数αnmは0である。
二次の係数を考慮すると、マイクロレンズのレンズ面中心曲率半径はx方向とy方向で異なり
:0.25mm
:0.33mm
となる。
マイクロレンズアレイ102のその他の仕様は以下のとおりである。
基準格子間隔D:0.2mm
素子厚み:0.5mm
材料屈折率(アクリル):1.486(λ=780nm、すなわち0.78μm)
ここで、マイクロレンズの素子厚みとは、頂点から底面までの距離を意味する。
マイクロレンズのレンズ頂点は基準格子位置を中心とし、x方向半径13.3um、y方向半径15.0umの楕円の中に一様に分布させている。
このとき、xz面の焦点距離をfx、yz面の焦点距離をfyとすると、D/(2fxλ)=0.056、D/(2fyλ)=0.044となり、式(20)は満たされる。また、σx=0.00133/√8=0.0047mmとなり、
Figure 2015182619
となるので式(7)は満たされる。さらに、σy=0.0053mmとなり、
Figure 2015182619
となるので式(7)は満たされる。
図17Aは、実施例2の光学系によって得られるx軸方向(水平方向)光の強度分布を示す図である。図17Aの横軸は発散の角度θを表し、図17Aの縦軸は光の強度の相対値を表す。角度θの単位は度である。図17Aにおいて、細い線は光の強度を表し、太い線は、光の強度の、幅1度の移動平均を表す。
図17Bは、実施例2の光学系によって得られるy軸方向(鉛直方向)光の強度分布を示す図である。図17Bの横軸は発散の角度θを表し、図17Bの縦軸は光の強度の相対値を表す。角度θの単位は度である。図17Bにおいて、細い線は光の強度を表し、太い線は、光の強度の、幅1度の移動平均を表す。
図17A及び図17Bの太い線の強度分布を、図3Aの太い線の強度分布と比較すると、図17A及び図17Bでは、図3Aのαで示される大きな強度差を生じる部分が存在していない。したがって、実施例1のマイクロレンズアレイによって、従来のマイクロレンズアレイよりもより一様な照度分布が得られる。
実施例3
図18Aは、実施例3の光学系の構成を示す図である。実施例3の光学系は、光源光学系2100と、マイクロレンズアレイであるスクリーン103と、自由曲面ミラー2200と、フロントグラス2300とを含む。
図18Bは、実施例3の光学系の光源光学系2100の構成を示す図である。光源光学系2100は、レーザーダイオード200A、200B及び200Cと、コリメータレンズ300A、300B及び300Cと、ダイクロイックミラー400と、ミラー500と、MEMSミラー600とを含む。
実施例3の光学系は、0.45um、0.53um、0.65umの三つの異なる発振波長のレーザ200A、200B及び200Cを光源とした、ヘッドマウントディスプレイである。三つのレーザーダイオード200A、200B及び200Cから発振された光は、それぞれコリメータレンズ300A、300B及び300Cで平行光束とされたのちに、ダイクロイックミラー400で一本のビームに合波される。合波されたビームは、MEMSミラー600で偏向されマイクロレンズアレイ103上を走査する。レーザーダイオード200A、200B及び200CをMEMSミラー600と同期して変調することで、マイクロレンズアレイ103上に中間像が描画される。中間像はマイクロレンズアレイ103で発散の角度を拡大され後に、自由曲面ミラー2200及びフロントグラス2300で反射されて虚像2400を形成する。マイクロレンズ103によって発散される光の強度分布にむらがあると、虚像にもむらが生じたり視点をずらした際に虚像の明るさが変化したりするので不都合である。
スクリーンとして使用されるマイクロレンズアレイ103は、Dx=0.1mm、Dy=0.05mmの矩形格子を基準格子とするマイクロレンズアレイである。複数のマイクロレンズの頂点位置は基準格子位置からx軸方向の半径12.3um、y軸方向の半径12.8umの楕円の中に一様にばらつき、z軸方向には最大2.65umの範囲で一様にばらつくように配置されている。
マイクロレンズ面は、軸対象な非球面であり、レンズ頂点を通り底面に垂直な直線をz軸とし、z軸からの距離をrとして以下の式で表せる。
Figure 2015182619
Figure 2015182619
マイクロレンズ面のパラメータは以下のとおりである。
レンズ面中心曲率半径R:0.1mm
コーニックk:−1.0
マイクロレンズアレイ103のその他の仕様は以下のとおりである。
素子厚み:1.0mm
材料屈折率(アクリル):1.492
このとき、
Dx/2f/0.45=0.055
Dx/2f/0.53=0.046
Dx/2f/0.65=0.038
Dy/2f/0.45=0.055
Dy/2f/0.53=0.046
Dy/2f/0.65=0.038
となり、いずれも式(20)を満たす。
また、
σx=0.00435mm、σy=0.0417mmとなるので、
Figure 2015182619
Figure 2015182619

