CN108919483A - 一种基于自由曲面透镜阵列的中空光束制备装置 - Google Patents

一种基于自由曲面透镜阵列的中空光束制备装置 Download PDF

Info

Publication number
CN108919483A
CN108919483A CN201810643608.4A CN201810643608A CN108919483A CN 108919483 A CN108919483 A CN 108919483A CN 201810643608 A CN201810643608 A CN 201810643608A CN 108919483 A CN108919483 A CN 108919483A
Authority
CN
China
Prior art keywords
free
form surface
light beam
target
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810643608.4A
Other languages
English (en)
Inventor
郑臻荣
常胜倩
吴仍茂
陶骁
孙鹏
王畅
刘思奇
张文涛
陶陈凝
刘旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201810643608.4A priority Critical patent/CN108919483A/zh
Publication of CN108919483A publication Critical patent/CN108919483A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明公开了一种用于基于自由曲面透镜阵列的中空光束制备装置,属于非成像光学和激光光束整形技术领域。该装置包括激光光源(101)、光束扩束器(102)、自由曲面透镜阵列(103)和光学聚焦系统(104)。由激光光源发射的激光光束首先由光束扩束器扩束,然后经过自由曲面透镜阵列和聚焦系统,在可变目标面形成大小一定的中空光束。本发明结构紧凑,能同时控制目标面位置和空心大小,能量利用率高,整形效果好。

