WO2017213072A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2017213072A1
WO2017213072A1 PCT/JP2017/020779 JP2017020779W WO2017213072A1 WO 2017213072 A1 WO2017213072 A1 WO 2017213072A1 JP 2017020779 W JP2017020779 W JP 2017020779W WO 2017213072 A1 WO2017213072 A1 WO 2017213072A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
carbon atoms
substrate
display device
Prior art date
Application number
PCT/JP2017/020779
Other languages
English (en)
French (fr)
Inventor
真伸 水▲崎▼
佐藤 孝
博司 土屋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/306,689 priority Critical patent/US10824006B2/en
Publication of WO2017213072A1 publication Critical patent/WO2017213072A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • C09K19/322Compounds containing a naphthalene ring or a completely or partially hydrogenated naphthalene ring
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/548Macromolecular compounds stabilizing the alignment; Polymer stabilized alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Definitions

  • the present invention relates to a liquid crystal display device. More particularly, the present invention relates to a liquid crystal display device including a reflective electrode that reflects external light.
  • liquid crystal display devices that have the advantages of being thin and lightweight, being able to be driven at a low voltage, and having low power consumption have been widely used as display devices for various electronic devices such as smartphones and tablet terminals.
  • a reflective liquid crystal display device that displays an image using reflection of external light without requiring a backlight
  • a transflective liquid crystal display device In order to improve the visibility even in a dark room, a transflective liquid crystal display device has been developed that uses a backlight in a dark place and displays an image using reflection of external light in a bright place.
  • the transflective liquid crystal display device is a liquid crystal display device having a function of displaying an image in both a transmissive mode and a reflective mode, and has a backlight, and thus has a high visibility even in a dark place.
  • the liquid crystal display device has both the characteristics of the device and the characteristics of the reflective liquid crystal display device that consumes less power in order to use external light.
  • Patent Document 1 a liquid crystal containing a polymerizable component that is sealed by a pair of substrates disposed opposite to each other and polymerized by light or heat, a reflective electrode disposed on one of the substrates, and a voltage applied to the liquid crystal.
  • a reflective liquid crystal display device having a polymer layer that gives a pretilt angle to liquid crystal molecules formed on the reflective electrode by polymerizing the polymerizable component while applying.
  • Patent Document 1 discloses a liquid crystal display device of various alignment modes of a vertical alignment type and a horizontal alignment type.
  • Patent Document 1 does not disclose any technique for suppressing flicker that occurs during driving and burn-in that occurs due to long-time driving in a low-voltage driving liquid crystal display device having a reflective electrode.
  • the present invention has been made in view of the above, and provides a liquid crystal display device having a reflective electrode that realizes low voltage driving and suppresses flicker generated during driving and burn-in generated by long-time driving. It is intended to do.
  • the present inventors paid attention to using a liquid crystal material including a liquid crystal compound having an alkoxy group in order to realize low voltage driving.
  • a liquid crystal material including a liquid crystal compound having an alkoxy group in order to realize low voltage driving.
  • flicker and image sticking occur when such a liquid crystal material is applied to a liquid crystal display device having a reflective electrode.
  • a charge transfer reaction occurred between the charge generated from the reflective electrode and the liquid crystal compound. Accordingly, as a result of various studies on methods for obtaining a liquid crystal display device having a reflective electrode that realizes low-voltage driving and suppresses flicker generated during driving and burn-in generated by long-time driving.
  • a first substrate provided with a reflective electrode that reflects external light, a second substrate facing the first substrate, and the first substrate and the second substrate are sandwiched.
  • a liquid crystal layer comprising a liquid crystal compound having an alkoxy group and having a negative dielectric anisotropy; and at least one of the first substrate and the second substrate on the liquid crystal layer side
  • a liquid crystal display device having a polymer may be used.
  • P 1 represents a radical polymerizable group.
  • Sp 1 represents a linear, branched or cyclic alkylene group having 1 to 6 carbon atoms, a linear, branched or cyclic alkyleneoxy group having 1 to 6 carbon atoms, or a direct bond.
  • R 2 represents —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO— group, —O—COO— group, —OCH 2 — group, —CH 2 O— group, —SCH 2 — group, —CH 2 S— group, —N (CH 3 ) — group, —N (C 2 H 5 ) — group, —N (C 3 H 7 ) — group, —N (C 4 H 9 ) — group, —CF 2 O— group, —OCF 2 — group, —CF 2 S— group, —SCF 2 — group, —N (CF 3 ) — group, —CH 2 CH 2 — Group, —CF 2 CH 2 — group, —CH 2 CF 2 — group, —CF 2 CF 2 — group, —CH ⁇ CH— group, —CF ⁇ CF— group, —C ⁇ C— group, —CH ⁇ It
  • Z represents —O— group, —S— group, —NH— group, —COO— group, —OCO— group, —O—COO— group, —OCH 2 — group, —CH 2 O— group, —SCH.
  • R 3 is a —R 2 —Sp 1 —P 1 group, a hydrogen atom, a halogen atom, a —CN group, a —NO 2 group, a —NCO group, a —NCS group, a —OCN group, a —SCN group, a —SF 5 group. Or a linear or branched alkyl group having 1 to 18 carbon atoms.
  • a 1 and A 2 are each independently 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, naphthalene-1,4-diyl group, naphthalene-1,5-diyl group, naphthalene -2,6-diyl group, decahydronaphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, phenanthrene-1,6-diyl group, phenanthrene-1, 8-diyl group, phenanthrene-2,7-diyl group, phenanthrene-3,6-diyl group, anthracene-1,5-diyl group, anthracene-1,8-diyl group, anthracene-2,6-diyl group, Or, it represents an anthracene-2,7-diyl group.
  • n 0, 1 or 2.
  • the hydrogen atom that R 3 has may be substituted with a fluorine atom or a chlorine atom.
  • the —CH 2 — group of R 3 is —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO—, unless oxygen and sulfur atoms are adjacent to each other.
  • a 1 and A 2 may be substituted with —O— groups or —S— groups as long as they are not adjacent to each other.
  • One or more hydrogen atoms of A 1 and A 2 are a fluorine atom, a chlorine atom, a —CN group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and an alkyl group having 2 to 6 carbon atoms.
  • the alkylcarbonyl group, the alkoxycarbonyl group having 2 to 6 carbon atoms, or the alkylcarbonyloxy group having 2 to 6 carbon atoms may be substituted.
  • the monomer represented by the chemical formula (M1) may be at least one monomer represented by the following chemical formulas (M1-1) to (M1-3).
  • the liquid crystal compound may have a structure represented by the following chemical formula (L).
  • each X independently represents a halogen atom or a hydrogen atom
  • R 1 represents a hydrocarbon group having 1 to 8 carbon atoms
  • the hydrogen atom may be substituted with a fluorine atom.
  • the liquid crystal material may have a dielectric anisotropy of ⁇ 5.0 or less.
  • the reflective electrode may include at least one selected from the group consisting of Al, Ag, Cu, Zn, and alloys thereof.
  • the aromatic polymer may further have a structure derived from a monomer represented by the following chemical formula (M2).
  • a 3 and A 4 are each independently a phenyl group, a phenylene group, a biphenyl group, a biphenylene group, a linear or branched alkyl group having 1 to 12 carbon atoms, and a straight chain having 1 to 12 carbon atoms.
  • a 3 And at least one of A 4 comprises a —Sp 2 —P 2 group.
  • P 2 represents a polymerizable group.
  • Sp 2 represents a linear, branched or cyclic alkylene group having 1 to 6 carbon atoms, a linear, branched or cyclic alkyleneoxy group having 1 to 6 carbon atoms, or a direct bond.
  • m is 1 or 2.
  • a dotted line portion connecting A 3 and Y and a dotted line portion connecting A 4 and Y indicate that a bond via Y may exist between A 3 and A 4 .
  • Y represents a —CH 2 — group, —CH 2 CH 2 — group, —CH ⁇ CH— group, —O— group, —S— group, —NH— group, —N (CH 3 ) — group, —N (C 2 H 5 ) — group, —N (C 3 H 7 ) — group, —N (C 4 H 9 ) — group, —OCH 2 — group, —CH 2 O— group, —SCH 2 — group, —CH 2 S— group or a direct bond is represented.
  • the hydrogen atoms of A 3 and A 4 are -Sp 2 -P 2 group, halogen atom, -CN group, -NO 2 group, -NCO group, -NCS group, -OCN group, -SCN group, -SF 5
  • Two adjacent hydrogen atoms of A 3 and A 4 are substituted with a linear or branched alkylene group having 1 to 12 carbon atoms or a linear or branched alkenylene group having 2 to 12 carbon atoms Then, it may be a ring structure.
  • the hydrogen atom of the alkyl group, alkenyl group, alkylene group, alkenylene group or aralkyl group of A 3 and A 4 may be substituted with a —Sp 2 —P 2 group.
  • the —CH 2 — group of the alkyl group, alkenyl group, alkylene group, alkenylene group or aralkyl group of A 3 and A 4 is an —O— group, —S, unless an oxygen atom, a sulfur atom and a nitrogen atom are adjacent to each other.
  • the monomer represented by the chemical formula (M2) may be a monomer represented by the following chemical formula (M2-1).
  • the alignment film includes at least one polymer of polyamic acid and polyimide, and the at least one polymer may have an aliphatic acid anhydride monomer unit.
  • the polyamic acid may have a structure represented by the following chemical formula (P-1), and the polyimide may have a structure represented by the following chemical formula (P-2).
  • X 1 has at least one structure selected from the group consisting of the following chemical formulas (X-1) to (X-6), and Y 1 Represents a trivalent aromatic group or aliphatic group, Z 1 represents a monovalent organic group or a hydrogen atom, and p represents an integer of 1 or more.
  • the alignment film may be a vertical alignment film.
  • liquid crystal display device having a reflective electrode that realizes low-voltage driving and suppresses flicker that occurs during driving and burn-in that occurs due to long-time driving.
  • FIG. 6 is a schematic cross-sectional view of a reflective liquid crystal display device according to Modification 1 of Embodiment 1.
  • FIG. 10 is a schematic cross-sectional view of a reflective liquid crystal display device according to Modification 2 of Embodiment 1.
  • FIG. 10 is a schematic cross-sectional view of a reflective liquid crystal display device according to Modification 3 of Embodiment 1.
  • FIG. 10 is a schematic cross-sectional view of a transflective liquid crystal display device according to Modification 1 of Embodiment 2.
  • FIG. 10 is a schematic cross-sectional view of a transflective liquid crystal display device according to a second modification of the second embodiment.
  • FIG. 10 is a schematic cross-sectional view of a reflective liquid crystal display device according to Modification 3 of Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view showing a process for manufacturing the reflective liquid crystal cell of Example 2-1.
  • the present invention can be applied to both the horizontal alignment mode and the vertical alignment mode, but is preferably used particularly in the vertical alignment mode.
  • FIGS. 1A and 1B are diagrams relating to a reflective liquid crystal display device according to Embodiment 1.
  • FIG. 1A is a schematic cross-sectional view of the reflective liquid crystal display device
  • FIG. 1B is an enlarged schematic cross-sectional view of FIG.
  • the reflective liquid crystal display device 100 of this embodiment includes a first substrate 10 provided with a reflective electrode 1 that reflects external light, and a first substrate 10.
  • An opposing second substrate 20 a liquid crystal layer 30 sandwiched between the first substrate 10 and the second substrate 20, an alignment film 40 provided on the liquid crystal layer 30 side of the first substrate 10 and the second substrate 20, And a polymer layer 50 provided between the liquid crystal layer 30 and the alignment film 40, and the polymer layer 50 includes an aromatic polymer having a structure derived from a monomer represented by the following chemical formula (M1). Yes.
  • P 1 represents a radical polymerizable group.
  • Sp 1 represents a linear, branched or cyclic alkylene group having 1 to 6 carbon atoms, a linear, branched or cyclic alkyleneoxy group having 1 to 6 carbon atoms, or a direct bond.
  • R 2 represents —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO— group, —O—COO— group, —OCH 2 — group, —CH 2 O— group, —SCH 2 — group, —CH 2 S— group, —N (CH 3 ) — group, —N (C 2 H 5 ) — group, —N (C 3 H 7 ) — group, —N (C 4 H 9 ) — group, —CF 2 O— group, —OCF 2 — group, —CF 2 S— group, —SCF 2 — group, —N (CF 3 ) — group, —CH 2 CH 2 — Group, —CF 2 CH 2 — group, —CH 2 CF 2 — group, —CF 2 CF 2 — group, —CH ⁇ CH— group, —CF ⁇ CF— group, —C ⁇ C— group, —CH ⁇ It
  • Z represents —O— group, —S— group, —NH— group, —COO— group, —OCO— group, —O—COO— group, —OCH 2 — group, —CH 2 O— group, —SCH.
  • R 3 is a —R 2 —Sp 1 —P 1 group, a hydrogen atom, a halogen atom, a —CN group, a —NO 2 group, a —NCO group, a —NCS group, a —OCN group, a —SCN group, a —SF 5 group. Or a linear or branched alkyl group having 1 to 18 carbon atoms.
  • a 1 and A 2 are each independently 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, naphthalene-1,4-diyl group, naphthalene-1,5-diyl group, naphthalene -2,6-diyl group, decahydronaphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, phenanthrene-1,6-diyl group, phenanthrene-1, 8-diyl group, phenanthrene-2,7-diyl group, phenanthrene-3,6-diyl group, anthracene-1,5-diyl group, anthracene-1,8-diyl group, anthracene-2,6-diyl group, Or, it represents an anthracene-2,7-diyl group.
  • n 0, 1 or 2.
  • the hydrogen atom that R 3 has may be substituted with a fluorine atom or a chlorine atom.
  • the —CH 2 — group of R 3 is —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO—, unless oxygen and sulfur atoms are adjacent to each other.
  • a 1 and A 2 may be substituted with —O— groups or —S— groups as long as they are not adjacent to each other.
  • One or more hydrogen atoms of A 1 and A 2 are a fluorine atom, a chlorine atom, a —CN group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and an alkyl group having 2 to 6 carbon atoms.
  • the alkylcarbonyl group, the alkoxycarbonyl group having 2 to 6 carbon atoms, or the alkylcarbonyloxy group having 2 to 6 carbon atoms may be substituted.
  • the first substrate 10 in the reflective liquid crystal display device 100 of the present embodiment includes the TFT 60, and the transparent substrate 11, the insulating film 12, and the reflective electrode 1 are sequentially arranged toward the liquid crystal layer 30 side.
  • the second substrate 20 has a transparent substrate 21, a color filter 22, and a common electrode 2 in this order toward the liquid crystal layer 30 side.
  • the reflective liquid crystal display device 100 of the present embodiment includes an aromatic polymer having a specific structure in the polymer layer 50, the efficiency between the aromatic group in the aromatic polymer and the charge generated from the reflective electrode 1 is high. A charge transfer reaction often occurs, and the charge transfer reaction in the liquid crystal layer 30 can be suppressed. Thereby, it is possible to suppress flicker that occurs during driving and burn-in that occurs due to long-time driving. This will be described in more detail below.
  • a liquid crystal material having a dielectric anisotropy ( ⁇ ) of ⁇ 5.0 or less is used.
  • a liquid crystal material having negative dielectric anisotropy may contain a liquid crystal compound having a structure represented by the following chemical formula (L).
  • each X independently represents a halogen atom or a hydrogen atom
  • R 1 represents a hydrocarbon group having 1 to 8 carbon atoms
  • the hydrogen atom may be substituted with a fluorine atom.
  • the liquid crystal compound having an alkoxy group is cleaved by charges (electrons or holes) injected from the electrode, and is represented by the following formulas 1 to 4. To form radicals and ions (anions or cations).
  • an electrode having a reflection function such as Al, Ag, Cu, Zn or the like is used to reflect outside light.
  • a reflective electrode has higher activity and is easily ionized as compared with a general transparent electrode such as ITO or IZO, and hence charge injection is also likely to occur. Therefore, a part of the electric charge injected from the reflective electrode reacts with the liquid crystal compound and easily causes a cleavage reaction as shown in the above formulas 1 to 4.
  • the anions and cations generated by the cleavage reaction as shown in the above formulas 1 to 4 cause a neutralization reaction as shown in the following formula 5, but the radicals remain, which causes flicker, burn-in, etc. .
  • a polymer layer containing an aromatic polymer having a specific structure in order to suppress the charge transfer reaction between the charge injected from the reflective electrode 1 and the liquid crystal compound.
  • the aromatic polymer Since the aromatic polymer has low molecular mobility, even if radicals are generated in the aromatic polymer, the possibility of contact with the liquid crystal compound in the liquid crystal layer 30 is low, and flicker and image sticking are suppressed. it can.
  • by polymerizing monomers containing a plurality of condensed ring structures, phenylene structures, benzophenone structures or benzyl structures to form an aromatic polymer charge transfer between the charge from the reflective electrode 1 and the aromatic polymer more efficiently. Reaction can be caused, and the occurrence of flicker and image sticking can be further suppressed.
  • the first substrate 10 of the present embodiment has the reflective electrode 1 in the upper layer of the transparent substrate 11 on the liquid crystal layer 30 side.
  • Examples of the transparent substrate 11 include a glass substrate and a plastic substrate.
  • a color filter substrate is suitable.
  • the second substrate 20 of the present embodiment has the color filter 22 and the common electrode 2 on the upper layer of the transparent substrate 21 on the liquid crystal layer 30 side.
  • Examples of the transparent substrate 21 include a glass substrate and a plastic substrate.
  • the combination of colors of the color filter 22 is not particularly limited, and examples thereof include a combination of red, green, and blue, a combination of red, green, blue, and yellow.
  • the first substrate 10 and the second substrate 20 are bonded using a sealant so as to sandwich the liquid crystal layer 30.
  • a sealant one that is cured by heat, one that is cured by irradiation with ultraviolet light, or both can be used.
  • the reflective liquid crystal display device 100 of this embodiment has a pixel electrode and a common electrode.
  • the reflective electrode 1 provided on the first substrate 10 is a pixel electrode
  • the common electrode 2 is provided on the second substrate 20.
  • the reflective liquid crystal display device 100 of the present embodiment can display an image without using a backlight by reflecting light taken from outside using the reflective electrode 1 in the liquid crystal display device. Low power consumption can be achieved.
  • the reflective electrode 1 is an electrode that reflects the external light 4 to generate the reflected light 5 and is made of a material having a high reflectance. In order to reflect the external light 4 more efficiently, the reflective electrode 1 has an uneven shape on the surface.
  • the reflective liquid crystal display device 100 according to the present embodiment uses the reflective electrode 1 having a concavo-convex shape as a pixel electrode, and the MRS structure (Micro) in which the electrode itself driven by the TFT 60 has a reflective function. It has a reflective structure (micro reflective electrode structure).
  • the reflective liquid crystal display device 100 of this embodiment is provided with TFT60, it can also be set as the passive drive type liquid crystal display device which does not have TFT.
  • the reflective electrode 1 preferably includes at least one selected from the group consisting of Al, Ag, Cu, Zn, and alloys thereof.
  • transparent conductive materials such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), tin oxide (SnO), or alloys thereof are used.
  • FIG. 2 is a schematic diagram illustrating waveforms of voltages applied from the pixel electrode and the common electrode in the first embodiment.
  • FIG. 2 shows an applied voltage 3a on the pixel electrode side, an applied voltage 3b on the common electrode side, and 3c representing one frame of the applied voltage.
  • the refresh rate is 60 Hz
  • one frame is 16.7 ms
  • 1 Hz one frame is 1000 ms.
  • the applied voltage 3a on the pixel electrode side is normally a rectangular wave voltage (pulse voltage) corresponding to the frequency and resolution as shown in FIG. 2, and this applied voltage is variable.
  • the voltage application time of one pulse is as short as about 15 ⁇ s.
  • the pixel electrode is in contact with the dielectric, the charge between the free electrons in the molecule constituting the dielectric or the ⁇ -conjugated substance and the pixel electrode is instantaneous for the moment when the applied voltage value changes. Interaction (electron or hole transfer) occurs.
  • charge transfer from the pixel electrode side is more likely to occur than charge transfer from the common electrode side.
  • the reflective electrode 1 is used as a pixel electrode, charge transfer into the dielectric is more likely to occur.
  • an aromatic polymer having a specific structure is formed between the liquid crystal layer 30 and the alignment film 40. By being present, the charge transfer reaction between the reflective electrode 1 and the liquid crystal layer 30 can be suppressed.
  • the liquid crystal layer 30 of the present embodiment is made of a liquid crystal material having negative dielectric anisotropy (also referred to as a negative liquid crystal material), and the liquid crystal material contains a liquid crystal compound having an alkoxy group, and ⁇ is reduced ( ⁇ By increasing the absolute value, low voltage driving can be realized.
  • the liquid crystal compound having an alkoxy group reacts with charges generated from an electrode or the like to cleave and generate radicals.
  • the polymer layer 50 containing an aromatic polymer has Therefore, the charge transfer reaction is preferentially caused between the liquid crystal compound and the aromatic polymer, and the cleavage reaction of the liquid crystal compound can be suppressed.
  • the liquid crystal compound having an alkoxy group is preferably a compound having a structure represented by the chemical formula (L).
  • the absolute value of the negative dielectric anisotropy can be increased and further low-voltage driving can be realized.
  • each X independently represents a halogen atom or a hydrogen atom.
  • the halogen atom include a fluorine atom, a chlorine atom and a bromine atom, and a fluorine atom is preferable.
  • a plurality of X in the chemical formula (L) may be the same or different.
  • R 1 represents a hydrocarbon group having 1 to 8 carbon atoms, and is preferably a hydrocarbon group having 1 to 5 carbon atoms from the viewpoint of reducing the viscosity of the liquid crystal material.
  • the temperature range of the liquid crystal layer can be broadened.
  • the liquid crystal compound having a structure represented by the chemical formula (L) is preferably a compound represented by the following chemical formulas (L1) to (L5).
  • n represents an integer of 1 to 8
  • the hydrogen atom may be substituted with a halogen atom.
  • Examples of the compound represented by the chemical formula (L3) include a compound represented by the following chemical formula (L3-1).
  • a hydrogen atom may be substituted with a halogen atom.
  • the dielectric anisotropy ( ⁇ ) of the liquid crystal material having a negative dielectric anisotropy is preferably ⁇ 5.0 or less, more preferably ⁇ 5.5 or less, and ⁇ 6.0 or less. More preferably it is.
  • the liquid crystal display device requiring low voltage driving can be used more suitably.
  • the dielectric anisotropy ( ⁇ ) of the liquid crystal material can be determined by making the liquid crystal cell of horizontal alignment or vertical alignment, and using the capacitance values before and after applying high voltage, the dielectric constant in the major axis direction and the dielectric constant in the minor axis direction It can be calculated.
  • the liquid crystal material having negative dielectric anisotropy may contain a liquid crystal compound other than the liquid crystal compound having an alkoxy group.
  • the polymer layer 50 of the present embodiment is a layer located between the liquid crystal layer 30 and the alignment film 40, and includes an aromatic polymer described below.
  • the polymer layer 50 may be provided in the alignment film 40.
  • the aromatic polymer of the present embodiment has a structure derived from a monomer represented by the following chemical formula (M1). Although the aromatic polymer of this embodiment is contained in the polymer layer 50, the aromatic polymer may exist in the alignment film without forming the polymer layer.
  • the polymer having a structure derived from the monomer represented by the following chemical formula (M1) is a polymer obtained by polymerizing the monomer represented by the following chemical formula (M1).
  • the polymer layer 50 containing the aromatic polymer exists between the liquid crystal layer 30 and the alignment film 40, a charge transfer reaction efficiently occurs between the charge generated from the reflective electrode 1 and the aromatic polymer, and the liquid crystal layer. Since the probability of charge injection into the liquid crystal layer 30 is reduced and the charge transfer reaction in the liquid crystal layer 30 is suppressed, flicker that occurs during driving and burn-in that occurs due to long-time driving can be suppressed.
  • P 1 represents a radical polymerizable group.
  • Sp 1 represents a linear, branched or cyclic alkylene group having 1 to 6 carbon atoms, a linear, branched or cyclic alkyleneoxy group having 1 to 6 carbon atoms, or a direct bond.
  • R 2 represents —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO— group, —O—COO— group, —OCH 2 — group, —CH 2 O— group, —SCH 2 — group, —CH 2 S— group, —N (CH 3 ) — group, —N (C 2 H 5 ) — group, —N (C 3 H 7 ) — group, —N (C 4 H 9 ) — group, —CF 2 O— group, —OCF 2 — group, —CF 2 S— group, —SCF 2 — group, —N (CF 3 ) — group, —CH 2 CH 2 — Group, —CF 2 CH 2 — group, —CH 2 CF 2 — group, —CF 2 CF 2 — group, —CH ⁇ CH— group, —CF ⁇ CF— group, —C ⁇ C— group, —CH ⁇ It
  • Z represents —O— group, —S— group, —NH— group, —COO— group, —OCO— group, —O—COO— group, —OCH 2 — group, —CH 2 O— group, —SCH.
  • R 3 is a —R 2 —Sp 1 —P 1 group, a hydrogen atom, a halogen atom, a —CN group, a —NO 2 group, a —NCO group, a —NCS group, a —OCN group, a —SCN group, a —SF 5 group. Or a linear or branched alkyl group having 1 to 18 carbon atoms.
  • a 1 and A 2 are each independently 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, naphthalene-1,4-diyl group, naphthalene-1,5-diyl group, naphthalene -2,6-diyl group, decahydronaphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, phenanthrene-1,6-diyl group, phenanthrene-1, 8-diyl group, phenanthrene-2,7-diyl group, phenanthrene-3,6-diyl group, anthracene-1,5-diyl group, anthracene-1,8-diyl group, anthracene-2,6-diyl group, Or, it represents an anthracene-2,7-diyl group.
  • n 0, 1 or 2.
  • the hydrogen atom that R 3 has may be substituted with a fluorine atom or a chlorine atom.
  • the —CH 2 — group of R 3 is —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO—, unless oxygen and sulfur atoms are adjacent to each other.
  • a 1 and A 2 may be substituted with —O— groups or —S— groups as long as they are not adjacent to each other.
  • One or more hydrogen atoms of A 1 and A 2 are a fluorine atom, a chlorine atom, a —CN group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and an alkyl group having 2 to 6 carbon atoms.
  • the alkylcarbonyl group, the alkoxycarbonyl group having 2 to 6 carbon atoms, or the alkylcarbonyloxy group having 2 to 6 carbon atoms may be substituted.
  • P 1 in the chemical formula (M1) represents a radical polymerizable group
  • examples of the radical polymerizable group include an acrylate group, a methacrylate group, an acrylamide group, a methacrylamide group, a vinyl group, and a vinyloxy group.
  • an acrylate group, an acrylamide group, a vinyl group, or a vinyloxy group is preferable.
  • a methacrylate group or a methacrylamide group is preferable.
  • Sp 1 in the chemical formula (M1) is preferably a direct bond from the viewpoint of stabilizing the tilt angle by improving the rigidity of the polymer layer, and is a linear alkylene group or alkyleneoxy group from the viewpoint of improving the polymerization rate of the monomer. It is preferable that
  • the monomer represented by the chemical formula (M1) is preferably a monomer containing a phenanthrene having a condensed ring structure, and A 1 and A 2 in the chemical formula (M1) are each independently phenanthrene-1,6- More preferred are a diyl group, a phenanthrene-1,8-diyl group, a phenanthrene-2,7-diyl group, or a phenanthrene-3,6-diyl group.
  • a charge transfer reaction can be caused more efficiently between the charge generated from the reflective electrode 1 and the aromatic polymer.
  • Z in the chemical formula (M1) is preferably a direct bond.
  • R 3 in the above chemical formula (M1) is preferably a —R 2 —Sp 1 —P 1 group.
  • P 1 is an acrylate group or a methacrylate group
  • Sp 1 is a direct bond
  • R 2 is a direct bond
  • a 1 and A 2 are each independently 1,4-phenylene.
  • a group, 2,6-naphthalene group or 2,7-phenanthrene group, Z is a direct bond
  • R 3 is a —R 2 —Sp 1 —P 1 group
  • n is 0 or 1 It is preferable.
  • P 1 is a methacrylate group
  • Sp 1 is a direct bond
  • R 2 is a direct bond