となり、λ=0.53マイクロメータに対して、式(7)、式(9)及び式(11)を満たす。また、λ=0.45マイクロメータ、λ=0.65マイクロメータに対して式(7)を満たす。
さらに、
2.66/0.45=0.45×5+0.41
2.66/0.53=0.53×5+0.01
2.66/0.65=0.65×4+0.06
となり、2.65を波長で割った余りは、0.41、0.0.01、0.06であり、以下の関係が満たされる。
0.41/0.45>0.9
0.01/0.53<0.1
0.06/0.65<0.1
そこで、複数のマイクロレンズの頂点位置を格子面に垂直方向に0から2.66マイクロメータの範囲で一様にばらつかせて、三波長について複数のマイクロレンズからの位相をずらすことによって、いわゆるダークスポットを低減することができる。
実施例3のヘッドマウントディスプレイは、マイクロレンズアレイから発散される光の強度分布のむらが小さく、虚像の輝度むらも抑制されている。
特開昭63−221329号公報(特許2503485) 特開平3−192232号公報(特許2881877) 特表2006−500621号公報
図17A及び図17Bの太い線の強度分布を、図3Aの太い線の強度分布と比較すると、図17A及び図17Bでは、図3Aのαで示される大きな強度差を生じる部分が存在していない。したがって、実施例のマイクロレンズアレイによって、従来のマイクロレンズアレイよりもより一様な照度分布が得られる。
さらに、
2.66/0.45=0.45×5+0.41
2.66/0.53=0.53×5+0.01
2.66/0.65=0.65×4+0.06
となり、2.66を波長で割った余りは、0.41、0.0.01、0.06であり、以下の関係が満たされる。
0.41/0.45>0.9
0.01/0.53<0.1
0.06/0.65<0.1
そこで、複数のマイクロレンズの頂点位置を格子面に垂直方向に0から2.66マイクロメータの範囲で一様にばらつかせて、三波長について複数のマイクロレンズからの位相をずらすことによって、いわゆるダークスポットを低減することができる。

Claims (14)

