JPWO2015053233A1 - 液晶表示素子および液晶表示素子の製造方法 - Google Patents

液晶表示素子および液晶表示素子の製造方法 Download PDF

Info

Publication number
JPWO2015053233A1
JPWO2015053233A1 JP2015541574A JP2015541574A JPWO2015053233A1 JP WO2015053233 A1 JPWO2015053233 A1 JP WO2015053233A1 JP 2015541574 A JP2015541574 A JP 2015541574A JP 2015541574 A JP2015541574 A JP 2015541574A JP WO2015053233 A1 JPWO2015053233 A1 JP WO2015053233A1
Authority
JP
Japan
Prior art keywords
liquid crystal
group
display element
crystal display
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015541574A
Other languages
English (en)
Other versions
JP6460341B2 (ja
Inventor
亮一 芦澤
亮一 芦澤
耕平 後藤
耕平 後藤
悟志 南
悟志 南
正人 森内
正人 森内
勇太 川野
勇太 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2015053233A1 publication Critical patent/JPWO2015053233A1/ja
Application granted granted Critical
Publication of JP6460341B2 publication Critical patent/JP6460341B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

互いに対向する一対の基板と、基板の間に挟持された液晶層と、基板の少なくとも一方の液晶層側に、重合体を含有する液晶配向剤から得られた液晶配向膜とを備える液晶表示素子であって、液晶層は、重合性化合物と、液晶とを含有する液晶組成物から形成され、重合性化合物は、重合性不飽和結合基と、水素結合する官能基と、官能基の近傍に少なくとも1以上の芳香環とを有し、官能基が分子間で水素結合を形成することによりメソゲン構造を形成する。