Description

一种基于自由曲面透镜阵列的中空光束制备装置
技术领域
本发明涉及非成像光学和激光光束整形技术领域,尤其涉及一种基于自由曲面透镜阵列的中空光束制备装置。
背景技术
激光由于其高单色性以及高亮度等优点,得到了广泛的应用。然而激光光束呈高斯分布和传播路径是双曲线的特性使得其进一步的广泛应用受到了限制。为了拓展激光的应用领域,提高激光技术的应用水平,须对激光光束进行整形,以适应不同场合的要求。其中,中空光束在光操控和超分辨成像中的广泛应用对高质量中空光束的制备提出了急迫的要求。例如在光操控中,与传统高斯光束相比,中空光束没有轴向辐射压力,因此能更有效地捕获粒子(特别是大的绝缘粒子),对于会被传统光镊排斥或破坏其他粒子,中空光束也可将其捕获在中心暗斑区域,例如反射性、吸收性微粒和低介电常数的粒子。
常用的用于制备中空光束的技术和器件主要包括:模式转换法,旋转相位板,计算全息图等。模式转换法是利用激光调腔技术或经柱透镜模式转换器将赫米特-高斯模转换为拉盖尔-高斯模,聚焦后在自由空间形成中空光束,此种方法转换效率高,但输出的拉盖尔-高斯模受限于初始的赫米特-高斯光束的模式。旋转相位板法一般适用于毫米波段且需要对旋转相位板的高度差进行极其精确的控制。实际操作中最常见的是利用计算全息图,将所需光场和平面波叠加得到全息图加载到空间光调制器上,空间光调制器的分辨率和衍射效率是该方法的主要限制因素。目前的制备方法在制备效率、中心暗斑大小控制等方面存在不足,无法满足需求。自由曲面来获取轨道角动量光是有十分重要的意义的。
发明内容
为获得高质量中空光束和较高的能量利用率,本发明提供了一种基于自由曲面阵列的中空光束制备装置。
一种基于自由曲面透镜阵列的中空光束制备装置包括激光光源、光束扩束器、自由曲面透镜阵列和光学聚焦系统,所述的光束扩束器,用于对激光光源发出的激光进行扩束准直;所述的自由曲面透镜阵列由自由曲面透镜单元在二维空间排布而成,自由曲面透镜阵列用于偏折入射光线,经聚焦系统汇聚后在可变目标面得到特定大小和强度分布的中空光束。
所述的自由曲面透镜阵列,包括前表面平面、后表面自由曲面阵列和侧面,侧面由四个平面拼接而成,前表面平面与后表面自由曲面阵列通过侧面相连接,前表面平面垂直于激光光束传播方向,后表面自由曲面阵列用于偏折激光光束。
自由曲面阵列入射面为平面,出射面为二维空间紧密排布的正方形自由曲面,具体设计步骤如下:
(1)均匀准直光束依次经过自由曲面透镜单元和光学聚焦系统,根据初始设计参数对其进行自由曲面设计;
(2)以准直光束的一个横截面作为坐标平面xoy建立直角坐标系,准直光束传播方向与z轴平行。
对步骤(1)所确定的自由曲面光学元件所需设计的自由曲面上的任意一点P的坐标用直角坐标表示为P(x,y,z(x,y)),目标照明面上与点P对应的目标点T的坐标用直角坐标表示为T(tx,ty,tz);矢量P为点P的位置矢量,是一个由原点指向点P的矢量,矢量T为点T的位置矢量,是一个由原点指向点T的矢量;假定矢量I表示入射光束的单位方向向量,矢量O(Ox,Oy,Oz)表示出射光束的方向向量,矢量N表示曲面在P点处的单位法矢,根据折射定律noO=niI+P1N得到
其中zx和zy分别是z关于x和y的一阶偏导数,
ni和no分别为自由曲面光学元件所用材料的折射率和自由曲面光学元件周围介质的折射率。
由聚焦透镜的光学特性可求得目标落点:
其中f是聚焦透镜的焦距。
(3)根据能量守恒定律,建立光源出射光能和目标照明区域所接收的光能之间的能量关系,在不考虑能量损失的情况下,要求自由曲面光学元件所接收的光源出射能量与到达目标照明区域的能量相等,即能量满足关系式