  1. xy平面上に配置されたN個のマイクロレンズからなるマイクロレンズアレイであって、それぞれのマイクロレンズのレンズ頂点のxy平面への投影点は、所定の方向の格子間隔が、Mを正の整数としてD/M(ミリメータ)であるxy平面上の基準格子構造の格子点の近傍に配置され、マイクロレンズの境界線をレンズの辺としてマイクロレンズの対向する二辺の間隔はほぼDに等しく、レンズ頂点のxy平面への投影点から辺のxy平面への投影線までの距離が
    Figure 2015182619
    であり、
    Figure 2015182619
    とし、それぞれのマイクロレンズの材料の屈折率をn、中心近傍の該所定の方向の曲率半径をR(ミリメータ)、焦点距離をf(ミリメータ)として、
    Figure 2015182619
    Figure 2015182619
    を満たすマイクロレンズアレイ。
  2. xy平面上の該基準格子構造が矩形配列または六方配列である請求項1に記載のマイクロレンズアレイ。
  3. レンズ頂点位置が格子点から該所定の方向にηだけずれて配置されることで、隣接するマイクロレンズ間に生じる境界によって形成されるマイクロレンズの開口がε変化し、
    Figure 2015182619
    である請求項1または2に記載のマイクロレンズアレイ。
  4. xy平面上の該基準格子構造は、x方向の間隔がDx、y方向の間隔がDyの矩形配列であり、それぞれのマイクロレンズの頂点のxy平面への投影点の位置が、対応する格子位置から(ηxi,ηyi)だけずれるように配置された請求項3に記載のマイクロレンズアレイ。
  5. xy平面上の該基準格子構造がx方向及びy方向の矩形配列であり、それぞれのマイクロレンズの中心近傍の、x方向の曲率半径がRx(ミリメータ)であり、y方向の曲率半径がRy(ミリメータ)である請求項1から4のいずれかに記載のマイクロレンズアレイ。
  6. Figure 2015182619
    をさらに満たす請求項1から5のいずれかに記載のマイクロレンズアレイ。
  7. Figure 2015182619
    をさらに満たす請求項1から6のいずれかに記載のマイクロレンズアレイ。
  8. マイクロレンズの頂点位置が、xy平面に垂直な方向に0から0.55/(n-1)(マイクロメータ)の範囲で一様にばらついた請求項1から7のいずれかに記載のマイクロレンズアレイ。
  9. εの絶対値の最大値を|εi|maxとして、
    Figure 2015182619
    を満たす請求項1から8のいずれかに記載のマイクロレンズアレイ。
  10. 発光する光の波長の最小値がλ(マイクロメータ)である光源とマイクロレンズアレイとを含み、該光源からの光を該マイクロレンズアレイによって発散させるように構成された光学系であって、
    該マイクロレンズアレイは、xy平面上に配置されたN個のマイクロレンズからなり、それぞれのマイクロレンズのレンズ頂点のxy平面への投影点は、所定の方向の格子間隔が、Mを正の整数としてD/M(ミリメータ)であるxy平面上の基準格子構造の格子点の近傍に配置され、マイクロレンズの境界線をレンズの辺としてマイクロレンズの対向する二辺の間隔はほぼDに等しく、レンズ頂点のxy平面への投影点から辺のxy平面への投影線までの距離が
    Figure 2015182619
    であり、
    Figure 2015182619
    とし、それぞれのマイクロレンズの材料の屈折率をn、中心近傍の該所定の方向の曲率半径をR(ミリメータ)、焦点距離をf(ミリメータ)として、
    Figure 2015182619
    Figure 2015182619
    を満たすように構成された光学系。
  11. 該マイクロレンズアレイのマイクロレンズが、
    Figure 2015182619
    をさらに満たす請求項10に記載の光学系。
  12. 該マイクロレンズアレイのマイクロレンズが、
    Figure 2015182619
    をさらに満たす請求項10または11に記載の光学系。
  13. マイクロレンズの頂点位置が、xy平面に垂直な方向に0からλ/(n-1)の範囲で一様にばらついた請求項10から12のいずれかに記載の光学系。
  14. n個の異なる波長λ1、λ2、、、λnの光源を備え、λmultiは、λmultiをλiで割った余りをRemiとして、Remi<(λi/10)またはRemi>(9λi/10)を全てのiに対して満たすように定められた定数であるとして、マイクロレンズの頂点位置が、xy平面に垂直な方向に0からλmulti/(n-1)の範囲で一様にばらついた請求項10から13のいずれかに記載の光学系。
JP2016523513A 2014-05-27 2015-05-26 マイクロレンズアレイを含む光学系の製造方法 Active JP6664621B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462003190P 2014-05-27 2014-05-27
US62/003,190 2014-05-27
PCT/JP2015/065136 WO2015182619A1 (ja) 2014-05-27 2015-05-26 マイクロレンズアレイ及びマイクロレンズアレイを含む光学系

Publications (2)

Publication Number Publication Date
JPWO2015182619A1 true JPWO2015182619A1 (ja) 2017-04-20
JP6664621B2 JP6664621B2 (ja) 2020-03-13

Family

ID=54698944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016523513A Active JP6664621B2 (ja) 2014-05-27 2015-05-26 マイクロレンズアレイを含む光学系の製造方法

Country Status (5)