  • a 1 and A 2 are each independently a 1,4-phenylene group or 2,7 More preferably, it is a —phenanthrene group
  • Z is a direct bond
  • R 3 is a —R 2 —Sp 1 —P 1 group
  • n is 0 or 1.
  • the straight-chain, branched or cyclic alkylene group having 1 to 6 carbon atoms is a straight-chain alkylene group having 1 to 6 carbon atoms or 3 to 6 carbon atoms. It represents a branched alkylene group or a cyclic alkylene group having 3 to 6 carbon atoms.
  • a linear, branched or cyclic alkyleneoxy group having 1 to 6 carbon atoms means a linear alkyleneoxy group having 1 to 6 carbon atoms
  • 2 to 6 represents a branched alkyleneoxy group or a cyclic alkyleneoxy group having 3 to 6 carbon atoms.
  • the linear or branched alkyl group having 1 to 18 carbon atoms in R 3 of the chemical formula (M1) is a linear alkyl group having 1 to 18 carbon atoms or a branched chain having 3 to 18 carbon atoms. Represents an alkyl group.
  • the monomer represented by the chemical formula (M1) is preferably at least one monomer represented by the following chemical formulas (M1-1) to (M1-3).
  • the aromatic polymer preferably has a structure derived from the monomer represented by the following chemical formula (M2) in addition to the structure derived from the monomer represented by the chemical formula (M1). Since the monomer represented by the following chemical formula (M2) absorbs light up to around 430 nm, in addition to the monomer of the above chemical formula (M1), when synthesizing an aromatic polymer using the monomer of the following chemical formula (M2), Even when light irradiation is performed from the color filter substrate side, the polymerization of the monomer can proceed efficiently.
  • the monomer represented by the following chemical formula (M2) is also referred to as a benzyl initiator monomer.
  • a 3 and A 4 are each independently a phenyl group, a phenylene group, a biphenyl group, a biphenylene group, a linear or branched alkyl group having 1 to 12 carbon atoms, and a straight chain having 1 to 12 carbon atoms.
  • a 3 And at least one of A 4 comprises a —Sp 2 —P 2 group.
  • P 2 represents a polymerizable group.
  • Sp 2 represents a linear, branched or cyclic alkylene group having 1 to 6 carbon atoms, a linear, branched or cyclic alkyleneoxy group having 1 to 6 carbon atoms, or a direct bond.
  • m is 1 or 2.
  • a dotted line portion connecting A 3 and Y and a dotted line portion connecting A 4 and Y indicate that a bond via Y may exist between A 3 and A 4 .
  • Y represents a —CH 2 — group, —CH 2 CH 2 — group, —CH ⁇ CH— group, —O— group, —S— group, —NH— group, —N (CH 3 ) — group, —N (C 2 H 5 ) — group, —N (C 3 H 7 ) — group, —N (C 4 H 9 ) — group, —OCH 2 — group, —CH 2 O— group, —SCH 2 — group, —CH 2 S— group or a direct bond is represented.
  • the hydrogen atoms of A 3 and A 4 are -Sp 2 -P 2 group, halogen atom, -CN group, -NO 2 group, -NCO group, -NCS group, -OCN group, -SCN group, -SF 5
  • Two adjacent hydrogen atoms of A 3 and A 4 are substituted with a linear or branched alkylene group having 1 to 12 carbon atoms or a linear or branched alkenylene group having 2 to 12 carbon atoms Then, it may be a ring structure.
  • the hydrogen atom of the alkyl group, alkenyl group, alkylene group, alkenylene group or aralkyl group of A 3 and A 4 may be substituted with a —Sp 2 —P 2 group.
  • the —CH 2 — group of the alkyl group, alkenyl group, alkylene group, alkenylene group or aralkyl group of A 3 and A 4 is an —O— group, —S, unless an oxygen atom, a sulfur atom and a nitrogen atom are adjacent to each other.
  • a 3 and A 4 are preferably each independently a phenyl group or a phenylene group.
  • P 2 in the chemical formula (M2) represents a polymerizable group.
  • the polymerizable group include a radical polymerizable group, a cationic polymerizable group, and an anion polymerizable group, and a radical polymerizable group is preferable.
  • radical polymerizable group examples include acrylate group, methacrylate group, acrylamide group, methacrylamide group, vinyl group, vinyloxy group, and the like. From the viewpoint of improving the reaction rate, an acrylate group, an acrylamide group, a vinyl group, or a vinyloxy group is preferable. From the viewpoint of stabilizing the tilt angle by improving the rigidity of the polymer layer, a methacrylate group or a methacrylamide group is preferable.
  • Sp 2 in the chemical formula (M2) is preferably a direct bond from the viewpoint of stabilizing the tilt angle by improving the rigidity of the polymer layer, and is a linear alkylene group or alkyleneoxy group from the viewpoint of improving the polymerization rate of the monomer. It is preferable that
  • M in the chemical formula (M2) is preferably 1 or 2.
  • Y in the chemical formula (M2) is preferably an —O— group, an —S— group, an —NH— group or a direct bond, and more preferably an —O— group or an —S— group.
  • a 3 and A 4 are phenylene groups, P 2 is an acrylate group or a methacrylate group, Sp 2 is a direct bond, and m is 1 or 2. preferable.
  • a 3 and A 4 are phenylene groups, P 2 is a methacrylate group, Sp 2 is a direct bond, and m is more preferably 2.
  • the linear or branched alkyl group having 1 to 12 carbon atoms in A 3 and A 4 of the above chemical formula (M2) is a linear alkyl group having 1 to 12 carbon atoms or 3 to 12 carbon atoms. Represents a branched alkyl group.
  • the linear or branched alkylene group having 1 to 12 carbon atoms in A 3 and A 4 in the chemical formula (M2) is a linear alkylene group having 1 to 12 carbon atoms or 3 to 12 carbon atoms. Represents a branched alkylene group.
  • the linear or branched alkenyl group having 2 to 12 carbon atoms in A 3 and A 4 of the above chemical formula (M2) is a linear alkenyl group having 2 to 12 carbon atoms or 3 to 12 carbon atoms. Represents a branched alkenyl group.
  • the linear or branched alkenylene group having 2 to 12 carbon atoms in A 3 and A 4 of the above chemical formula (M2) is a linear alkenylene group having 2 to 12 carbon atoms or 3 to 12 carbon atoms. Represents a branched alkenylene group.
  • the straight-chain, branched or cyclic alkylene group having 1 to 6 carbon atoms is a straight-chain alkylene group having 1 to 6 carbon atoms or 3 to 6 carbon atoms. It represents a branched alkylene group or a cyclic alkylene group having 3 to 6 carbon atoms.
  • the straight-chain, branched or cyclic alkyleneoxy group having 1 to 6 carbon atoms means a straight-chain alkyleneoxy group having 1 to 6 carbon atoms
  • 2 to 6 represents a branched alkyleneoxy group or a cyclic alkyleneoxy group having 3 to 6 carbon atoms.
  • the linear or branched alkyl group having 1 to 12 carbon atoms in A 3 and A 4 of the above chemical formula (M2) is a linear alkyl group having 1 to 12 carbon atoms or 3 to 12 carbon atoms. Represents a branched alkyl group.
  • the linear or branched alkenyl group having 2 to 12 carbon atoms in A 3 and A 4 of the above chemical formula (M2) is a linear alkenyl group having 2 to 12 carbon atoms or 3 to 12 carbon atoms. Represents a branched alkenyl group.
  • the straight-chain or branched aralkyl group having 7 to 12 carbon atoms is a straight-chain aralkyl group having 7 to 12 carbon atoms or 8 to 12 carbon atoms. Represents a branched aralkyl group.
  • the linear or branched alkylene group having 1 to 12 carbon atoms in A 3 and A 4 in the chemical formula (M2) is a linear alkylene group having 1 to 12 carbon atoms or 3 to 12 carbon atoms. Represents a branched alkylene group.
  • the linear or branched alkenylene group having 2 to 12 carbon atoms in A 3 and A 4 of the above chemical formula (M2) is a linear alkenylene group having 2 to 12 carbon atoms or 3 to 12 carbon atoms. Represents a branched alkenylene group.
  • the monomer represented by the chemical formula (M2) is preferably a monomer represented by the following chemical formula (M2-1).
  • the monomer represented by the following chemical formula (M2-1) particularly absorbs light having a long wavelength and can absorb light having a wavelength of 430 nm to 440 nm.
  • the aromatic polymer of this embodiment can be formed by the following two methods, for example.
  • the liquid crystal layer 30 When the liquid crystal layer 30 is formed, a composition in which the monomer represented by the chemical formula (M1) is dissolved is used, and the monomer is polymerized, whereby an aromatic fragrance is formed between the liquid crystal layer 30 and the alignment film 40. A polymer layer 50 containing a group polymer is formed.
  • an aromatic polymer is formed in the alignment film 40 by polymerizing the monomer using a composition in which the monomer represented by the chemical formula (M1) is dissolved. . At this time, the aromatic polymer may form a polymer layer or may not form a polymer layer.
  • the above (1) is a method of forming an aromatic polymer by using a polymer supported alignment (PSA) technique.
  • PSA polymer supported alignment
  • a liquid crystal composition containing a polymerizable monomer is sealed between a pair of substrates, and then the polymerizable monomer is polymerized to form a polymer (polymer) on the alignment film surface.
  • the polymer layer 50 containing an aromatic polymer is formed using the method (1), if the monomer represented by the chemical formula (M1) remains in the liquid crystal layer 30, it is represented by the chemical formula (M1).
  • the reaction shown in the above equation 6 occurs between the monomer and the charge injected from the reflective electrode 1, radicals and ions are generated in the liquid crystal layer 30, and flicker and image sticking may occur.
  • the method (2) since the monomer represented by the chemical formula (M1) is contained in the composition used when forming the alignment film 40, the monomer in the liquid crystal layer 30 as in (1). In principle, there is no remaining, and it is possible to further suppress the occurrence of flicker and image sticking.
  • the alignment film 40 has a function of controlling the alignment of the liquid crystal compound in the liquid crystal layer 30.
  • the alignment film 40 is mainly used.
  • the orientation of the liquid crystal compound in the liquid crystal layer 30 is controlled by the action of. In this state (hereinafter also referred to as an initial alignment state), an angle formed by the major axis of the liquid crystal compound with respect to the surfaces of the first substrate 10 and the second substrate 20 is referred to as a “pretilt angle”.
  • the “pretilt angle” represents an angle of inclination of the liquid crystal compound from a direction parallel to the substrate surface, the angle parallel to the substrate surface is 0 °, and the angle of the normal to the substrate surface is 90 °. It is.
  • the alignment film 40 may be one that aligns the liquid crystal compound in the liquid crystal layer 30 substantially vertically (vertical alignment film), or one that aligns substantially horizontally (horizontal alignment film).
  • vertical alignment film the term “substantially perpendicular” preferably means that the pretilt angle is not less than 85 ° and not more than 90 °.
  • horizontal alignment film “substantially horizontal” means that the pretilt angle is preferably 0 ° or more and 5 ° or less.
  • the alignment treatment method of the alignment film 40 is not particularly limited, and examples thereof include rubbing treatment and photo-alignment treatment.
  • the surface of the alignment film 40 is rotated in a certain direction by rotating a roller wrapped with a cloth such as nylon with a certain pressure against the first substrate 10 and the second substrate 20 coated with the alignment film 40. It is a method to rub.
  • the photo-alignment treatment selectively changes the structure of the photo-alignment film in the polarization direction by irradiating the linearly-polarized ultraviolet light onto the photo-alignment film formed of the material exhibiting photo-alignment property, thereby forming the photo-alignment film.
  • anisotropy is generated to give an orientation azimuth to liquid crystal molecules.
  • a material exhibiting photo-alignment property has a property (alignment regulating force) that causes structural changes when irradiated with light (electromagnetic waves) such as ultraviolet light and visible light, and regulates the orientation of liquid crystal molecules present in the vicinity thereof. It means all the materials that develop and the materials whose orientation regulating force changes in size and / or direction.
  • Examples of the material exhibiting photo-alignment include those containing a photoreactive site in which a reaction such as dimerization (dimer formation), isomerization, photofleece transition, or decomposition occurs due to light irradiation.
  • photoreactive sites (functional groups) that are dimerized and isomerized by light irradiation include cinnamate, chalcone, coumarin, and stilbene.
  • Examples of the photoreactive site (functional group) that isomerizes by light irradiation include azobenzene.
  • Examples of the photoreactive site that undergoes a light fleece transition upon light irradiation include a phenol ester structure.
  • photoreactive sites that are decomposed by light irradiation include a cyclobutane structure.
  • the alignment film 40 is preferably a photo-alignment film capable of performing photo-alignment treatment, and the polymer side chain of the polymer contained in the alignment film 40 is formed from a cinnamate group, an azobenzene group, a chalcone group, a coumarin group, and a stilbene group. It is more preferable to have at least one group selected from the group consisting of By using the alignment film 40 as a photo-alignment film, it is possible to avoid streak-like display unevenness and generation of static electricity that occur when an alignment film for rubbing treatment is used.
  • the alignment film 40 preferably includes at least one polymer of polyamic acid and polyimide.
  • the alignment film 40 includes at least one polymer of polyamic acid and polyimide, and the at least one polymer has an aliphatic acid anhydride monomer unit. It is more preferable.
  • the monomer represented by the chemical formula (M1) is polymerized to easily form an aromatic polymer.
  • the aliphatic acid anhydride monomer unit is a structural unit having a structure derived from an aliphatic acid anhydride among structural units derived from monomers constituting the polymer.
  • the alignment film 40 contains polyamic acid, it preferably has a structure represented by the following chemical formula (P-1).
  • the alignment film 40 contains polyimide, the structure represented by the following chemical formula (P-2) It is preferable to have.
  • X 1 represents a tetravalent aromatic group or aliphatic group
  • Y 1 represents a trivalent aromatic group or aliphatic group
  • Z 1 Represents a monovalent organic group or a hydrogen atom
  • p represents an integer of 1 or more.
  • X 1 represents a tetravalent aromatic group or aliphatic group, preferably a tetravalent aliphatic group, and has 4 carbon atoms having a cyclic structure.
  • An aliphatic group having 20 to 20 carbon atoms is more preferable, and an aliphatic group having 4 to 20 carbon atoms including 1 to 3 alicyclic groups having 4 to 6 carbon atoms is more preferable.
  • two or more cyclic structures may be bonded directly or via a linking group, or may be condensed.
  • linking group examples include hydrocarbon groups having 1 to 5 carbon atoms, —O— group, —N ⁇ N— group, —C ⁇ C— group, —CH ⁇ CH— group, —CO—CH ⁇ CH— group, etc. Is mentioned.
  • the aliphatic group includes both cyclic and acyclic aliphatic groups.
  • X 1 include chemical structures represented by the following chemical formulas (X-1) to (X-6). At least one hydrogen atom contained in each structure may be substituted with a halogen atom, a methyl group, or an ethyl group. In the chemical formulas (P-1) and (P-2), X 1 particularly preferably has at least one structure selected from the group consisting of the following chemical formulas (X-1) to (X-6).
  • Y 1 represents a trivalent aromatic group or aliphatic group, and is preferably a trivalent aromatic group, and has 6 to 20 carbon atoms.
  • the aromatic group is more preferably an aromatic group having 6 to 20 carbon atoms and including 1 to 3 aromatic rings having 6 carbon atoms.
  • the linking group include hydrocarbon groups having 1 to 5 carbon atoms, —O— group, —N ⁇ N— group, —C ⁇ C— group, —CH ⁇ CH— group, —CO—CH ⁇ CH— group, etc. Is mentioned.
  • Y 1 include chemical structures represented by the following chemical formulas (Y-1) to (Y-24). At least one hydrogen atom contained in each structure may be substituted with a halogen atom, a methyl group, or an ethyl group.
  • Y 1 in the chemical formulas (P-1) and (P-2) has a structure represented by the chemical formulas (Y-1) to (Y-16).
  • Y 1 has a structure represented by the above chemical formulas (Y-17) to (Y-24).
  • Z 1 in the chemical formulas (P-1) and (P-2) represents a monovalent organic group or a hydrogen atom.
  • a group represented by —COO—Z is preferable.
  • Z represents a group having 15 to 30 carbon atoms having a cyclic structure.
  • Z 1 include chemical structures represented by the following chemical formulas (Z-1) to (Z-25). At least one hydrogen atom contained in each structure may be substituted with a halogen atom, a methyl group, or an ethyl group.
  • Z 1 in the chemical formulas (P-1) and (P-2) is represented by the chemical formulas (Z-1) to (Z-8).
  • a structure is preferable.
  • Z 1 in the chemical formulas (P-1) and (P-2) is represented by the chemical formulas (Z-9) to (Z-15).
  • Z 1 in the chemical formulas (P-1) and (P-2) is represented by the chemical formulas (Z-16) to (Z-25). It is preferable to have a structure.
  • X 1 is a tetravalent aliphatic group
  • Y 1 is a trivalent aromatic group
  • Z 1 is a hydrogen atom or a group represented by —COO—Z.
  • X 1 is an aliphatic group having 4 to 20 carbon atoms having a cyclic structure
  • Y 1 is an aromatic group having 6 to 20 carbon atoms
  • Z 1 is represented by a hydrogen atom or —COO—Z. More preferably, it is a group.
  • X 1 is an aliphatic group having 4 to 20 carbon atoms including 1 to 3 alicyclic groups having 4 to 6 carbon atoms
  • Y 1 is an aliphatic group having 1 to 3 carbon atoms having 6 to 6 carbon atoms. More preferably, it is an aromatic group of ⁇ 20
  • Z 1 is a hydrogen atom or a group represented by —COO—Z. Note that a preferable combination of substituents of X 1 , Y 1 and Z 1 in the chemical formula (P-2) is the same as the combination in the chemical formula (P-1).
  • the weight average molecular weight of the polymer having at least one is 10,000 to 1 000,000 is preferable, and 30,000 to 200,000 is more preferable.
  • the weight average molecular weight of the alignment film polymer is 10,000 to 1 000,000 is preferable, and 30,000 to 200,000 is more preferable.
  • X 1 , Y 1 and Z 1 may be one kind or two kinds or more. There may be.
  • the alignment film 40 preferably contains at least one polymer represented by the chemical formulas (P-1) and (P-2), and may contain two or more polymers.
  • a plurality of functional groups selected from the group consisting of a vertical alignment functional group, a horizontal alignment functional group, and a photo-alignment functional group may be included in one molecule.
  • At least one of the polyamic acid and the polyimide has an aliphatic acid anhydride monomer unit. That is, X 1 in the chemical formulas (P-1) and (P-2) is preferably an aliphatic group. The reason for this will be described below.
  • the alignment film 40 includes a polymer having an aromatic acid anhydride monomer unit
  • the aromatic acid anhydride monomer unit absorbs the ultraviolet light when performing ultraviolet irradiation to form the aromatic polymer by a polymerization reaction. End up.
  • the polymerization reaction of the monomer constituting the aromatic polymer does not proceed, and the remaining monomer is eluted into the liquid crystal layer 30, causing a decrease in VHR and an increase in residual DC of the liquid crystal display device, resulting in burn-in and the like.
  • the at least one polymer has an aliphatic acid anhydride monomer unit.
  • the second reason is considered as follows.
  • the aromatic polymer is formed by polymerizing the monomer introduced into the alignment film 40, for example, as shown in the following formula 7, the benzyl structure in the monomer constituting the aromatic polymer is included in the alignment film 40.
  • a hydrogen atom is withdrawn from the amide bond in the acid to form a radical to initiate polymerization.
  • the polymerization is similarly initiated when the benzyl structure is a benzophenone structure.
  • the alignment film 40 when the alignment film 40 includes a polymer having an aromatic acid anhydride monomer unit, when the reflective electrode 1 containing Al or the like comes into contact with the alignment film 40, electron injection from the reflective electrode 1 to the alignment film 40 is performed. It occurs preferentially and an anion is formed.
  • This anion (O ⁇ ) causes a charge interaction with a hydrogen atom as shown in the following formula 8, for example, and suppresses the hydrogen abstraction reaction of the benzyl structure as shown in the above formula 7. Therefore, when the alignment film 40 includes a polymer having an aromatic acid anhydride monomer unit, radical formation due to hydrogen abstraction reaction of the benzyl structure hardly occurs, and the aromatic polymer is hardly formed. Accordingly, it is preferable that the at least one polymer has an aliphatic acid anhydride monomer unit.
  • the alignment mode (display mode) of the reflective liquid crystal display device 100 of the present embodiment is not particularly limited, but a vertical alignment (VA) mode is preferable.
  • the reflective liquid crystal display device 100 includes, in addition to the above members, external circuits such as TCP (tape carrier package) and PCB (printed wiring board); optical films such as a viewing angle widening film and a brightness enhancement film; It is comprised by several members, such as a bezel (frame), and may be integrated in the other member depending on the member. Members other than those already described are not particularly limited, and those normally used in the field of liquid crystal display devices can be used, and thus description thereof is omitted.
  • the liquid crystal display device of Modification 1 of Embodiment 1 has the same configuration as that of the reflective liquid crystal display device 100 of Embodiment 1 except that the polymer layer 50 is provided in the alignment film 40. Therefore, in the present embodiment, features unique to the present embodiment will be described, and the description overlapping with the first embodiment will be omitted as appropriate.
  • FIG. 3 is a schematic cross-sectional view of a reflective liquid crystal display device according to Modification 1 of Embodiment 1.
  • the reflective liquid crystal display device of Modification 1 of Embodiment 1 includes a first substrate 10 provided with the reflective electrode 1, a second substrate 20 facing the first substrate 10, The liquid crystal layer 30 sandwiched between the one substrate 10 and the second substrate 20, the alignment film 40 provided on the liquid crystal layer 30 side of the first substrate 10 and the second substrate 20, and the alignment film 40.
  • the polymer layer 50 includes an aromatic polymer having a structure derived from the monomer represented by the chemical formula (M1).
  • the first substrate 10 in the reflective liquid crystal display device of the present embodiment has a transparent substrate (not shown), the insulating film 12, and the reflective electrode 1 in this order toward the liquid crystal layer 30 side.
  • the second substrate 20 has a transparent substrate (not shown), a color filter 22, and the common electrode 2 in order toward the liquid crystal layer 30 side.
  • the liquid crystal display device of Modification 2 of Embodiment 1 has the same configuration as that of the reflective liquid crystal display device 100 of Embodiment 1 except that an aromatic polymer is provided in the alignment film 40. Therefore, in the present embodiment, features unique to the present embodiment will be described, and the description overlapping with the first embodiment will be omitted as appropriate.
  • FIG. 4 is a schematic cross-sectional view of a reflective liquid crystal display device according to a second modification of the first embodiment.
  • the reflective liquid crystal display device according to the second modification of the first embodiment includes a first substrate 10 provided with the reflective electrode 1, a second substrate 20 facing the first substrate 10, A liquid crystal layer 30 sandwiched between the first substrate 10 and the second substrate 20, and an alignment film 40a containing an aromatic polymer provided on the first substrate 10 and the second substrate 20 on the liquid crystal layer 30 side.
  • the aromatic polymer has a structure derived from the monomer represented by the chemical formula (M1).
  • the first substrate 10 in the reflective liquid crystal display device of the present embodiment has a transparent substrate (not shown), the insulating film 12, and the reflective electrode 1 in this order toward the liquid crystal layer 30 side.
  • the second substrate 20 has a transparent substrate (not shown), a color filter 22, and the common electrode 2 in order toward the liquid crystal layer 30 side.
  • the alignment film 40a containing the aromatic polymer By providing the alignment film 40a containing the aromatic polymer, a charge transfer reaction efficiently occurs between the charge generated from the reflective electrode 1 and the aromatic polymer, and the probability that charge injection into the liquid crystal layer 30 occurs is reduced. Since the charge transfer reaction in the liquid crystal layer 30 is suppressed, flicker that occurs during driving and burn-in that occurs due to long-time driving can be suppressed.
  • the liquid crystal display device according to the third modification of the first embodiment has the same configuration as that of the reflective liquid crystal display device 100 according to the first embodiment except that the alignment layer contains an aromatic polymer in addition to the polymer layer 50.
  • the alignment layer contains an aromatic polymer in addition to the polymer layer 50.
  • FIG. 5 is a schematic cross-sectional view of a reflective liquid crystal display device according to a third modification of the first embodiment.
  • the reflective liquid crystal display device of Modification 3 of Embodiment 1 includes a first substrate 10 provided with the reflective electrode 1, a second substrate 20 facing the first substrate 10, A liquid crystal layer 30 sandwiched between the one substrate 10 and the second substrate 20, an alignment film 40a containing an aromatic polymer provided on the liquid crystal layer 30 side of the first substrate 10 and the second substrate 20, and a liquid crystal And a polymer layer 50 provided between the layer 30 and an alignment film 40a containing an aromatic polymer.
  • the alignment film 40a and the polymer layer 50 include an aromatic polymer having a structure derived from the monomer represented by the chemical formula (M1).
  • the first substrate 10 in the reflective liquid crystal display device of the present embodiment has a transparent substrate (not shown), the insulating film 12, and the reflective electrode 1 in this order toward the liquid crystal layer 30 side.
  • the second substrate 20 has a transparent substrate (not shown), a color filter 22, and the common electrode 2 in order toward the liquid crystal layer 30 side.
  • a charge transfer reaction efficiently occurs between the charge generated from the reflective electrode 1 and the aromatic polymer, and charge injection into the liquid crystal layer 30 occurs. Since the probability is reduced and the charge transfer reaction in the liquid crystal layer 30 is suppressed, flicker that occurs during driving and burn-in that occurs due to long-time driving can be suppressed.
  • the liquid crystal display device of the second embodiment has the same configuration as that of the reflective liquid crystal display device 100 of the first embodiment except that the structure of the liquid crystal display device is changed to a transflective type. Therefore, in the present embodiment, features unique to the present embodiment will be described, and the description overlapping with the first embodiment will be omitted as appropriate.
  • FIG. 6A and 6B are diagrams relating to the transflective liquid crystal display device according to the second embodiment.
  • FIG. 6A is a schematic cross-sectional view of the transflective liquid crystal display device
  • FIG. 6B is an enlarged schematic cross-sectional view of FIG. is there.
  • the transflective liquid crystal display device 200 according to the second embodiment transmits light from the light reflecting portion 5a having the same configuration as the reflective liquid crystal device 100 according to the first embodiment and the backlight 6, and displays an image.
  • Part 6a In the light transmission part 6 a, the transparent electrode 7, the alignment film 40, and the polymer layer 50 are sequentially arranged on the transparent substrate 11 toward the liquid crystal layer 30 side.
  • the transparent electrode 7 is used in the light transmission part 6a, an image can be displayed by the light from the backlight 6. With such a configuration, a charge transfer reaction can be caused more efficiently between the charge from the reflective electrode 1 and the aromatic polymer, and the occurrence of flicker and image sticking can be further suppressed.
  • the transflective liquid crystal display device 200 is a liquid crystal display device having a function of displaying an image in both the transmissive mode and the reflective mode, and has a backlight, and thus has visibility even in a dark place.
  • the liquid crystal display device has both the characteristics of a transmissive liquid crystal display device, which is high, and the characteristics of a reflective liquid crystal display device, which consumes less power in order to use external light.
  • the liquid crystal display device of the first modification of the second embodiment has the same configuration as that of the transflective liquid crystal display device 200 of the second embodiment except that the polymer layer 50 is provided in the alignment film 40. Therefore, in the present embodiment, features unique to the present embodiment will be described, and the description overlapping with the second embodiment will be omitted as appropriate.