Description

本発明は、重合性化合物を含有する液晶材料を備えた液晶表示素子および液晶表示素子の製造方法に関する。
液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子として、視野角特性に優れたMVA(Multi−domain Vertical Alignment)方式が知られている(例えば、特許文献1参照)。MVA方式では、液晶の倒れる方向を制御するための突起やスリットを基板や表示用電極に形成することにより、負の誘電率異方性を有する液晶を垂直配向させている。このMVA方式によれば、液晶配向膜にラビング処理を施さなくても電圧印加時の液晶の配向を異なる複数の方位に制御できるが、突起近傍の液晶から順に傾斜していくため、液晶の伝播に時間を要し、応答速度が低下するという問題がある。
この応答速度を改善する技術として、PSA方式(Polymer sustained Alignment)が知られている。PSA方式は、液晶に光または熱で重合する重合性化合物を添加し、液晶セルの作製後に、電界を印加しながら液晶を傾斜させた状態で紫外線を照射する。これにより、重合性化合物を重合または架橋させ、液晶を傾斜方向に配向させる(例えば、特許文献2参照)。このPSA方式では、一斉に液晶が傾斜するため、MVA方式と比べて応答速度が速くなる。さらにPSA方式では、ラビング処理が不要であるため、ラビング処理で発生する液晶配向膜の表面の傷、発塵、機械的な力や静電気による影響などの問題が生じることがない。
他方、応答速度が速く、かつラビング処理を施さない技術として、光配向法が知られている(例えば、特許文献3参照)。光配向法は、偏光された紫外線の照射により、液晶配向膜に含有される重合体に光分解反応や光二量化反応などの光反応を起こさせて液晶の配向方向を固定化する。このような光配向法は、液晶表示素子の高精細化、高品位化への要求が高まる中、横電界駆動方式であるIPS方式(In−Plane Switching)やFFS方式(Fringe Field Switching)の液晶表示素子への適用が行われている(例えば、特許文献3参照)。また、IPS方式については、近年、配向能をさらに向上させるため、PSA方式と組み合わせる手法が開発されている。
しかしながら、PSA方式において液晶材料に添加される重合性化合物の溶解性は低く、液晶材料中に未反応の重合性化合物が不純物として残存するという問題がある。未反応の重合性化合物が残存すると、所望の光の感度が得られず、液晶の配向能が十分に発揮されないという問題が生じる。また、所望の光の感度が得られないと残像が発生するという問題も生じる。光の感度をより高くするために、紫外線の長波長側まで吸収を持たせようとすると、重合性化合物の共役を長くする必要があり、メソゲン構造がより大きくなったり、環構造などの剛直な構造が増えるため液晶材料への溶解性が益々低下するという問題を生じる。
特開2010−097226号公報 特開2004−302061号公報 特開2013−080193号公報
本発明は、このような事情に鑑み、高感度な配向固定化能を有し、かつ残像の発生が抑制された液晶表示素子および液晶表示素子の製造方法を提供することを目的とする。
本発明者は、鋭意研究を行った結果、官能基を介して分子間でメソゲン構造を形成する重合性化合物が、液晶に対して高い溶解性を有することを見出し、本発明を完成させた。かくして、本発明は、下記を要旨とするものである。
(1)互いに対向する一対の基板と、前記基板の間に挟持された液晶層と、前記基板の少なくとも一方の液晶層側に、重合体を含有する液晶配向剤から得られた液晶配向膜とを備える液晶表示素子であって、前記液晶層は、重合性化合物と、液晶とを含有する液晶組成物から形成され、前記重合性化合物は、重合性不飽和結合基と、水素結合する官能基と、前記官能基の近傍に少なくとも1以上の芳香環とを有し、前記官能基が分子間で水素結合を形成することによりメソゲン構造を形成することを特徴とする液晶表示素子。
(2)前記官能基はカルボキシル基であることを特徴とする上記(1)に記載の液晶表示素子。
(3)前記重合性化合物は、下記の式[1−1]〜[1−4]から選ばれる少なくとも1種であることを特徴とする上記(1)または(2)に記載の液晶表示素子。
Figure 2015053233
(Tはエーテル、エステル、アミド結合、Sは炭素原子数2〜11のアルキレン基、Rは水素原子もしくはメチル基、n=1もしくは2)
(4)前記重合性化合物は、下記の式[2−1]〜[2−3]から選ばれる少なくとも1種であることを特徴とする(1)〜(3)のいずれかに記載の液晶表示素子。
Figure 2015053233
(5)前記重合体は、液晶を垂直に配向させる基を側鎖に有することを特徴とする上記(1)〜(4)のいずれかに記載の液晶表示素子。
(6)前記重合体は、さらに光重合性基を側鎖に有することを特徴とする上記(5)に記載の液晶表示素子。
(7)前記光重合性基は、下記の式[3−1]〜[3−7]から選ばれる少なくとも1種であることを特徴とする上記(6)に記載の液晶表示素子。
Figure 2015053233
(式中、Meはメチル基を表す。)
(8)前記重合体は、光反応性基を有することを特徴とする上記(1)〜(4)のいずれかに記載の液晶表示素子。
(9)前記光反応性基は、下記の式[4−1]〜[4−5]から選ばれる少なくとも1種であることを特徴とする上記(8)に記載の液晶表示素子。
Figure 2015053233
(10)前記重合体は、ポリイミド前駆体及びそれをイミド化して得られるポリイミドから選ばれる少なくとも1つ、ポリシロキサンまたはポリ(メタ)アクリレートを含むことを特徴とする上記(1)〜(9)のいずれかに記載の液晶表示素子。
(11)前記液晶層に電圧を印加しながら紫外線を照射して作製された液晶セルを具備することを特徴とする上記(5)〜(7)のいずれかに記載の液晶表示素子。
(12)前記液晶層に偏光紫外線を照射して作製された液晶セルを具備することを特徴とする上記(8)または(9)に記載の液晶表示素子。
(13)一対の基板の少なくとも一方に、重合体を含有する液晶配向剤から液晶配向膜を形成し、前記一対の基板を前記液晶配向膜が内側になるように対向配置し、前記基板の間に、重合性不飽和結合基と、分子間で水素結合を形成することによりメソゲン構造を形成する官能基と、前記官能基の近傍に少なくとも1以上の芳香環とを有する重合性化合物と、液晶とを含有する液晶組成物を狭持して液晶層を形成し、前記液晶層に紫外線を照射して前記重合性化合物を重合させることを特徴とする液晶表示素子の製造方法。
本発明によれば、高感度な配向固定化能を有し、かつ残像の発生が抑制された液晶表示素子および液晶表示素子の製造方法が実現される。
以下に、本発明について詳細に説明する。
本発明は、液晶と重合性化合物とを含有する液晶組成物から得られる液晶層を備えたPSA方式で駆動する液晶表示素子についての発明である。
<重合性化合物>
液晶層を作製するための液晶組成物は、液晶と重合性化合物とを含有する。重合性化合物は、重合性不飽和結合基と、水素結合する官能基と、官能基の近傍に少なくとも1以上の芳香環とを有し、官能基が分子間で水素結合を形成することによりメソゲン構造を形成する。
重合性不飽和結合基とは、熱や紫外線等の刺激によって、光重合または光架橋反応に寄与するエチレン性の不飽和二重結合基をいう。具体的には、ビニル基、(メタ)アクリロイル基およびイソプロペニル基、アリル基、スチリル基、α−メチレン−γ−ブチルラクトン基などのラジカル重合性基が挙げられる。
また、本発明にかかる水素結合とは、官能基にある水素原子と、この水素原子に隣接する電気陰性度の高い原子との電気陰性度の差により生じる電子の偏りから、液晶配向剤の溶媒中もしくは液晶配向膜中で、水素原子が電気陰性度の高い他の原子との間で引力的相互作用を生じ、分子間で水素原子を介して形成される結合をいう。水素結合する官能基とは、液晶配向膜中や液晶配向剤の溶媒中において分子間で水素結合を形成する基を言う。このような水素結合する官能基は、液晶配向膜中や液晶配向剤の溶媒中において分子間で、主に二量体を形成する。このような重合性化合物はカルボキシル基や水酸基など極性の高い基を有しているため通常の重合性化合物等に比べて溶解性が非常に高い。このため、重合性化合物の溶媒への溶解性が向上し液晶配向剤の保存時(例えば冷凍保存など)においても重合性化合物の析出等が起こりにくい。
さらに、水素結合する官能基は、分子間で水素結合を形成することによりメソゲン構造を形成する。メソゲン構造とは、液晶性を発現するための剛直な構造をいう。このような水素結合を介したメソゲン構造の形成、すなわち、剛直な構造の形成により、液晶層の光に対する感度が高くなると共に配向固定化能が向上する。
なお、水素結合する官能基としては、特に限定されず、カルボキシル基、水酸基、ウレア基、アミド基およびイミド基などが挙げられる。これらの中でも、二量体の形成のし易さに鑑みると、カルボキシル基が好ましい。
また、重合性化合物が有する少なくとも1以上の芳香環は、剛直であるため、水素結合する官能基の近傍に位置することにより、この官能基と共にメソゲン構造を形成する。これらのメソゲン構造は擬似的に巨大なメソゲン構造を取っているため共役が広がっており、長波長側の紫外領域まで(例えば365nmまで)吸収を有する。このため、長波長の紫外線照射に対しても感度が高くなり弱いエネルギーの紫外線照射でも配向固定化が可能となる。芳香環としては、ベンゼン環や、ナフタレン環およびアントラセン環などの炭化水素芳香環や、ピリジン環、ピラジン環およびピロール環などの複素芳香環が挙げられる。芳香環の数は特に限定されず、1〜4であることが好ましい。なお、これらの芳香環は置換基を有していてもよい。
以上に説明した重合性化合物の一例としては、カルボキシル基を有する上記式[1−1]〜[1−4]や上記式[2−1]〜[2−3]で表される重合性化合物が挙げられる。カルボキシル基の水素原子と、この水素原子に隣接する酸素原子との電気陰性度の差は大きいため、これらの重合性化合物を用いることにより、分子間において、より強い水素結合を介して二量体が形成される。このような重合性化合物の分子は非常に小さいため、二量体の一つ一つの分子も非常に小さいものとなる。これにより、重合性化合物の溶媒への溶解性はさらに向上し、液晶配向膜の光に対する感度はさらに高くなる。また、上記式[1−1]〜[1−4]や上記式[2−1]〜[2−3]で表される重合性化合物は、カルボキシル基の近傍に、該カルボキシル基と共にメソゲン構造を形成する二つ以上の芳香環を有する。これにより、液晶配向膜の光に対する感度はより一層高くなり、配向固定化能はより向上する。
なお、液晶に添加される重合性化合物の添加割合は、例えば、液晶に対して重合性化合物が0.05〜1.0質量%となるようにすればよい。なお、重合性化合物は液晶配向剤に添加してもよく、その添加割合は、液晶配向剤に対して0.1〜30(質量)%であることが好ましい。
<液晶>
液晶層は、液晶と上記重合性化合物とを含有する液晶組成物から得られる。液晶としては、公知のネマティック液晶やスメクティック液晶などの各種の液晶を用いることができる。ネマティック液晶には負または正の誘電異方性を有するものがある。負の誘電異方性を有するネマティック液晶としては、例えばジシアノベンゼン系液晶、ピリダジン系液晶、シッフベース系液晶、アゾキシ系液晶、ナフタレン系液晶、ビフェニル系液晶およびフェニルシクロヘキサン系液晶などが挙げられる。正の誘電異方性を有するネマティック液晶としては、例えばビフェニル系液晶、フェニルシクロヘキサン系液晶、エステル系液晶、ターフェニル系液晶、ビフェニルシクロヘキサン系液晶、ピリミジン系液晶、ジオキサン系液晶、ビシクロオクタン系液晶、キュバン系液晶などが挙げられる。スメクティック液晶としては、強誘電性液晶および反強誘電性液晶などが挙げられる。
<液晶配向剤>
液晶層は、液晶配向膜上に作製される。液晶配向膜を作製するための液晶配向剤は、重合体と、重合体を溶解させる溶媒とを含む。液晶配向剤は、1)液晶セルに電圧を印加しながら紫外線を照射することで作製される垂直配向方式、すなわち縦電界駆動方式の液晶表示素子、または、2)偏光された紫外線(偏光紫外線)を照射する工程を経た後、液晶セルを作製し、該液晶セルに紫外線を照射することで作製されるIPS方式(In−Plane Switching)やFFS方式(Fringe Field Switching)などの水平配向方式、すなわち横電界駆動方式の液晶表示素子に用いられる。
垂直配向方式の液晶表示素子に用いられる場合の液晶配向剤は、重合体として液晶を垂直に配向させる基を側鎖に有する重合体を含有する。またこれらの重合体は光反応性基や光ラジカル発生基を側鎖に有していてもよい。これらの光反応性基や光ラジカル発生基を側鎖に有する重合体を使用した場合、紫外線の照射による光重合または光架橋反応がより起こりやすくなり配向固定化能が向上する。
水平配向方式の液晶表示素子に用いられる場合の液晶配向剤は、重合体として、光反応性基を有していてもよい。光反応性基を有することにより、偏光紫外線の照射による光異性化反応などの光反応起こり、ラビング処理を伴わなくても液晶配向膜に水平配向能が付与される(所謂、光配向)。以下に、液晶を垂直に配向させる基、光重合性基および光反応性基について説明する。
<液晶を垂直に配向させる基>
液晶表示素子が垂直配向方式の場合、液晶配向剤が含有する重合体は、液晶を垂直に配向させる基を側鎖に有する。液晶を垂直に配向させる基とは、液晶分子を基板に対して垂直に配向させる能力を有する基であり、この能力を有していればその構造は特に限定されない。液晶を垂直に配向させる基としては、直鎖のアルキル基、直鎖のフルオロアルキル基、末端にアルキル基やフルオロアルキル基を有する環状基、ステロイド基などが挙げられる。具体例としては、下記式[5]で表される基が挙げられる。
Figure 2015053233
は、炭素数2〜6、好ましくは2〜4のアルキレン基、−O−、−COO−、−OCO−、−NHCO−、−CONH−、または炭素数1〜3のアルキレン−エーテル基(−C−C−O−)を表す。これらの中でも合成の容易性の観点から、−O−、−COO−、−CONH−、または炭素数1〜3のアルキレン−エーテル基が好ましい。上記R、R、Rはそれぞれ独立に、フェニレン基またはシクロアルキレン基を表す。合成の容易性および液晶を垂直に配向させる能力の点から、表1に示すa、b、c、R、RおよびRの組み合わせが好ましい。
Figure 2015053233
上記Rは、水素原子、炭素数2〜24、好ましくは5〜8のアルキル基もしくはフッ素含有アルキル基、芳香環、脂肪族環、複素環、またはこれらからなる大環状基を表す。a、bおよびcの少なくとも一つが1である場合、Rの構造として、好ましくは、水素原子、炭素数2〜14のアルキル基、または炭素数2〜14のフッ素含有アルキル基であり、より好ましくは水素原子、炭素数2〜12、好ましくは2〜10のアルキル基もしくはフッ素含有アルキル基を表す。
また、a、bおよびcが共に0である場合、Rの構造として好ましくは、炭素数12〜22、好ましくは12〜20のアルキル基もしくはフッ素含有アルキル基、芳香環、脂肪族環、複素環、またはこれらからなる大環状基であり、より好ましくは、炭素数12〜20、好ましくは12〜18のアルキル基もしくはフッ素含有アルキル基である。
なお、液晶を垂直に配向させる基の側鎖は、重合体の主鎖に直接結合していてもよく、また、適当な結合基を介して結合していてもよい。このように、液晶を垂直に配向させる基の側鎖への導入方法は特に限定されない。
また、液晶を垂直に配向させる基の存在量は、配向を固定化できる範囲であることが好ましく、光に対する感度および配向固定化能をより向上させるためには、他の特性に影響が出ない範囲で、可能な限り多いほうが好ましい。
<光重合性基>
液晶配向剤が含有する重合体は、さらに光重合性基を側鎖に有していてもよい。光重合性基は、紫外線等の光によって重合反応を起こす基、例えば、紫外線等の光によって重合する基(以下、光重合する基ともいう)や光架橋する基(以下、光架橋する基ともいう)であれば特に限定はされないが、上記式[3−1]〜[3−7]で表される光重合性基から選ばれる少なくとも1種が好ましく用いられる。
このような重合体を含有する液晶配向剤を用いて得られる液晶配向膜には光重合性基が含有される。液晶配向膜中に光重合性基を含有する液晶表示素子に紫外線等の光を照射すると、液晶配向膜と液晶とが接する面に位置する光重合性基や、上述した重合性化合物の重合性不飽和結合基が光重合または光架橋反応を起こし、液晶配向膜の表面に位置する液晶の配向がより効率的に固定化される。
重合体の側鎖に導入される光重合性基(以下、光重合性の側鎖ともいう)は、メタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα−メチレン−γ−ブチロラクトン基から選択される少なくとも一種を含む側鎖が好ましい。
このような光重合性の側鎖は、重合体の主鎖に直接結合していてもよく、また、適当な結合基を介して結合していてもよい。このように、光重合性の側鎖の導入方法は特に限定されない。光重合性の側鎖としては、例えば下記式[6]で表されるものが挙げられる。
Figure 2015053233
式[6]中、Rは単結合又は−CH−、−O−、−COO−、−OCO−、−NHCO−、−CONH−、−NH−、−CHO−、−N(CH)−、−CON(CH)−、−N(CH)CO−、のいずれかを表し、Rは単結合、又は、非置換またはフッ素原子によって置換されている炭素数1〜20のアルキレン基を表し、アルキレン基の−CH−は−CF−又は−CH=CH−で任意に置き換えられていてもよく、次に挙げるいずれかの基が互いに隣り合わない場合において、これらの基に置き換えられていてもよい。−O−、−COO−、−OCO−、−NHCO−、−CONH−、−NH−、二価の炭素環、二価の複素環。Rは、メタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα−メチレン−γ−ブチロラクトン基を表す。