Country Link
US (1) US10443811B2 (ja)
JP (1) JP6664621B2 (ja)
CN (1) CN106461815B (ja)
DE (1) DE112015002502T5 (ja)
WO (1) WO2015182619A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163275A1 (ja) 2015-04-06 2016-10-13 ナルックス株式会社 拡散素子、拡散素子用金型及び拡散素子の製造方法
TW201903438A (zh) * 2017-06-05 2019-01-16 日商阿爾普士電氣股份有限公司 透鏡
CN107525040A (zh) * 2017-10-19 2017-12-29 佛山市升阳光学科技有限公司 一种光学透镜及应用其的口腔灯
CN107942520B (zh) * 2017-11-22 2020-09-25 东北师范大学 用于dmd数字光刻系统的匀光元件及其设计方法
CN108919483A (zh) * 2018-06-21 2018-11-30 浙江大学 一种基于自由曲面透镜阵列的中空光束制备装置
US20200133012A1 (en) * 2018-10-26 2020-04-30 Viavi Solutions Inc. Optical element and optical system
CN112394523A (zh) * 2019-08-19 2021-02-23 上海鲲游光电科技有限公司 匀光元件及其随机规则制造方法和系统以及电子设备
JP2021071721A (ja) * 2019-10-25 2021-05-06 デクセリアルズ株式会社 拡散板、表示装置、投影装置及び照明装置
WO2021079923A1 (ja) 2019-10-25 2021-04-29 デクセリアルズ株式会社 拡散板、表示装置、投影装置及び照明装置
JP6841889B1 (ja) 2019-11-06 2021-03-10 デクセリアルズ株式会社 マイクロレンズアレイ、投影型画像表示装置、マイクロレンズアレイの設計方法及びマイクロレンズアレイの製造方法
WO2021097747A1 (zh) * 2019-11-21 2021-05-27 南昌欧菲生物识别技术有限公司 微透镜阵列元件以及扩散片和电子设备
CN111510690B (zh) * 2020-04-12 2021-01-26 国科天成(北京)科技有限公司 基于微透镜阵列的真彩像增强器
WO2022138725A1 (ja) * 2020-12-23 2022-06-30 京セラ株式会社 拡散板、発光デバイス及びセンサモジュール
CN112540460A (zh) * 2020-12-29 2021-03-23 华东交通大学 基于tir与微透镜阵列组合的光学系统设计方法
CN112666639A (zh) * 2021-01-05 2021-04-16 江西欧迈斯微电子有限公司 微透镜阵列及其制作方法、匀光元件和成像模组
CN114321818B (zh) * 2022-01-11 2023-06-30 荣仪尚科光电技术(哈尔滨)有限公司 基于自由曲面的阵列式自然光匀化照明装置和方法
JP2023119945A (ja) * 2022-02-17 2023-08-29 株式会社ダイセル マイクロレンズアレイ、拡散板及び照明装置
CN115144939A (zh) * 2022-06-28 2022-10-04 合肥英拓光电技术有限公司 一种微透镜阵列、微透镜阵列制备方法和光学检测装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250336A (ja) * 2012-05-30 2013-12-12 Denso Corp スクリーン部材及びヘッドアップディスプレイ装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2503485B2 (ja) 1987-03-11 1996-06-05 株式会社ニコン 焦点板及びその製造方法
JP2881877B2 (ja) 1989-12-21 1999-04-12 株式会社ニコン 焦点板
WO2002010804A1 (en) * 2000-07-31 2002-02-07 Rochester Photonics Corporation Structure screens for controlled spreading of light
CN1141603C (zh) * 2001-10-08 2004-03-10 上海交通大学 微透镜阵列型光漫透射器
US6859326B2 (en) 2002-09-20 2005-02-22 Corning Incorporated Random microlens array for optical beam shaping and homogenization
JPWO2004072698A1 (ja) * 2003-02-17 2006-06-01 ナルックス株式会社 マイクロレンズアレイ一体型レンズ
KR101194972B1 (ko) * 2005-09-30 2012-10-25 리모 파텐트페어발퉁 게엠베하 운트 코. 카게 광 균일화 장치
WO2012124983A2 (ko) * 2011-03-15 2012-09-20 주식회사 엘지화학 마이크로 렌즈 어레이 시트 및 이를 포함하는 백라이트 유닛
KR101265312B1 (ko) * 2011-03-15 2013-05-16 주식회사 엘지화학 마이크로 렌즈 어레이 시트 및 이를 포함하는 백라이트 유닛

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250336A (ja) * 2012-05-30 2013-12-12 Denso Corp スクリーン部材及びヘッドアップディスプレイ装置

Also Published As

Publication number Publication date
CN106461815A (zh) 2017-02-22
JP6664621B2 (ja) 2020-03-13
CN106461815B (zh) 2018-10-09
US10443811B2 (en) 2019-10-15
DE112015002502T5 (de) 2017-04-27
WO2015182619A1 (ja) 2015-12-03
US20170074481A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6664621B2 (ja) マイクロレンズアレイを含む光学系の製造方法
US11231527B2 (en) Diffuser plate
US11378812B2 (en) Diffuser plate and method for designing diffuser plate
KR102026005B1 (ko) 복합 확산판
KR102136021B1 (ko) 확산판 및 투영식 프로젝터 장치
JP6424418B2 (ja) 光学素子、投影装置および計測装置並びに製造方法
WO2016051766A1 (ja) 拡散板及び拡散板の製造方法
KR102439748B1 (ko) 광학 소자 및 광학 시스템
EP3968080A1 (en) Head-mounted display
JP2019139163A (ja) 拡散板、拡散板の設計方法、表示装置、投影装置及び照明装置
JP6543825B2 (ja) マイクロレンズアレイ
US11892154B2 (en) Illumination device
JP2020046632A (ja) スペックル低減モジュール
JP2016186601A (ja) 反射型拡散板およびこれを用いた光学機器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190530

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200114

R150 Certificate of patent or registration of utility model

Ref document number: 6664621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250