  • FIG. 7 is a schematic cross-sectional view of a transflective liquid crystal display device according to Modification 1 of Embodiment 2.
  • the transflective liquid crystal display device according to the first modification of the second embodiment includes a light reflecting portion 5a and a light transmitting portion 6a.
  • the insulating film 12, the reflective electrode 1, and the alignment film 40 are sequentially arranged on the transparent substrate (not shown) toward the liquid crystal layer 30 side.
  • a polymer layer 50 containing an aromatic polymer is provided.
  • a transparent electrode 7 and an alignment film 40 are sequentially arranged on a transparent substrate (not shown) toward the liquid crystal layer 30 side.
  • a polymer layer 50 containing an aromatic polymer is provided.
  • the second substrate 20 has a transparent substrate (not shown), a color filter 22, and the common electrode 2 in order toward the liquid crystal layer 30 side.
  • An alignment film 40 is disposed on the liquid crystal layer 30 side of the common electrode 2, and a polymer layer 50 containing an aromatic polymer is provided in the alignment film 40.
  • the liquid crystal display device of the second modification of the second embodiment has the same configuration as that of the transflective liquid crystal display device 200 of the second embodiment except that an aromatic polymer is provided in the alignment film. Therefore, in the present embodiment, features unique to the present embodiment will be described, and the description overlapping with the first embodiment will be omitted as appropriate.
  • FIG. 8 is a schematic cross-sectional view of a transflective liquid crystal display device according to a second modification of the second embodiment.
  • the transflective liquid crystal display device according to the second modification of the second embodiment includes a light reflecting portion 5a and a light transmitting portion 6a.
  • the insulating film 12, the reflective electrode 1, and the alignment film 40a containing the aromatic polymer are provided on the transparent substrate (not shown) toward the liquid crystal layer 30 side. Arranged in order.
  • a transparent electrode 7 and an alignment film 40a containing an aromatic polymer are sequentially arranged on a transparent substrate (not shown) toward the liquid crystal layer 30 side. .
  • the second substrate 20 has a transparent substrate (not shown), a color filter 22, and the common electrode 2 in order toward the liquid crystal layer 30 side.
  • An alignment film 40 a containing an aromatic polymer is disposed on the liquid crystal layer 30 side of the common electrode 2.
  • the alignment film 40a containing the aromatic polymer By providing the alignment film 40a containing the aromatic polymer, a charge transfer reaction efficiently occurs between the charge generated from the reflective electrode 1 and the aromatic polymer, and the probability that charge injection into the liquid crystal layer 30 occurs is reduced. Since the charge transfer reaction in the liquid crystal layer 30 is suppressed, flicker that occurs during driving and burn-in that occurs due to long-time driving can be suppressed.
  • the liquid crystal display device according to the third modification of the second embodiment is the same as the transflective liquid crystal display device 200 according to the second embodiment except that the alignment layer contains an aromatic polymer in addition to the polymer layer 50. It has a configuration. Therefore, in the present embodiment, features unique to the present embodiment will be described, and the description overlapping with the second embodiment will be omitted as appropriate.
  • FIG. 9 is a schematic cross-sectional view of a transflective liquid crystal display device according to Modification 3 of Embodiment 2.
  • the transflective liquid crystal display device according to the third modification of the second embodiment includes a light reflecting portion 5a and a light transmitting portion 6a.
  • the insulating film 12, the reflective electrode 1, the alignment film 40a containing an aromatic polymer, and the polymer layer 50 are formed on a transparent substrate (not shown). It arranges in order toward 30 side.
  • the alignment film 40a and the polymer layer 50 include an aromatic polymer having a structure derived from the monomer represented by the chemical formula (M1).
  • the light transmission part 6a on the first substrate 10 side is such that the transparent electrode 7, the alignment film 40a containing the aromatic polymer, and the polymer layer 50 are directed to the liquid crystal layer 30 side on a transparent substrate (not shown). Arranged in order.
  • the second substrate 20 has a transparent substrate (not shown), a color filter 22, and the common electrode 2 in order toward the liquid crystal layer 30 side.
  • An alignment film 40 a containing an aromatic polymer and a polymer layer 50 are arranged on the liquid crystal layer 30 side of the common electrode 2.
  • a charge transfer reaction efficiently occurs between the charge generated from the reflective electrode 1 and the aromatic polymer, and charge injection into the liquid crystal layer 30 occurs. Since the probability is reduced and the charge transfer reaction in the liquid crystal layer 30 is suppressed, flicker that occurs during driving and burn-in that occurs due to long-time driving can be suppressed.
  • the monomer represented by the chemical formula (M1-1) is dissolved in the liquid crystal material 1R at a concentration of 0.3 wt% and left in an environment at 25 ° C. for 24 hours to completely dissolve in the liquid crystal material.
  • a liquid crystal material 1-1 was prepared.
  • a liquid crystal material 1-2 was prepared using a monomer represented by the chemical formula (M1-2)
  • a liquid crystal material 1-3 was prepared using a monomer represented by the chemical formula (M1-3).
  • the concentration of the monomer is a concentration when the state after the monomer is added to the liquid crystal material is 100 wt%.
  • a first substrate 10 having a reflective electrode 1 made of aluminum as a pixel electrode and a second substrate 20 having a transparent electrode made of IZO as a common electrode 2 were prepared.
  • a vertical alignment film composition containing a polyamic acid having a structure represented by the following chemical formula (P-1-1), that is, a polyamic acid having an aliphatic acid anhydride monomer unit was applied to both substrates, After calcination for 2 minutes, main calcination was performed at 200 ° C. for 40 minutes, and a rubbing treatment was performed.
  • the reflective electrode 1 used as the pixel electrode is also referred to as a reflective pixel electrode below.
  • a sealant is applied to the first substrate 10 having the reflective pixel electrode, the liquid crystal material 1-1 ( ⁇ ⁇ ⁇ 5.0) is dropped onto the first substrate 10, and the second substrate 20 is bonded.
  • a liquid crystal cell was produced.
  • the obtained liquid crystal cell was subjected to an annealing treatment for 30 minutes at a temperature equal to or higher than Tni (nematic-isotropic transition point of the liquid crystal material) to perform a realignment treatment.
  • irradiation with ultraviolet light having a wavelength of 365 nm of 10 J / cm 2 is performed from the second substrate 20 side, and the fragrance has a structure derived from the monomer represented by the chemical formula (M1-1).
  • a polymer layer 50 containing a group polymer was formed between the liquid crystal layer 30 and the alignment film 40 to obtain a liquid crystal cell of Example 1-1.
  • FHF-32BLB manufactured by Toshiba Lighting & Technology was used for irradiation with ultraviolet light.
  • liquid crystal material 1-1 was changed to the liquid crystal materials 1-2 and 1-3, and liquid crystal cells of Examples 1-2 and 1-3 were obtained by using the same method as in Example 1-1. .
  • the polymer layer 50 containing an aromatic polymer was formed as in Example 1-1.
  • Example 1-1 a liquid crystal material obtained by removing the monomer represented by the chemical formula (M1-1) from the liquid crystal material 1-1 was prepared, and a comparison was made using the same method as in Example 1-1 except that no ultraviolet light was irradiated. A liquid crystal cell of Example 1 was obtained. In the liquid crystal cell of Comparative Example 1, no aromatic polymer was formed.
  • the liquid crystal cell of Comparative Example 1 in which the polymer layer 50 containing the aromatic polymer was not formed had an initial VHR of 98.8%, a residual DC of 0.23 V, and 100 hours.
  • the VHR after energization was 94.4% and the residual DC was 0.75 V.
  • the energization test confirmed a significant decrease in VHR and an increase in residual DC. This is presumably because an alkoxy group in the liquid crystal compound having the structure represented by the above chemical formula (L) was cleaved by a charge transfer reaction of charges injected from the reflective pixel electrode, and a radical was formed.
  • the initial VHR was 97.5% and the residual DC was 0.
  • the VHR after energization for 100 hours was 96.3% and the residual DC was 0.45 V, and the decrease in VHR and the increase in residual DC due to energization could be suppressed.
  • the initial VHR is in the 98% range
  • the residual DC is 0 V
  • the VHR after 100 hours of energization is in the 98% range
  • the residual DC is 0.1 V.
  • the decrease in VHR and the increase in residual DC due to energization could be suppressed.
  • flicker was not observed during driving by visual observation.
  • liquid crystal cells of Examples 1-2 and 1-3 using the monomers represented by the above chemical formulas (M1-2) and (M1-3) are examples using the monomers represented by the above chemical formula (M1-1).
  • M1-2 and M1-3 using the monomers represented by the above chemical formulas (M1-2) and (M1-3) are examples using the monomers represented by the above chemical formula (M1-1).
  • M1-1 the effect of suppressing the decrease in VHR and the increase in residual DC was observed. The reason is considered as follows.
  • Example 2-1 and Comparative Example 2 ⁇ Preparation of liquid crystal material>
  • the monomer represented by the chemical formula (M2-1) was added at a concentration of 0.03 wt% and the chemical formula (M1-1).
  • M2-1 the monomer represented by the chemical formula (M2-1) was added at a concentration of 0.03 wt% and the chemical formula (M1-1).
  • M1-1 the monomer represented by the chemical formula (M2-1) was added at a concentration of 0.03 wt% and the chemical formula (M1-1).
  • M1-1 the chemical formula (M1-1).
  • the liquid crystal material 2R was prepared by the method.
  • the monomer represented by the following chemical formula (M2-1) is a monomer that forms a radical by absorbing ultraviolet light up to around 430 nm, and can cause a polymerization reaction even when irradiated with ultraviolet light through a color filter. It is.
  • the concentration of the monomer is a concentration when the state after the monomer is added to the liquid crystal material is 100 wt%.
  • FIG. 10 is a schematic cross-sectional view showing a process for producing the reflective liquid crystal cell of Example 2-1.
  • a second substrate provided with a reflective electrode 1 (pixel electrode) comprising two layers of an Al layer and an IZO layer, a first substrate 10 comprising an insulating film 12, a color filter 22, and a common electrode 2 comprising IZO.
  • a substrate 20 was prepared.
  • a composition for a vertical alignment film containing a polyamic acid having a structure represented by the above chemical formula (P-1-1) is applied to the first substrate 10 and the second substrate 20 at 80 ° C. for 2 minutes. After pre-baking, main baking was performed at 200 ° C. for 40 minutes, and a rubbing treatment was performed.
  • the obtained liquid crystal cell was subjected to an annealing treatment at a temperature of Tni or higher for 30 minutes to perform a realignment treatment.
  • ultraviolet light having a wavelength of 365 nm is irradiated from the side of the second substrate 20 having the color filter 22 at 10 J / cm 2, and the polymer layer 50 having an aromatic polymer is aligned with the liquid crystal layer 30 and the alignment.
  • a liquid crystal cell of Example 2-1 was obtained.
  • FHF-32BLB manufactured by Toshiba Lighting & Technology was used for irradiation with ultraviolet light.
  • Example 2-1 the liquid crystal material in Example 2-1 was changed to the liquid crystal material 2R, and the same method as in Example 2-1 was used, except that ultraviolet irradiation from the second substrate 20 side was not performed. A liquid crystal cell was obtained. In the liquid crystal cell of Comparative Example 2, no aromatic polymer was formed.
  • Example 2 ⁇ Energization test> Using the same method as in Example 1-1, etc., the liquid crystal cell of Example 2-1 and Comparative Example 2 was subjected to an energization test. The results are shown in Table 2 below.
  • Example 2-1 in which the monomer represented by the chemical formula (M2-1) was used in combination, the decrease in VHR and the increase in residual DC were suppressed, but the chemical formula (M2 In Comparative Example 2 in which the monomer represented by -1) was not used, VHR decreased and residual DC increased.
  • the monomer represented by the chemical formula (M2-1) that absorbs light up to a wavelength of about 430 nm is used in combination with the monomer represented by the chemical formula (M2-1) because ultraviolet light is irradiated from the second substrate 20 side having the color filter 22.
  • the polymerization of the monomer proceeded efficiently and the polymer layer 50 containing the aromatic polymer was formed.
  • Comparative Example 2 in which the monomer represented by the chemical formula (M2-1) was not used, the polymerization of the monomer was suppressed. Conceivable.
  • the initial VHR was 98.1. %
  • the residual DC is 0.09V
  • the VHR after the energization test for 100 hours is 96.4%
  • the residual DC is 0.23V.
  • flicker was not observed during driving by visual observation.
  • Example 3-1 and Comparative Example 3 ⁇ Preparation of alignment film> An orientation comprising a polyamic acid having a structure represented by the chemical formula (P-1-1), a monomer represented by the chemical formula (M1-3), and a monomer represented by the chemical formula (M2-1) A film-forming composition 3-1 was prepared.
  • the monomer represented by the chemical formula (M1-3) is added at a concentration of 3 wt% with respect to the polyamic acid, and the monomer represented by the chemical formula (M2-1) is 0.2 wt% with respect to the polyamic acid.
  • % Concentration was added.
  • concentration of the said monomer is a density
  • the alignment film-forming composition 3-1 and the alignment film-forming composition 3-1 except that the polyamic acid in the alignment film-forming composition 3-1 was changed to a polyamic acid having a structure represented by the following chemical formula (P-1-2).
  • an alignment film forming composition 3R was prepared. Note that the polyamic acid having a structure represented by the following chemical formula (P-1-2) has an aromatic acid anhydride monomer unit.
  • a second substrate 20 was prepared. Subsequently, the alignment film forming composition 3-1 was applied to both the substrates, pre-baked at 80 ° C. for 2 minutes, and then main-baked at 200 ° C. for 40 minutes to be rubbed.
  • a sealant was applied to the first substrate 10, a liquid crystal material having negative dielectric anisotropy ( ⁇ ⁇ ⁇ 5.0) was dropped, and the second substrate 20 was bonded to produce a liquid crystal cell. .
  • the obtained liquid crystal cell was subjected to an annealing treatment at a temperature of Tni or higher for 30 minutes to perform a realignment treatment.
  • ultraviolet light having a wavelength of 365 nm is irradiated from the second substrate 20 side having the color filter 22 at 10 J / cm 2 to polymerize the monomers in the alignment film forming composition.
  • An aromatic polymer was formed to obtain a liquid crystal cell of Example 3-1.
  • FHF-32BLB manufactured by Toshiba Lighting & Technology was used for irradiation with ultraviolet light.
  • a liquid crystal cell of Comparative Example 3 was used in the same manner as in Example 3-1, except that the alignment film forming composition 3-1 in Example 3-1 was changed to the alignment film forming composition 3R. Was made.
  • Example 3-1 an alignment film 40a containing an aromatic polymer is formed, and a thin polymer containing an aromatic polymer is provided on the liquid crystal layer 30 side surface of the alignment film 40a containing an aromatic polymer. Layer 50 was formed. On the other hand, no aromatic polymer was formed in the liquid crystal cell of Comparative Example 3.
  • Example 3-1 ⁇ Energization test> Using the same method as in Example 1-1, etc., a current test was conducted on the liquid crystal cells of Example 3-1 and Comparative Example 3. The results are shown in Table 3 below.
  • the VHR at the initial point is as low as 96.0% and the residual DC is 0.36V. it was high. Furthermore, VHR after 100 hours further decreased to 92.3%, and the residual DC increased to 1.06V.
  • the reason for this is that the aromatic acid anhydride contained in the polyamic acid is irradiated with ultraviolet light irradiated to polymerize the monomers represented by the chemical formulas (M1-3) and (M2-1). It can be considered that polymerization of the monomer was difficult to occur because the monomer unit absorbed.
  • Example 4-1 and Comparative Example 4 ⁇ Preparation of photo-alignment film> An orientation comprising a polyamic acid having a structure represented by the following chemical formula (P-1-3), a monomer represented by the above chemical formula (M1-3), and a monomer represented by the above chemical formula (M2-1) A film-forming composition 4-1 was prepared.
  • the monomer represented by the chemical formula (M1-3) is added at a concentration of 3 wt% with respect to the polyamic acid, and the monomer represented by the chemical formula (M2-1) is 0.2 wt% with respect to the polyamic acid. % Concentration was added.
  • the polyamic acid having a structure represented by the following chemical formula (P-1-3) is a polymer for a photoalignment film having an aliphatic acid anhydride monomer unit and having a cinnamate group.
  • the concentration of the monomer is a concentration when the total amount of the monomer and the polyamic acid is 100 wt%.
  • the alignment film-forming composition 4-1 and the alignment film-forming composition 4-1 except that the polyamic acid in the alignment film-forming composition 4-1 was changed to a polyamic acid having a structure represented by the following chemical formula (P-1-4).
  • a polyamic acid having a structure represented by the following chemical formula (P-1-4) is a polymer for a photoalignment film having an aromatic acid anhydride monomer unit and having a cinnamate group.
  • a first substrate 10 having a reflective electrode 1 made of Ag and a second substrate 20 having a transparent electrode made of ITO were prepared.
  • the alignment film forming composition 4-1 was applied to both the substrates, pre-baked at 80 ° C. for 2 minutes, followed by main baking at 200 ° C. for 40 minutes, and polarized ultraviolet light of 25 mJ / cm 2. Two photoirradiation treatments were performed.
  • a sealant was applied to the first substrate 10, a liquid crystal material having negative dielectric anisotropy ( ⁇ ⁇ ⁇ 5.0) was dropped, and the second substrate 20 was bonded to produce a liquid crystal cell. .
  • the obtained liquid crystal cell was subjected to an annealing treatment at a temperature of Tni or higher for 30 minutes to perform a realignment treatment.
  • ultraviolet light having a wavelength of 365 nm is irradiated from the second substrate 20 side having the color filter 22 at 10 J / cm 2 to polymerize the monomers in the alignment film forming composition.
  • An aromatic polymer was formed to obtain a liquid crystal cell of Example 4-1.
  • FHF-32BLB manufactured by Toshiba Lighting & Technology was used for irradiation with ultraviolet light.
  • a liquid crystal cell of Comparative Example 4 was used in the same manner as in Example 4-1, except that the alignment film forming composition 4-1 in Example 4-1 was changed to the alignment film forming composition 4R. Was made.
  • Example 4-1 In the liquid crystal cell of Example 4-1, an alignment film 40a containing an aromatic polymer is formed, and a polymer layer containing an aromatic polymer is provided on the liquid crystal layer 30 side surface of the alignment film 40a containing an aromatic polymer. 50 was formed.
  • the polymer layer 50 in the liquid crystal cell of Example 4-1 was thinner than the polymer layer 50 of Example 3-1, and most of the aromatic polymer was present in the alignment film 40. On the other hand, no aromatic polymer was formed in the liquid crystal cell of Comparative Example 4.
  • Example 4-1 ⁇ Energization test> Using the same method as in Example 1-1, etc., a current test was performed on the liquid crystal cells of Example 4-1 and Comparative Example 4. The results are shown in Table 4 below.
  • a polyamic acid containing an aliphatic acid anhydride monomer unit is used as the material of the alignment film 40, and is represented by the above chemical formulas (M1-3) and (M2-1) introduced into the alignment film forming composition.
  • the initial VHR was 98.2%
  • the residual DC was 0.11 V
  • the VHR after time was 97.5% and the residual DC was 0.19 V
  • the decrease in VHR and the increase in residual DC were suppressed.
  • flicker was not observed during driving by visual observation.
  • One embodiment of the present invention includes a first substrate 10 provided with a reflective electrode 1 that reflects external light, a second substrate 20 facing the first substrate 10, and between the first substrate 10 and the second substrate 20.
  • a liquid crystal layer 30 made of a liquid crystal material sandwiched and having a liquid crystal compound having an alkoxy group and having negative dielectric anisotropy, and a liquid crystal layer 30 of at least one of the first substrate 10 and the second substrate 20.
  • P 1 represents a radical polymerizable group.
  • Sp 1 represents a linear, branched or cyclic alkylene group having 1 to 6 carbon atoms, a linear, branched or cyclic alkyleneoxy group having 1 to 6 carbon atoms, or a direct bond.
  • R 2 represents —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO— group, —O—COO— group, —OCH 2 — group, —CH 2 O— group, —SCH 2 — group, —CH 2 S— group, —N (CH 3 ) — group, —N (C 2 H 5 ) — group, —N (C 3 H 7 ) — group, —N (C 4 H 9 ) — group, —CF 2 O— group, —OCF 2 — group, —CF 2 S— group, —SCF 2 — group, —N (CF 3 ) — group, —CH 2 CH 2 — Group, —CF 2 CH 2 — group, —CH 2 CF 2 — group, —CF 2 CF 2 — group, —CH ⁇ CH— group, —CF ⁇ CF— group, —C ⁇ C— group, —CH ⁇ It
  • Z represents —O— group, —S— group, —NH— group, —COO— group, —OCO— group, —O—COO— group, —OCH 2 — group, —CH 2 O— group, —SCH.
  • R 3 is a —R 2 —Sp 1 —P 1 group, a hydrogen atom, a halogen atom, a —CN group, a —NO 2 group, a —NCO group, a —NCS group, a —OCN group, a —SCN group, a —SF 5 group. Or a linear or branched alkyl group having 1 to 18 carbon atoms.
  • a 1 and A 2 are each independently 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, naphthalene-1,4-diyl group, naphthalene-1,5-diyl group, naphthalene -2,6-diyl group, decahydronaphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, phenanthrene-1,6-diyl group, phenanthrene-1, 8-diyl group, phenanthrene-2,7-diyl group, phenanthrene-3,6-diyl group, anthracene-1,5-diyl group, anthracene-1,8-diyl group, anthracene-2,6-diyl group, Or, it represents an anthracene-2,7-diyl group.
  • n 0, 1 or 2.
  • the hydrogen atom that R 3 has may be substituted with a fluorine atom or a chlorine atom.
  • the —CH 2 — group of R 3 is —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO—, unless oxygen and sulfur atoms are adjacent to each other.
  • a 1 and A 2 may be substituted with —O— groups or —S— groups as long as they are not adjacent to each other.
  • One or more hydrogen atoms of A 1 and A 2 are a fluorine atom, a chlorine atom, a —CN group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and an alkyl group having 2 to 6 carbon atoms.
  • the alkylcarbonyl group, the alkoxycarbonyl group having 2 to 6 carbon atoms, or the alkylcarbonyloxy group having 2 to 6 carbon atoms may be substituted.
  • the liquid crystal display device of one embodiment of the present invention includes an aromatic polymer having a structure derived from the monomer represented by the chemical formula (M1), the liquid crystal display device is generated from the aromatic group in the aromatic polymer and the reflective electrode 1.
  • a charge transfer reaction efficiently occurs between the charge and the charge transfer reaction in the liquid crystal layer 30 can be suppressed. Thereby, it is possible to suppress flicker that occurs during driving and burn-in that occurs due to long-time driving.
  • the monomer represented by the chemical formula (M1) may be at least one monomer represented by the following chemical formulas (M1-1) to (M1-3).
  • the liquid crystal compound may have a structure represented by the following chemical formula (L).
  • the liquid crystal compound represented by the following chemical formula (L) is cleaved by charges (electrons or holes) injected from the electrode to form radicals and ions (anions or cations), which may cause flickering or image sticking.
  • charges electrospray
  • ions anions or cations
  • flickering or image sticking may cause flickering or image sticking.
  • low-voltage driving can be realized, and flicker that occurs during driving and burn-in that occurs due to long-time driving can be suppressed.
  • each X independently represents a halogen atom or a hydrogen atom
  • R 1 represents a hydrocarbon group having 1 to 8 carbon atoms
  • the hydrogen atom may be substituted with a fluorine atom.
  • the liquid crystal material may have a dielectric anisotropy of ⁇ 5.0 or less.
  • the reflective electrode 1 may include at least one selected from the group consisting of Al, Ag, Cu, Zn, and alloys thereof.
  • the aromatic polymer may further have a structure derived from a monomer represented by the following chemical formula (M2). Since the monomer represented by the following chemical formula (M2) absorbs light up to around 430 nm, in addition to the monomer of the above chemical formula (M1), when synthesizing an aromatic polymer using the monomer of the following chemical formula (M2), Even when light irradiation is performed from the color filter substrate side, the polymerization of the monomer can proceed efficiently.
  • M2 a structure derived from a monomer represented by the following chemical formula (M2). Since the monomer represented by the following chemical formula (M2) absorbs light up to around 430 nm, in addition to the monomer of the above chemical formula (M1), when synthesizing an aromatic polymer using the monomer of the following chemical formula (M2), Even when light irradiation is performed from the color filter substrate side, the polymerization of the monomer can proceed efficiently.
  • a 3 and A 4 are each independently a phenyl group, a phenylene group, a biphenyl group, a biphenylene group, a linear or branched alkyl group having 1 to 12 carbon atoms, and a straight chain having 1 to 12 carbon atoms.
  • a 3 And at least one of A 4 comprises a —Sp 2 —P 2 group.
  • P 2 represents a polymerizable group.
  • Sp 2 represents a linear, branched or cyclic alkylene group having 1 to 6 carbon atoms, a linear, branched or cyclic alkyleneoxy group having 1 to 6 carbon atoms, or a direct bond.
  • m is 1 or 2.
  • a dotted line portion connecting A 3 and Y and a dotted line portion connecting A 4 and Y indicate that a bond via Y may exist between A 3 and A 4 .
  • Y represents a —CH 2 — group, —CH 2 CH 2 — group, —CH ⁇ CH— group, —O— group, —S— group, —NH— group, —N (CH 3 ) — group, —N (C 2 H 5 ) — group, —N (C 3 H 7 ) — group, —N (C 4 H 9 ) — group, —OCH 2 — group, —CH 2 O— group, —SCH 2 — group, —CH 2 S— group or a direct bond is represented.
  • the hydrogen atoms of A 3 and A 4 are -Sp 2 -P 2 group, halogen atom, -CN group, -NO 2 group, -NCO group, -NCS group, -OCN group, -SCN group, -SF 5
  • Two adjacent hydrogen atoms of A 3 and A 4 are substituted with a linear or branched alkylene group having 1 to 12 carbon atoms or a linear or branched alkenylene group having 2 to 12 carbon atoms Then, it may be a ring structure.
  • the hydrogen atom of the alkyl group, alkenyl group, alkylene group, alkenylene group or aralkyl group of A 3 and A 4 may be substituted with a —Sp 2 —P 2 group.
  • the —CH 2 — group of the alkyl group, alkenyl group, alkylene group, alkenylene group or aralkyl group of A 3 and A 4 is an —O— group, —S, unless an oxygen atom, a sulfur atom and a nitrogen atom are adjacent to each other.
  • the monomer represented by the chemical formula (M2) may be a monomer represented by the following chemical formula (M2-1).
  • the monomer represented by the following chemical formula (M2-1) particularly absorbs light having a long wavelength and can absorb light having a wavelength of 430 nm to 440 nm.
  • the alignment film 40 includes at least one polymer of polyamic acid and polyimide, and the at least one polymer may have an aliphatic acid anhydride monomer unit.
  • the polyamic acid may have a structure represented by the following chemical formula (P-1), and the polyimide may have a structure represented by the following chemical formula (P-2).
  • X 1 has at least one structure selected from the group consisting of the following chemical formulas (X-1) to (X-6), and Y 1 Represents a trivalent aromatic group or aliphatic group, Z 1 represents a monovalent organic group or a hydrogen atom, and p represents an integer of 1 or more.
  • the alignment film 40 may be a vertical alignment film.
  • Reflected electrode 2 Common electrode 3a: Applied voltage 3b on the pixel electrode side: Applied voltage 3c on the common electrode side: One frame of applied voltage 4: External light 5: Reflected light 5a: Light reflecting portion 6: Backlight 6a: Light transmissive part 7: Transparent electrode 10: First substrate 11, 21: Transparent substrate 12: Insulating film 20: Second substrate 22: Color filter 30: Liquid crystal layer 40: Alignment film 40a: Alignment film 50 containing an aromatic polymer : Polymer layer 60: Thin film transistor (TFT) 100: Reflective liquid crystal display device 200: Transflective liquid crystal display device