なお、上記式[6]中のRは、通常の有機合成的手法で形成させることができるが、合成の容易性の観点から、−CH−、−O−、−COO−、−NHCO−、−NH−、−CHO−が好ましい。
また、Rの任意の−CH−を置き換える二価の炭素環や二価の複素環の炭素環や複素環としては、具体的には以下のような構造が挙げられるが、これに限定されるものではない。
Figure 2015053233
は、光重合性の観点から、メタクリル基、アクリル基、ビニル基またはα−メチレン−γ−ブチロラクトン基であることが好ましい。
光重合性の側鎖の存在量は、紫外線等の光の照射によって反応し共有結合を形成することにより配向を固定化できる範囲であることが好ましく、光に対する感度および配向固定化能をより向上させるためには、他の特性に影響が出ない範囲で、可能な限り多いほうが好ましい。
<光反応性基>
液晶表示素子が偏光紫外線を照射することで作製されるIPS方式やFFS方式などの水平配向方式の場合、液晶配向剤が含有する重合体は、偏光紫外線の利用によって液晶配向能を発現する光反応性基が導入されていることが好ましい。
光反応性基が導入された重合体を含有する液晶配向剤から得られる液晶配向膜に偏光紫外線を照射することで、光反応が進行し、偏光方向と同一方向、または偏光方向に対して垂直方向に異方性が付与され、液晶が配向する。光反応には、光二量化、光異性化などがある。光反応性基としては、不飽和結合、特に二重結合を有するものが好ましく、アクリル基、ビニル基、メタクリル基、アントラセニル基、カルコニル基、クマリン基、スチルベン基、マレイミド基およびシンナモイル基などが挙げられる。
具体例を挙げるならば、光二量化反応が進行する構造としては、上記式[4−1]〜[4−3]で表される構造が挙げられる。また、光異性化反応が進行する構造としては、上記式[4−4]、[4−5]で表される構造が挙げられる。なお、上記式[4−1]〜[4−5]から選ばれる構造を有する光反応性基とは、これらの式[4−1]〜[4−5]の構造から任意の数のHが取れた基、上記式[4−1]でOが結合手である基や、これらの構造がその他の構造(例えばアルキレン基等)と結合した基である。
なお、このような光反応性基は、重合体の主鎖に導入されていても、側鎖に導入されていてもよい。このように、光反応性基の導入方法は特に限定されない。また、重合体は、光反応性基と共に上記液晶を垂直に配向させる基を有していてもよい。
また、光反応性基の存在量は、光反応を起こし、配向を固定化できる範囲であることが好ましく、光に対する感度および配向固定化能をより向上させるためには、他の特性に影響が出ない範囲で、可能な限り多いほうが好ましい。
<重合体>
液晶配向剤が含有する重合体は、ポリイミド前駆体、それをイミド化して得られるポリイミドの他、ポリシロキサンやポリ(メタ)アクリレートが好ましく用いられる。ここで、ポリイミド前駆体とは、ポリアミック酸(ポリアミド酸ともいう)や、ポリアミック酸エステルを指す。また、液晶配向剤中に、これらの異なる重合体が同時に含有されていても良く、それらの含有比率は、液晶表示素子の特性に応じ、種々選択される。液晶配向剤が含有する重合体の総量は、0.1〜20(質量)%であることが好ましい。なお、液晶配向剤が含有するポリイミド前駆体、ポリイミド、ポリシロキサンやポリ(メタ)アクリレート等の重合体は、液晶配向剤に含有される溶媒に溶解可能である必要がある。以下にそれぞれの重合体について説明する。
<ポリイミド前駆体およびそれをイミド化して得られるポリイミド>
液晶配向剤が含有する重合体がポリイミド前駆体を含む場合、ポリイミド前駆体は、例えば下記式[7]で表される繰り返し単位(構造単位)を有する。
Figure 2015053233
式[7]中、Rは水素原子、又は炭素数1〜4のアルキル基である。加熱によるイミド化のしやすさの観点から、水素原子、又はメチル基が特に好ましい。Xは4価の有機基であり、その構造は特に限定されない。具体例を挙げるならば、下記式[X−1]〜[X−43]が挙げられる。液晶配向性の観点から、Xは、[X−1]〜[X−10]、[X−26]〜[X−28]、[X−31]〜[X−37]が好ましい。
Figure 2015053233
式[X−1]中、R、R、R、及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、アルケニル基、又はフェニル基である。液晶配向性の観点から、R、R、R、及びRは、水素原子、ハロゲン原子、メチル基又はエチル基が好ましく、水素原子又はメチル基がより好ましく、さらに好ましくは、下記式[X1−1]〜[X1−2]で表される構造からなる群から選ばれる少なくとも1種である。
Figure 2015053233
Figure 2015053233
Figure 2015053233
Figure 2015053233
液晶配向剤が偏光紫外線を照射することにより作製される液晶表示素子に用いられる場合、Xの好ましい構造としては、[X1−1]、[X1−2]、[X−2]、[X−3]、[X−5]、[X−6]、[X−7]、[X−8]、[X−9]、[X−10]が挙げられ、[X1−1]、[X1−2]および[X−6]が特に好ましい。
上記式[7]中、Yは2価の有機基であり、その構造は特に限定されない。Yの具体例を挙げるならば、下記式[Y−1]〜[Y−73]が挙げられる。
Figure 2015053233
Figure 2015053233
Figure 2015053233
Figure 2015053233
Figure 2015053233
Figure 2015053233
Figure 2015053233
Figure 2015053233
(式中、Meはメチル基を表す。)
ポリイミド前駆体やポリイミド等の有機溶剤に対する溶解性の向上が期待できるため、[Y−8]、[Y−20]、[Y−21]、[Y−22]、[Y−28]、[Y−29]又は[Y−30]の構造を有する構造単位を有することが好ましい。
液晶配向剤が含有するポリイミド前駆体は、ジアミン成分(例えば、後述する液晶を垂直に配向させる側鎖を有するジアミン、光重合性の側鎖を有するジアミンや、光反応性基を有するジアミン)とテトラカルボン酸二無水物成分(例えば、後述するテトラカルボン酸二無水物、テトラカルボン酸ジエステルジクロリドやテトラカルボン酸ジエステル等)との反応によって得られる。ポリイミド前駆体としては、例えば、ポリアミック酸やポリアミック酸エステルが挙げられる。具体的には、ポリアミック酸は、ジアミン成分とテトラカルボン酸二無水物との反応によって得られる。ポリアミック酸エステルは、ジアミン成分とテトラカルボン酸ジエステルジクロリドを塩基存在下で反応させる、またはジアミン成分とテトラカルボン酸ジエステルを適当な縮合剤、塩基の存在下にて反応させることによって得られる。また、ポリイミドはこのポリアミック酸を脱水閉環させる、あるいはポリアミック酸エステルを加熱閉環させることにより得られる。かかるポリアミック酸、ポリアミック酸エステル及びポリイミドのいずれも液晶配向膜を得るための重合体として有用である。
<液晶を垂直に配向させる側鎖を有するジアミン>
液晶配向剤が垂直配向方式の液晶表示素子に用いられる場合、液晶配向剤が含有するポリイミド前駆体の原料となるジアミン成分には、液晶を垂直に配向させる側鎖が導入されている必要がある。
液晶を垂直に配向させる側鎖を有するジアミンとしては、長鎖のアルキル基、長鎖アルキル基の途中に環構造や枝分かれ構造を有する基、ステロイド基等の炭化水素基や、これらの基の水素原子の一部又は全部をフッ素原子に置き換えた基を側鎖として有するジアミン、例えば上記式[5]で表される側鎖を有するジアミンを挙げることができる。より具体的には例えば、水素原子がフッ素で置換されていてもよい炭素数が8〜30の炭化水素基等を有するジアミンや、下記式[8]〜[11]で表されるジアミンを挙げることができるが、これに限定されるものではない。
Figure 2015053233
(式[8]中のa、b、c、R〜Rの定義は、上記式[5]と同じである。
Figure 2015053233
Figure 2015053233
(式[9]及び式[10]中、A10は−COO−、−OCO−、−CONH−、−NHCO−、−CH−、−O−、−CO−、又は−NH−を表し、A11は単結合若しくはフェニレン基を表し、a10は上記式[5]で表される液晶を垂直に配向させる側鎖と同一の構造を表し、a10’は上記式[5]で表される液晶を垂直に配向させる側鎖と同一の構造から水素等の元素が一つ取れた構造である二価の基を表す。)
Figure 2015053233
(式[11]中、A14は、フッ素原子で置換されていてもよい、炭素数3〜20のアルキル基であり、A15は、1,4−シクロへキシレン基、又は1,4−フェニレン基であり、A16は、酸素原子、又は−COO−*(ただし、「*」を付した結合手がA15と結合する)であり、A17は酸素原子、又は−COO−*(ただし、「*」を付した結合手が(CH)aと結合する。)である。また、aは0、又は1の整数であり、aは2〜10の整数であり、aは0、又は1の整数である。)
式[8]における二つのアミノ基(−NH)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。
式[8]の具体的な構造としては、下記の式[A−1]〜式[A−24]で表されるジアミンを例示することができるが、これに限定されるものではない。
Figure 2015053233
(式[A−1]〜式[A−5]中、Aは、炭素数2〜24のアルキル基又はフッ素含有アルキル基である。)
Figure 2015053233
(式[A−6]及び式[A−7]中、Aは、−O−、−OCH−、−CHO−、−COOCH−、又は−CHOCO−を示し、Aは炭素数1〜22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure 2015053233
(式[A−8]〜式[A−10]中、Aは、−COO−、−OCO−、−CONH−、−NHCO−、−COOCH−、−CHOCO−、−CHO−、−OCH−、又は−CH−を示し、Aは炭素数1〜22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure 2015053233
(式[A−11]及び式[A−12]中、Aは、−COO−、−OCO−、−CONH−、−NHCO−、−COOCH−、−CHOCO−、−CHO−、−OCH−、−CH−、−O−、又は−NH−を示し、Aはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、又は水酸基である。)
Figure 2015053233
(式[A−13]及び式[A−14]中、Aは、炭素数3〜12のアルキル基であり、1,4−シクロヘキシレンのシス−トランス異性は、それぞれトランス異性体である。)
Figure 2015053233
(式[A−15]及び式[A−16]中、Aは、炭素数3〜12のアルキル基であり、1,4-シクロヘキシレンのシス−トランス異性は、それぞれトランス異性体である。)
Figure 2015053233
式[9]で表されるジアミンの具体例としては、下記の式[A−25]〜式[A−30]で示されるジアミンを挙げることができるが、これに限るものではない。
Figure 2015053233
(式[A−25]〜式[A−30]中、A12は、−COO−、−OCO−、−CONH−、−NHCO−、−CH−、−O−、−CO−、又は−NH−を示し、A13は炭素数1〜22のアルキル基又はフッ素含有アルキル基を示す。)
式[10]で表されるジアミンの具体例としては、下記の式[A−31]〜式[A−32]で示されるジアミンを挙げることができるが、これに限るものではない。
Figure 2015053233
この中でも、液晶を垂直に配向させる能力、液晶の応答速度の観点から、[A−1]、[A−2]、[A−3]、[A−4]、[A−5]、[A−25]、[A−26]、[A−27]、[A−28]、[A−29]、[A−30]のジアミンが好ましい。
上記のジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。
<光重合性の側鎖を有するジアミン>
液晶配向剤が垂直配向方式の液晶表示素子に用いられる場合、液晶配向剤が含有するポリイミド前駆体の原料となるジアミン成分には、光重合性の側鎖が導入されていることが好ましい。光重合性の側鎖を有するジアミンとしては、メタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα−メチレン−γ−ブチロラクトン基から選択される少なくとも一種を含み、例えば、上記式[6]で表される側鎖を有するジアミンを挙げることができる。より具体的には例えば下記の一般式[12]で表されるジアミンを挙げることができるが、これに限定されるものではない。
Figure 2015053233
(式[12]中のR、R及びRの定義は、上記式[6]と同じである。)
式[12]における二つのアミノ基(−NH)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。
メタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα−メチレン−γ−ブチロラクトン基から選択される少なくとも一種を含む光重合性の側鎖を有するジアミンとしては、具体的には以下のような化合物が挙げられるが、これに限定されるものではない。
Figure 2015053233
(式中、Rは−CH−、−O−、−CONH−、−NHCO−、−COO−、−OCO−、−NH−、−CO−より選ばれる基を表す。Rは、炭素数1から炭素数30で形成されるアルキレン基、二価の炭素環もしくは複素環であり、このアルキレン基、二価の炭素環もしくは複素環の1つまたは複数の水素原子は、フッ素原子もしくは有機基で置き換えられていてもよい。また、Rは、次に挙げるいずれかの基が互いに隣り合わない場合において、−CH−がこれらの基に置き換えられていてもよい;−O−、−NHCO−、−CONH−、−COO−、−OCO−、−NH−、−NHCONH−、−CO−。Rは、−CH−、−O−、−CONH−、−NHCO−、−COO−、−OCO−、−NH−、−CO−、単結合のいずれかを表す。Rはシンナモイル基を表す。R10は単結合、または、炭素数1から炭素数30で形成されるアルキレン基、二価の炭素環もしくは複素環であり、このアルキレン基、二価の炭素環もしくは複素環の1つまたは複数の水素原子は、フッ素原子もしくは有機基で置き換えられていてもよい。また、R10は、次に挙げるいずれかの基が互いに隣り合わない場合において、−CH−がこれらの基に置き換えられていてもよい;−O−、−NHCO−、−CONH−、−COO−、−OCO−、−NH−、−NHCONH−、−CO−。R11はアクリル基、メタクリル基のいずれかから選ばれる光重合性基を示す。)
Figure 2015053233
(Xは単結合、又は、−O−、−COO−、−NHCO−、−NH−より選ばれる結合基、Yは単結合、又は、非置換またはフッ素原子によって置換されている炭素数1〜20のアルキレン基を表す。)
上記メタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα−メチレン−γ−ブチロラクトン基から選択される少なくとも一種を含む光重合性の側鎖を有するジアミンは、液晶配向膜とした際の液晶配向性、光に対する感度、プレチルト角、電圧保持特性、蓄積電荷などの特性、液晶表示素子とした際の液晶の応答速度などに応じて、1種類または2種類以上を混合して使用することもできる。
また、このようなメタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα−メチレン−γ−ブチロラクトン基から選択される少なくとも一種を含む光重合性の側鎖を有するジアミンは、ポリアミック酸の合成に用いるジアミン成分の総量の10〜70モル%となる量を用いることが好ましく、より好ましく20〜60モル%、特に好ましくは30〜50モル%である。
<光反応性基を有するジアミン>
液晶配向剤が偏光紫外線を照射することで作製される水平配向方式の液晶表示素子に用いられる場合、液晶配向剤が含有するポリイミド前駆体の原料となるジアミン成分には、光反応性基が導入されていることが好ましい。
偏光紫外線の照射により、光二量化反応や光異性化反応が進行し、異方性を生じさせる配向処理方法を用いる場合、上記式[4−1]〜[4−5]の構造を、重合体の主鎖もしくは側鎖に導入すれば良い。
液晶配向剤に含有させる重合体として、ポリイミド前駆体及びそれをイミド化して得られるポリイミドを用いる場合、上記式[4−1]〜[4−5]の構造を主鎖もしくは側鎖に含有するテトラカルボン酸二無水物又はジアミンを用いる方法があるが、合成の容易性の観点から、上記式[4−1]〜[4−5]の構造を側鎖に含有するジアミンを用いることが好ましい。なお、ジアミンの側鎖とは、ジアミンの2つのアミノ基を結ぶ構造から枝分かれした構造である。そのようなジアミンの具体例としては、下記式に表す化合物が挙げられるが、これに限定されるものではない。
Figure 2015053233
(式中、Xは単結合、又は、−O−、−COO−、−NHCO−、−NH−より選ばれる結合基、Yは単結合、又は、非置換またはフッ素原子によって置換されている炭素数1〜20のアルキレン基を表す。Rは水素原子、又は、非置換またはフッ素原子によって置換されている炭素数1〜5のアルキル基、もしくはアルキルエーテル基を表す。)
Figure 2015053233