其中,I(x,y)为准直光束在横截面内的强度分布,E(tx,ty)为照明面上目标照明区域的照度分布,S1和S2分别表示准直光束的横截面和目标面上的照明区域;
(4)根据步骤(2)得到的点P和目标点T之间的坐标关系,有以下坐标变换关系
dtxdty=|J(T)|dxdy
其中,J(T)为位置矢量T的Jacobi矩阵,
(5)将步骤(4)中的坐标变换关系代入步骤(3)的能量方程并去除积分号,得到描述自由曲面光学元件的能量传输方程,化简后为
A1(zxxzyy-zxy 2)-I(x,y)/E(tx,ty)=0
其中,xmin≤x≤xmax,xmin和xmax分别为x取值的最小值和最大值;
ymin≤y≤ymax,ymin和ymax分别为y取值的最小值和最大值;A1是关于zx,zy的函数。
(6)自由曲面在满足步骤(5)中的能量传输方程的同时还要保证光源出射的边界光线经自由曲面偏折后入射到目标面照明区域的边界。
对于目标区域的外边界,采用自然边界条件,对任意入射区域外边界上的光线,经自由曲面偏折后,落点位于目标区域外边界,即:
其中,Ω1和Ω2分别为入射激光光束的横截面和目标照明区域;分别为Ω1和Ω2的外边界;
由于目标照明区域为中心强度为零,对于目标区域的内边界,控制入射激光的中心光线在不同方向θ∈(0,2π)的落点光线落点满足:
其中,为Ω2的外边界。θ为光线中心光线经偏折后的出射光线在xy平面上的投影和x轴的夹角。
(7)对步骤(5)中的能量传输方程和(6)中的边界条件联立求解,得到自由曲面上的一组离散数据点,通过对该数据点进行曲面拟合即可得到自由曲面模型。
聚焦系统通过控制透镜间的距离,在保证焦距不变的同时,改变后焦面的位置。
本发明与现有技术相比具有的有益效果是:
1、本发明提出的用于基于自由曲面透镜阵列的中空光束制备装置解决了现存中空光束制备技术中能量利用率低、损伤阈值低的问题;
2、本发明提出的用于基于自由曲面透镜阵列的中空光束制备装置解决了现存中空光束制备技术中不适用于高斯入射光束的问题;
3、本发明提出的用于基于自由曲面透镜阵列的中空光束制备装置解决了现存中空光束制备技术中中空大小和亮环强度无法定量控制的问题;
4、本发明提出的用于基于自由曲面透镜阵列的中空光束制备装置解决了现存中空光束制备技术中目标光束中存在无用的旁瓣的问题;
5、本发明提出的用于基于自由曲面透镜阵列的中空光束制备装置适用于任意强度分布的准直光束,可在空间改变目标面位置;
6、本发明提出的用于基于自由曲面透镜阵列的中空光束制备装置的设计方法完善了自由曲面设计的二阶偏微分方程设计方法,解决了强度奇点光束整形中边界条件的处理问题;
7、
附图说明
图1为基于自由曲面阵列的中控光束制备装置的结构示意图;
图2A为自由曲面透镜单元结构剖面图;
图2B为自由曲面透镜单元结构透视图;
图3为中空光束制备装置中自由曲面单元的设计原理图;
图4为理想中空目标照度图;
图5为自由曲面阵列结构示意图;
图6为聚焦系统结构示意图;
图7为实施例1中目标面光斑照度分布;
图8为实施例2目标面光斑照度分布。
具体实施方式
以下结合附图和实例对本发明进一步说明。
图1为本发明的基于自由曲面阵列的中空光束制备系统示意图。包括激光光源101,准直扩束系统102,自由曲面阵列103,聚焦系统104以及目标面105。如附图1所示,激光光源101经过扩束准直系统后出射光束为准直高斯光束。自由曲面透镜阵列由1mm×1mm的自由曲面透镜单元组成,自由曲面透镜单元由前表面(S1.1)、后表面(S2.1)和侧面(S3.1)构成;前表面为平面,后表面为自由曲面,侧面由四个平面连接而成,如附图2所示。