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、低電圧駆動を実現し、かつ、駆動時に発生するフリッカ及び長時間の駆動により発生する焼き付きが抑制された、反射電極を有する液晶表示装置を提供する。 本発明の液晶表示装置は、外光を反射させる反射電極が設けられた第一基板と、上記第一基板に対向する第二基板と、上記第一基板及び上記第二基板の間に挟持され、かつ、アルコキシ基を有する液晶化合物を含み、負の誘電率異方性を有する液晶材料からなる液晶層と、上記第一基板及び上記第二基板の少なくとも一方の基板の上記液晶層側に設けられた配向膜と、上記液晶層及び上記配向膜の間、及び、上記配向膜中の少なくとも一方に存在し、かつ、特定の構造を有する芳香族ポリマーとを有する。

Description

液晶表示装置
液晶表示装置に関する。より詳しくは、特に、外光を反射させる反射電極を備えた液晶表示装置に関するものである。
近年、スマートフォンやタブレット端末等の各種電子機器の表示装置として、薄くて軽量であるとともに、低電圧で駆動でき、かつ、消費電力が少ないという長所を有する液晶表示装置が広く使用されている。
このような長所を有する液晶表示装置として、例えば、バックライトを必要とせず、外光の反射を利用して画像を表示する反射型液晶表示装置が提案されている。また、暗い室内等においても視認性が向上するよう、暗所ではバックライトを使用し、明所では外光の反射を利用して画像を表示する半透過型液晶表示装置も開発されている。半透過型液晶表示装置は、透過型モード及び反射型モードの両方で画像を表示する機能をもつ液晶表示装置であり、バックライトを有するために暗所においても視認性が高いという透過型液晶表示装置の特徴と、外光を利用するために低消費電力であるという反射型液晶表示装置の特徴とを併せもつ液晶表示装置である。
特許文献1では、対向配置された一対の基板に封止され、光又は熱により重合する重合性成分を含有する液晶と、一方の上記基板上に配置された反射電極と、上記液晶に電圧を印加しながら上記重合性成分を重合して上記反射電極上に形成した、液晶分子にプレチルト角を付与するポリマー層とを有する反射型液晶表示装置が開示されている。同じく、特許文献1では、対向配置された一対の基板に封止され、光又は熱により重合する重合性成分を含有する液晶と、一方の上記基板面に配置された光反射部及び光透過部と、上記液晶に印加する電圧を調整しながら上記重合性成分を重合して上記光反射部及び上記光透過部に形成した、液晶分子にプレチルト角を付与するポリマー層とを有する半透過型液晶表示装置が開示されている。また、特許文献1には、垂直配向型及び水平配向型の各種配向モードの液晶表示装置が開示されている。
特開2012-78875号公報
しかしながら、上記特許文献1では、反射電極を有する低電圧駆動の液晶表示装置において、駆動時に発生するフリッカ及び長時間の駆動により発生する焼き付きを抑制する技術については何ら開示されていない。
本発明は上記に鑑みてなされたものであり、低電圧駆動を実現し、かつ、駆動時に発生するフリッカ及び長時間の駆動により発生する焼き付きが抑制された、反射電極を有する液晶表示装置を提供することを目的とするものである。
本発明者らは、低電圧駆動を実現するために、アルコキシ基を有する液晶化合物を含む液晶材料を用いることに着目した。しかしながら、反射電極を有する液晶表示装置にそのような液晶材料を適用した場合には、フリッカ及び焼き付きが発生することが分かった。その原因について検討したところ、反射電極から発生した電荷と液晶化合物との間での電荷移動反応が生じていることを見出した。そこで、低電圧駆動を実現し、かつ、駆動時に発生するフリッカ及び長時間の駆動により発生する焼き付きが抑制された、反射電極を有する液晶表示装置を得る方法について種々検討した結果、液晶層及び配向膜の間、又は、配向膜中に特定の構造を有する芳香族ポリマーを用い、反射電極から発生した電荷と芳香族ポリマーとの間で効率よく電荷移動反応を起こさせることにより、反射電極から発生した電荷と液晶化合物との間での電荷移動反応を抑制できることを見出した。これにより、上記課題をみごとに解決できることに想到し、本発明に到達したものである。
すなわち、本発明の一態様は、外光を反射させる反射電極が設けられた第一基板と、上記第一基板に対向する第二基板と、上記第一基板及び上記第二基板の間に挟持され、かつ、アルコキシ基を有する液晶化合物を含み、負の誘電率異方性を有する液晶材料からなる液晶層と、上記第一基板及び上記第二基板の少なくとも一方の基板の上記液晶層側に設けられた配向膜と、上記液晶層及び上記配向膜の間、及び、上記配向膜中の少なくとも一方に存在し、かつ、下記化学式(M1)で表されるモノマーに由来する構造を有する芳香族ポリマーとを有する液晶表示装置であってもよい。
Figure JPOXMLDOC01-appb-C000011
(式中、Pは、ラジカル重合性基を表す。
Spは、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレン基、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレンオキシ基、又は、直接結合を表す。
は、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。
Zは、-O-基、-S-基、-NH-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。
は、-R-Sp-P基、水素原子、ハロゲン原子、-CN基、-NO基、-NCO基、-NCS基、-OCN基、-SCN基、-SF基、又は、炭素数1~18の直鎖状もしくは分枝状のアルキル基を表す。
及びAは各々独立に、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、フェナントレン-1,6-ジイル基、フェナントレン-1,8-ジイル基、フェナントレン-2,7-ジイル基、フェナントレン-3,6-ジイル基、アントラセン-1,5-ジイル基、アントラセン-1,8-ジイル基、アントラセン-2,6-ジイル基、又は、アントラセン-2,7-ジイル基を表す。
nは0、1又は2である。
が有する水素原子は、フッ素原子又は塩素原子で置換されていてもよい。Rが有する-CH-基は、酸素原子及び硫黄原子が互いに隣接しない限り、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、又は、-OCO-CH=CH-基で置換されていてもよい。
及びAが有する-CH-基は、互いに隣接しない限り-O-基又は-S-基で置換されていてもよい。A及びAが有する1又は2以上の水素原子は、フッ素原子、塩素原子、-CN基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数2~6のアルキルカルボニル基、炭素数2~6のアルコキシカルボニル基、又は、炭素数2~6のアルキルカルボニルオキシ基で置換されていてもよい。)
上記化学式(M1)で表されるモノマーは、下記化学式(M1-1)~(M1-3)で表される少なくとも1種のモノマーであってもよい。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
上記液晶化合物は、下記化学式(L)で表される構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000015
(式中、Xは各々独立にハロゲン原子又は水素原子を表し、Rは炭素数1~8の炭化水素基を表し、水素原子はフッ素原子で置換されていてもよい。)
上記液晶材料は、誘電率異方性が-5.0以下であってもよい。
上記反射電極は、Al、Ag、Cu、Zn及びそれらの合金からなる群より選択される少なくとも1種を含んでいてもよい。
上記芳香族ポリマーは、更に、下記化学式(M2)で表されるモノマーに由来する構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000016
(式中、A及びAは各々独立に、フェニル基、フェニレン基、ビフェニル基、ビフェニレン基、炭素数1~12の直鎖状もしくは分枝状のアルキル基、炭素数1~12の直鎖状もしくは分枝状のアルキレン基、炭素数2~12の直鎖状もしくは分枝状のアルケニル基、又は、炭素数2~12の直鎖状もしくは分枝状のアルケニレン基を表す。A及びAの少なくとも一方は、-Sp-P基を含む。
は、重合性基を表す。
Spは、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレン基、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレンオキシ基、又は、直接結合を表す。
mは1又は2である。
とYとをつなぐ点線部分、及び、AとYとをつなぐ点線部分は、AとAとの間にYを介した結合が存在していてもよいことを表す。
Yは、-CH-基、-CHCH-基、-CH=CH-基、-O-基、-S-基、-NH-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、又は、直接結合を表す。
及びAが有する水素原子は、-Sp-P基、ハロゲン原子、-CN基、-NO基、-NCO基、-NCS基、-OCN基、-SCN基、-SF基、炭素数1~12の直鎖状もしくは分枝状のアルキル基、炭素数2~12の直鎖状もしくは分枝状のアルケニル基、又は、炭素数7~12の直鎖状もしくは分枝状のアラルキル基で置換されていてもよい。
及びAが有する隣接する2つの水素原子は、炭素数1~12の直鎖状もしくは分枝状のアルキレン基又は炭素数2~12の直鎖状もしくは分枝状のアルケニレン基で置換されて、環状構造となっていてもよい。
及びAのアルキル基、アルケニル基、アルキレン基、アルケニレン基又はアラルキル基が有する水素原子は、-Sp-P基で置換されていてもよい。
及びAのアルキル基、アルケニル基、アルキレン基、アルケニレン基又はアラルキル基が有する-CH-基は、酸素原子、硫黄原子及び窒素原子が互いに隣接しない限り、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、又は、-OCO-CH=CH-基で置換されていてもよい。)
上記化学式(M2)で表されるモノマーは、下記化学式(M2-1)で表されるモノマーであってもよい。
Figure JPOXMLDOC01-appb-C000017
上記配向膜は、ポリアミック酸及びポリイミドの少なくとも一方のポリマーを含み、かつ、上記少なくとも一方のポリマーは、脂肪族酸無水物モノマーユニットを有していてもよい。
上記ポリアミック酸は、下記化学式(P-1)で表される構造を有し、上記ポリイミドは、下記化学式(P-2)で表される構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(上記式(P-1)及び(P-2)中、Xは下記化学式(X-1)~(X-6)からなる群より選択される少なくとも1種の構造を有し、Yは3価の芳香族基又は脂肪族基を表し、Zは1価の有機基又は水素原子を表す。pは1以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000020
上記配向膜は、垂直配向膜であってもよい。
本発明によれば、低電圧駆動を実現し、かつ、駆動時に発生するフリッカ及び長時間の駆動により発生する焼き付きが抑制された、反射電極を有する液晶表示装置を提供することができる。
実施形態1の反射型液晶表示装置に関する図であり、(a)は反射型液晶表示装置の断面模式図であり、(b)は(a)を拡大した断面模式図である。 実施形態1において、画素電極及び共通電極から印加される電圧の波形を示した模式図である。 実施形態1の変形例1の反射型液晶表示装置の断面模式図である。 実施形態1の変形例2の反射型液晶表示装置の断面模式図である。 実施形態1の変形例3の反射型液晶表示装置の断面模式図である。 実施形態2の半透過型液晶表示装置に関する図であり、(a)は半透過型液晶表示装置の断面模式図であり、(b)は(a)を拡大した断面模式図である。 実施形態2の変形例1の半透過型液晶表示装置の断面模式図である。 実施形態2の変形例2の半透過型液晶表示装置の断面模式図である。 実施形態2の変形例3の反射型液晶表示装置の断面模式図である。 実施例2-1の反射型液晶セルを作製する工程を示した断面模式図である。
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。また、各実施形態の構成は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよいし、変更されてもよい。
本発明は、水平配向モード及び垂直配向モードのいずれにも適用することができるが、特に垂直配向モードで好ましく用いられる。
[実施形態1]
図1は、実施形態1の反射型液晶表示装置に関する図であり、(a)は反射型液晶表示装置の断面模式図であり、(b)は(a)を拡大した断面模式図である。図1(a)及び(b)に示したように、本実施形態の反射型液晶表示装置100は、外光を反射させる反射電極1が設けられた第一基板10と、第一基板10に対向する第二基板20と、第一基板10及び第二基板20の間に挟持された液晶層30と、第一基板10及び第二基板20の液晶層30側に設けられた配向膜40と、液晶層30及び配向膜40の間に設けられたポリマー層50とを備え、ポリマー層50には、下記化学式(M1)で表されるモノマーに由来する構造を有する芳香族ポリマーが含まれている。
Figure JPOXMLDOC01-appb-C000021
(式中、Pは、ラジカル重合性基を表す。
Spは、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレン基、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレンオキシ基、又は、直接結合を表す。
は、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。
Zは、-O-基、-S-基、-NH-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。
は、-R-Sp-P基、水素原子、ハロゲン原子、-CN基、-NO基、-NCO基、-NCS基、-OCN基、-SCN基、-SF基、又は、炭素数1~18の直鎖状もしくは分枝状のアルキル基を表す。
及びAは各々独立に、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、フェナントレン-1,6-ジイル基、フェナントレン-1,8-ジイル基、フェナントレン-2,7-ジイル基、フェナントレン-3,6-ジイル基、アントラセン-1,5-ジイル基、アントラセン-1,8-ジイル基、アントラセン-2,6-ジイル基、又は、アントラセン-2,7-ジイル基を表す。
nは0、1又は2である。
が有する水素原子は、フッ素原子又は塩素原子で置換されていてもよい。Rが有する-CH-基は、酸素原子及び硫黄原子が互いに隣接しない限り、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、又は、-OCO-CH=CH-基で置換されていてもよい。
及びAが有する-CH-基は、互いに隣接しない限り-O-基又は-S-基で置換されていてもよい。A及びAが有する1又は2以上の水素原子は、フッ素原子、塩素原子、-CN基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数2~6のアルキルカルボニル基、炭素数2~6のアルコキシカルボニル基、又は、炭素数2~6のアルキルカルボニルオキシ基で置換されていてもよい。)
また、本実施形態の反射型液晶表示装置100における第一基板10は、TFT60を有し、かつ、液晶層30側に向かって、透明基板11と、絶縁膜12と、反射電極1とを順に有する。第二基板20は、液晶層30側に向かって、透明基板21と、カラーフィルタ22と、共通電極2とを順に有する。
本実施形態の反射型液晶表示装置100は、ポリマー層50に特定の構造を有する芳香族ポリマーを含むため、上記芳香族ポリマーにおける芳香族基と、反射電極1から発生した電荷との間で効率よく電荷移動反応が起こり、液晶層30中での電荷移動反応を抑制することができる。これにより、駆動時に発生するフリッカ及び長時間の駆動により発生する焼き付きを抑制することができる。以下により詳しく説明する。
低電圧駆動型垂直配向モードの反射型液晶表示装置では、例えば、誘電率異方性(Δε)が-5.0以下である液晶材料が用いられる。このような負の誘電率異方性を有する液晶材料中には、下記化学式(L)で表される構造を有する液晶化合物が含まれることがある。
Figure JPOXMLDOC01-appb-C000022
(式中、Xは各々独立にハロゲン原子又は水素原子を表し、Rは炭素数1~8の炭化水素基を表し、水素原子はフッ素原子で置換されていてもよい。)
上記化学式(L)で表される構造を有する液晶化合物のように、アルコキシ基を有する液晶化合物は、電極から注入される電荷(電子又は正孔)により開裂し、下記式1~式4のようにラジカル及びイオン(アニオン又はカチオン)を形成する。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
ここで、反射型液晶表示装置では、外光を反射させるために、Al、Ag、Cu、Zn等の反射機能を有する電極が用いられる。このような反射電極はITOやIZO等の一般的な透明電極に比べて活性度が高くイオン化し易いため、電荷注入も起こり易い。したがって、反射電極から注入された電荷の一部が液晶化合物と反応し、上記式1~式4に示すような開裂反応を起こし易い。上記式1~式4に示したような開裂反応により生じたアニオン及びカチオンは、下記式5に示した中和反応を起こすが、ラジカルは残存するため、フリッカや焼き付き等の原因となってしまう。また、上記式1~式4におけるフェニレン基の部分がビフェニレン基、ターフェニレン基となり共役が広がるほど、π共役が発達し、反応性が高くなるので、上記開裂反応は起こり易くなる。
Figure JPOXMLDOC01-appb-C000027
そこで、本実施形態の反射型液晶表示装置100では、反射電極1から注入される電荷と液晶化合物との間の電荷移動反応を抑制するために、特定の構造を有する芳香族ポリマーを含むポリマー層50を、液晶層30及び配向膜40の間に設けることにより、反射電極1から注入された電荷と芳香族ポリマーとが、優先的に下記式6に示した電荷移動反応を起こすようにした。
Figure JPOXMLDOC01-appb-C000028
芳香族ポリマーは分子の可動性が低いため、仮に芳香族ポリマー中にラジカルが発生しても、液晶層30中の液晶化合物と接触する可能性が低く、フリッカ及び焼き付きの発生を抑制することができる。また、縮合環構造、フェニレン構造、ベンゾフェノン構造又はベンジル構造を複数含むモノマーを重合して芳香族ポリマーを形成することにより、反射電極1からの電荷と芳香族ポリマーとの間でより効率良く電荷移動反応を起こすことができ、フリッカ及び焼き付きの発生を更に抑制することができる。
<基板>
第一基板10としてはアレイ基板が好適である。本実施形態の第一基板10は、透明基板11の液晶層30側の上層に反射電極1を有している。透明基板11としては、例えば、ガラス基板、プラスチック基板等が挙げられる。
第二基板20としては、カラーフィルタ基板が好適である。本実施形態の第二基板20は透明基板21の液晶層30側の上層にカラーフィルタ22及び共通電極2を有している。透明基板21としては、例えば、ガラス基板、プラスチック基板等が挙げられる。カラーフィルタ22の色の組み合わせは特に限定されず、例えば、赤色、緑色、及び、青色の組み合わせ、赤色、緑色、青色、及び、黄色の組み合わせ等が挙げられる。
第一基板10及び第二基板20は、液晶層30を挟持するように、シール剤を用いて貼り合わされている。シール剤は、熱により硬化するもの、紫外光の照射により硬化するもの、又は、その両方を用いることが可能である。
(電極)
本実施形態の反射型液晶表示装置100は、画素電極及び共通電極を有する。本実施形態では、第一基板10に設けられた反射電極1が画素電極であり、第二基板20には共通電極2が設けられている。
本実施形態の反射型液晶表示装置100は、反射電極1を用いて外部から取り込んだ光を液晶表示装置内で反射させることにより、バックライトを使用することなく画像を表示することが可能となり、低消費電力化を図ることができる。
反射電極1は、外光4を反射させて反射光5を発生させる電極であり、反射率の高い材料により構成される。外光4をより効率よく反射させるために、反射電極1は、表面に凹凸形状を有している。このように、本実施形態の反射型液晶表示装置100は、凹凸形状を有する反射電極1を画素電極として用いており、TFT60によって駆動される電極自体に反射機能を併せ持たせたMRS構造(Micro Reflective Structure:マイクロ反射電極構造)を有している。なお、本実施形態の反射型液晶表示装置100はTFT60を備えるが、TFTを有さないパッシブ駆動型の液晶表示装置とすることもできる。
反射電極1は、Al、Ag、Cu、Zn及びそれらの合金からなる群より選択される少なくとも1種を含むことが好ましい。
共通電極2の材料としては、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛(ZnO)、酸化スズ(SnO)等の透明導電材料、又はそれらの合金が用いられる。
図2は、実施形態1において、画素電極及び共通電極から印加される電圧の波形を示した模式図である。図2には、画素電極側の印加電圧3a、共通電極側の印加電圧3b、及び、印加電圧の1フレームを表す3cが示されている。リフレッシュレートが60Hzの場合、1フレームは16.7msであり、1Hzの場合、1フレームは1000msである。
画素電極側の印加電圧3aは、通常、図2に示したように、周波数と解像度に対応した矩形波電圧(パルス電圧)となり、この印加電圧は可変である。リフレッシュレートが60Hzで解像度がフルハイビジョンの場合、1パルスの電圧印加時間はおよそ15μsと短い。また、一般的に、画素電極と誘電体が接している場合、印加電圧値が変化した瞬間に一瞬、誘電体を構成する分子中の自由電子やπ共役系物質と画素電極との間で電荷相互作用(電子又は正孔の移動)が起こる。したがって、画素電極と接している誘電体中に芳香族基を有する化合物が含まれている場合、電圧値が変動した瞬間に、画素電極から芳香族基中に電子が流れたり、また逆に芳香族基中から画素電極に電子が流れたりする。このような電子の受け渡し(酸化還元反応)が液晶表示装置の駆動期間中に継続的に行われると、芳香族基から最終的にイオンが形成され、フリッカや焼き付きを発生させる。また、活性の高い金属等(Al、Ag、Cu、Znやそれらの合金)の電極材料を画素電極に用いた場合、電子又は正孔が金属表面に形成され易くなるため、誘電体中への電荷移動が起こり易くなる。
共通電極からは、通常、一定の電圧が挿入されるのみである(DCオフセットのかからない電圧値を選択する)。このように一定電圧の挿入しか起こらない場合、経時的な印加電圧変動が無いため、電極と誘電体間ですぐに平衡状態になり、電極と誘電体との間で電荷相互作用は起こらず、結果として酸化還元反応は起こらない。したがって共通電極が芳香族基を有する化合物を含む誘電体と接触していてもイオン化は起こらないか、非常に起こりにくい。