(式中、Xは単結合、又は、−O−、−COO−、−NHCO−、−NH−より選ばれる結合基、Yは単結合、又は、非置換またはフッ素原子によって置換されている炭素数1〜20のアルキレン基を表す。Rは水素原子、又は、非置換またはフッ素原子によって置換されている炭素数1〜5のアルキル基、もしくはアルキルエーテル基を表す。)
<テトラカルボン酸二無水物>
液晶配向剤中に含有されるポリイミド前駆体であるポリアミック酸を得るためにジアミン成分と反応させるテトラカルボン酸二無水物は特に限定されない。その具体例を以下に挙げる。
脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物としては、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−テトラメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物、2,3,4,5−テトラヒドロフランテトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、3,4−ジカルボキシ−1−シクロヘキシルコハク酸二無水物、3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク酸二無水物、1,2,3,4−ブタンテトラカルボン酸二無水物、ビシクロ[3,3,0]オクタン−2,4,6,8−テトラカルボン酸二無水物、3,3’,4,4’−ジシクロヘキシルテトラカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、シス−3,7−ジブチルシクロオクタ−1,5−ジエン−1,2,5,6−テトラカルボン酸二無水物、トリシクロ[4.2.1.02,5]ノナン−3,4,7,8−テトラカルボン酸−3,4:7,8−二無水物、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン−4,5,11,12−テトラカルボン酸−4,5:11,12−二無水物、4−(2,5−ジオキソテトラヒドロフラン−3−イル)−1,2,3,4−テトラヒドロナフタレンー1,2−ジカルボン酸無水物などが挙げられる。
更には、上記脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物に加えて、芳香族テトラカルボン酸二無水物を使用すると、液晶配向性が向上し、かつ液晶セルの蓄積電荷を低減させることができるので好ましい。芳香族テトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4−ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物などが挙げられる。
テトラカルボン酸二無水物は、液晶配向膜にした際の液晶配向性、光に対する感度、プレチルト角、電圧保持特性、蓄積電荷などの特性に応じて、1種類または2種類以上併用することができる
液晶配向剤中に含有されるポリイミド前駆体であるポリアミック酸エステルを得るためにジアミン成分と反応させるテトラカルボン酸ジアルキルエステルは特に限定されない。その具体例を以下に挙げる。
脂肪族テトラカルボン酸ジエステルの具体的な例としては1,2,3,4−シクロブタンテトラカルボン酸ジアルキルエステル、1,2−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸ジアルキルエステル、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4−テトラメチル−1,2,3,4−シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4−シクロペンタンテトラカルボン酸ジアルキルエステル、2,3,4,5−テトラヒドロフランテトラカルボン酸ジアルキルエステル、1,2,4,5−シクロヘキサンテトラカルボン酸ジアルキルエステル、3,4−ジカルボキシ−1−シクロヘキシルコハク酸ジアルキルエステル、3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク酸ジアルキルエステル、1,2,3,4−ブタンテトラカルボン酸ジアルキルエステル、ビシクロ[3,3,0]オクタン−2,4,6,8−テトラカルボン酸ジアルキルエステル、3,3’,4,4’−ジシクロヘキシルテトラカルボン酸ジアルキルエステル、2,3,5−トリカルボキシシクロペンチル酢酸ジアルキルエステル、シス−3,7−ジブチルシクロオクタ−1,5−ジエン−1,2,5,6−テトラカルボン酸ジアルキルエステル、トリシクロ[4.2.1.02,5]ノナン−3,4,7,8−テトラカルボン酸−3,4:7,8−ジアルキルエステル、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン−4,5,11,12−テトラカルボン酸−4,5:11,12−ジアルキルエステル、4−(2,5−ジオキソテトラヒドロフラン−3−イル)−1,2,3,4−テトラヒドロナフタレンー1,2−ジカルボンジアルキルエステルなどが挙げられる。
芳香族テトラカルボン酸ジアルキルエステルとしては、ピロメリット酸ジアルキルエステル、3,3’,4,4’−ビフェニルテトラカルボン酸ジアルキルエステル、2,2’,3,3’−ビフェニルテトラカルボン酸ジアルキルエステル、2,3,3’,4−ビフェニルテトラカルボン酸ジアルキルエステル、3,3’,4,4’−ベンゾフェノンテトラカルボン酸ジアルキルエステル、2,3,3’,4−ベンゾフェノンテトラカルボン酸ジアルキルエステル、ビス(3,4−ジカルボキシフェニル)エーテルジアルキルエステル、ビス(3,4−ジカルボキシフェニル)スルホンジアルキルエステル、1,2,5,6−ナフタレンテトラカルボン酸ジアルキルエステル、2,3,6,7−ナフタレンテトラカルボン酸ジアルキルエステルなどが挙げられる。
<ポリシロキサン>
液晶配向剤が含有する重合体がポリシロキサンを含む場合、ポリシロキサンはアルコキシシラン成分を有機溶媒中で反応(例えば重縮合反応)することにより得られる。アルコキシシラン成分とは、分子内に1〜4個のアルコキシ基を有するアルコキシシランをいう。例えば、下記式[14]で表されるアルコキシシラン成分を反応させることによりポリシロキサンが得られる。
Figure 2015053233
式[14]中、R11は1価の有機基を表し、R12は炭素数1〜5、好ましくは1〜3のアルキルである。より好ましくは、R12がメチル基またはエチル基である。
<垂直配向性の側鎖を有するアルコキシシラン>
液晶を垂直に配向させる側鎖を有するアルコキシシランとしては、式[14]中、R11が長鎖のアルキル基、長鎖アルキル基の途中に環構造や枝分かれ構造を有する基、ステロイド基等の炭化水素基や、これらの基の水素原子の一部又は全部をフッ素原子に置き換えた基を側鎖として有するアルコキシシラン、例えば上記式[5]で表される側鎖を有するジアミンを挙げることができる。より具体的には例えば、水素原子がフッ素で置換されていてもよい炭素数が8〜30の炭化水素基等を有するジアミンや、下記式[15]で表されるアルコキシシランを挙げることができるが、これに限定されるものではない。
Figure 2015053233
(式[15]中のa、b、c、R〜Rの定義は、上記式[5]と同じである。式[15]中、Rは単結合もしくは−(CHn1O−(n1は炭素原子数0〜5のアルキル基)、R12は炭素数1〜5、好ましくは1〜3のアルキルを表す。
ここで、以下に式[14]で表される垂直配向性の側鎖構造を持つアルコキシシランの具体例として式[14−1]〜[14−13]を挙げるが、これに限定されるものではない。なお、下記式[14−1]〜[14−13]におけるR12は、式[14]におけるR12と同じ、R9は式[15]におけるR9と同じである。
Figure 2015053233
Figure 2015053233
(式[14−7]〜式[14−9]中、R13は炭素数1〜22のアルキル基、アルコキシ基、フッ素含有アルキル基またはフッ素含有アルコキシ基である。)
Figure 2015053233
(式[14−10]および式[14−11]中、R14はフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基または水酸基である。)
Figure 2015053233
(式[14−12]および式[14−13]中、R15は炭素数3〜12のアルキル基であり、1,4−シクロヘキシレンのシス−トランス異性は、それぞれトランス異性体である。)
式[14]で表されるアルコキシシランは、シロキサンポリマー(ポリシロキサン)とした際の溶媒への溶解性、液晶配向膜とした際の液晶配向性、光に対する感度、プレチルト角、電圧保持特性、蓄積電荷などの特性、液晶表示素子とした際の液晶の応答速度などに応じて、1種類または2種類以上を混合して使用することもできる。また、炭素数10〜18の長鎖アルキル基を含有するアルコキシシランとの併用も可能である。
このように式[14]で表されるアルコキシシランは、例えば、特開昭61−286393号公報に記載されるような公知の方法で製造することが可能である。
<光重合性の側鎖を有するアルコキシシラン>
また、ポリシロキサンを得るために用いられるアルコキシシラン成分として、例えば、下記式[16]で表されるような光重合性基を有するアルコキシシランも用いることができる。
Figure 2015053233
式[16]中、R21は、水素原子が、アクリル基、アクリロキシ基、メタクリル基、メタクリロキシ基又はスチリル基で置換されたアルキル基である。置換されている水素原子は1つ以上であり、好ましくは1つである。アルキル基の炭素数は1〜30が好ましく、より好ましくは1〜20である。さらに好ましくは1〜10である。R22は、炭素数1〜5のアルキル基であり、好ましくは炭素数1〜3であり、特に好ましくは炭素数1〜2である
式[16]で表されるアルコキシシランの具体例を挙げるが、これらに限定されるものではでない。例えば、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、アクリロキシエチルトリメトキシシラン、アクリロキシエチルトリエトキシシラン、スチリルエチルトリメトキシシラン、スチリルエチルトリエトキシシラン、3−(N−スチリルメチル−2−アミノエチルアミノ)プロピルトリメトキシシランである。
<その他のアルコキシシラン>
さらに、ポリシロキサンを得るために用いられるアルコキシシラン成分として、例えば、下記式[17]で表されるアルコキシシランも用いることができる。
Figure 2015053233
式[17]で表されるアルコキシシランのR23は、水素原子、又は水素原子がヘテロ原子、ハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基、ウレイド基で置換されていてもよい、炭素数1〜10の炭化水素基であり、好ましくは、アミノ基、グリシド基、ウレイド基である。R24は炭素数1〜5、好ましくは1〜3のアルキル基であり、n2は0〜3、好ましくは0〜2の整数を表す。
このような式[17]で表されるアルコキシシランの具体例を挙げるが、これに限定されるものではない。例えば、3−(2−アミノエチルアミノプロピル)トリメトキシシラン、3−(2−アミノエチルアミノプロピル)トリエトキシシラン、2−アミノエチルアミノメチルトリメトキシシラン、2−(2−アミノエチルチオエチル)トリエトキシシラン、3−メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、ビニルトリエトキシシラン、3−イソシアネートプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、クロロプロピルトリエトキシシラン、ブロモプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3−アミノプロピルメチルジエトキシシラン、3―アミノプロピルジメチルエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−ウレイドプロピルトリメトキシシラン及びγ−ウレイドプロピルトリプロポキシシランなどが挙げられる。
式[17]で表されるアルコキシシランにおいて、n2が0であるアルコキシシランは、テトラアルコキシシランである。テトラアルコキシシランは、上記式[14]〜式[16]で表されるアルコキシシランと重縮合反応をし易いので、ポリシロキサンを得るために好ましい。
このような式[17]においてn2が0であるアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン又はテトラブトキシシランがより好ましく、特に、テトラメトキシシラン又はテトラエトキシシランが好ましい。
液晶配向剤が含有するポリシロキサンを得る方法は、特に限定されず、例えば、上記式[14]〜式[17]で表されるアルコキシシランを含有するアルコキシシラン成分を有機溶媒中で反応(例えば重縮合反応)させて得られる。通常、ポリシロキサンは、このようなアルコキシシラン成分を重縮合して、有機溶媒に均一に溶解した溶液として得られる。なお、上記式[14]〜[17]などのアルコキシシランを含有するアルコキシシラン成分中のアルコキシシランの配合割合は特に限定されない。
ポリシロキサンを得るためにアルコキシシランを重縮合する方法として、例えば、アルコキシシランをアルコール又はグリコールなどの有機溶媒中で加水分解・縮合する方法が挙げられる。その際、加水分解・縮合反応は、部分加水分解および完全加水分解のいずれであってもよい。
以上に説明したポリシロキサンは、液晶配向剤が垂直配向方式の液晶表示素子に用いられる場合、液晶を垂直に配向させる基を側鎖に有し、さらに光重合性基を側鎖に有していてもよい。また、液晶配向剤が水平配向方式の液晶表示素子に用いられる場合、光反応性基を有していてもよい。このため、モノマーであるアルコキシシラン成分には、液晶を垂直に配向させる基や光重合性基が側鎖に、光反応性基が主鎖もしくは側鎖に導入されていることが好ましい。このような液晶を垂直に配向させる基、光重合性基または光反応性基を有するポリシロキサンは、液晶の配向固定化能を発現する液晶配向膜を得るための重合体として有用である。
<ポリ(メタ)アクリレート>
液晶配向剤が含有する重合体がポリ(メタ)アクリレートを含む場合、ポリ(メタ)アクリレートは、アクリル酸エステル化合物や、メタクリル酸エステル化合物等のモノマーと、重合開始剤などとを重合反応させることにより得られる。
アクリル酸エステル化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2−トリフルオロエチルアクリレート、tert−ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2−メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2−エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3−メトキシブチルアクリレート、2−メチル−2−アダマンチルアクリレート、2−プロピル−2−アダマンチルアクリレート、8−メチル−8−トリシクロデシルアクリレートおよび8−エチル−8−トリシクロデシルアクリレートなどが挙げられる。
メタクリル酸エステル化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2−トリフルオロエチルメタクリレート、tert−ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2−メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2−エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3−メトキシブチルメタクリレート、2−メチル−2−アダマンチルメタクリレート、2−プロピル−2−アダマンチルメタクリレート、8−メチル−8−トリシクロデシルメタクリレートおよび8−エチル−8−トリシクロデシルメタクリレートなどが挙げられる。
以上に説明したポリ(メタ)アクリレートは、液晶配向剤が垂直配向方式の液晶表示素子に用いられる場合、液晶を垂直に配向させる基を側鎖に有し、さらに光重合性基を側鎖に有していてもよい。また、液晶配向剤が水平配向方式の液晶表示素子に用いられる場合、ポリ(メタ)アクリレートは光反応性基を有していてもよい。このため、モノマーであるアクリル酸エステル化合物や、メタクリル酸エステル化合物等には、液晶を垂直に配向させる基や光重合性基が側鎖に、光反応性基が主鎖もしくは側鎖に導入されていることが好ましい。このような液晶を垂直に配向させる基、光重合性基または光反応性基を有するポリ(メタ)アクリレートは、液晶の配向固定化能を発現する液晶配向膜を得るための重合体として有用である。
ここで、側鎖を有するアクリル酸エステル化合物や、メタクリル酸エステル化合物としては、例えば、上記式[5]で表される側鎖を有するアクリル酸エステル化合物や、メタクリル酸エステル化合物を挙げることができる。より具体的には例えば、下記式[18]及び下記式[19−1]〜[19−3]で表されるアクリル酸エステル化合物や、メタクリル酸エステル化合物を挙げることができるが、これに限定されるものではない。
Figure 2015053233
(式[18]中のa、b、c、R〜Rの定義は、上記式[5]と同じである。Rは水素原子もしくはメチル基、Sは炭素原子数2〜11のアルキレン基である。)
Figure 2015053233
(Rは水素原子もしくはメチル基、Sは炭素原子数2〜11のアルキレン基、Xはエーテル、エステル、アミド結合、R10は水素原子、または非置換またはフッ素原子によって置換されている炭素数1〜5のアルキル基である。)
<溶媒>
液晶配向剤が含有する溶媒は、上記重合体を均一に溶解するものであれば特に限定されない。また、液晶配向剤が上記重合性化合物を含有する場合は、重合体および重合性化合物を均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、重合体としてポリイミド前駆体やポリイミドを用いる場合は、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N−メチルカプロラクタム、2−ピロリドン、N−ビニル−2−ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ−ブチロラクトン、1,3−ジメチル−イミダゾリジノン、3−メトキシ−N,N−ジメチルプロパンアミド等を挙げることができる。また、重合体として、ポリシロキサンを用いる場合は、例えば、エチレングリコール、1,2−プロピレングリコールなどの多価アルコール化合物、N−メチルホルムアミド、N,N−ジメチルホルムアミドなどのアミド化合物等を挙げることができる。また、重合体として、ポリ(メタ)アクリレートを用いる場合は、例えばアルコール化合物、ケトン化合物、アミド化合物もしくはエステル化合物またはその他の非プロトン性化合物等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独では重合体や重合性化合物を均一に溶解できない溶媒であっても、重合体や重合性化合物が析出しない範囲であれば、上記の有機溶媒に混合してもよい。