附图3为中空光束制备装置中自由曲面透镜单元的设计原理图。入射光线经自由曲面透镜单元(201)偏折,再经聚焦系统(202)会聚,在目标面(203)得到特定的照度分布。入射光束为准直均匀光束,自由曲面透镜单元为方形,长L=2mm,宽W=2mm。目标照度为一个中心强度为零的环形,如图4所示,中心暗斑半径r1=0.05mm,外径r2=0.75mm,强度分布均匀。以准直光束的一个横截面作为坐标平面xoy建立直角坐标系,准直光束传播方向与z轴平行。自由曲面透镜的材料是折射率为ni=1.4935的聚甲基丙烯酸甲脂PMMA,透镜周围介质为空气即no=1,聚焦系统的焦距f=50mm。改变光学聚焦系统透镜间距离,使得目标面位置分别位于z=145.01mm和z=159.36mm处。
入射光线单位方向向量I=(0,0,1),由于自由曲面微透镜截面尺寸往往很小,设计时取入射激光束的强度为均匀分布,并令其强度为I(x,y)。根据折射定律noO=niI+P1N得到:
zx和zy分别是z关于x和y的一阶偏导数,结合聚焦透镜对光束的汇聚特性,建立点P与目标点T之间的坐标关系
根据能量守恒定律,得到描述自由曲面光学元件的能量传输方程,化简后为
A1(zxxzyy-zxy 2)-I(x,y)/E(tx,ty)=0
其中,
对于目标区域的外边界,控制入射外边界光线落点满足:
其中,
Ω1={(x,y)|-L/2≤x≤L/2,-W/2≤y≤W/2},
Ω2={(tx,ty)|r1 2≤tx 2+ty 2≤r2 2}
分别为Ω1和Ω2的外边界;
由于目标照明区域为中心强度为零,对于目标区域的内边界,控制入射激光的中心光线在不同方向θ∈(0,2π)的落点光线落点满足:
(tx 2+ty 2)=r1 2:(x,y)=(0,0)
其中,θ为光线中心光线经偏折后的出射光线在xy平面上的投影和x轴的夹角;r1是目标面上中心暗斑的半径。
将照明问题转化为如上所述的数学问题后,须对上述数学方程进行求解,且通常只能求得其数值解。首先对区域Ω1进行离散化首先将求解区域离散化,Ω1={(xi,yj)|xi=ih1,yj=jh2,i=0,1,...,m,j=0,1,...,n}h1,h2为x,y方向的离散步长,m,n为x,y方向的离散点数目,i,j为离散点在行和列中的位置。之后,采用差分格式替代能量传输方程和边界条件方程中的偏导项,其中,边界点、内点及其中的顶点的差分格式均根据其坐标位置特点和自由曲面设计的相应精度要求具体选择。由此将偏微分方程转化为一个非线性方程组,并采用牛顿法求解该方程组,即可得到自由曲面上的一系列离散数据点。需要指出的是,内边界处理中,取即内边界的边界条件方程可以写为:
θ值不同时,zx,zy的差分格式所需的点也不同,以第一象限为例
利用计算得到的两个自由曲面的离散数据点进行3D建模,构建出自由曲面透镜模型。附图5为自由曲面阵列结构示意图,由自由曲面透镜单元在二维空间排布组成。
附图6为聚焦系统示意图。聚焦系统通过控制透镜间的距离,在保证焦距不变的同时,改变后焦面的位置。表一给出了定焦系统的设计结果,包括各透镜的具体参数。
表一
聚焦系统
改变透镜间距离,在视场角不变的情况下可以改变聚焦面位置,从而改变目标面位置。具体参数如表四所示。
表二
将透镜模型导入光学软件进行模拟,对透镜追迹800万条光线。预定目标照明面垂直于z轴并与z轴交于点(0,0,145.01),在目标面上得到照明光斑,如附图7。改变目标面位置,垂直于z轴并与z轴交于点(0,0,159.36),在目标面上得到照明光斑,如附图8。可以看出,目标光斑中空大小符合预期,亮环强度分布均匀,改变目标面位置可获得相同的光斑,达到设计预期。

Claims (6)

1.一种基于自由曲面透镜阵列的中空光束制备装置,其特征在于,包括激光光源(101)、光束扩束器(102)、自由曲面透镜阵列(103)和光学聚焦系统(104),所述的光束扩束器,用于对激光光源发出的激光进行扩束准直;所述的自由曲面透镜阵列由自由曲面透镜单元在二维空间排布而成,自由曲面透镜阵列用于偏折入射光线,经聚焦系统汇聚后在可变目标面得到特定大小和强度分布的中空光束。
2.根据权利要求1所述的一种基于自由曲面透镜阵列的中空光束制备装置,其特征在于所述的自由曲面透镜阵列(102),包括前表面平面(S1)、后表面自由曲面阵列(S2)和侧面(S3),侧面(S3)由四个平面拼接而成,前表面平面(S1)与后表面自由曲面阵列(S2)通过侧面(S3)相连接,前表面平面(S1)垂直于激光光束传播方向,后表面自由曲面阵列(S2)用于偏折激光光束。
3.根据权利要求1所述的一种基于自由曲面透镜阵列的中空光束制备装置,其特征在于所述的自由曲面透镜单元面型的设计步骤如下:
(1)均匀准直光束依次经过自由曲面透镜单元和光学聚焦系统,根据初始设计参数进行自由曲面面型设计;
(2)以准直光束的一个横截面作为坐标平面xoy建立笛卡尔坐标系,准直光束传播方向与z轴平行;
对步骤(1)所确定的自由曲面光学元件所需设计的自由曲面上的任意一点P的坐标表示为P(x,y,z(x,y)),目标照明面上与点P对应的目标点T的坐标表示为T(tx,ty,tz);矢量P为点P的位置矢量,是一个由原点指向点P的矢量,矢量T为点T的位置矢量,是一个由原点指向点T的矢量;假定矢量I表示入射光束的单位方向向量,矢量O(Ox,Oy,Oz)表示出射光束的方向向量,矢量N表示曲面在P点处的单位法矢,由聚焦透镜的光学特性可知,其中f是聚焦透镜的焦距;
根据折射定律noO=niI+P1N得到其中zx和zy分别是z关于x和y的一阶偏导数,ni和no分别为自由曲面光学元件所用材料的折射率和自由曲面光学元件周围介质的折射率;
(3)在不考虑能量损失的情况下,根据能量守恒定律,由光源出射的任意一条细光束的能量在经过该自由曲面光学元件偏折过程中是保持不变的,即能量满足关系式
E(tx,ty)dtxdty=I(x,y)dxdy
其中,I(x,y)为准直光束在横截面内的强度分布,E(tx,ty)为照明面上目标照明区域的照度分布,
(4)根据步骤(2)得到的点P和目标点T之间的坐标关系,有以下坐标变换关系
dtxdty=|J(T)|dxdy
其中,J(T)为位置矢量T的Jacobi矩阵,
(5)将步骤(4)中的坐标变换关系代入步骤(3)的能量关系式,得到描述自由曲面光学元件的能量传输方程,化简后为
A1(zxxzyy-zxy 2)-I(x,y)/E(tx,ty)=0
其中,xmin≤x≤xmax,xmin和xmax分别为x取值的最小值和最大值;ymin≤y≤ymax,ymin和ymax分别为y取值的最小值和最大值;A1是关于zx、zy的函数;
(6)自由曲面在满足步骤(5)中的能量传输方程的同时还要保证光源出射的边界光线经自由曲面偏折后入射到目标面照明区域的边界;
对于目标区域的外边界,采用自然边界条件,对任意入射区域外边界上的光线,经自由曲面偏折后,落点位于目标区域外边界,即:
其中,Ω1和Ω2分别为入射准直光束的横截面和目标照明区域;分别为Ω1和Ω2的外边界;
由于目标照明区域的中心强度为零,对于目标区域的内边界,控制入射激光的中心光线在不同方向θ∈(0,2π)的落点光线落点满足:
其中,为Ω2的内边界,θ为光线中心光线经偏折后的出射光线在xoy平面上的投影和x轴的夹角;
(7)对步骤(5)中的能量传输方程和步骤(6)中的边界条件联立求解,得到自由曲面上的一组离散数据点,通过对该数据点进行曲面拟合即可得到自由曲面透镜面型。
4.根据权利要求3所述的一种基于自由曲面透镜阵列的中空光束制备装置,其特征在于所述的步骤(6)内边界的边界条件方程为:
5.根据权利要求1所述的一种基于自由曲面透镜阵列的中空光束制备装置,其特征在于,所述的聚焦系统由多个球面透镜组成,通过改变各球面透镜之间的位置可连续改变该聚焦系统的后焦面,但不改变聚焦系统的焦距。
6.根据权利要求1所述的一种基于自由曲面透镜阵列的中空光束制备装置,其特征在于,自由曲面透镜单元为方形,在二维空间排列形成方形自由曲面阵列;目标光斑为环形,中心区域为圆形,照度为零;自由曲面透镜单元对任意强度分布入射光束均适用。
CN201810643608.4A 2018-06-21 2018-06-21 一种基于自由曲面透镜阵列的中空光束制备装置 Pending CN108919483A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810643608.4A CN108919483A (zh) 2018-06-21 2018-06-21 一种基于自由曲面透镜阵列的中空光束制备装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810643608.4A CN108919483A (zh) 2018-06-21 2018-06-21 一种基于自由曲面透镜阵列的中空光束制备装置

Publications (1)

Publication Number Publication Date
CN108919483A true CN108919483A (zh) 2018-11-30

Family

ID=64420414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810643608.4A Pending CN108919483A (zh) 2018-06-21 2018-06-21 一种基于自由曲面透镜阵列的中空光束制备装置

Country Status (1)

Country Link
CN (1) CN108919483A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613699A (zh) * 2019-02-19 2019-04-12 中国科学院长春光学精密机械与物理研究所 一种基于目标到光源映射的自由曲面照明系统设计方法
CN109683331A (zh) * 2019-02-01 2019-04-26 长春理工大学 一种基于双焦透镜的多局域空心光束光镊系统
CN110505384A (zh) * 2019-08-29 2019-11-26 Oppo广东移动通信有限公司 成像系统、终端和图像获取方法
CN111413704A (zh) * 2020-04-16 2020-07-14 中国科学院云南天文台 包含自由曲面透镜光束整形结构的激光测距系统
CN111443483A (zh) * 2020-04-24 2020-07-24 中国科学院云南天文台 基于自由曲面透镜的光束整形结构的设计方法
CN112363316A (zh) * 2020-12-15 2021-02-12 之江实验室 一种用于球形气室抽运激光系统光束整形的设计方法
CN112859304A (zh) * 2021-02-08 2021-05-28 中国科学院光电技术研究所 基于自由曲面微纳结构透镜的宽带大视场成像系统
CN114153075A (zh) * 2022-01-11 2022-03-08 荣仪尚科光电技术(哈尔滨)有限公司 单平面与自由曲面或锯齿光栅的自然光匀化照明装置和方法
CN114460741A (zh) * 2022-01-21 2022-05-10 华中科技大学 一种自由曲面镜环形光斑光学系统
CN114846383A (zh) * 2019-12-19 2022-08-02 赛默科技便携式分析仪器有限公司 可调节的扩展焦点拉曼系统
CN115085824A (zh) * 2022-05-23 2022-09-20 佛山科学技术学院 一种信息隐藏方法及其装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916047A (zh) * 2010-07-27 2010-12-15 浙江大学 一种采用自由曲面透镜实现离轴照明的光刻曝光装置
CN101936504A (zh) * 2010-09-03 2011-01-05 浙江大学 一种用于光刻多极照明的自由曲面微透镜阵列装置
CN102928983A (zh) * 2012-10-23 2013-02-13 浙江大学 一种用于准直光整形的自由曲面光学元件的设计方法
CN103592702A (zh) * 2013-10-30 2014-02-19 浙江大学 用于激光光束整形的双自由曲面透镜及其设计方法
CN103592767A (zh) * 2013-10-30 2014-02-19 浙江大学 一种采用双自由曲面透镜的激光光束整形装置
CN105807412A (zh) * 2016-04-07 2016-07-27 浙江大学 一种基于自由曲面整形的全内反射显微方法与装置
CN106461815A (zh) * 2014-05-27 2017-02-22 纳卢克斯株式会社 微透镜阵列及包括微透镜阵列的光学系统
US9851571B1 (en) * 2016-07-28 2017-12-26 Coherent, Inc. Apparatus for generating a line-beam from a diode-laser array
CN107942520A (zh) * 2017-11-22 2018-04-20 东北师范大学 用于dmd数字光刻系统的匀光元件及其设计方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916047A (zh) * 2010-07-27 2010-12-15 浙江大学 一种采用自由曲面透镜实现离轴照明的光刻曝光装置
CN101936504A (zh) * 2010-09-03 2011-01-05 浙江大学 一种用于光刻多极照明的自由曲面微透镜阵列装置
CN102928983A (zh) * 2012-10-23 2013-02-13 浙江大学 一种用于准直光整形的自由曲面光学元件的设计方法
CN103592702A (zh) * 2013-10-30 2014-02-19 浙江大学 用于激光光束整形的双自由曲面透镜及其设计方法
CN103592767A (zh) * 2013-10-30 2014-02-19 浙江大学 一种采用双自由曲面透镜的激光光束整形装置
CN106461815A (zh) * 2014-05-27 2017-02-22 纳卢克斯株式会社 微透镜阵列及包括微透镜阵列的光学系统
CN105807412A (zh) * 2016-04-07 2016-07-27 浙江大学 一种基于自由曲面整形的全内反射显微方法与装置
US9851571B1 (en) * 2016-07-28 2017-12-26 Coherent, Inc. Apparatus for generating a line-beam from a diode-laser array
CN107942520A (zh) * 2017-11-22 2018-04-20 东北师范大学 用于dmd数字光刻系统的匀光元件及其设计方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
RENGMAO WU ETC.: "Freeform lens arrays for off-axis illumination in an optical lithography system", 《APPLIED OPTICS》 *
RENGMAO WU ETC.: "The Monge-Ampère equation design method and its application to beam shaping", 《FREEFORM OPTICS》 *
SHENGQIAN CHANG ETC.: "Generation of propagation-invariant and intensity-controlled dark hollow beams by a refractive beam shaping system", 《OPTICS EXPRESS》 *
YAQIN ZHANG ETC.: "Double freeform surfaces design for laser beam shaping with Monge–Ampère equation method", 《OPTICS COMMUNICATIONS》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109683331A (zh) * 2019-02-01 2019-04-26 长春理工大学 一种基于双焦透镜的多局域空心光束光镊系统
CN109613699A (zh) * 2019-02-19 2019-04-12 中国科学院长春光学精密机械与物理研究所 一种基于目标到光源映射的自由曲面照明系统设计方法
CN110505384A (zh) * 2019-08-29 2019-11-26 Oppo广东移动通信有限公司 成像系统、终端和图像获取方法
CN114846383A (zh) * 2019-12-19 2022-08-02 赛默科技便携式分析仪器有限公司 可调节的扩展焦点拉曼系统
CN111413704A (zh) * 2020-04-16 2020-07-14 中国科学院云南天文台 包含自由曲面透镜光束整形结构的激光测距系统
CN111443483A (zh) * 2020-04-24 2020-07-24 中国科学院云南天文台 基于自由曲面透镜的光束整形结构的设计方法
CN112363316B (zh) * 2020-12-15 2022-05-27 之江实验室 一种用于球形气室抽运激光系统光束整形的设计方法
CN112363316A (zh) * 2020-12-15 2021-02-12 之江实验室 一种用于球形气室抽运激光系统光束整形的设计方法
CN112859304A (zh) * 2021-02-08 2021-05-28 中国科学院光电技术研究所 基于自由曲面微纳结构透镜的宽带大视场成像系统
CN114153075A (zh) * 2022-01-11 2022-03-08 荣仪尚科光电技术(哈尔滨)有限公司 单平面与自由曲面或锯齿光栅的自然光匀化照明装置和方法
CN114153075B (zh) * 2022-01-11 2023-06-30 荣仪尚科光电技术(哈尔滨)有限公司 单平面与自由曲面或锯齿光栅的自然光匀化照明装置和方法
CN114460741A (zh) * 2022-01-21 2022-05-10 华中科技大学 一种自由曲面镜环形光斑光学系统
CN115085824A (zh) * 2022-05-23 2022-09-20 佛山科学技术学院 一种信息隐藏方法及其装置
CN115085824B (zh) * 2022-05-23 2024-03-15 佛山科学技术学院 一种信息隐藏方法及其装置

Similar Documents

Publication Publication Date Title
CN108919483A (zh) 一种基于自由曲面透镜阵列的中空光束制备装置
KR100972180B1 (ko) 광학 구성부품을 조명하기 위한 장치, 광기록매체로부터 읽거나 광기록매체에 쓰기 위한 장치와 광 위상 요소의 위상 분포를 결정하기 위한 설계 방법
US3476463A (en) Coherent light optical system yielding an output beam of desired intensity distribution at a desired equiphase surface
CN103592702B (zh) 用于激光光束整形的双自由曲面透镜及其设计方法
CN108983418A (zh) 一种可用于制备中空光束的自由曲面透镜面型设计方法
CN109445093B (zh) 一种用于倾斜面均匀照明的led自由曲面透镜阵列装置
CN104864278A (zh) Led自由曲面照明系统
CN111443483A (zh) 基于自由曲面透镜的光束整形结构的设计方法
CN108845409B (zh) 一种基于多面体棱镜产生阵列多焦点的装置及方法
CN113419340B (zh) 一种用于激光光束整形的自由曲面构建方法
CN103592767B (zh) 一种采用双自由曲面透镜的激光光束整形装置
CN101916044B (zh) 一种用于双四极均匀照明的自由曲面透镜
CN101916045B (zh) 一种用于双偶极均匀照明的自由曲面透镜
CN114859565B (zh) 一种同轴反射式激光光束整形方法及装置
CN217902183U (zh) 一种准直平顶高斯光束变换器
Tsai et al. Freeform lens design of beam shaping with user-defined rotation-symmetric profile by using numerical method
CN109001911B (zh) 一种激光传能光学系统及其建立方法
CN115826254A (zh) 一种平顶光束调制方法、系统及存储介质
Hu et al. Design of off-axis double reflection freeform miniaturized antenna
TWI642976B (zh) 自由曲面照明系統
CN215264245U (zh) 一种点阵激光系统
CN101916046B (zh) 一种用于双环形均匀照明的自由曲面透镜
CN109116555A (zh) 一种用于倾斜面照明的自由曲面透镜的设计方法
CN110850591B (zh) 一种圆环形结构光的解析描述方法
CN114607963A (zh) 一种用于室内模拟蓝天光照的照明装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181130