以上のような理由から、共通電極側からの電荷移動に比べて、画素電極側からの電荷移動の方が起こり易い。本実施形態では、反射電極1を画素電極として用いているため、誘電体中への電荷移動がより起こり易いが、液晶層30及び配向膜40の間に、特定の構造を有する芳香族ポリマーが存在することにより、反射電極1と液晶層30との間での電荷移動反応を抑制することが可能となる。
<液晶層>
本実施形態の液晶層30は、負の誘電率異方性を有する液晶材料(ネガ型液晶材料とも言う)からなり、液晶材料はアルコキシ基を有する液晶化合物を含み、Δεを小さくする(Δεの絶対値を大きくする)ことで低電圧駆動を実現することができる。アルコキシ基を有する液晶化合物は、電極等から発生した電荷と反応して開裂し、ラジカルを発生してしまうが、本実施形態の反射型液晶表示装置100では、芳香族ポリマーを含むポリマー層50が設けられているため、液晶化合物と芳香族ポリマーとの間で優先的に電荷移動反応を起こし、液晶化合物の開裂反応を抑制することができる。
アルコキシ基を有する液晶化合物は、上記化学式(L)で表される構造を有する化合物であることが好ましい。上記化学式(L)で表される構造を有する液晶化合物を用いることにより、負の誘電率異方性の絶対値を大きくし、更なる低電圧駆動を実現することができる。
上記化学式(L)において、Xは各々独立にハロゲン原子又は水素原子を表す。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられ、フッ素原子であることが好ましい。上記化学式(L)において複数あるXは同一であっても異なっていてもよい。
上記化学式(L)において、Rは炭素数1~8の炭化水素基を表し、液晶材料の粘性を低くする観点から、炭素数1~5の炭化水素基であることが好ましい。また、炭素数の大きな液晶化合物を併用することにより、液晶層の温度レンジをより広くすることが可能となる。
上記化学式(L)で表される構造を有する液晶化合物は、下記化学式(L1)~(L5)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000029
(式中、mは1~8の整数を表し、nは1~8の整数を表し、水素原子はハロゲン原子で置換されていてもよい。)
また、上記化学式(L3)で表される化合物の例として、下記化学式(L3-1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000030
(式中、水素原子はハロゲン原子で置換されていてもよい。)
負の誘電率異方性を有する液晶材料の誘電率異方性(Δε)は-5.0以下であることが好ましく、-5.5以下であることがより好ましく、-6.0以下であることが更に好ましい。負の誘電率異方性を有する液晶材料の誘電率異方性を上記の範囲とすることにより、低電圧駆動が求められる液晶表示装置において、より好適に用いることが可能となる。
なお、誘電率異方性(Δε)は、下記式(L)で定義される。
Δε=(長軸方向の誘電率)-(短軸方向の誘電率)  (L)
液晶材料の誘電率異方性(Δε)は、水平配向又は垂直配向の液晶セルを作製し、高電圧印加前後の容量値を用いて、長軸方向の誘電率と短軸方向の誘電率を算出して求めることができる。
負の誘電率異方性を有する液晶材料は、アルコキシ基を有する液晶化合物以外の液晶化合物を含有してもよい。
<ポリマー層>
本実施形態のポリマー層50は、液晶層30及び配向膜40の間に位置する層であり、下記に説明する芳香族ポリマーを含む層である。なお、ポリマー層50は配向膜40中に設けられていてもよい。
(芳香族ポリマー)
本実施形態の芳香族ポリマーは、下記化学式(M1)で表されるモノマーに由来する構造を有する。本実施形態の芳香族ポリマーはポリマー層50に含有されるが、芳香族ポリマーはポリマー層を形成せずに配向膜中に存在していてもよい。なお、下記化学式(M1)で表されるモノマーに由来する構造を有するポリマーとは、下記化学式(M1)で表されるモノマーを重合して得られたポリマーである。
芳香族ポリマーを含むポリマー層50が、液晶層30及び配向膜40の間に存在することにより、反射電極1から発生した電荷と芳香族ポリマーとの間で効率よく電荷移動反応が起こり、液晶層30中へ電荷注入が起こる確率が低下し、液晶層30中での電荷移動反応が抑制されるため、駆動時に発生するフリッカ及び長時間の駆動により発生する焼き付きを抑制することができる。
Figure JPOXMLDOC01-appb-C000031
(式中、Pは、ラジカル重合性基を表す。
Spは、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレン基、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレンオキシ基、又は、直接結合を表す。
は、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。
Zは、-O-基、-S-基、-NH-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。
は、-R-Sp-P基、水素原子、ハロゲン原子、-CN基、-NO基、-NCO基、-NCS基、-OCN基、-SCN基、-SF基、又は、炭素数1~18の直鎖状もしくは分枝状のアルキル基を表す。
及びAは各々独立に、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、フェナントレン-1,6-ジイル基、フェナントレン-1,8-ジイル基、フェナントレン-2,7-ジイル基、フェナントレン-3,6-ジイル基、アントラセン-1,5-ジイル基、アントラセン-1,8-ジイル基、アントラセン-2,6-ジイル基、又は、アントラセン-2,7-ジイル基を表す。
nは0、1又は2である。
が有する水素原子は、フッ素原子又は塩素原子で置換されていてもよい。Rが有する-CH-基は、酸素原子及び硫黄原子が互いに隣接しない限り、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、又は、-OCO-CH=CH-基で置換されていてもよい。
及びAが有する-CH-基は、互いに隣接しない限り-O-基又は-S-基で置換されていてもよい。A及びAが有する1又は2以上の水素原子は、フッ素原子、塩素原子、-CN基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数2~6のアルキルカルボニル基、炭素数2~6のアルコキシカルボニル基、又は、炭素数2~6のアルキルカルボニルオキシ基で置換されていてもよい。)
上記化学式(M1)におけるPは、ラジカル重合性基を表し、ラジカル重合性基の例としては、アクリレート基、メタクリレート基、アクリルアミド基、メタクリルアミド基、ビニル基、又は、ビニルオキシ基等が挙げられる。反応速度を向上させる観点からは、アクリレート基、アクリルアミド基、ビニル基又はビニルオキシ基が好ましく、ポリマー層の剛直性向上によるチルト角安定化の観点からは、メタクリレート基又はメタクリルアミド基が好ましい。
上記化学式(M1)におけるSpは、ポリマー層の剛直性向上によるチルト角安定化の観点から直接結合であることが好ましく、モノマーの重合速度向上の観点から直鎖状のアルキレン基又はアルキレンオキシ基であることが好ましい。
上記化学式(M1)で表されるモノマーは、縮合環構造の発達したフェナントレンを含むモノマーであることが好ましく、上記化学式(M1)におけるA及びAは各々独立に、フェナントレン-1,6-ジイル基、フェナントレン-1,8-ジイル基、フェナントレン-2,7-ジイル基、又は、フェナントレン-3,6-ジイル基であることがより好ましい。これにより、反射電極1から発生した電荷と芳香族ポリマーとの間でより効率よく電荷移動反応を起こすことができる。
上記化学式(M1)におけるZは、直接結合であることが好ましい。
上記化学式(M1)におけるRは、-R-Sp-P基であることが好ましい。
また、上記化学式(M1)における、Pはアクリレート基又はメタクリレート基であり、Spは直接結合であり、Rは直接結合であり、A及びAは各々独立に1,4-フェニレン基、2,6-ナフタレン基又は2,7-フェナントレン基であり、Zは直接結合であり、Rは-R-Sp-P基であり、かつ、nは0又は1であることが好ましい。上記化学式(M1)における、Pはメタクリレート基であり、Spは直接結合であり、Rは直接結合であり、A及びAは各々独立に1,4-フェニレン基又は2,7-フェナントレン基であり、Zは直接結合であり、Rは-R-Sp-P基であり、かつ、nは0又は1であることがより好ましい。このような態様とすることにより、モノマーの重合速度を速め、かつ、チルト角安定性を高めることが可能となる。
上記化学式(M1)のSpにおける、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレン基とは、炭素数1~6の直鎖状のアルキレン基、炭素数3~6の分枝状のアルキレン基もしくは炭素数3~6の環状のアルキレン基を表す。
上記化学式(M1)のSpにおける、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレンオキシ基とは、炭素数1~6の直鎖状のアルキレンオキシ基、炭素数2~6の分枝状のアルキレンオキシ基もしくは炭素数3~6の環状のアルキレンオキシ基を表す。
上記化学式(M1)のRにおける、炭素数1~18の直鎖状もしくは分枝状のアルキル基とは、炭素数1~18の直鎖状のアルキル基もしくは炭素数3~18の分枝状のアルキル基を表す。
上記化学式(M1)で表されるモノマーは、下記化学式(M1-1)~(M1-3)で表される少なくとも1種のモノマーであることが好ましい。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
芳香族ポリマーは、上記化学式(M1)で表されるモノマーに由来する構造に加えて、下記化学式(M2)で表されるモノマーに由来する構造を有することが好ましい。下記化学式(M2)で表されるモノマーは430nm付近までの光を吸収するため、上記化学式(M1)のモノマーに加えて、下記化学式(M2)のモノマーを用いて芳香族ポリマーを合成する場合、カラーフィルタ基板側から光照射を行う場合でも効率よくモノマーの重合を進行させることが可能となる。下記化学式(M2)で表されるモノマーは、ベンジル系開始剤モノマーともいう。
Figure JPOXMLDOC01-appb-C000035
(式中、A及びAは各々独立に、フェニル基、フェニレン基、ビフェニル基、ビフェニレン基、炭素数1~12の直鎖状もしくは分枝状のアルキル基、炭素数1~12の直鎖状もしくは分枝状のアルキレン基、炭素数2~12の直鎖状もしくは分枝状のアルケニル基、又は、炭素数2~12の直鎖状もしくは分枝状のアルケニレン基を表す。A及びAの少なくとも一方は、-Sp-P基を含む。
は、重合性基を表す。
Spは、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレン基、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレンオキシ基、又は、直接結合を表す。
mは1又は2である。
とYとをつなぐ点線部分、及び、AとYとをつなぐ点線部分は、AとAとの間にYを介した結合が存在していてもよいことを表す。
Yは、-CH-基、-CHCH-基、-CH=CH-基、-O-基、-S-基、-NH-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、又は、直接結合を表す。
及びAが有する水素原子は、-Sp-P基、ハロゲン原子、-CN基、-NO基、-NCO基、-NCS基、-OCN基、-SCN基、-SF基、炭素数1~12の直鎖状もしくは分枝状のアルキル基、炭素数2~12の直鎖状もしくは分枝状のアルケニル基、又は、炭素数7~12の直鎖状もしくは分枝状のアラルキル基で置換されていてもよい。
及びAが有する隣接する2つの水素原子は、炭素数1~12の直鎖状もしくは分枝状のアルキレン基又は炭素数2~12の直鎖状もしくは分枝状のアルケニレン基で置換されて、環状構造となっていてもよい。
及びAのアルキル基、アルケニル基、アルキレン基、アルケニレン基又はアラルキル基が有する水素原子は、-Sp-P基で置換されていてもよい。
及びAのアルキル基、アルケニル基、アルキレン基、アルケニレン基又はアラルキル基が有する-CH-基は、酸素原子、硫黄原子及び窒素原子が互いに隣接しない限り、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、又は、-OCO-CH=CH-基で置換されていてもよい。)
上記化学式(M2)におけるA及びAは各々独立に、フェニル基又はフェニレン基であることが好ましい。
上記化学式(M2)におけるPは、重合性基を表す。重合性基としては、ラジカル重合性基、カチオン重合性基、及び、アニオン重合性基が挙げられ、ラジカル重合性基であることが好ましい。
ラジカル重合性基の例としては、アクリレート基、メタクリレート基、アクリルアミド基、メタクリルアミド基、ビニル基、又は、ビニルオキシ基等が挙げられる。反応速度を向上させる観点からは、アクリレート基、アクリルアミド基、ビニル基又はビニルオキシ基が好ましく、ポリマー層の剛直性向上によるチルト角安定化の観点からは、メタクリレート基又はメタクリルアミド基が好ましい。
上記化学式(M2)におけるSpは、ポリマー層の剛直性向上によるチルト角安定化の観点から直接結合であることが好ましく、モノマーの重合速度向上の観点から直鎖状のアルキレン基又はアルキレンオキシ基であることが好ましい。
上記化学式(M2)におけるmは、1又は2であることが好ましい。
上記化学式(M2)におけるYは、-O-基、-S-基、-NH-基又は直接結合であることが好ましく、-O-基又は-S-基であることが更に好ましい。
また、上記化学式(M2)における、A及びAはフェニレン基であり、Pはアクリレート基又はメタクリレート基であり、Spは直接結合であり、かつ、mは1又は2であることが好ましい。上記化学式(M2)における、A及びAはフェニレン基であり、Pはメタクリレート基であり、Spは直接結合であり、かつ、mは2であることがより好ましい。このような態様とすることにより、チルト角安定性をより高め、かつ、光吸収波長をより長波長とすることができる。
上記化学式(M2)のA及びAにおける、炭素数1~12の直鎖状もしくは分枝状のアルキル基とは、炭素数1~12の直鎖状のアルキル基もしくは炭素数3~12の分枝状のアルキル基を表す。
上記化学式(M2)のA及びAにおける、炭素数1~12の直鎖状もしくは分枝状のアルキレン基とは、炭素数1~12の直鎖状のアルキレン基もしくは炭素数3~12の分枝状のアルキレン基を表す。
上記化学式(M2)のA及びAにおける、炭素数2~12の直鎖状もしくは分枝状のアルケニル基とは、炭素数2~12の直鎖状のアルケニル基もしくは炭素数3~12の分枝状のアルケニル基を表す。
上記化学式(M2)のA及びAにおける、炭素数2~12の直鎖状もしくは分枝状のアルケニレン基とは、炭素数2~12の直鎖状のアルケニレン基もしくは炭素数3~12の分枝状のアルケニレン基を表す。
上記化学式(M2)のSpにおける、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレン基とは、炭素数1~6の直鎖状のアルキレン基、炭素数3~6の分枝状のアルキレン基もしくは炭素数3~6の環状のアルキレン基を表す。
上記化学式(M2)のSpにおける、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレンオキシ基とは、炭素数1~6の直鎖状のアルキレンオキシ基、炭素数2~6の分枝状のアルキレンオキシ基もしくは炭素数3~6の環状のアルキレンオキシ基を表す。
上記化学式(M2)のA及びAにおける、炭素数1~12の直鎖状もしくは分枝状のアルキル基とは、炭素数1~12の直鎖状のアルキル基もしくは炭素数3~12の分枝状のアルキル基を表す。
上記化学式(M2)のA及びAにおける、炭素数2~12の直鎖状もしくは分枝状のアルケニル基とは、炭素数2~12の直鎖状のアルケニル基もしくは炭素数3~12の分枝状のアルケニル基を表す。
上記化学式(M2)のA及びAにおける、炭素数7~12の直鎖状もしくは分枝状のアラルキル基とは、炭素数7~12の直鎖状のアラルキル基もしくは炭素数8~12の分枝状のアラルキル基を表す。
上記化学式(M2)のA及びAにおける、炭素数1~12の直鎖状もしくは分枝状のアルキレン基とは、炭素数1~12の直鎖状のアルキレン基もしくは炭素数3~12の分枝状のアルキレン基を表す。
上記化学式(M2)のA及びAにおける、炭素数2~12の直鎖状もしくは分枝状のアルケニレン基とは、炭素数2~12の直鎖状のアルケニレン基もしくは炭素数3~12の分枝状のアルケニレン基を表す。
上記化学式(M2)で表されるモノマーは、下記化学式(M2-1)で表されるモノマーであることが好ましい。下記化学式(M2-1)で表されるモノマーは、特に長波長の光を吸収し、波長430nm乃至は440nmまでの光を吸収することができる。
Figure JPOXMLDOC01-appb-C000036
本実施形態の芳香族ポリマーは、例えば、以下の2つの方法で形成することができる。
(1)液晶層30を形成する際に、上記化学式(M1)で表されるモノマーを溶解させた組成物を用い、上記モノマーを重合することにより、液晶層30及び配向膜40の間に芳香族ポリマーを含有したポリマー層50を形成する。
(2)配向膜40を形成する際に、上記化学式(M1)で表されるモノマーを溶解させた組成物を用い、上記モノマーを重合することにより、配向膜40中に芳香族ポリマーを形成する。この際、芳香族ポリマーはポリマー層を形成してもよいし、ポリマー層を形成しなくてもよい。
上記(1)は、ポリマー支持配向(PSA:Polymer Sustained Alignment)技術を用いて芳香族ポリマーを形成する方法である。PSA技術とは、重合性モノマーを含有させた液晶組成物を一対の基板間に封入し、その後に重合性モノマーを重合させることにより、配向膜表面に重合体(ポリマー)を形成するものである。
上記(1)の方法を用いて芳香族ポリマーを含むポリマー層50を形成する場合、上記化学式(M1)で表されるモノマーが液晶層30中に残存すると、上記化学式(M1)で表されるモノマーと、反射電極1から注入される電荷との間で上記式6に示した反応が起こり、液晶層30中にラジカルとイオンが発生し、フリッカ及び焼き付きが発生する可能性がある。一方、上記(2)の方法では、配向膜40を形成する際に用いる組成物中に上記化学式(M1)で表されるモノマーが含まれるため、(1)のように液晶層30中にモノマーが残存することは原理的になく、フリッカや焼き付きの発生をより抑制することが可能となる。
<配向膜>
配向膜40は、液晶層30中の液晶化合物の配向を制御する機能を有するものであり、液晶層30への印加電圧が閾値電圧未満(電圧無印加を含む)のときには、主に配向膜40の働きによって液晶層30中の液晶化合物の配向が制御される。この状態(以下、初期配向状態とも言う。)において、第一基板10及び第二基板20の表面に対して液晶化合物の長軸が形成する角度が「プレチルト角」と呼ばれる。なお、本明細書において「プレチルト角」とは、基板面と平行な方向からの液晶化合物の傾きの角度を表し、基板面と平行な角度が0°、基板面の法線の角度が90°である。
配向膜40は、液晶層30中の液晶化合物を略垂直に配向させるもの(垂直配向膜)であってもよいし、略水平に配向させるもの(水平配向膜)であってもよい。垂直配向膜の場合、略垂直とは、プレチルト角が85°以上、90°以下であることが好ましい。水平配向膜の場合、略水平とは、プレチルト角が0°以上、5°以下であることが好ましい。
配向膜40の配向処理方法は特に限定されず、例えばラビング処理、光配向処理等が挙げられる。
ラビング処理は、配向膜40を塗布した第一基板10及び第二基板20に対して、ナイロンなどの布を巻いたローラーを一定圧力で押し込みながら回転させることによって、配向膜40の表面を一定方向に擦る方法である。
光配向処理は、光配向性を示す材料から形成された光配向膜上に直線偏光紫外線を照射することによって、偏光方向の光配向膜の構造を選択的に変化させ、これによって光配向膜に異方性を発生させて液晶分子に配向方位角を付与する方法である。光配向性を示す材料とは、紫外光、可視光等の光(電磁波)が照射されることによって構造変化を生じ、その近傍に存在する液晶分子の配向を規制する性質(配向規制力)を発現する材料や、配向規制力の大きさ及び/又は向きが変化する材料全般を意味する。光配向性を示す材料としては、例えば、二量化(二量体形成)、異性化、光フリース転移、分解等の反応が光照射によって起こる光反応部位を含むものが挙げられる。
光照射によって二量化及び異性化する光反応部位(官能基)としては、例えば、シンナメート、カルコン、クマリン、スチルベン等が挙げられる。光照射によって異性化する光反応部位(官能基)としては、例えば、アゾベンゼン等が挙げられる。光照射によって光フリース転移する光反応部位としては、例えば、フェノールエステル構造等が挙げられる。光照射によって分解する光反応部位としては、例えば、シクロブタン構造等が挙げられる。
配向膜40は、光配向処理を行うことができる光配向膜であることが好ましく、配向膜40に含まれるポリマーの高分子側鎖がシンナメート基、アゾベンゼン基、カルコン基、クマリン基及びスチルベン基からなる群より選択される少なくとも1種の基を有することがより好ましい。配向膜40を光配向膜とすることにより、ラビング処理用の配向膜を用いた場合に生じるスジ状の表示ムラや静電気の発生等を避けることが可能となる。
配向膜40は、ポリアミック酸及びポリイミドの少なくとも一方のポリマーを含むことが好ましく、ポリアミック酸及びポリイミドの少なくとも一方のポリマーを含み、かつ、上記少なくとも一方のポリマーは、脂肪族酸無水物モノマーユニットを有することがより好ましい。配向膜40にポリアミック酸及びポリイミドの少なくとも一方のポリマーを含むことにより、上記化学式(M1)で表されるモノマーを重合して、芳香族ポリマーを形成し易くなる。ここで、脂肪族酸無水物モノマーユニットとは、ポリマーを構成する単量体に由来する構成単位のうち、脂肪族酸無水物に由来する構造を有する構成単位のことである。
配向膜40がポリアミック酸を含む場合、下記化学式(P-1)で表される構造を有することが好ましく、配向膜40がポリイミドを含む場合、下記化学式(P-2)で表される構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
(上記式(P-1)及び(P-2)中、Xは4価の芳香族基又は脂肪族基を表し、Yは3価の芳香族基又は脂肪族基を表し、Zは1価の有機基又は水素原子を表す。pは1以上の整数を表す。)