液晶配向剤は、重合体や重合性化合物を溶解させるための溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例を挙げるならば、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、1−ブトキシ−2−プロパノール、1−フェノキシ−2−プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール−1−モノメチルエーテル−2−アセテート、プロピレングリコール−1−モノエチルエーテル−2−アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2−(2−エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n−プロピルエステル、乳酸n−ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種類上を併用してもよい。
また、液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、前述の重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向剤を塗布した際の膜厚均一性や表面平滑性を向上させる化合物、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリイミド前駆体のイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。
膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製)、メガファックF171、F173、R−30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS−382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤を使用する場合、その使用割合は、液晶配向剤に含有される重合体の総量100質量部に対して、好ましくは0.01〜2質量部、より好ましくは0.01〜1質量部である。
液晶配向膜と基板との密着性を向上させる化合物の具体例としては、官能性シラン含有化合物やエポキシ基含有化合物などが挙げられる。例えば、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−アミノプロピルトリメトキシシラン、2−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリメトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリエトキシシラン、N−トリエトキシシリルプロピルトリエチレントリアミン、N−トリメトキシシリルプロピルトリエチレントリアミン、10−トリメトキシシリル−1,4,7−トリアザデカン、10−トリエトキシシリル−1,4,7−トリアザデカン、9−トリメトキシシリル−3,6−ジアザノニルアセテート、9−トリエトキシシリル−3,6−ジアザノニルアセテート、N−ベンジル−3−アミノプロピルトリメトキシシラン、N−ベンジル−3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリエトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリメトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2−ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4、4’−ジアミノジフェニルメタン、3−(N−アリル−N−グリシジル)アミノプロピルトリメトキシシラン、3−(N,N−ジグリシジル)アミノプロピルトリメトキシシランなどが挙げられる。また液晶配向膜の膜強度をさらに上げるために2,2’−ビス(4−ヒドロキシ−3,5−ジヒドロキシメチルフェニル)プロパン、テトラ(メトキシメチル)ビスフェノール等のフェノール化合物を添加してもよい。これらの化合物を使用する場合は、液晶配向剤に含有される重合体の総量100質量部に対して0.1〜30質量部であることが好ましく、より好ましくは1〜20質量部である。
<液晶配向膜>
本発明の液晶表示素子に用いられる液晶配向膜は、上記液晶配向剤を基板に塗布し、必要に応じて乾燥した後、焼成して得られた塗膜面に配向処理を行うことで得られる。
液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板などのプラスチック基板などを用いることができ、液晶駆動のためのITO(Indium Tin Oxide)電極などが形成された基板を用いることがプロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハーなどの不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。
液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、触れ基礎印刷またはインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法またはスプレー法などがあり、目的に応じてこれらを用いてもよい。
液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により、液晶配向剤に用いる溶媒に応じて、30〜300℃、好ましくは30〜250℃の温度で溶媒を蒸発させて液晶配向膜とすることができる。焼成後の液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5〜300nm、より好ましくは10〜100nmである。
<配向処理>
IPS方式やFFS方式などの水平配向方式の液晶表示素子では、その製造工程において、液晶層および液晶配向膜に偏光紫外線を照射することによる、いわゆる光配向法による配向処理が行われる。また、VA方式などの垂直配向方式の液晶表示素子では、液晶層および液晶配向膜に電界を印加し、液晶を傾斜させた状態で紫外線を照射することによる配向処理が行われる。このような光配向法および垂直配向用途による配向処理はラビング処理を行わなくても、液晶の配向方向を固定化することができる。
本発明では、偏光紫外線または紫外線の照射により、液晶配向膜中の重合体を反応させるだけでなく、上述した液晶層中に含有される重合性化合物も光重合または光架橋させるため、液晶の配向方向の固定化がより確実に行われる。
光配向法による配向処理の好ましい具体例としては、前記塗膜表面に、波長200nm以上400nm以下、好ましくは210nm以上380nm以下、例えば300nm以上350nm以下の紫外線を含む一定方向に偏光紫外線を照射し、場合によっては、さらに150〜250℃の温度で加熱処理を行い、液晶の配向固定化能を付与する方法が挙げられる。また、配向固定化能を向上するために、塗膜基板を50〜250℃で加熱しつつ、紫外線を照射してもよい。前記紫外線の照射量は、1〜10,000mJ/cmの範囲にあることが好ましく、1〜2,000mJ/cmの範囲にあることが特に好ましい。
さらに、上記で偏光紫外線を照射した膜は、次いで水、または特定の有機溶媒を含む溶液で接触処理してもよい。有機溶媒は、特に限定されるものではないが、水、メタノール、エタノール、2−プロパノール、アセトン、メチルエチルケトン、1−メトキシ−2−プロパノール、1−メトキシ−2−プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、及び酢酸シクロヘキシルなどが挙げられる。上記の溶媒のなかでも、異方性が高く、ムラのない液晶配向膜が得られ易いことから、1−メトキシ−2−プロパノール、1−メトキシ−2−プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、及び酢酸シクロヘキシルからなる群から選ばれる少なくとも1種が好ましい。特に、1−メトキシ−2−プロパノール及び乳酸エチルからなる群から選ばれる少なくとも1種が好ましい。
偏光紫外線を照射した膜と有機溶媒を含む溶液との接触処理は、浸漬処理、噴霧(スプレー)処理などの、膜と液とが好ましくは十分に接触するような処理で行なわれる。なかでも、有機溶媒を含む溶液中に膜を、好ましくは10秒〜1時間、より好ましくは1分〜30分浸漬処理する方法が好ましい。接触処理は常温でも加温してもよいが、好ましくは10〜80℃、より好ましくは20〜50℃で実施される。また、必要に応じて超音波などの接触を高める手段を施すことができる。
上記接触処理の後に、使用した溶液中の有機溶媒を除去する目的で、水、メタノール、エタノール、2−プロパノール、アセトン、メチルエチルケトンなどの低沸点溶媒によるすすぎ(リンス)や乾燥のいずれか、または両方を行ってよい。乾燥する場合の温度としては、80〜250℃が好ましく、80〜150℃がより好ましい。
上記のようにして得られる液晶配向膜は、液晶を一定の方向に安定して配向させることができる。
<横電界駆動用液晶表示素子の製造方法>
本発明の液晶表示素子として、IPS方式やFFS方式などの水平配向方式の横電界駆動用液晶表示素子は、上記の液晶配向膜付きの基板を得た後、既知の方法で横電界駆動用の液晶セルを作製し、該液晶セルを使用して横電界駆動用液晶表示素子としたものである。なお、横電界駆動方式の液晶表示素子とは、基板に対して水平方向(横方向)に電界を印加し液晶分子をスイッチングする方式の液晶表示素子である。
横電界駆動用液晶表示素子の作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子を設けたアクティブマトリクス構造の横電界駆動用液晶表示素子であってもよい。
横電界駆動用液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されないが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例としては、上記<液晶配向膜>で記載した基板と同様のものを挙げることができる。
また、液晶配向膜は、この基板上に上記液晶配向剤を塗布した後焼成し、必要に応じてラビング処理や偏光紫外線などの放射線を照射することにより形成する。次に、一方の基板に他方の基板を互いの液晶配向膜面が対向するようにして重ね合わせ、周辺をシール材で接着する。シール材には、基板間隙を制御するために、通常、スペーサを混入しておく。また、シール材を設けない面内部分にも、基板間隙制御用のスペーサを散布しておくことが好ましい。シール材の一部には、外部から液晶を充填可能な開口部を設けておく。
次に、シール材に設けた開口部を通じて、2枚の基板とシール材で包囲された空間内に、液晶と、重合性化合物とを含む液晶組成物を注入し液晶層を形成する。液晶組成物に含有される液晶は、特に限定されないが、例えば、液晶MLC−2041(メルク株式会社製)などを用いることができる。重合性化合物は、例えば上記式[1−1]〜[1−4]や、上記式[2−1]〜[2−3]で表される化合物などを用いることができる。なお、重合性化合物は液晶配向剤に含有しても良い。
その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。これにより、横電界駆動用の液晶セルが作成される。
次いで、この横電界駆動用の液晶セルに紫外線などの光を照射する。ここで、紫外線の照射量は、例えば1〜60J、好ましくは40J以下であり、紫外線照射量が少ない方が、液晶表示素子を構成する部材の破壊により生じる信頼性低下を抑制でき、かつ紫外線照射時間を減らせることで製造効率が上がるので好適である。照射する紫外線の波長は、例えば、200nm〜400nmである。
このように液晶セルに紫外線などの光を照射する、すなわち、液晶層や液晶配向膜に紫外線などの光を照射すると、液晶層中の重合性化合物が有する重合性不飽和結合基や、液晶配向膜中の重合体が有する光反応性基が反応を起こし、液晶層中の液晶および液晶配向膜の表面に位置する液晶の配向が固定化される。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。以上の工程を経ることにより、横電界駆動用液晶表示素子が得られる。
<縦電界駆動用液晶表示素子の製造方法>
本発明の液晶表示素子として、VA方式などの垂直配向方式の縦電界駆動用液晶表示素子は、上記の液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製して得ることができる。具体的には、液晶配向剤を2枚の基板上に塗布して焼成することにより液晶配向膜を形成し、この液晶配向膜が対向するように2枚の基板を配置し、この2枚の基板の間に液晶と重合性化合物とを含む液晶組成物を注入して液晶層を形成する。そして、液晶層および液晶配向膜に電圧を印加しながら紫外線を照射することで、液晶セルを具備する垂直配向方式の縦電界駆動用液晶表示素子が得られる。
縦電界駆動用液晶表示素子に用いる基板としては、上記<液晶配向膜>で記載した基板と同様のものを挙げることができる。また、従来の電極パターンや突起パターンが設けられた基板を用いても良い。また、TFT型素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。液晶配向膜および液晶層の形成方法については、上記の横電界駆動用液晶表示素子の場合と同様である。
電圧を印加しながら紫外線を照射する工程は、例えば基板上に設置されている電極間に電圧をかけることで液晶層および液晶配向膜に電圧を印加し、この電圧を保持したまま紫外線を照射する方法が挙げられる。ここで、電圧を印加する手段としては、ファンクションジェネレーターが使用でき、また、紫外線を照射する手段としては、高圧水銀灯などの既存の装置が使用できる。電極間にかける電圧としては、例えば5〜30Vp−p、好ましくは、5〜20Vp−pである。紫外線の波長は、好ましくは250〜400nm、より好ましくは300〜400nmである。紫外線の照射量は、例えば1〜60J/cm、好ましくは40J/cm以下であり、紫外線照射量が少ない方が液晶ディスプレイを構成する部材の破壊からなる信頼性低下を抑制でき、かつ紫外線照射時間を減らせることで製造効率が上がるので好適である。
電圧を印加しながら紫外線を照射する工程により、液晶層中の重合性化合物が有する重合性不飽和結合基や、液晶配向膜中の重合体が有する液晶を垂直に配向させる基や光重合性基が反応を起こし、液晶層中の液晶および液晶配向膜の表面に位置する液晶の傾く方向が記憶される。
以上に説明した本発明の液晶表示素子の製造方法で製造される横電界駆動用および縦電界駆動用液晶表示素子は、重合性化合物を含有する液晶層を具備する。かかる重合性化合物は、カルボキシル基や水酸基など極性の高い基、すなわち、水素結合する官能基を有することにより液晶への溶解性が向上する。これにより、未反応の重合性化合物が不純物として残存することが無くなり、液晶層の光に対する感度が高くなる。また、重合性化合物は、水素結合する官能基の近傍に芳香環を有し、水素結合する官能基と共に液晶組成物中もしくは液晶層中で擬似的に巨大なメソゲン構造を形成する。これにより、後述する実施例に示すように、長波長の紫外線照射に対しても感度が高くなり、弱いエネルギーの紫外線照射でも配向固定化が可能となり、かつ応答速度が速く、残像の発生が抑制された液晶表示素子が実現される。このような液晶表示素子は、大画面で高精細の液晶テレビなどに好適に利用可能である。
以下、実施例に基づいてさらに詳述するが、本発明はこの実施例により何ら限定されるものではない。
<重合性化合物の合成>
本発明で液晶組成物に含有される重合性化合物の略号は以下のとおりである。なお、重合性化合物[RM1]〜[RM3]は、上記式[2−1]〜[2−3]の重合性化合物と同一のものである。
Figure 2015053233
<合成例1>
公知の下記式で表される重合性化合物を、重合性化合物[RM1]とした。
Figure 2015053233
<合成例2>
重合性化合物[RM2]の合成
Figure 2015053233
2L四つ口フラスコに、6−ブロモ−2−ナフトール[H](150g、672mol)、アクリル酸 tert−ブチル[B](103.4g、807mmol)、酢酸パラジウム(3.02g、13.5mmol)、トリ(o−トリル)ホスフィン(8.19g、26.9mmol)、トリプロピルアミン(289.0g、2.02mol)、DMAc(700g)を加え、100℃で加熱撹拌を行なった。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を室温付近まで冷却し、1M塩酸水溶液3Lに注いだ。そこに、酢酸エチル(2L)を加え、分液操作にて水層を除去した。有機層を10%塩酸水溶液1Lで2回、飽和食塩水1Lで3回洗浄した後、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去することで、化合物[I]を181g得た(収率99%)。
化合物[I]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
H−NMR(400MHz,DMSO−d6,δppm):10.01(1H,s),8.04(1H,s),7.81−7.74(2H,m),7.70−7.63(2H,m),7.14−7.10(2H,m),6.54(1H,d),1.51−1.48(9H,m).
メカニカルスターラー、撹拌羽を備え付けた2L四つ口フラスコに上記で得た化合物[I](181g、672mmol)、6−クロロ−1−ヘキサノール(110.2g、806mol)、炭酸カリウム(111.5g、806mmol)、ヨウ化カリウム(1.12g、6.7mmol)、DMF(900g)を加え、80℃で加熱撹拌を行なった。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液に蒸留水2Lを注ぎ、酢酸エチル(2L)を加え、分液操作により水層を除去した。その後、有機層を飽和食塩水(1L)で2回洗浄し、硫酸マグネシウムで有機層を乾燥させ、ろ過後、溶媒を留去し粗物を得た。得られた粗物を酢酸エチル/ヘキサン混合溶媒で再結晶し、化合物[J]を185g得た(収率74%)。
化合物[J]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