上記化学式(P-1)及び(P-2)において、Xは4価の芳香族基又は脂肪族基を表し、4価の脂肪族基であることが好ましく、環状構造を有する炭素数4~20の脂肪族基であることがより好ましく、炭素数4~6の脂環基を1~3個含む、炭素数4~20の脂肪族基であることが更に好ましい。2個以上の環状構造を含む場合は、それらが直接或いは連結基を介して結合していてもよいし、縮合していてもよい。連結基としては、炭素数1~5の炭化水素基、-O-基、-N=N-基、-C≡C-基、-CH=CH-基、-CO-CH=CH-基等が挙げられる。なお、本明細書において、脂肪族基とは、環式及び非環式の脂肪族基の両者が含まれるものとする。
の具体例としては、下記化学式(X-1)~(X-6)で表される化学構造等が挙げられる。各構造に含まれる少なくとも一つの水素原子は、ハロゲン原子、メチル基、又はエチル基に置換されていてもよい。上記化学式(P-1)及び(P-2)において、Xは下記化学式(X-1)~(X-6)からなる群より選択される少なくとも1種の構造を有することが特に好ましい。
Figure JPOXMLDOC01-appb-C000039
上記化学式(P-1)及び(P-2)において、Yは3価の芳香族基又は脂肪族基を表し、3価の芳香族基であることが好ましく、炭素数6~20の芳香族基であることがより好ましく、炭素数6の芳香環を1~3個含む、炭素数6~20の芳香族基であることが更に好ましい。2個以上の芳香環を含む場合は、それらが直接或いは連結基を介して結合していてもよいし、縮合していてもよい。連結基としては、炭素数1~5の炭化水素基、-O-基、-N=N-基、-C≡C-基、-CH=CH-基、-CO-CH=CH-基等が挙げられる。
の具体例としては、下記化学式(Y-1)~(Y-24)で表される化学構造等が挙げられる。各構造に含まれる少なくとも一つの水素原子は、ハロゲン原子、メチル基、又はエチル基に置換されていてもよい。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
配向膜40にラビング処理を施す場合、上記化学式(P-1)及び(P-2)におけるYを上記化学式(Y-1)~(Y-16)で表される構造とすることが好ましく、配向膜40に光配向処理を施す場合、Yを上記化学式(Y-17)~(Y-24)で表される構造とすることが好ましい。
上記化学式(P-1)及び(P-2)におけるZは、1価の有機基又は水素原子を表す。1価の有機基としては、-COO-Zで表される基が好ましい。-COO-Zで表される基中、Zは、環状構造を有する炭素数15~30の基を表す。
の具体例としては、下記化学式(Z-1)~(Z-25)で表される化学構造等が挙げられる。各構造に含まれる少なくとも一つの水素原子は、ハロゲン原子、メチル基、又はエチル基に置換されていてもよい。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
配向膜40にラビング処理を施して水平配向膜とする場合、上記化学式(P-1)及び(P-2)におけるZを上記化学式(Z-1)~(Z-8)で表される構造とすることが好ましい。配向膜40にラビング処理を施して垂直配向膜とする場合、上記化学式(P-1)及び(P-2)におけるZを上記化学式(Z-9)~(Z-15)で表される構造とすることが好ましい。配向膜40に光配向処理を施して垂直配向膜とする場合、上記化学式(P-1)及び(P-2)におけるZを上記化学式(Z-16)~(Z-25)で表される構造とすることが好ましい。
上記化学式(P-1)におけるXは4価の脂肪族基であり、Yは3価の芳香族基であり、かつ、Zは水素原子又は-COO-Zで表される基であることが好ましい。Xは環状構造を有する炭素数4~20の脂肪族基であり、Yは炭素数6~20の芳香族基であり、かつ、Zは水素原子又は-COO-Zで表される基であることがより好ましい。Xは炭素数4~6の脂環基を1~3個含む、炭素数4~20の脂肪族基であり、Yは炭素数6の芳香環を1~3個含む、炭素数6~20の芳香族基であり、かつ、Zは水素原子又は-COO-Zで表される基であることが更に好ましい。なお、上記化学式(P-2)におけるX、Y及びZの好ましい置換基の組み合わせは、上記化学式(P-1)における組み合わせと同様である。
上記化学式(P-1)及び(P-2)で表される構造の少なくとも一方を有するポリマーが配向膜40に含まれる場合、上記少なくとも一方を有するポリマーの重量平均分子量は、10,000~1,000,000であることが好ましく、30,000~200,000であることがより好ましい。配向膜ポリマーの重量平均分子量を上記の範囲とすることにより、所望の膜厚で均一に成膜し易くなる。配向膜ポリマーの重量平均分子量が小さ過ぎると、所望の膜厚に成膜しにくく、膜厚が厚くなり過ぎると均一の膜厚にならず、膜面の凹凸が顕著になることがある。
上記化学式(P-1)及び(P-2)で表される構造を有するポリマーの一分子において、X、Y及びZは、それぞれ、1種類であってもよく、2種類以上であってもよい。また、配向膜40には、上記化学式(P-1)及び(P-2)で表される少なくとも1種類のポリマーが含まれることが好ましく、2種類以上のポリマーが含まれていてもよく、垂直配向性の官能基、水平配向性の官能基、及び、光配向性の官能基からなる群より選択される官能基が、1分子中に複数種類含まれていてもよい。
ポリアミック酸及びポリイミドの少なくとも一方のポリマーは、脂肪族酸無水物モノマーユニットを有することが好ましい。すなわち、上記化学式(P-1)及び(P-2)におけるXが脂肪族基であることが好ましい。この理由を以下に述べる。
1点目の理由は次のように考えられる。配向膜40に芳香族酸無水物モノマーユニットを有するポリマーが含まれる場合、芳香族ポリマーを重合反応により形成するために紫外線照射を行う際、上記芳香族酸無水物モノマーユニットが上記紫外線を吸収してしまう。その結果、芳香族ポリマーを構成するモノマーの重合反応が進行しなくなり、残存するモノマーが液晶層30に溶出し、液晶表示装置のVHRの低下及び残留DCの増加を招き、焼き付き等が発生する。したがって、上記少なくとも一方のポリマーは脂肪族酸無水物モノマーユニットを有することが好ましい。
2点目の理由は次のように考えられる。配向膜40中導入したモノマーを重合することにより芳香族ポリマーを形成する場合、例えば下記式7に示したように、芳香族ポリマーを構成するモノマー中のベンジル構造が、配向膜40に含まれるポリアミック酸中のアミド結合より水素原子を引き抜き、ラジカルを形成して重合を開始する。なお、ベンジル構造がベンゾフェノン構造の場合も同様に重合を開始する。
Figure JPOXMLDOC01-appb-C000046
ここで、配向膜40に芳香族酸無水物モノマーユニットを有するポリマーが含まれる場合、Al等を含む反射電極1と配向膜40とが接触すると、反射電極1から配向膜40への電子注入が優先的に起こり、アニオンが形成される。このアニオン(O)は、例えば下記式8に示したように、水素原子と電荷相互作用を起こし、上記式7に示したようなベンジル構造の水素引き抜き反応を抑制する。したがって、配向膜40に芳香族酸無水物モノマーユニットを有するポリマーが含まれる場合、ベンジル構造の水素引き抜き反応によるラジカル形成が起こりにくくなり、芳香族ポリマーが形成されにくくなる。したがって、上記少なくとも一方のポリマーは脂肪族酸無水物モノマーユニットを有することが好ましい。
Figure JPOXMLDOC01-appb-C000047
本実施形態の反射型液晶表示装置100の配向モード(表示モード)は特に限定されないが、垂直配向(VA:Vertical Alignment)モードが好ましい。
本実施形態の反射型液晶表示装置100は、上記部材の他、TCP(テープ・キャリア・パッケージ)、PCB(プリント配線基板)等の外部回路;視野角拡大フィルム、輝度向上フィルム等の光学フィルム;ベゼル(フレーム)等の複数の部材により構成されるものであり、部材によっては、他の部材に組み込まれていてもよい。既に説明した部材以外の部材については特に限定されず、液晶表示装置の分野において通常使用されるものを用いることができるので、説明を省略する。
[実施形態1の変形例1]
実施形態1の変形例1の液晶表示装置は、ポリマー層50を配向膜40中に設けたこと以外は、実施形態1の反射型液晶表示装置100と同様の構成を有する。そこで、本実施形態では、本実施形態に特有の特徴について説明し、実施形態1と重複する内容については適宜説明を省略する。
図3は、実施形態1の変形例1の反射型液晶表示装置の断面模式図である。図3に示したように、実施形態1の変形例1の反射型液晶表示装置は、反射電極1が設けられた第一基板10と、第一基板10に対向する第二基板20と、第一基板10及び第二基板20の間に挟持された液晶層30と、第一基板10及び第二基板20の液晶層30側に設けられた配向膜40と、配向膜40中に設けられたポリマー層50とを備え、ポリマー層50には、上記化学式(M1)で表されるモノマーに由来する構造を有する芳香族ポリマーが含まれている。
また、本実施形態の反射型液晶表示装置における第一基板10は、液晶層30側に向かって、透明基板(図示省略)と、絶縁膜12と、反射電極1とを順に有する。第二基板20は、液晶層30側に向かって、透明基板(図示省略)と、カラーフィルタ22と、共通電極2とを順に有する。
芳香族ポリマーを含むポリマー層50が、配向膜40中に存在することにより、反射電極1から発生した電荷と芳香族ポリマーとの間で効率よく電荷移動反応が起こり、液晶層30中へ電荷注入が起こる確率が低下し、液晶層30中での電荷移動反応が抑制されるため、駆動時に発生するフリッカ及び長時間の駆動により発生する焼き付きを抑制することができる。
[実施形態1の変形例2]
実施形態1の変形例2の液晶表示装置は、芳香族ポリマーを配向膜40中に設けたこと以外は、実施形態1の反射型液晶表示装置100と同様の構成を有する。そこで、本実施形態では、本実施形態に特有の特徴について説明し、実施形態1と重複する内容については適宜説明を省略する。
図4は、実施形態1の変形例2の反射型液晶表示装置の断面模式図である。図4に示したように、実施形態1の変形例2の反射型液晶表示装置は、反射電極1が設けられた第一基板10と、第一基板10に対向する第二基板20と、第一基板10及び第二基板20の間に挟持された液晶層30と、第一基板10及び第二基板20の液晶層30側に設けられた、芳香族ポリマーを含有する配向膜40aとを備え、上記芳香族ポリマーは、上記化学式(M1)で表されるモノマーに由来する構造を有している。
また、本実施形態の反射型液晶表示装置における第一基板10は、液晶層30側に向かって、透明基板(図示省略)と、絶縁膜12と、反射電極1とを順に有する。第二基板20は、液晶層30側に向かって、透明基板(図示省略)と、カラーフィルタ22と、共通電極2とを順に有する。
芳香族ポリマーを含有する配向膜40aを設けることにより、反射電極1から発生した電荷と芳香族ポリマーとの間で効率よく電荷移動反応が起こり、液晶層30中へ電荷注入が起こる確率が低下し、液晶層30中での電荷移動反応が抑制されるため、駆動時に発生するフリッカ及び長時間の駆動により発生する焼き付きを抑制することができる。
[実施形態1の変形例3]
実施形態1の変形例3の液晶表示装置は、ポリマー層50に加えて、配向膜中にも芳香族ポリマーを含有させたこと以外は、実施形態1の反射型液晶表示装置100と同様の構成を有する。そこで、本実施形態では、本実施形態に特有の特徴について説明し、実施形態1と重複する内容については適宜説明を省略する。
図5は、実施形態1の変形例3の反射型液晶表示装置の断面模式図である。図5に示したように、実施形態1の変形例3の反射型液晶表示装置は、反射電極1が設けられた第一基板10と、第一基板10に対向する第二基板20と、第一基板10及び第二基板20の間に挟持された液晶層30と、第一基板10及び第二基板20の液晶層30側に設けられた、芳香族ポリマーを含有する配向膜40aと、液晶層30及び芳香族ポリマーを含有する配向膜40aの間に設けられたポリマー層50とを備える。配向膜40a及びポリマー層50には、上記化学式(M1)で表されるモノマーに由来する構造を有する芳香族ポリマーが含まれている。
また、本実施形態の反射型液晶表示装置における第一基板10は、液晶層30側に向かって、透明基板(図示省略)と、絶縁膜12と、反射電極1とを順に有する。第二基板20は、液晶層30側に向かって、透明基板(図示省略)と、カラーフィルタ22と、共通電極2とを順に有する。
芳香族ポリマーを含有する配向膜40a及びポリマー層50を設けることにより、反射電極1から発生した電荷と芳香族ポリマーとの間で効率よく電荷移動反応が起こり、液晶層30中へ電荷注入が起こる確率が低下し、液晶層30中での電荷移動反応が抑制されるため、駆動時に発生するフリッカ及び長時間の駆動により発生する焼き付きを抑制することができる。
[実施形態2]
実施形態2の液晶表示装置は、液晶表示装置の構造を半透過型に変更した以外は、実施形態1の反射型液晶表示装置100と同様の構成を有する。そこで、本実施形態では、本実施形態に特有の特徴について説明し、実施形態1と重複する内容については適宜説明を省略する。
図6は、実施形態2の半透過型液晶表示装置に関する図であり、(a)は半透過型液晶表示装置の断面模式図であり、(b)は(a)を拡大した断面模式図である。実施形態2の半透過型液晶表示装置200は、実施形態1の反射型液晶装置100と同様の構成である光反射部5aと、バックライト6からの光を透過して画像を表示する光透過部6aとを有する。光透過部6aでは、透明基板11上に、透明電極7と、配向膜40と、ポリマー層50とが、液晶層30側に向かって順に配置される。光透過部6aでは透明電極7が用いられるため、バックライト6からの光により画像を表示することが可能である。このような構成とすることにより、反射電極1からの電荷と上記芳香族ポリマーとの間でより効率良く電荷移動反応を起こすことができ、フリッカ及び焼き付きの発生を更に抑制することができる。
このように、半透過型液晶表示装置200は、透過型モード及び反射型モードの両方で画像を表示する機能をもつ液晶表示装置であり、バックライトを有するために、暗所においても視認性が高いという透過型液晶表示装置の特徴と、外光を利用するために低消費電力であるという反射型液晶表示装置の特徴とを併せもつ液晶表示装置である。
[実施形態2の変形例1]
実施形態2の変形例1の液晶表示装置は、ポリマー層50を配向膜40中に設けたこと以外は、実施形態2の半透過型液晶表示装置200と同様の構成を有する。そこで、本実施形態では、本実施形態に特有の特徴について説明し、実施形態2と重複する内容については適宜説明を省略する。
図7は、実施形態2の変形例1の半透過型液晶表示装置の断面模式図である。図7に示したように、実施形態2の変形例1の半透過型液晶表示装置は、光反射部5aと光透過部6aとを有する。第一基板10側の光反射部5aでは、透明基板(図示省略)上に、絶縁膜12と、反射電極1と、配向膜40とが、液晶層30側に向かって順に配置され、配向膜40中には、芳香族ポリマーを含むポリマー層50が設けられている。
第一基板10側の光透過部6aは、透明基板(図示省略)上に、透明電極7と、配向膜40とが、液晶層30側に向かって順に配置され、配向膜40中には、芳香族ポリマーを含むポリマー層50が設けられている。
また、第二基板20は、液晶層30側に向かって、透明基板(図示省略)と、カラーフィルタ22と、共通電極2とを順に有する。共通電極2の液晶層30側には配向膜40が配置され、配向膜40中には、芳香族ポリマーを含むポリマー層50が設けられている。
芳香族ポリマーを含むポリマー層50が、配向膜40中に存在することにより、反射電極1から発生した電荷と芳香族ポリマーとの間で効率よく電荷移動反応が起こり、液晶層30中へ電荷注入が起こる確率が低下し、液晶層30中での電荷移動反応が抑制されるため、駆動時に発生するフリッカ及び長時間の駆動により発生する焼き付きを抑制することができる。
[実施形態2の変形例2]
実施形態2の変形例2の液晶表示装置は、芳香族ポリマーを配向膜中に設けたこと以外は、実施形態2の半透過型液晶表示装置200と同様の構成を有する。そこで、本実施形態では、本実施形態に特有の特徴について説明し、実施形態1と重複する内容については適宜説明を省略する。
図8は、実施形態2の変形例2の半透過型液晶表示装置の断面模式図である。図8に示したように、実施形態2の変形例2の半透過型液晶表示装置は、光反射部5aと光透過部6aとを有する。第一基板10側の光反射部5aでは、透明基板(図示省略)上に、絶縁膜12と、反射電極1と、芳香族ポリマーを含有する配向膜40aとが、液晶層30側に向かって順に配置されている。
第一基板10側の光透過部6aは、透明基板(図示省略)上に、透明電極7と、芳香族ポリマーを含有する配向膜40aとが、液晶層30側に向かって順に配置されている。
また、第二基板20は、液晶層30側に向かって、透明基板(図示省略)と、カラーフィルタ22と、共通電極2とを順に有する。共通電極2の液晶層30側には、芳香族ポリマーを含有する配向膜40aが配置されている。
芳香族ポリマーを含有する配向膜40aを設けることにより、反射電極1から発生した電荷と芳香族ポリマーとの間で効率よく電荷移動反応が起こり、液晶層30中へ電荷注入が起こる確率が低下し、液晶層30中での電荷移動反応が抑制されるため、駆動時に発生するフリッカ及び長時間の駆動により発生する焼き付きを抑制することができる。
[実施形態2の変形例3]
実施形態2の変形例3の液晶表示装置は、ポリマー層50に加えて、配向膜中にも芳香族ポリマーを含有させたこと以外は、実施形態2の半透過型液晶表示装置200と同様の構成を有する。そこで、本実施形態では、本実施形態に特有の特徴について説明し、実施形態2と重複する内容については適宜説明を省略する。
図9は、実施形態2の変形例3の半透過型液晶表示装置の断面模式図である。図9に示したように、実施形態2の変形例3の半透過型液晶表示装置は、光反射部5aと光透過部6aとを有する。第一基板10側の光反射部5aでは、透明基板(図示省略)上に、絶縁膜12と、反射電極1と、芳香族ポリマーを含有する配向膜40aと、ポリマー層50とが、液晶層30側に向かって順に配置されている。配向膜40a及びポリマー層50には、上記化学式(M1)で表されるモノマーに由来する構造を有する芳香族ポリマーが含まれている。
第一基板10側の光透過部6aは、透明基板(図示省略)上に、透明電極7と、芳香族ポリマーを含有する配向膜40aと、ポリマー層50とが、液晶層30側に向かって順に配置されている。
また、第二基板20は、液晶層30側に向かって、透明基板(図示省略)と、カラーフィルタ22と、共通電極2とを順に有する。共通電極2の液晶層30側には芳香族ポリマーを含有する配向膜40aとポリマー層50とが配置されている。
芳香族ポリマーを含有する配向膜40a及びポリマー層50を設けることにより、反射電極1から発生した電荷と芳香族ポリマーとの間で効率よく電荷移動反応が起こり、液晶層30中へ電荷注入が起こる確率が低下し、液晶層30中での電荷移動反応が抑制されるため、駆動時に発生するフリッカ及び長時間の駆動により発生する焼き付きを抑制することができる。
以下に、実施例及び比較例を挙げて本発明をより詳細に説明するが、本発明はこれらの例によって限定されるものではない。
[実施例1-1~1-3及び比較例1]
<液晶材料の調製>
上記化学式(L)で表される構造を有する液晶化合物が含まれた負の誘電率異方性を有する液晶材料1R(Δε=-5.0)を用意した。
次に、上記化学式(M1-1)で表されるモノマーを液晶材料1Rに0.3wt%の濃度で溶解し、25℃の環境下で24時間放置することにより液晶材料中に完全に溶解し、液晶材料1-1を調製した。同様に、上記化学式(M1-2)で表されるモノマーを用いて液晶材料1-2を調製し、上記化学式(M1-3)で表されるモノマーを用いて液晶材料1-3を調製した。なお、上記モノマーの濃度は、上記モノマーを上記液晶材料に添加した後の状態を100wt%とした際の濃度である。
<反射型液晶セルの作製>
アルミニウムからなる反射電極1を画素電極として有する第一基板10と、IZOからなる透明電極を共通電極2として有する第二基板20を用意した。両基板に、下記化学式(P-1-1)で表される構造を有するポリアミック酸、すなわち、脂肪族酸無水物モノマーユニットを有するポリアミック酸を含む垂直配向膜用組成物を塗布し、80℃、2分の仮焼成を行った後、200℃、40分の本焼成を行い、ラビング処理を施した。なお、画素電極として用いた反射電極1は、以下において、反射型画素電極ともいう。
Figure JPOXMLDOC01-appb-C000048
(pは1以上の整数を表す。)
次に、反射型画素電極を有する第一基板10にシール剤を塗布し、第一基板10上に液晶材料1-1(Δε≦-5.0)を滴下し、第二基板20を貼り合わせ、液晶セルを作製した。
得られた液晶セルに、Tni(液晶材料のネマティック-アイソトロピック転移点)以上の温度で30分間アニール処理を実施し、再配向処理を行った。最後に、液晶セルを室温に戻した後、第二基板20側から波長365nmの紫外光を10J/cm照射し、上記化学式(M1-1)で表されるモノマーに由来する構造を有する芳香族ポリマーを含むポリマー層50を、液晶層30及び配向膜40の間に形成し、実施例1-1の液晶セルを得た。紫外光の照射には、東芝ライテック社製のFHF-32BLBを用いた。
更に、液晶材料1-1を、液晶材料1-2及び1-3に変更し、実施例1-1と同様の方法を用いて、実施例1-2及び1-3の液晶セルを得た。実施例1-2及び1-3の液晶セルでは、実施例1-1と同様に、芳香族ポリマーを含むポリマー層50が形成された。
また、液晶材料1-1から化学式(M1-1)で表されるモノマーを除いた液晶材料を用意し、紫外光を照射しないこと以外は実施例1-1と同様の方法を用いて、比較例1の液晶セルを得た。比較例1の液晶セルでは芳香族ポリマーは形成されなかった。
<通電試験>
25℃環境下で、100時間、60Hzの矩形波で5Vの通電を行い、通電前後でのVHR及び残留DCを測定した。結果を下記表1に示した。なお、VHRは東陽テクニカ社製の6254型VHR測定システムを用いて、1V、70℃の条件で測定した。残留DCは、2VのDCオフセット電圧を2時間印加した後、フリッカ消去法にて測定した。なお、残留DCはrDCともいう。
Figure JPOXMLDOC01-appb-T000049
上記表1に示したように、芳香族ポリマーを含むポリマー層50が形成されなかった比較例1の液晶セルは、初期のVHRが98.8%、残留DCが0.23Vであり、100時間通電後のVHRが94.4%、残留DCが0.75Vであり、通電試験により、大幅なVHRの低下と残留DCの増加が確認された。これは、反射型画素電極から注入された電荷の電荷移動反応により、上記化学式(L)で表される構造を有する液晶化合物中のアルコキシ基が開裂し、ラジカルが形成されたためと考えられる。
一方、上記化学式(M1-1)に示すモノマーを用いて芳香族ポリマーを含むポリマー層50が形成された実施例1-1の液晶セルでは、初期のVHRが97.5%、残留DCが0.16Vであり、100時間通電後のVHRが96.3%、残留DCが0.45Vであり、通電によるVHRの低下と残留DCの増加を抑制することができた。同様に、実施例1-2及び1-3の液晶セルにおいても、初期のVHRが98%台、残留DCが0Vであり、100時間通電後のVHRが98%台、残留DCが0.1V未満であり、通電によるVHRの低下と残留DCの増加を抑制することができた。更に、実施例1-1~1-3の液晶セルでは、目視観察にて、駆動時にフリッカは観測されなかった。