H−NMR(400MHz,DMSO−d6,δppm):8.06(1H,s), 7.80(1H,d),7.77−7.76(2H,m),7.62(1H,d),7.34(1H,d),7.15(1H,dd),6.53(1H,d),4.34(1H,t),4.05(2H,t),3.39−3.33(2H,m),1.73(2H,t),1.46−1.31(15H,m).
3L四つ口フラスコに上記で得た化合物[J](130.5g、352mmol)、トリエチルアミン(42.76g、423mmol)、THF(950g)を加え、反応溶液を冷却した。そこへ、メタクリル酸クロリド(44.2g、423mmol)のTHF(100g)溶液を内温が10℃を超えないように注意しながら滴下した。滴下終了後、反応溶液を23℃にしさらに反応を行なった。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液に蒸留水6Lを注ぎ、酢酸エチル2Lを加え、分液操作にて水層を除去した。その後、5%水酸化カリウム水溶液、1M塩酸水溶液、飽和食塩水で順次有機層を洗浄し、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターで溶媒留去し化合物[K]を140.9g得た(収率92%)。
化合物[K]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
H−NMR(400MHz,DMSO−d6,δppm):8.09(1H,s) ,7.83(1H,d),7.80−7.79(2H,m),7.66(1H,d) ,7.33(1H,d),7.18(1H,dd),6.57(1H,d),6.02−6.01(1H,m),5.66−5.65(1H,m),4.12−4.06(4H,m),1.88−1.87(3H,m),1.84−1.42(15H,m).
3L四つ口フラスコに上記で得た化合物[K](140.9g、321mmol)、ギ酸(700g)を加え、40℃で加熱撹拌を行なった。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液に蒸留水4.5Lを注ぎろ過した。得られた固体をIPA/ヘキサン混合溶媒で洗浄し、固体を乾燥させることで重合性化合物[RM2]を95.9g得た(収率78%)。
重合性化合物[RM2]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
H−NMR(400MHz, DMSO−d6,δppm):12.4(1H,brs) ,8.10(1H,s) ,7.84(1H,d) ,7.81−7.80(2H,m) ,7.70(1H,d) ,7.35(1H,d) ,7.19(1H,dd) ,6.59(1H, d), 6.03−6.02(1H,m) ,5.67−5.65(1H,m) ,4.13−4.07(4H,m) ,1.88−1.87(3H,m) ,1.83−1.41(8H,m).
<合成例3>
重合性化合物[RM3]の合成
Figure 2015053233
重合性化合物[RM2]の中間体である化合物[J]を合成する際に使用した6−クロロ−1−ヘキサノールを8−クロロ−1−ヘキサノールに変更した以外は実施例1と同様の操作を行い、重層性化合物[RM3]を171g得た。
重合性化合物[RM3]の核磁気共鳴(NMR)の測定結果は以下の通りであった。
H−NMR(400MHz,CDCl3,δppm):12.4(1H,brs) ,7.94−7.88(2H,m) ,7.77−7.71(2H,m) ,7.70−7.63(1H,m) ,7.17(1H,dd) , 7.12−7.11(1H,m) ,6.51(1H,d),6.11−6.10(1H,m),5.55−5.54(1H,m),4.17−4.06(4H,m),1.95−1.94(3H,m),1.87−1.40(12H,m).
<比較合成例1>
公知の下記式で表される重合性化合物を、重合性化合物[RM4]とした。
Figure 2015053233
<液晶組成物の調製>
<調製例1>
メルク社製ネガ型液晶MLC−6608(メルク社製商品名)10.0gに対して重合性化合物[RM1]を0.03g(0.3重量%)を加え、130℃のホットプレート上で加温し、RM1を完全溶解させて液晶組成物(LC1)を調製した。
<調製例2>
メルク社製ネガ型液晶MLC−6608(メルク社製商品名)10.0gに対して重合性化合物[RM2]を0.03g(0.3重量%)を加え、130℃のホットプレート上で加温し、RM2を完全溶解させて液晶組成物(LC2)を調製した。
<調製例3>
メルク社製ネガ型液晶MLC−6608(メルク社製商品名)10.0gに対して重合性化合物[RM3]を0.03g(0.3重量%)を加え、130℃のホットプレート上で加温し、RM3を完全溶解させて液晶組成物(LC3)を調製した。
<比較調製例1>
メルク社製ネガ型液晶MLC−6608(メルク社製商品名)10.0gに対して重合性化合物[RM4]を0.03g(0.3重量%)を加え、130℃のホットプレート上で加温し、RM4を完全溶解させて液晶組成物(LC4)を調製した。
<調製例4>
メルク社製ポジ型液晶MLC−2041(メルク社製商品名)10.0gに対して重合性化合物[RM2]を0.03g(0.3重量%)を加え、130℃のホットプレート上で加温し、RM2を完全溶解させて液晶組成物(LC5)を調製した。
<比較調製例2>
メルク社製ポジ型液晶MLC−2041(メルク社製商品名)10.0gに対して重合性化合物[RM4]を0.03g(0.3重量%)を加え、130℃のホットプレート上で加温し、RM4を完全溶解させて液晶組成物(LC6)を調製した。
<液晶配向剤の調製>
液晶配向剤の調製で用いた略号は以下のとおりである。
BODA:ビシクロ[3,3,0]オクタン−2,4,6,8−テトラカルボン酸二無水物
CBDA:1,2,3,4−シクロブタンテトラカルボン酸二無水物
DBA:3.5−ジアミノ安息香酸
m−PCH7:下記式で表される1,3−ジアミノ−5−((4−(4−ヘプチルシクロヘキシル)フェノキシ)メチル)ベンゼン
Figure 2015053233
PCH7:下記式で表される1,3−ジアミノ−4−[4−(4−ヘプチルシクロヘキシル)フェノキシ]ベンゼン
Figure 2015053233
BEM−S:下記式で表される2−(メタクリロイロキシ)エチル 3,5−ジアミノベンゾエート
Figure 2015053233
NMP:N−メチル−2−ピロリドン
BCS:ブチルセロソルブ
<添加剤>
3AMP:3−ピコリルアミン
<液晶配向剤合成例1>
BODA(10.0g、40.0mmol)、DBA(5.3g、35.0mmol)、m−PCH7(12.0g、30.0mmol)、BEM−S(9.2g、35.0mmol)をNMP(144.5g)中で溶解し、60℃で5時間反応させたのち、CBDA(11.5g、58.5mmol)とNMP(48.2g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(200g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(17.0g)、およびピリジン(65.8g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(3000ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(A1)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は14,000、重量平均分子量は47,000であった。
得られたポリイミド粉末(A1)(6.0g)にNMP(44.0g)を加え、50℃にて5時間攪拌して溶解させた。この溶液に3AMP(1wt%NMP溶液)6.0g、NMP(14.0g)、BCS(30.0g)を加え、室温で5時間攪拌することにより液晶配向剤(A)を得た。
<液晶配向剤合成例2>
CBDA(1.92g、10.0mmol)、DA1(3.97g、10.0mmol)を室温、NMP(23.6g)中で10時間反応させたのち、NMP(39.3g)、BCS(29.3g)を加え、室温で5時間攪拌することにより液晶配向剤(B)を得た。このポリアミック酸の数平均分子量は15,000、重量平均分子量は61,000であった。
上記液晶配向剤合成例1,2で得られた液晶配向剤に含まれるポリイミドの分子量測定条件は、以下の通りである。
装置:センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC−7200)
カラム:Shodex社製カラム(KD−803、KD−805)
カラム温度:50℃
溶離液:N,N’−ジメチルホルムアミド(添加剤として、臭化リチウム−水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o−リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量約9,000,000、150,000、100,000、30,000)、および、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。
また、ポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO−d、0.05%TMS混合品)1.0mlを添加し、超音波をかけて完全に溶解させた。この溶液を日本電子データム社製NMR測定器(JNW−ECA500)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5〜10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。なお下記式において、xはアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基のプロトン1個に対する基準プロトンの個数割合である。
イミド化率(%)=(1−α・x/y)×100
<PSAモード(方式)用液晶セルの作製>
(実施例1)
調製例1で得られた液晶組成物(LC1)および液晶配向剤合成例1で得られた液晶配向剤(A)を用いて下記に示すような手順で液晶セルの作製を行った。液晶配向剤(A)を、画素サイズが100μm×300μmでライン/スペースがそれぞれ5μmのITO電極パターンが形成されているITO電極基板のITO面にスピンコートし、80℃のホットプレートで90秒間乾燥した後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。
また、液晶配向剤(A)を電極パターンが形成されていないITO面にスピンコートし、80℃のホットプレートで90秒乾燥させた後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。
上記の2枚の基板について一方の基板の液晶配向膜上に6μmのビーズスペーサーを散布した後、その上からシール剤(溶剤型熱硬化タイプのエポキシ樹脂)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール剤を硬化させて空セルを作製した。この空セルに調製例1で得られた液晶組成物(LC1)を減圧注入法によって注入し、液晶セルを作製した。
(実施例2)
液晶組成物(LC1)のかわりに調製例2で得られた、重合性化合物[RM2]を含有する液晶組成物(LC2)を用いた以外は実施例1と同様の操作を行って液晶セルを作製した。
(実施例3)
液晶組成物(LC1)のかわりに調製例3で得られた、重合性化合物[RM3]を含有する液晶組成物(LC3)を用いた以外は実施例1と同様の操作を行って液晶セルを作製した。
(実施例4)
液晶配向剤(A)のかわりに液晶垂直配向剤(日産化学工業社製:SE−5561)を用いた以外は実施例1と同様の操作を行って液晶セルを作製した。
(比較例1)
液晶組成物(LC1)のかわりに比較調製例1で得られた、重合性化合物[RM4]を含有する液晶組成物(LC4)を用いた以外は実施例1と同様の操作を行って液晶セルを作製した。
<応答速度の測定>
実施例1〜4、比較例1で得られた液晶セルの応答速度を、下記方法により測定した。
まず、バックライト、クロスニコルの状態にした一組の偏光版、光量検出器の順で構成される測定装置において、一組の偏光版の間に液晶セルを配置した。このときライン/スペースが形成されているITO電極のパターンがクロスニコルに対して45°の角度になるようにした。そして、上記の液晶セルに電圧±6V、周波数1kHzの矩形波を印加し、光量検出器によって観測される輝度が飽和するまでの変化をオシロスコープにて取り込み、電圧を印加していない時の輝度を0%、±4Vの電圧を印加し、飽和した輝度の値を100%として、輝度が10%から90%まで変化するのにかかる時間を応答速度とした。
応答速度を測定した後、この液晶セルに±10VのAC電圧を印加した状態で、この液晶セルの外側から365nmのバンドパスフィルターを通したUVを5J照射した。その後、再び応答速度を測定し、UV照射前後での応答速度を比較した。
<プレチルト角の測定>
実施例1〜4、比較例1で得られた液晶セルについて、上記UV照射後の画素部分のプレチルト角を測定した。測定装置は、名菱テクニカ製LCDアナライザーLCA−LUV42Aを使用した。
表2に、UV照射前後の応答速度およびプレチルト角の測定結果を示す。
表2に示すように、水素結合する官能基(カルボキシル基)を有する重合性化合物、すなわち、分子間で水素結合を形成する重合性化合物[RM1]〜[RM3]を使用した実施例1〜4の液晶セルは、カルボキシル基を持たない重合性化合物[RM4]を用いた比較例1と比べて、応答速度が極めて速くなった。これは、重合性化合物[RM1]〜[RM3]が極性の高いカルボキシル基を有することにより液晶への溶解性が向上し、かかるカルボキシル基と、カルボキシル基の近傍に位置する1以上の芳香環により分子間で擬似的に巨大なメソゲン構造が形成されたことに起因するものと考えられる。実施例1〜4の液晶セルは、この巨大なメソゲン構造の形成により、長波長側の紫外線(365nm)にも感度が有り、365nmの紫外線の照射でも充分に速い応答速度が達成された。また、良好なプレチルト角が得られ、配向固定化能も優れたものとなった。
一方、比較例1の重合性化合物[RM4]を使用した場合は、メソゲン部位が単純なビフェニル構造であるため365nmへの感度がほとんどなく、365nmの照射では十分な応答速度を得ることができなかった。
以上の結果、液晶層に分子間で水素結合を形成する重合性化合物を含有した液晶表示素子は、光に対する感度が高く、優れた配向固定可能を有し、かつ速い応答速度を実現できることがわかった。
Figure 2015053233
<光IPSモード用液晶セルの作製>
(実施例5)
合成例4で得られた液晶組成物(LC5)および液晶配向剤合成例2で得られた液晶配向剤(B)を用いて下記に示すような手順で液晶セルの作製を行った。基板は、30mm×40mmの大きさで、厚さが0.7mmのガラス基板であり、ITO膜をパターニングして形成された櫛歯状の画素電極が配置されたものを用いた。画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は10μmであり、電極要素間の間隔は20μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜の配向処理方向を基準とした場合、画素の第1領域では画素電極の電極要素が+15°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が−15°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。液晶配向剤合成例2で得られた液晶配向剤(B)を、準備された上記電極付き基板にスピンコートした。
次いで、80℃のホットプレートで90秒間乾燥した後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。次いで、塗膜面に偏光板を介して313nmの偏光紫外線を50mJ/cm照射した。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に塗膜を形成させ、配向処理を施した。一方の基板の液晶配向膜上にシール剤(協立化学製XN−1500T)を印刷した。次いで、もう一方の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、調製例5で得られた重合性化合物含有液晶(LC5)を注入し、注入口を封止して、IPS(In−Planes Switching)モード液晶表示素子の構成を備えた液晶セルを得た。
液晶セルを作製後、120℃のオーブンで60分間再配向処理を行なった。その後、液晶セルの画素電極と対向電極との間をショートさせた状態で、液晶セルへ365nmのバンドパスフィルターを通した紫外線を5J/cm照射(2次照射)した。
(比較例2)
液晶組成物(LC5)のかわりに比較調製例2で得られた、重合性化合物[RM4]を含有する液晶組成物(LC6)を用いた以外は実施例5と同様の操作を行って液晶セルを作製した。
(比較例3)
2次照射を行なわない以外は実施例5と同様の手順で液晶セルを作製した。
<残像評価>
実施例5および比較例2,3で作製したIPSモード用液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を初期配向方位角として算出した。次いで、室温で周波数30Hz、8VPPの交流電圧を72時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に1時間放置した。放置の後、同様にして配向方位角を測定し、交流駆動前後の配向方位角の差を角度Δ(deg.)として算出した。
表3に残像評価の結果を示す。表3に示すように、水素結合する官能基(カルボキシル基)を有する重合性化合物[RM2]を用いた実施例5の液晶セルは、カルボキシル基を持たない重合性化合物[RM4]を用いた比較例2や、2次照射を行わない比較例3の液晶セルと比べて、交流駆動前後の配向方位角の差が非常に小さかった。これは、上述の応答速度の測定結果と同様に、重合性化合物[RM2]が極性の高いカルボキシル基を有することにより液晶への溶解性が向上し、かかるカルボキシル基と1以上の芳香環とで分子間で擬似的に巨大なメソゲン構造が形成されたことに起因するものと考えられる。
よって、液晶層に分子間で水素結合を形成する重合性化合物を含有した液晶表示素子は、長波長側の紫外線(365nm)の二次照射後でも配向方位角の差を極めて小さくでき、残存の発生を抑制できることがわかった。
Figure 2015053233
本発明は、液晶層中に重合性化合物を添加し、重合性化合物の重合により液晶の配向方向を制御するPSA方式の液晶表示素子および液晶表示素子の製造方法に適用可能である。このPSA方式の液晶表示素子は光配向法と組み合わせることにより、縦電界駆動方式(VA方式、TN方式、OCB方式など)だけでなく、横電界駆動方式(IPS方式、FFS方式)の液晶表示素子にも適用可能となる。本発明の液晶表示素子は、高感度の配向固定化能と優れた残像特性を有するため、大画面で高精細の液晶テレビなどに好適に利用できる。

Claims (13)

  1. 互いに対向する一対の基板と、前記基板の間に挟持された液晶層と、前記基板の少なくとも一方の液晶層側に、重合体を含有する液晶配向剤から得られた液晶配向膜とを備える液晶表示素子であって、
    前記液晶層は、重合性化合物と、液晶とを含有する液晶組成物から形成され、
    前記重合性化合物は、重合性不飽和結合基と、水素結合する官能基と、前記官能基の近傍に少なくとも1以上の芳香環とを有し、前記官能基が分子間で水素結合を形成することによりメソゲン構造を形成することを特徴とする液晶表示素子。
  2. 前記官能基はカルボキシル基であることを特徴とする請求項1に記載の液晶表示素子。
  3. 前記重合性化合物は、下記の式[1−1]〜[1−4]から選ばれる少なくとも1種であることを特徴とする請求項1または請求項2に記載の液晶表示素子。
    Figure 2015053233
    (Tはエーテル、エステル、アミド結合、Sは炭素原子数2〜11のアルキレン基、Rは水素原子もしくはメチル基、n=1もしくは2)
  4. 前記重合性化合物は、下記の式[2−1]〜[2−3]から選ばれる少なくとも1種であることを特徴とする請求項1〜3のいずれか一項に記載の液晶表示素子。
    Figure 2015053233
  5. 前記重合体は、液晶を垂直に配向させる基を側鎖に有することを特徴とする請求項1〜4のいずれか一項に記載の液晶表示素子。
  6. 前記重合体は、さらに光重合性基を側鎖に有することを特徴とする請求項5に記載の液晶表示素子。
  7. 前記光重合性基は、下記の式[3−1]〜[3−7]から選ばれる少なくとも1種であることを特徴とする請求項6に記載の液晶表示素子。
    Figure 2015053233
  8. 前記重合体は、光反応性基を有することを特徴とする請求項1〜4のいずれか一項に記載の液晶表示素子。
  9. 前記光反応性基は、下記の式[4−1]〜[4−5]から選ばれる少なくとも1種であることを特徴とする請求項8に記載の液晶表示素子。
    Figure 2015053233
  10. 前記重合体は、ポリイミド前駆体及びそれをイミド化して得られるポリイミドから選ばれる少なくとも1つ、ポリシロキサンまたはポリ(メタ)アクリレートを含むことを特徴とする請求項1〜9のいずれか一項に記載の液晶表示素子。
  11. 前記液晶層に電圧を印加しながら紫外線を照射して作製された液晶セルを具備することを特徴とする請求項5〜7のいずれか一項に記載の液晶表示素子。
  12. 前記液晶層に偏光紫外線を照射して作製された液晶セルを具備することを特徴とする請求項8または請求項9に記載の液晶表示素子。
  13. 一対の基板の少なくとも一方に、重合体を含有する液晶配向剤から液晶配向膜を形成し、
    前記一対の基板を前記液晶配向膜が内側になるように対向配置し、
    前記基板の間に、重合性不飽和結合基と、分子間で水素結合を形成することによりメソゲン構造を形成する官能基と、前記官能基の近傍に少なくとも1以上の芳香環とを有する重合性化合物と、液晶とを含有する液晶組成物を狭持して液晶層を形成し、
    前記液晶層に紫外線を照射して前記重合性化合物を重合させることを特徴とする液晶表示素子の製造方法。
JP2015541574A 2013-10-07 2014-10-06 液晶表示素子および液晶表示素子の製造方法 Active JP6460341B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013210499 2013-10-07
JP2013210499 2013-10-07
PCT/JP2014/076726 WO2015053233A1 (ja) 2013-10-07 2014-10-06 液晶表示素子および液晶表示素子の製造方法

Publications (2)

Publication Number Publication Date
JPWO2015053233A1 true JPWO2015053233A1 (ja) 2017-03-09
JP6460341B2 JP6460341B2 (ja) 2019-01-30

Family

ID=52813049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015541574A Active JP6460341B2 (ja) 2013-10-07 2014-10-06 液晶表示素子および液晶表示素子の製造方法

Country Status (5)

Country Link
JP (1) JP6460341B2 (ja)
KR (1) KR102336487B1 (ja)
CN (1) CN105849629B (ja)
TW (1) TWI650601B (ja)
WO (1) WO2015053233A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170184923A1 (en) * 2014-06-17 2017-06-29 Nissan Chemical Industries, Ltd. Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
CN105153151A (zh) * 2015-08-28 2015-12-16 张文莲 一种嘧啶酮类化合物的合成方法
KR20180056663A (ko) * 2015-09-25 2018-05-29 제이엔씨 주식회사 액정 표시 소자
CN108603036B (zh) * 2016-02-01 2021-02-19 日产化学株式会社 液晶取向剂、液晶取向膜和液晶表示元件
WO2017213072A1 (ja) * 2016-06-10 2017-12-14 シャープ株式会社 液晶表示装置
KR20180032734A (ko) 2016-09-22 2018-04-02 삼성디스플레이 주식회사 커브드 액정 표시 장치의 제조 방법 및 그 제조 방법에 의하여 제조된 커브드 액정 표시 장치
KR20180046441A (ko) 2016-10-27 2018-05-09 삼성디스플레이 주식회사 표시 장치
WO2019026824A1 (ja) * 2017-08-04 2019-02-07 シャープ株式会社 表示デバイス
CN108485683B (zh) * 2018-05-21 2020-04-28 中节能万润股份有限公司 一种液晶取向剂、液晶取向膜以及液晶显示元件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1903826A (zh) * 2006-08-11 2007-01-31 友达光电股份有限公司 单体及应用其制造液晶显示面板的方法
JP2008231360A (ja) * 2007-03-23 2008-10-02 Nec Lcd Technologies Ltd 液晶表示装置
WO2014061754A1 (ja) * 2012-10-19 2014-04-24 シャープ株式会社 液晶表示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1148608C (zh) * 2001-12-14 2004-05-05 中国科学院长春光学精密机械与物理研究所 一种双端光敏单体的光控取向膜制备方法
JP4524458B2 (ja) * 2002-05-31 2010-08-18 エルシコン・インコーポレーテッド 光学配向層調製用分岐ハイブリッドポリマー材料
JP4504626B2 (ja) 2003-03-31 2010-07-14 シャープ株式会社 液晶表示装置及びその製造方法
JP2010097226A (ja) 2010-01-12 2010-04-30 Sony Corp 液晶表示素子
KR101831006B1 (ko) * 2010-06-30 2018-02-21 닛산 가가쿠 고교 가부시키 가이샤 액정 배향제, 액정 배향막, 액정 표시 소자 및 액정 표시 소자의 제조 방법
JP5966329B2 (ja) 2011-03-30 2016-08-10 Jsr株式会社 液晶表示素子の製造方法
TW201311743A (zh) * 2011-07-07 2013-03-16 Sumitomo Chemical Co 光反應性液晶配向劑、與液晶配向元件及其製造方法
US9052548B2 (en) * 2011-11-28 2015-06-09 Lg Chem, Ltd. Photo-curable composition, optical anistropic film and its preparation method
KR20130092816A (ko) * 2012-02-13 2013-08-21 (주)켐넥스 반응성 메소젠 화합물, 이를 포함하는 액정 조성물, 표시 패널의 제조 방법 및 표시 패널

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1903826A (zh) * 2006-08-11 2007-01-31 友达光电股份有限公司 单体及应用其制造液晶显示面板的方法
JP2008231360A (ja) * 2007-03-23 2008-10-02 Nec Lcd Technologies Ltd 液晶表示装置
WO2014061754A1 (ja) * 2012-10-19 2014-04-24 シャープ株式会社 液晶表示装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FENGJIN CHEN ET AL.: "Novel photo-polymerizable chiral hydrogen-bonded self-assembled complexes: Preparation, characteriza", JOURNAL OF MATERIALS CHEMISTRY, vol. 21, no. 24, JPN6014051570, 2011, pages 8574 - 8582 *
JINBAO GUO ET AL.: "Electrothermal Switching Characteristics from a Hydrogen-Bonded Polymer Network Structure in Cholest", JOURNAL OF PHYSICAL CHEMISTRY B, vol. 115, no. 5, JPN6014051568, 2011, pages 861 - 868 *

Also Published As

Publication number Publication date
TW201525591A (zh) 2015-07-01
CN105849629B (zh) 2019-04-12
KR20160067151A (ko) 2016-06-13
WO2015053233A1 (ja) 2015-04-16
JP6460341B2 (ja) 2019-01-30
CN105849629A (zh) 2016-08-10
TWI650601B (zh) 2019-02-11
KR102336487B1 (ko) 2021-12-06

Similar Documents

Publication Publication Date Title
JP6460341B2 (ja) 液晶表示素子および液晶表示素子の製造方法
JP6418401B2 (ja) 液晶配向剤、液晶配向膜および液晶表示素子
JP5831712B2 (ja) ポリイミド膜形成用塗布液、液晶配向剤、ポリイミド膜、液晶配向膜及び液晶表示素子
JP5975227B2 (ja) 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法
JP6361898B6 (ja) 重合性化合物
JP6368955B2 (ja) 液晶配向処理剤、液晶配向膜および液晶表示素子
JP6387957B2 (ja) 光反応性基を有する架橋性化合物を含有する液晶配向剤
JP5896164B2 (ja) 機能性ポリマー膜形成用塗布液及び機能性ポリマー膜形成方法
WO2015152174A1 (ja) ポリアミック酸エステル-ポリアミック酸共重合体を含有する液晶配向剤、及びそれを用いた液晶配向膜
WO2013157586A1 (ja) 光配向法用の液晶配向剤、液晶配向膜、及び液晶表示素子
JP2021015134A (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7298156B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JPWO2018124166A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2014092170A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JPWO2013146589A1 (ja) 液晶表示素子およびその製造方法
JPWO2016125871A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181218

R151 Written notification of patent or utility model registration

Ref document number: 6460341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151