また、上記化学式(M1-2)や(M1-3)に示すモノマーを用いた実施例1-2及び1-3の液晶セルは、上記化学式(M1-1)に示すモノマーを用いた実施例1-1の液晶セルに比べて、よりVHRの低下及び残留DCの増加を抑制する効果が見られた。この理由は次のように考えられる。
上記化学式(M1-1)に示すモノマーに含まれるビフェニル構造のπ共役レベルは上記化学式(M1-2)や(M1-3)に比べて低いため、実施例1-1の芳香族ポリマー中の芳香族基(フェニレン基)における電荷移動反応の効率が、実施例1-2及び1-3に比べて多少低かったと考えられる。
一方、上記化学式(M1-2)や(M1-3)のような縮合環を用いた場合、π共役が発達しているため、電極から注入された電荷との電荷移動反応の効率が上がり、通電後も高いVHRと低い残留DCが確保されたと考えられる。
以上のように、実施例1-1~1-3の液晶表示装置では、100時間の通電試験の前後において、VHRが高く維持され、かつ、残留DCが低く抑えられたことから、駆動時に発生するフリッカ及び長期間の使用による焼き付きを抑えることができると分かった。
[実施例2-1、比較例2]
<液晶材料の調製>
実施例1-1で用いた負の誘電率異方性を有する液晶材料1Rに、上記化学式(M2-1)で表されるモノマーを0.03wt%の濃度で、上記化学式(M1-1)で表されるモノマーを0.25wt%の濃度で溶解し、25℃の環境下で24時間放置することにより液晶材料中に完全に溶解し、液晶材料2-1を調製した。また、実施例1-1で用いた負の誘電率異方性を有する液晶材料1Rに、上記化学式(M1-1)で表されるモノマーのみを0.25wt%の濃度で溶解し、同様の方法で液晶材料2Rを調製した。下記化学式(M2-1)で表されるモノマーは、430nm付近までの紫外光を吸収してラジカルを形成するモノマーであり、カラーフィルタを通して紫外線照射を行っても、重合反応を起こすことができるモノマーである。なお、上記モノマーの濃度は、上記モノマーを上記液晶材料に添加した後の状態を100wt%とした際の濃度である。
<反射型液晶セルの作製>
図10は、実施例2-1の反射型液晶セルを作製する工程を示した断面模式図である。Al層とIZO層の二層からなる反射電極1(画素電極)と、絶縁膜12とを備えた第一基板10、及び、カラーフィルタ22と、IZOからなる共通電極2とを備えた第二基板20を用意した。
続いて、第一基板10及び第二基板20に、上記化学式(P-1-1)で表される構造を有するポリアミック酸を含む垂直配向膜用組成物を塗布し、80℃、2分の仮焼成を行った後、200℃、40分の本焼成を行い、ラビング処理を施した。
次に、第一基板10にシール剤を塗布し、液晶材料2-1を滴下し、第二基板20を貼り合わせ、液晶セルを作製した。
得られた液晶セルに、Tni以上の温度で30分間アニール処理を実施し、再配向処理を行った。最後に、液晶セルを室温に戻した後、カラーフィルタ22を有する第二基板20側から波長365nmの紫外光を10J/cm照射し、芳香族ポリマーを有するポリマー層50を液晶層30及び配向膜40の間に形成し、実施例2-1の液晶セルを得た。紫外光の照射には、東芝ライテック社製のFHF-32BLBを用いた。
更に、実施例2-1における液晶材料を液晶材料2Rに変更し、第二基板20側からの紫外線照射を行わないこと以外は実施例2-1と同様の方法を用いて、比較例2の液晶セルを得た。なお、比較例2の液晶セルでは芳香族ポリマーは形成されなかった。
<通電試験>
実施例1-1等と同様の方法を用いて、実施例2-1及び比較例2の液晶セルについて通電試験を行った。結果を下記表2に示した。
Figure JPOXMLDOC01-appb-T000050
上記表2に示したように、上記化学式(M2-1)で表されるモノマーを併用した実施例2-1では、VHRの低下及び残留DCの増加が抑制されているが、上記化学式(M2-1)で表されるモノマーを用いなかった比較例2では、VHRが低下し、残留DCの増加も認められた。これは、カラーフィルタ22を有する第二基板20側から紫外光を照射したため、波長430nm付近までの光を吸収する上記化学式(M2-1)で表されるモノマーを併用した実施例2-1ではモノマーの重合が効率よく進行し芳香族ポリマーを含むポリマー層50が形成されたが、上記化学式(M2-1)で表されるモノマーを用いなかった比較例2ではモノマーの重合が抑制されたためと考えられる。
上記化学式(M1-1)で表されるモノマーのみを用いた比較例2の液晶セルでは、通電前の初期(0時間)の時点で、既にVHRは94.1%と低く、また残留DCは0.37Vと大きい値を示している。更に、5Vにて100時間の通電試験を行うことで、VHRは85.3%まで低下し、残留DCは0.70Vまで増加した。
一方、上記化学式(M1-1)で表されるモノマーに加えて、上記化学式(M2-1)で表されるモノマーを併用した実施例2-1の液晶セルでは、初期のVHRは98.1%、残留DCは0.09Vであり、100時間の通電試験後のVHRは96.4%、残留DCは0.23Vとなり、初期及び100時間後のいずれにおいても、VHRの低下及び残留DCの増加を抑制することができた。更に、実施例2-1の液晶セルでは、目視観察にて、駆動時にフリッカは観測されなかった。これは、上記化学式(M2-1)で表されるモノマーを用いることにより、カラーフィルタ22側から紫外光を照射した場合でも効率よくモノマーの重合し、芳香族ポリマーを含むポリマー層50を形成することができたことを示している。
[実施例3-1、比較例3]
<配向膜の調製>
上記化学式(P-1-1)で表される構造を有するポリアミック酸と、上記化学式(M1-3)で表されるモノマーと、上記化学式(M2-1)で表されるモノマーとを含む配向膜形成用組成物3-1を調製した。上記化学式(M1-3)で表されるモノマーは、上記ポリアミック酸に対して3wt%の濃度で加え、上記化学式(M2-1)で表されるモノマーは、上記ポリアミック酸に対して0.2wt%の濃度で加えた。なお、上記モノマーの濃度は、上記モノマー及び上記ポリアミック酸の総量を100wt%とした際の濃度である。
また、配向膜形成用組成物3-1におけるポリアミック酸を、下記化学式(P-1-2)で表される構造を有するポリアミック酸に変更した以外は、配向膜形成用組成物3-1と同様の方法を用いて、配向膜形成用組成物3Rを調製した。なお、下記化学式(P-1-2)で表される構造を有するポリアミック酸は芳香族酸無水物モノマーユニットを有している。
Figure JPOXMLDOC01-appb-C000051
(pは1以上の整数を表す。)
<半透過型液晶セルの作製>
Al層とIZO層の二層からなる反射電極1を含む光反射部5aと、ITOからなる透過型画素電極を含む光透過部6aとを有する第一基板10と、ITOからなる共通電極2を有する第二基板20を用意した。続いて、両基板に配向膜形成用組成物3-1を塗布し、80℃、2分の仮焼成を行った後、200℃、40分の本焼成を行い、ラビング処理を施した。
次に、第一基板10にシール剤を塗布し、負の誘電率異方性を有する液晶材料(Δε≦-5.0)を滴下し、第二基板20を貼り合わせて液晶セルを作製した。
得られた液晶セルに、Tni以上の温度で30分間アニール処理を実施し、再配向処理を行った。最後に、液晶セルを室温に戻した後、カラーフィルタ22を有する第二基板20側から波長365nmの紫外光を10J/cm照射し、配向膜形成用組成物中のモノマーを重合することにより、芳香族ポリマーを形成し、実施例3-1の液晶セルを得た。紫外光の照射には、東芝ライテック社製のFHF-32BLBを用いた。更に、実施例3-1における配向膜形成用組成物3-1を配向膜形成用組成物3Rに変更した以外は、実施例3-1と同様の方法を用いて、比較例3の液晶セルを作製した。
実施例3-1の液晶セルでは、芳香族ポリマーを含有する配向膜40aが形成され、かつ、芳香族ポリマーを含有する配向膜40aの液晶層30側の面に、芳香族ポリマーを含む薄いポリマー層50が形成された。一方、比較例3の液晶セルでは芳香族ポリマーが形成されなかった。
<通電試験>
実施例1-1等と同様の方法を用いて、実施例3-1及び比較例3の液晶セルについて通電試験を行った。結果を下記表3に示した。
Figure JPOXMLDOC01-appb-T000052
配向膜40の材料として脂肪族酸無水物モノマーユニットを含むポリアミック酸を用い、かつ、配向膜形成用組成物中に導入した上記化学式(M1-3)及び(M2-1)で表される重合性モノマーの重合により、芳香族ポリマーを形成した実施例3-1の液晶セルでは、上記表3に示したように、初期のVHRが98.6%、残留DCが0.10Vであり、100時間後のVHRが97.8%、残留DCが0.16Vであり、VHRの低下及び残留DCの増加は抑制された。更に、実施例3-1の液晶セルでは、目視観察にて、駆動時にフリッカは観測されなかった。
一方、配向膜の材料として芳香族酸無水物モノマーユニットを含むポリアミック酸を用いた比較例3の液晶セルでは、初期の時点でのVHRは96.0%と低く、残留DCは0.36Vと高かった。更に、100時間後のVHRは92.3%と更に低下し、残留DCは1.06Vまで増加した。このような結果となった理由として、上記化学式(M1-3)及び(M2-1)で表されるモノマーを重合するために照射された紫外光を、ポリアミック酸に含まれる芳香族酸無水物モノマーユニットが吸収したため、上記モノマーの重合が起こりにくかったことが考えらえる。また、ポリアミック酸に含まれる芳香族酸無水物モノマーユニットと反射電極1におけるAlとの間で、Al側から芳香族酸無水物モノマーユニットへの電子注入が起こり、芳香族酸無水物モノマーユニットにおいてアニオンが形成されたため、上記化学式(M2-1)で表されるモノマーの水素引き抜き反応が抑制されたことにより、ポリマー層50を形成する反応が抑制された可能性も挙げられる。以上の結果より、ポリアミック酸系配向膜材料について、脂肪族酸無水物モノマーユニットを有するポリアミック酸を用いることが好ましいことが示された。
[実施例4-1、比較例4]
<光配向膜の調製>
下記化学式(P-1-3)で表される構造を有するポリアミック酸と、上記化学式(M1-3)で表されるモノマーと、上記化学式(M2-1)で表されるモノマーとを含む配向膜形成用組成物4-1を調製した。上記化学式(M1-3)で表されるモノマーは、上記ポリアミック酸に対して3wt%の濃度で加え、上記化学式(M2-1)で表されるモノマーは、上記ポリアミック酸に対して0.2wt%の濃度で加えた。なお、下記化学式(P-1-3)で表される構造を有するポリアミック酸は脂肪族酸無水物モノマーユニットを有しており、かつシンナメート基を有する光配向膜用ポリマーである。また、上記モノマーの濃度は、上記モノマー及び上記ポリアミック酸の総量を100wt%とした際の濃度である。
Figure JPOXMLDOC01-appb-C000053
(pは1以上の整数を表す。)
また、配向膜形成用組成物4-1におけるポリアミック酸を、下記化学式(P-1-4)で表される構造を有するポリアミック酸に変更した以外は、配向膜形成用組成物4-1と同様の方法を用いて、配向膜形成用組成物4Rを調製した。なお、下記化学式(P-1-4)で表される構造を有するポリアミック酸は芳香族酸無水物モノマーユニットを有しており、かつシンナメート基を有する光配向膜用ポリマーである。
Figure JPOXMLDOC01-appb-C000054
<反射型液晶セルの作製>
Agからなる反射電極1を有する第一基板10と、ITOからなる透明電極を有する第二基板20を用意した。続いて、両基板に配向膜形成用組成物4-1を塗布し、80℃、2分の仮焼成を行った後、200℃、40分の本焼成を行い、偏光紫外光を25mJ/cm照射して光配向処理を施した。
次に、第一基板10にシール剤を塗布し、負の誘電率異方性を有する液晶材料(Δε≦-5.0)を滴下し、第二基板20を貼り合わせて液晶セルを作製した。
得られた液晶セルに、Tni以上の温度で30分間アニール処理を実施し、再配向処理を行った。最後に、液晶セルを室温に戻した後、カラーフィルタ22を有する第二基板20側から波長365nmの紫外光を10J/cm照射し、配向膜形成用組成物中のモノマーを重合することにより、芳香族ポリマーを形成し、実施例4-1の液晶セルを得た。紫外光の照射には、東芝ライテック社製のFHF-32BLBを用いた。更に、実施例4-1における配向膜形成用組成物4-1を配向膜形成用組成物4Rに変更した以外は、実施例4-1と同様の方法を用いて、比較例4の液晶セルを作製した。
実施例4-1の液晶セルでは、芳香族ポリマーを含有する配向膜40aが形成され、かつ、芳香族ポリマーを含有する配向膜40aの液晶層30側の面に、芳香族ポリマーを含むポリマー層50が形成された。実施例4-1の液晶セルにおけるポリマー層50は、実施例3-1のポリマー層50より薄く、芳香族ポリマーの大部分が配向膜40中に存在していた。一方、比較例4の液晶セルでは芳香族ポリマーが形成されなかった。
<通電試験>
実施例1-1等と同様の方法を用いて、実施例4-1及び比較例4の液晶セルについて通電試験を行った。結果を下記表4に示した。
Figure JPOXMLDOC01-appb-T000055
配向膜40の材料として、脂肪族酸無水物モノマーユニットを含むポリアミック酸を用い、かつ、配向膜形成用組成物中に導入した上記化学式(M1-3)及び(M2-1)で表される重合性モノマーの重合により芳香族ポリマーを形成した実施例4-1の液晶セルでは、上記表4に示したように、初期のVHRが98.2%、残留DCが0.11Vであり、100時間後のVHRが97.5%、残留DCが0.19Vであり、VHRの低下及び残留DCの増加は抑制された。更に、実施例4-1の液晶セルでは、目視観察にて、駆動時にフリッカは観測されなかった。
一方、配向膜の材料として、芳香族酸無水物モノマーユニットを含むポリアミック酸を用いた比較例4の液晶セルでは、初期の時点でのVHRは94.0%と低く、残留DCは0.66Vと高かった。更に、100時間後のVHRは85.0%と低下し、残留DCは1.40Vまで増加した。このような結果となった理由としては、実施例3-1及び比較例3にて示したものと同様の理由が考えられる。
[付記]
本発明の一態様は、外光を反射させる反射電極1が設けられた第一基板10と、第一基板10に対向する第二基板20と、第一基板10及び第二基板20の間に挟持され、かつ、アルコキシ基を有する液晶化合物を含み、負の誘電率異方性を有する液晶材料からなる液晶層30と、第一基板10及び第二基板20の少なくとも一方の基板の液晶層30側に設けられた配向膜40と、液晶層30及び配向膜40の間、及び、配向膜40中の少なくとも一方に存在し、かつ、下記化学式(M1)で表されるモノマーに由来する構造を有する芳香族ポリマーとを有する液晶表示装置(反射型液晶表示装置100、半透過型液晶表示装置200)であってもよい。
Figure JPOXMLDOC01-appb-C000056
(式中、Pは、ラジカル重合性基を表す。
Spは、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレン基、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレンオキシ基、又は、直接結合を表す。
は、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。
Zは、-O-基、-S-基、-NH-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。
は、-R-Sp-P基、水素原子、ハロゲン原子、-CN基、-NO基、-NCO基、-NCS基、-OCN基、-SCN基、-SF基、又は、炭素数1~18の直鎖状もしくは分枝状のアルキル基を表す。
及びAは各々独立に、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、フェナントレン-1,6-ジイル基、フェナントレン-1,8-ジイル基、フェナントレン-2,7-ジイル基、フェナントレン-3,6-ジイル基、アントラセン-1,5-ジイル基、アントラセン-1,8-ジイル基、アントラセン-2,6-ジイル基、又は、アントラセン-2,7-ジイル基を表す。
nは0、1又は2である。
が有する水素原子は、フッ素原子又は塩素原子で置換されていてもよい。Rが有する-CH-基は、酸素原子及び硫黄原子が互いに隣接しない限り、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、又は、-OCO-CH=CH-基で置換されていてもよい。
及びAが有する-CH-基は、互いに隣接しない限り-O-基又は-S-基で置換されていてもよい。A及びAが有する1又は2以上の水素原子は、フッ素原子、塩素原子、-CN基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数2~6のアルキルカルボニル基、炭素数2~6のアルコキシカルボニル基、又は、炭素数2~6のアルキルカルボニルオキシ基で置換されていてもよい。)
本発明の一態様の液晶表示装置は、上記化学式(M1)で表されるモノマーに由来する構造を有する芳香族ポリマーを含むため、上記芳香族ポリマーにおける芳香族基と、反射電極1から発生した電荷との間で効率よく電荷移動反応が起こり、液晶層30中での電荷移動反応を抑制することができる。これにより、駆動時に発生するフリッカ及び長時間の駆動により発生する焼き付きを抑制することができる。
上記化学式(M1)で表されるモノマーは、下記化学式(M1-1)~(M1-3)で表される少なくとも1種のモノマーであってもよい。
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
上記液晶化合物は、下記化学式(L)で表される構造を有してもよい。下記化学式(L)で表される液晶化合物は、電極から注入される電荷(電子又は正孔)により開裂し、ラジカル及びイオン(アニオン又はカチオン)を形成するため、フリッカや焼き付き等の原因となってしまうが、本発明の一態様によれば、低電圧駆動を実現し、かつ、駆動時に発生するフリッカ及び長時間の駆動により発生する焼き付きを抑制することができる。
Figure JPOXMLDOC01-appb-C000060
(式中、Xは各々独立にハロゲン原子又は水素原子を表し、Rは炭素数1~8の炭化水素基を表し、水素原子はフッ素原子で置換されていてもよい。)
上記液晶材料は、誘電率異方性が-5.0以下であってもよい。このような態様とすることにより、更なる低電圧駆動を実現することができる。
反射電極1は、Al、Ag、Cu、Zn及びそれらの合金からなる群より選択される少なくとも1種を含んでもよい。
上記芳香族ポリマーは、更に、下記化学式(M2)で表されるモノマーに由来する構造を有してもよい。下記化学式(M2)で表されるモノマーは430nm付近までの光を吸収するため、上記化学式(M1)のモノマーに加えて、下記化学式(M2)のモノマーを用いて芳香族ポリマーを合成する場合、カラーフィルタ基板側から光照射を行う場合でも効率よくモノマーの重合を進行させることが可能となる。
Figure JPOXMLDOC01-appb-C000061
(式中、A及びAは各々独立に、フェニル基、フェニレン基、ビフェニル基、ビフェニレン基、炭素数1~12の直鎖状もしくは分枝状のアルキル基、炭素数1~12の直鎖状もしくは分枝状のアルキレン基、炭素数2~12の直鎖状もしくは分枝状のアルケニル基、又は、炭素数2~12の直鎖状もしくは分枝状のアルケニレン基を表す。A及びAの少なくとも一方は、-Sp-P基を含む。
は、重合性基を表す。
Spは、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレン基、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレンオキシ基、又は、直接結合を表す。
mは1又は2である。
とYとをつなぐ点線部分、及び、AとYとをつなぐ点線部分は、AとAとの間にYを介した結合が存在していてもよいことを表す。
Yは、-CH-基、-CHCH-基、-CH=CH-基、-O-基、-S-基、-NH-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、又は、直接結合を表す。
及びAが有する水素原子は、-Sp-P基、ハロゲン原子、-CN基、-NO基、-NCO基、-NCS基、-OCN基、-SCN基、-SF基、炭素数1~12の直鎖状もしくは分枝状のアルキル基、炭素数2~12の直鎖状もしくは分枝状のアルケニル基、又は、炭素数7~12の直鎖状もしくは分枝状のアラルキル基で置換されていてもよい。
及びAが有する隣接する2つの水素原子は、炭素数1~12の直鎖状もしくは分枝状のアルキレン基又は炭素数2~12の直鎖状もしくは分枝状のアルケニレン基で置換されて、環状構造となっていてもよい。
及びAのアルキル基、アルケニル基、アルキレン基、アルケニレン基又はアラルキル基が有する水素原子は、-Sp-P基で置換されていてもよい。
及びAのアルキル基、アルケニル基、アルキレン基、アルケニレン基又はアラルキル基が有する-CH-基は、酸素原子、硫黄原子及び窒素原子が互いに隣接しない限り、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、又は、-OCO-CH=CH-基で置換されていてもよい。)
上記化学式(M2)で表されるモノマーは、下記化学式(M2-1)で表されるモノマーであってもよい。下記化学式(M2-1)で表されるモノマーは、特に長波長の光を吸収し、波長430nm乃至は440nmまでの光を吸収することができる。
Figure JPOXMLDOC01-appb-C000062
配向膜40は、ポリアミック酸及びポリイミドの少なくとも一方のポリマーを含み、かつ、上記少なくとも一方のポリマーは、脂肪族酸無水物モノマーユニットを有してもよい。このような態様とすることにより、上記化学式(M1)で表されるモノマーを重合して、芳香族ポリマーを形成し易くなる。
上記ポリアミック酸は、下記化学式(P-1)で表される構造を有し、上記ポリイミドは、下記化学式(P-2)で表される構造を有してもよい。
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
(上記式(P-1)及び(P-2)中、Xは下記化学式(X-1)~(X-6)からなる群より選択される少なくとも1種の構造を有し、Yは3価の芳香族基又は脂肪族基を表し、Zは1価の有機基又は水素原子を表す。pは1以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000065
配向膜40は、垂直配向膜であってもよい。
1:反射電極
2:共通電極
3a:画素電極側の印加電圧
3b:共通電極側の印加電圧
3c:印加電圧の1フレーム
4:外光
5:反射光
5a:光反射部
6:バックライト
6a:光透過部
7:透明電極
10:第一基板
11、21:透明基板
12:絶縁膜
20:第二基板
22:カラーフィルタ
30:液晶層
40:配向膜
40a:芳香族ポリマーを含有する配向膜
50:ポリマー層
60:薄膜トランジスタ(TFT)
100:反射型液晶表示装置
200:半透過型液晶表示装置

Claims (10)

  1. 外光を反射させる反射電極が設けられた第一基板と、
    前記第一基板に対向する第二基板と、
    前記第一基板及び前記第二基板の間に挟持され、かつ、
    アルコキシ基を有する液晶化合物を含み、負の誘電率異方性を有する液晶材料からなる液晶層と、
    前記第一基板及び前記第二基板の少なくとも一方の基板の前記液晶層側に設けられた配向膜と、
    前記液晶層及び前記配向膜の間、及び、前記配向膜中の少なくとも一方に存在し、かつ、
    下記化学式(M1)で表されるモノマーに由来する構造を有する芳香族ポリマーとを有することを特徴とする液晶表示装置。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Pは、ラジカル重合性基を表す。
    Spは、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレン基、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレンオキシ基、又は、直接結合を表す。
    は、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。
    Zは、-O-基、-S-基、-NH-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。
    は、-R-Sp-P基、水素原子、ハロゲン原子、-CN基、-NO基、-NCO基、-NCS基、-OCN基、-SCN基、-SF基、又は、炭素数1~18の直鎖状もしくは分枝状のアルキル基を表す。
    及びAは各々独立に、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、フェナントレン-1,6-ジイル基、フェナントレン-1,8-ジイル基、フェナントレン-2,7-ジイル基、フェナントレン-3,6-ジイル基、アントラセン-1,5-ジイル基、アントラセン-1,8-ジイル基、アントラセン-2,6-ジイル基、又は、アントラセン-2,7-ジイル基を表す。
    nは0、1又は2である。
    が有する水素原子は、フッ素原子又は塩素原子で置換されていてもよい。Rが有する-CH-基は、酸素原子及び硫黄原子が互いに隣接しない限り、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、又は、-OCO-CH=CH-基で置換されていてもよい。
    及びAが有する-CH-基は、互いに隣接しない限り-O-基又は-S-基で置換されていてもよい。A及びAが有する1又は2以上の水素原子は、フッ素原子、塩素原子、-CN基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数2~6のアルキルカルボニル基、炭素数2~6のアルコキシカルボニル基、又は、炭素数2~6のアルキルカルボニルオキシ基で置換されていてもよい。)
  2. 前記化学式(M1)で表されるモノマーは、下記化学式(M1-1)~(M1-3)で表される少なくとも1種のモノマーであることを特徴とする請求項1に記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
  3. 前記液晶化合物は、下記化学式(L)で表される構造を有することを特徴とする請求項1又は2に記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Xは各々独立にハロゲン原子又は水素原子を表し、Rは炭素数1~8の炭化水素基を表し、水素原子はフッ素原子で置換されていてもよい。)
  4. 前記液晶材料は、誘電率異方性が-5.0以下であることを特徴とする請求項1~3のいずれかに記載の液晶表示装置。
  5. 前記反射電極は、Al、Ag、Cu、Zn及びそれらの合金からなる群より選択される少なくとも1種を含むことを特徴とする請求項1~4のいずれかに記載の液晶表示装置。
  6. 前記芳香族ポリマーは、更に、下記化学式(M2)で表されるモノマーに由来する構造を有することを特徴とする請求項1~5のいずれかに記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000006
    (式中、A及びAは各々独立に、フェニル基、フェニレン基、ビフェニル基、ビフェニレン基、炭素数1~12の直鎖状もしくは分枝状のアルキル基、炭素数1~12の直鎖状もしくは分枝状のアルキレン基、炭素数2~12の直鎖状もしくは分枝状のアルケニル基、又は、炭素数2~12の直鎖状もしくは分枝状のアルケニレン基を表す。A及びAの少なくとも一方は、-Sp-P基を含む。
    は、重合性基を表す。
    Spは、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレン基、炭素数1~6の直鎖状、分枝状もしくは環状のアルキレンオキシ基、又は、直接結合を表す。
    mは1又は2である。
    とYとをつなぐ点線部分、及び、AとYとをつなぐ点線部分は、AとAとの間にYを介した結合が存在していてもよいことを表す。
    Yは、-CH-基、-CHCH-基、-CH=CH-基、-O-基、-S-基、-NH-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、又は、直接結合を表す。
    及びAが有する水素原子は、-Sp-P基、ハロゲン原子、-CN基、-NO基、-NCO基、-NCS基、-OCN基、-SCN基、-SF基、炭素数1~12の直鎖状もしくは分枝状のアルキル基、炭素数2~12の直鎖状もしくは分枝状のアルケニル基、又は、炭素数7~12の直鎖状もしくは分枝状のアラルキル基で置換されていてもよい。
    及びAが有する隣接する2つの水素原子は、炭素数1~12の直鎖状もしくは分枝状のアルキレン基又は炭素数2~12の直鎖状もしくは分枝状のアルケニレン基で置換されて、環状構造となっていてもよい。
    及びAのアルキル基、アルケニル基、アルキレン基、アルケニレン基又はアラルキル基が有する水素原子は、-Sp-P基で置換されていてもよい。
    及びAのアルキル基、アルケニル基、アルキレン基、アルケニレン基又はアラルキル基が有する-CH-基は、酸素原子、硫黄原子及び窒素原子が互いに隣接しない限り、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、又は、-OCO-CH=CH-基で置換されていてもよい。)
  7. 前記化学式(M2)で表されるモノマーは、下記化学式(M2-1)で表されるモノマーであることを特徴とする請求項6に記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000007
  8. 前記配向膜は、ポリアミック酸及びポリイミドの少なくとも一方のポリマーを含み、かつ、前記少なくとも一方のポリマーは、脂肪族酸無水物モノマーユニットを有することを特徴とする請求項1~7のいずれかに記載の液晶表示装置。
  9. 前記ポリアミック酸は、下記化学式(P-1)で表される構造を有し、
    前記ポリイミドは、下記化学式(P-2)で表される構造を有することを特徴とする請求項8に記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    (上記式(P-1)及び(P-2)中、Xは下記化学式(X-1)~(X-6)からなる群より選択される少なくとも1種の構造を有し、Yは3価の芳香族基又は脂肪族基を表し、Zは1価の有機基又は水素原子を表す。pは1以上の整数を表す。)
    Figure JPOXMLDOC01-appb-C000010
  10. 前記配向膜は、垂直配向膜であることを特徴とする請求項1~9のいずれかに記載の液晶表示装置。
PCT/JP2017/020779 2016-06-10 2017-06-05 液晶表示装置 WO2017213072A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/306,689 US10824006B2 (en) 2016-06-10 2017-06-05 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016116601 2016-06-10
JP2016-116601 2016-06-10

Publications (1)

Publication Number Publication Date
WO2017213072A1 true WO2017213072A1 (ja) 2017-12-14

Family

ID=60577815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020779 WO2017213072A1 (ja) 2016-06-10 2017-06-05 液晶表示装置

Country Status (2)

Country Link
US (1) US10824006B2 (ja)
WO (1) WO2017213072A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230046964A1 (en) * 2019-12-09 2023-02-16 Sharp Kabushiki Kaisha Alignment film, display device, method for producing display device, liquid crystal alignment agent, and liquid crystal composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213072A1 (ja) * 2016-06-10 2017-12-14 シャープ株式会社 液晶表示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032857A1 (ja) * 2010-09-07 2012-03-15 シャープ株式会社 液晶層形成用組成物、液晶表示装置及び液晶表示装置の製造方法
WO2015053233A1 (ja) * 2013-10-07 2015-04-16 日産化学工業株式会社 液晶表示素子および液晶表示素子の製造方法
WO2015194632A1 (ja) * 2014-06-19 2015-12-23 Dic株式会社 重合性モノマー含有液晶組成物およびそれを使用した液晶表示素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952252B2 (en) 2001-10-02 2005-10-04 Fujitsu Display Technologies Corporation Substrate for liquid crystal display and liquid crystal display utilizing the same
WO2017213072A1 (ja) * 2016-06-10 2017-12-14 シャープ株式会社 液晶表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032857A1 (ja) * 2010-09-07 2012-03-15 シャープ株式会社 液晶層形成用組成物、液晶表示装置及び液晶表示装置の製造方法
WO2015053233A1 (ja) * 2013-10-07 2015-04-16 日産化学工業株式会社 液晶表示素子および液晶表示素子の製造方法
WO2015194632A1 (ja) * 2014-06-19 2015-12-23 Dic株式会社 重合性モノマー含有液晶組成物およびそれを使用した液晶表示素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230046964A1 (en) * 2019-12-09 2023-02-16 Sharp Kabushiki Kaisha Alignment film, display device, method for producing display device, liquid crystal alignment agent, and liquid crystal composition

Also Published As

Publication number Publication date
US20190324320A1 (en) 2019-10-24
US10824006B2 (en) 2020-11-03

Similar Documents

Publication Publication Date Title
US9864236B2 (en) Method for manufacturing liquid crystal display device
JP5750111B2 (ja) 液晶層及びポリマー層形成用組成物、並びに、液晶表示装置
WO2013103153A1 (ja) 液晶表示装置、及び、その製造方法
WO2013031461A1 (ja) 液晶表示装置の製造方法
WO2012050177A1 (ja) 液晶表示装置及び液晶表示装置の製造方法
JP4528645B2 (ja) 液晶表示素子
WO2016017483A1 (ja) 液晶表示装置
WO2014038431A1 (ja) 配向膜用重合体、及び、液晶表示装置
EP2458431A1 (en) Liquid crystal display panel and process for production thereof
WO2013031616A1 (ja) 液晶表示パネル及び液晶表示装置
EP2463709A1 (en) Liquid crystal display panel and process for production thereof
JP6011903B1 (ja) 液晶表示素子及びその製造方法
US9488869B2 (en) Liquid crystal display device and method for manufacturing same
WO2017213072A1 (ja) 液晶表示装置
JP2012220673A (ja) 液晶光学装置、及びその製造方法
JP2006337460A (ja) 液晶表示素子
CN112538358A (zh) 水平取向型液晶显示元件、液晶组合物、显示装置及水平取向型液晶显示元件的制造方法
JP2005258429A (ja) 液晶表示素子
WO2017110704A1 (ja) 液晶表示装置、及び、液晶表示装置の製造方法
CN113109960A (zh) 水平取向型液晶显示元件、液晶组合物、显示装置及水平取向型液晶显示元件的制造方法
CN109313368B (zh) 液晶显示装置
WO2013161865A1 (ja) 液晶表示装置及び液晶表示装置の製造方法
JP4992198B2 (ja) 液晶表示素子および液晶表示素子の製造方法
CN110878215A (zh) 水平取向型液晶显示元件及其制造方法、液晶组合物、聚合性化合物及其用途、显示装置
CN111367123A (zh) 水平取向型液晶显示元件、液晶组合物、显示装置及水平取向型液晶显示元件的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP