JPWO2014174871A1 - 空調制御システム及び空調制御方法 - Google Patents

空調制御システム及び空調制御方法 Download PDF

Info

Publication number
JPWO2014174871A1
JPWO2014174871A1 JP2015513583A JP2015513583A JPWO2014174871A1 JP WO2014174871 A1 JPWO2014174871 A1 JP WO2014174871A1 JP 2015513583 A JP2015513583 A JP 2015513583A JP 2015513583 A JP2015513583 A JP 2015513583A JP WO2014174871 A1 JPWO2014174871 A1 JP WO2014174871A1
Authority
JP
Japan
Prior art keywords
air conditioning
temperature
operation plan
period
planning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015513583A
Other languages
English (en)
Other versions
JP5951120B2 (ja
Inventor
隆也 山本
隆也 山本
義隆 宇野
義隆 宇野
美緒 元谷
美緒 元谷
博 米谷
博 米谷
理 中島
理 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5951120B2 publication Critical patent/JP5951120B2/ja
Publication of JPWO2014174871A1 publication Critical patent/JPWO2014174871A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/026Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system using a predictor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1932Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/57Remote control using telephone networks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Remote Sensing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空調設備12が処理する熱量の時間変化を予測する熱負荷予測部32と、合計の処理熱負荷を同一又は所定量の差の範囲内にすると共に、室内の温度を所定の快適温度範囲内に維持させる第1制約条件下において、評価指標を削減するように、空調設備12の運転計画を事前に立案する運転計画立案部33と、運転計画で空調設備12の制御を実行中、運転計画を補正する運転計画補正部34と、を備え、運転計画補正部34は、温度センサで測定した実測温度が、運転計画の立案時に予測する運転計画立案部33による予測温度と異なる場合、室内の温度の時間変化を予測し、補正対象期間中の1又は複数の時刻において、当該運転計画補正部34で予測した予測温度と、運転計画立案部33で予測した予測温度との誤差を所定の許容変動幅内に収めることを第2制約条件として、評価指標が第1制約条件下で最小となるように、運転計画を補正する。

Description

本発明は、空調制御システム及び空調制御方法に関する。
従来から、室外機及び室内機で構成される空調機、加湿器、除湿器、ヒータ、及び外調機等の空調設備がビル等の建物に設置されている。このような空調設備では省エネ制御が行われているが、そのような省エネ制御のうち、熱負荷予測に基づいて空調機を制御する空調制御システムがある(例えば、特許文献1参照)。
特許文献1に記載の空調制御システムは、建物の熱負荷を予測し、予測した熱負荷に基づいて空調機の運転計画を作成し、作成した運転計画で空調機を稼働させている。よって、建物の熱負荷、すなわち、建物の熱特性を考慮した運転計画が立案され、そのように立案された運転計画で空調機が稼働しているため、省エネが実現されている。
特開2011−214794号公報(段落[0077])
しかしながら、特許文献1に記載の空調制御システムは、事前に立案した運転計画を実行中に、予測した熱負荷が実際と逸脱した場合であっても、運転計画が補正されなかった。つまり、特許文献1に記載の空調制御システムは、事前に立案した運転計画を、実行時の状況に応じて適切に補正していないという問題点があった。
本発明は、上記のような問題点を解決するためになされたもので、事前に立案した運転計画を、実行時の状況に応じて適切に補正することができる空調制御システム及び空調制御方法を提供することを目的とするものである。
本発明に係る空調制御システムは、建物に設置された空調設備を制御する空調制御システムにおいて、与えられた熱負荷予測用データに基づいて、前記空調設備が処理する熱量の時間変化を予測する熱負荷予測部と、合計の処理熱負荷を同一又は所定量の差の範囲内にすると共に、室内の温度を所定の快適温度範囲内に維持させる第1制約条件下において、評価指標である前記空調設備の消費電力量又はランニングコストの何れかを削減するように、空調運転の計画対象期間における前記空調設備の運転計画を事前に立案する運転計画立案部と、前記運転計画で前記空調設備の制御を実行中、所定の周期で前記運転計画を補正する運転計画補正部と、前記室内の温度を測定する温度センサと、を備え、前記運転計画立案部と前記運転計画補正部は、与えられた温度予測用データに基づいて前記室内の温度の時間変化を予測する温度予測手段を有し、前記運転計画補正部は、前記温度センサで測定した実測温度が、前記運転計画の立案時に予測する前記運転計画立案部による予測温度と異なる場合、前記計画対象期間のうち、補正を行う期間である補正対象期間における前記室内の温度の時間変化を予測し、前記補正対象期間中の1又は複数の時刻において、当該運転計画補正部で予測した予測温度と、前記運転計画立案部で予測した予測温度との誤差を所定の許容変動幅内に収めることを第2制約条件として、前記評価指標が前記第1制約条件下で最小となるように、前記運転計画を補正するものである。
本発明は、室温の偏差を予め定めた期間で制御することで、事前に立案した運転計画を、実行時の状況に応じて適切に補正することができるので、室内の温度又は湿度等を快適に維持しつつ、省エネ性を向上させることができるという従来にはない顕著な効果を奏するものである。
本発明の実施の形態1における空調制御システム1の概略構成の一例を示す図である。 本発明の実施の形態1における空調制御システム1の概略構成の別の一例を示す図である。 本発明の実施の形態1における空調制御システム1の機能構成の一例を示す図である。 本発明の実施の形態1における各種設定条件の一例を示す図である。 本発明の実施の形態1における室温の空間的なばらつき状態の一例を説明する図である。 本発明の実施の形態1における室温の時間的なばらつき状態の一例を説明する図である。 本発明の実施の形態1における空調制御システム1の制御例を説明するフローチャートである。 本発明の実施の形態1における消費電力量を評価指標に含めて運転計画を試行する一例を示す図である。 本発明の実施の形態2におけるランニングコストを評価指標に含めた一例を示す図である。 本発明の実施の形態2における消費電力量、ランニングコスト、設定温度からの室温のずれ度合い、及び室温の時間変化率を評価指標に含めた一例を示す図である。 本発明の実施の形態2における温度に関する条件を制約条件に含めた一例を示す図である。 本発明の実施の形態2における制約条件からの逸脱量を評価指標に含めた一例を示す図である。 本発明の実施の形態3における各種設定条件の一例を示す図である。 本発明の実施の形態3におけるピーク電力の削減を想定した運転計画の一例を示す図である。 本発明の実施の形態3におけるピーク電力の削減を想定した運転計画のうちの一部の快適温度範囲及びその一部の快適温度範囲の期間を決定する空調制御システム1の制御例を説明するフローチャートである。 本発明の実施の形態4における空調制御システム1の機能構成の一例を示す図である。 本発明の実施の形態4における各種設定条件のうちの評価指標の詳細例を示す図である。 本発明の実施の形態4における各種設定条件のうちの制約条件の詳細例を示す図である。 空調機の一般的な特性を示す図である。 本発明の実施の形態5における運転計画の機能構成の一例を示す図である。 本発明の実施の形態5における運転計画の作成動作例を説明するフローチャートである。 本発明の実施の形態5における処理熱負荷の時間的分散処理を説明するフローチャートである。 本発明の実施の形態5における処理熱負荷の空間的分散処理を説明するフローチャートである。
以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、本発明の実施の形態の動作を行うプログラムを記述するステップは、記載された順序に沿って時系列に行われる処理であるが、必ずしも時系列に処理されなくても、並列的又は個別に実行される処理をも含んでもよい。
また、本実施の形態で説明される各機能をハードウェアで実現するか、ソフトウェアで実現するかは問わない。つまり、本実施の形態で説明される各ブロック図は、ハードウェアのブロック図と考えても、ソフトウェアの機能ブロック図と考えてもよい。例えば、各ブロック図は、回路デバイス等のハードウェアで実現されてもよく、図示しないプロセッサ等の演算装置上で実行されるソフトウェアで実現されてもよい。
また、本実施の形態で説明されるブロック図の各ブロックは、その機能が実施されればよく、それらの各ブロックで構成が分離されなくてもよい。すなわち、各ブロックは一例にすぎない。例えば、各ブロックは、本実施の形態で説明されるブロックのそれぞれの上位集合であってもよく、本実施の形態で説明されるブロックのそれぞれの下位集合であってもよく、本実施の形態で説明されるブロックのそれぞれの部分集合であってもよい。
なお、本実施の形態1〜5のそれぞれにおいて、特に記述しない項目については実施の形態1〜5と同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。
また、本実施の形態1〜5は、単独で実施されてもよく、組み合わせて実施されてもよい。いずれの場合においても、下記で説明する有利な効果を奏することとなる。
また、本実施の形態で説明する各種値及びフラグ等の設定例は一例を示すだけであり、特にこれらに限定しない。
実施の形態1.
(空調制御システム1の構成例1)
図1は、本発明の実施の形態1における空調制御システム1の概略構成の一例を示す図である。図1に示すように、空調制御システム1は、空調コントローラ11と、空調設備12とを備える。空調コントローラ11と、空調設備12とは、空調ネットワーク13を介して接続されている。
空調コントローラ11は、空調設備12と各種通信を行うことで、空調設備12を制御したり、空調設備12を監視したりする。なお、図1においては、空調コントローラ11は、1台のみが設けられている一例について説明しているが、特にこれに限定されない。例えば、複数台の空調コントローラ11が設置されていてもよい。また、複数台の空調コントローラ11が互いに離れた箇所にそれぞれ設けられていてもよい。なお、空調コントローラ11は、例えば、一般的に建物の内部の管理室等に設置されるが、特にこれに限定されない。
空調設備12は、図1に示すように、室外機12a、室内機12b、換気設備12c、全熱交換器12d、加湿器12e、除湿器12f、ヒータ12g、及び外調機12h等を構成要素として備える。このような構成要素は、一般的には、それぞれ複数台が設置される。なお、上記で説明した空調設備12の構成要素は、一例を示すだけであって、特にこれらに限定されず、これら全てが構成要素である必要はない。また、上記で説明した空調設備12の構成要素以外であっても、室内の空気状態を制御するその他の種類の機器が構成要素であってもよい。すなわち、空調設備12とは、上記で説明した空調設備12の構成要素の何れか1台、又は、複数台を想定する。また、複数台の構成要素を備える空調設備12が複数台設けられていてもよい。
空調ネットワーク13は、例えば、外部に非公開の通信プロトコルに準拠した通信が行われる通信媒体として形成されてもよく、外部に公開されている通信プロトコルに準拠した通信が行われる通信媒体として形成されてもよい。空調ネットワーク13は、例えば、ケーブルの種類又は通信プロトコルに応じて、複数の異なる種類のネットワークが混在する構成であってもよい。複数の異なる種類のネットワークとしては、例えば、空調設備12を計測制御する専用ネットワーク、LAN(Local Area Network)、及び空調設備12の構成要素毎に異なる個別専用線等が一例として想定される。
なお、空調コントローラ11と、空調設備12とは、機器接続用コントローラ14を介して接続された構成であってもよい。機器接続用コントローラ14は、空調コントローラ11と、空調設備12との間のデータ通信を中継する機能が実装されている。例えば、空調設備12の構成要素のうち、一部の空調設備12の構成要素が空調ネットワーク13に直接接続し、他の一部の空調設備12の構成要素が機器接続用コントローラ14に接続する構成であってもよい。
そこで、機器接続用コントローラ14に、空調設備12と、空調コントローラ11との通信プロトコルの違いを隠蔽させたり、空調設備12と、空調コントローラ11との通信内容を監視させたりしてもよい。
また、空調制御システム1は、センサ19を備えてもよい。センサ19は、例えば、温度センサ、湿度センサ、及びCO濃度センサ等のセンシングを行う機器である。なお、図1においては、センサ19は、1台だけ設置されている一例を示すが、特にこれに限定されない。センサ19は、複数台設置されてもよい。センサ19は、異なる種類のセンシングを行う機器が複数台設置されてもよい。センサ19は、1台で異なる種類のセンシングを行う機器であってもよい。センサ19の設置場所は、例えば、空調設備12の空調対象空間である室内等である。外気温、日射量等をセンシングするような場合には、センサ19を屋外に設置してもよい。
図1に示すように、空調制御システム1に空調コントローラ11が設けられている場合、図3で後述する各種機能が空調コントローラ11上で実行される。
上記では、空調制御システム1の構成の一例について説明したが、特にこれに限定されない。他の空調制御システム1の構成の一例として図2を用いて説明する。
(空調制御システム1の構成例2)
図2は、本発明の実施の形態1における空調制御システム1の概略構成の別の一例を示す図である。図2に示すように、空調制御システム1には、空調制御用計算機15が設けられている。空調制御用計算機15は、汎用ネットワーク16を介して、空調コントローラ11と接続されている。空調制御用計算機15は、汎用ネットワーク16を介して、空調コントローラ11と各種通信が行われる。
汎用ネットワーク16は、例えば、LAN又は電話回線等の通信プロトコルに準拠した通信媒体である。よって、空調制御用計算機15と、空調コントローラ11とで各種通信が行われる場合、IPアドレス等に基づいて各種通信が行われてもよい。また、空調制御用計算機15は、空調コントローラ11又は機器接続用コントローラ14を介して、センサ19又は空調設備12と各種通信が行われてもよい。
空調制御用計算機15は、汎用ネットワーク16を介して、空調設備12と各種通信を行うことで、各種演算を実行する。空調制御用計算機15は、汎用ネットワーク16、空調コントローラ11、及び空調ネットワーク13等を介して、機器接続用コントローラ14又はセンサ19と各種通信を行い、各種データを取得してもよい。
図2に示すように、空調制御システム1に空調コントローラ11及び空調制御用計算機15が設けられている場合、図3で後述する各種機能が、空調コントローラ11と、空調制御用計算機15とに分担されてもよい。空調制御用計算機15は、空調コントローラ11と同様に、空調設備12の空調対象空間である室内等に設けられてもよく、敷地内又は遠隔地から複数の建物を管理するセンター等に設置されてもよい。
なお、上記の説明では、空調コントローラ11に各機能が実装される一例と、空調コントローラ11及び空調制御用計算機15で各機能が分担される一例とをそれぞれ説明したが、特にこれらに限定されない。例えば、図示しない複数のサーバー装置に、空調コントローラ11の機能が分散して実装されてもよい。また、例えば、図示しない一つのサーバー装置に、空調コントローラ11の機能と、空調制御用計算機15の機能とがそれぞれ論理的に異なる形態で実装されてもよい。つまり、上記で説明した各機能がそれぞれ実行されればよいため、その物理的な格納場所又はその物理的な実行場所は特に限定されない。
例えば、それぞれ遠隔地に設けられた複数のサーバー装置等に、上記で説明した各機能を分散処理させ、互いに演算結果の同期を取りながら一連の処理が実行されてもよい。また、上記で説明したように、空調コントローラ11の機能と、空調制御用計算機15の機能とが論理的に異なる形態で仮想化された装置として機能させることで、一つのサーバー装置に二つの機能が実装されてもよい。
(機能ブロック図:概要)
次に、上記で説明した空調制御システム1に実装される機能について図3を用いて説明する。図3は、本発明の実施の形態1における空調制御システム1の機能構成の一例を示す図である。図3に示すように、空調制御システム1は、機能構成として、条件設定部31、熱負荷予測部32、運転計画立案部33、運転計画補正部34、データ計測部35、及び制御指令部36等を備える。
条件設定部31では、熱負荷予測部32と、運転計画立案部33と、運転計画補正部34とに入力される各種設定条件として、空調運転計画の対象期間、時間刻み、快適温度範囲、及び設定温度等が設定される。熱負荷予測部32では、条件設定部31から取得する各種設定条件に従い、対象期間において設定温度を満たす空調機供給熱量、すなわち、設定した時間刻みで熱負荷を予測する。
運転計画立案部33では、条件設定部31から取得する各種設定条件に従い、対象期間において熱負荷予測部32で予測した熱負荷を処理する空調設備12の運転計画を設定した時間刻みで立案する。運転計画補正部34では、条件設定部31から取得する各種設定条件に従い、予測した温度と、データ計測部35の計測結果との偏差に基づいて、運転計画立案部33で立案した運転計画を補正する。制御指令部36では、運転計画補正部34で補正した運転計画を空調設備12に送信する。
(機能ブロック図の詳細な説明)
以下、各部の詳細について説明する。
(条件設定部31)
条件設定部31では、熱負荷予測部32、運転計画立案部33、及び運転計画補正部34の実行条件である空調運転の計画対象期間、時間刻み、快適温度範囲、及び設定温度等の各種設定条件が設定される。条件設定部31では、熱負荷及び温度の予測に必要な各種設定条件として、外気温、日射量、内部発熱量、空調設備12の構成要素である各機器の特性及び接続関係、並びに空調設備12の構成要素である各機器のフロア内での配置等が設定される。また、計画対象期間中、室温を快適温度範囲に維持させる期間として、快適維持期間が設定されてもよい。
条件設定部31では、例えば、ビルの管理者等の手動設定で各種設定条件が設定されてもよい。また、条件設定部31では、予め初期値として定めたデフォルト設定に従い、自動的に各種設定条件が設定されてもよい。よって、例えば、ビルの管理者の手動設定で、空調制御システム1の実行タイミングが制御されてもよい。具体的には、ビルの管理者が、ある特定の日に、空調制御システム1の実行を停止させてもよい。また、ビルの管理者が、空調制御システム1の実行途中に中断させてもよい。すなわち、空調制御システム1は、外部からの設定で、任意に実行タイミングが制御される。外部からの設定用インターフェースとしては、例えば、予め備えつけられているキーボート、マウス、タッチパネル、各種スイッチ等の入力手段と、ディスプレイ等の表示手段とが利用されればよい。
(熱負荷予測部32)
熱負荷予測部32は、熱負荷予測手段41を備える。熱負荷予測手段41は、各種設定条件である各種入力データに基づいて、計画対象期間中に、空調設備12で処理される熱量の時間変化を予測する。各種入力データは、例えば、計画対象期間中の空調設備12の設定温度と、気象データと、内部発熱データとである。気象データは、外気温及び日射量の少なくとも一方を含むデータである。内部発熱データは、建物内部で発生する熱に関するデータである。
熱負荷予測手段41は、建物の熱特性をモデル化した熱負荷予測モデルが実装されている。熱負荷予測モデルは、例えば、熱伝導方程式に基づく数式モデルである。熱負荷予測モデルは、熱伝導方程式で定義される室温予測モデルから導出できる。例えば、入力の1つである空調機供給熱量と、出力である室温とを入れ替えるように式変形することで、熱負荷予測モデルが導出される。なお、熱負荷予測モデルは、熱伝導方程式に基づいて定義される必要はない。例えば、熱負荷予測モデルは、入手できる入力データから熱負荷が予測されるモデルであれば、特に限定されない。
(運転計画立案部33)
運転計画立案部33は、計画対象期間において、室内の温度を所定の快適温度範囲内に維持させる等の制約条件下で、評価指標である消費電力量又はランニングコストの何れかを、予め定めた計算時間内で、最小化するように、空調設備12の運転計画を立案する。この機能を実現するために、運転計画立案部33は、運転計画作成手段42と、温度予測手段43と、計画評価手段44とを備える。
運転計画作成手段42は、空調設備12の構成要素である機器毎に異なるさまざまな運転パターンを作成する。温度予測手段43は、与えられた第1の温度予測用データに基づいて、室内の温度の時間変化を予測する。計画評価手段44は、運転計画作成手段42で作成した運転パターンが、条件設定部31で設定された制約条件を満たすか否かを判定し、評価指標の値を計算して、計算した評価指標に基づいて、最終的に出力する運転計画とするか否かを判定する。次に、温度予測手段43の詳細について説明する。なお、温度予測手段43は、本発明における第1の温度予測手段に相当する。
(温度予測手段43)
温度予測手段43では、運転パターンと、気象データと、内部発熱データとを入力データとして、計画対象期間の室内の温度の時間変化を予測する。運転パターンは、計画対象期間の空調設備12の運転パターンである。気象データは、外気温及び日射量の少なくとも一方を含むデータである。内部発熱データは、建物内部で発生する発熱データである。温度予測手段43には、室内の温度の時間変化を予測する建物の熱特性をモデル化した室温予測モデルが実装されている。室温予測モデルは、例えば、次に表される式(1)〜(3)の熱伝導方程式に基づく数式モデルである。このような熱伝導方程式に、入力データを与えることで、出力である室内の温度が求まる。
Figure 2014174871
式(1)〜(3)において、Qは、日射量[kW]、QOCCは、人体発熱量[kW]、QEQPは、機器発熱量[kW]、QHVACは、空調機供給熱量[kW]である。
また、Tは外気温[K]、Tは外壁室外側表面温度[K]、Tは外壁室内側表面温度[K]、Tは室内温度[K]、TOZは、隣接ゾーンの温度[K]である。
は外壁室外側表面熱抵抗[K/kW]、Rは外壁熱抵抗[K/kW]、Rは外壁室内側表面抵抗[K/kW]、ROZは隣接ゾーンとの間の熱抵抗[K/kW]、Rは外壁以外の熱抵抗[K/kW]である。
は外壁室外側熱容量[kJ/K]、Cは外壁室内側熱容量[kJ/K]、Cは室内熱容量[kJ/K]である。
αは室内へ透過する日射量の補正係数[−]、βは外壁へ照射する日射量の補正係数[−]、γは室内温度に影響を与える機器発熱量の補正係数[−]、δは空調機供給熱量の補正係数[−]、ρは室内温度に影響を与える人体発熱量の補正係数[−]、μは外壁室内側表面温度に影響を与える人体発熱量の補正係数[−]、λは外壁室内側表面温度に影響を与える機器発熱量の補正係数[−]である。
式(1)〜(3)では、隣接ゾーンが1ゾーンのみである場合を想定した式であるが、複数のゾーンと接している場合には、TOZとROZとを対応するゾーン毎に与えるように式を変更すればよい。なお、式(1)〜(3)では、1ゾーンに対応した式であるが、各ゾーンで個別の数式モデルを利用してもよい。また、全ゾーンに対応する式を導出し、導出した式を組み合わせることで、空調制御対象エリア全体の数式モデルを導出してもよい。
式(1)〜(3)から、熱伝導方程式には、熱抵抗、熱容量、及び補正係数等の未知パラメータが含まれるが、これらの推定方法については特に限定されない。例えば、建物の構造データ、すなわち、壁の材料、壁の厚さ、壁の面積、及び部屋の広さ等の建物データから計算した値を、式(1)〜(3)で表される熱伝導方程式に与えてもよい。また、熱伝導方程式を、制御理論及びシステム同定で用いられる状態空間モデル等の標準形に変換するなどして、計測データをもとに、ブラックボックスモデル又はグレーボックスモデルとして入出力関係を導出してもよい。なお、室温予測モデルは、必ずしも、熱伝導方程式に基づいた数式モデルである必要はない。例えば、入手できる入力データから室内の温度を予測できるモデルであれば特に限定されない。
次に、上記で説明した運転計画作成手段42、温度予測手段43、及び計画評価手段44の機能構成を前提として、運転計画の立案について説明する。まず、以下では、運転計画立案部33で、空調設備12の運転計画を立案する時刻を、計画立案時刻と称する。計画対象期間は、上記で説明したように、条件設定部31で設定される各種設定条件のうちの1つであって、計画立案時刻と比べて先の時刻を対象としており、ある時間帯を示す。上記で説明した予め定めた計算時間は、条件設定部31で設定される各種設定条件のうちの1つであって、空調設備12の計測制御に影響を与えることなく、計画対象期間が開始されるまでに十分な時間的余裕がある時間である。
ここでは、一例として、計画立案時刻は、制御を実行する前日の21時として想定する。また、計画対象期間は、制御を実行する当日の0時から24時として想定する。すなわち、毎日21時に翌日1日分の空調設備12の運転計画が立案される事例について説明する。なお、必ずしも、前日に計画を立案する必要はなく、実際に空調設備12を制御する時間帯が、例えば、8:00〜22:00である場合には、計画立案時刻は、制御を実行する当日の深夜の2:00等としてもよい。つまり、運転計画の立案は、予め設定された運転計画立案周期毎に実行されるものであって、例えば、1日毎に実行されるものであるが、特にこれに限定されない。
さて、運転計画とは、空調設備12に対応する時系列の制御指令の計画値である。指令する項目は、制御対象の設備に応じて異なる。また、同一の種類の設備に対して、機種に応じて異なる項目としてもよい。例えば、制御対象設備が室外機12aの場合には、時間刻みが5分刻みの圧縮機周波数[Hz]、ヒータ12gの場合には、時間刻みが5分刻みのON状態とOFF状態との2値状態信号がそれぞれ指令する項目の一例である。ただし、圧縮機周波数[Hz]及びON状態とOFF状態との2値状態信号は、単に一例を示しただけであって、室外機12aに指令する項目としては、例えば、出力[%]、能力セーブ率[%]、及びその他の項目であってもよい。また、ヒータ12gに指令する項目としては、出力[%]及びその他の項目であってもよい。また、制御対象設備が室内機12bの場合には、指令する項目の一例として、設定温度があってもよい。
なお、制御指令の時間刻みは、一例として、5分刻みについて説明したが、空調コントローラ11の処理能力、空調制御用計算機15の処理能力、及び制御対象設備の数等のように、実運用時のシステム構成及び制約条件に応じて、時間刻みは、10分刻み又は15分刻み等であってもよく、5分刻みに限定されない。
次に、評価指標の概要について説明する。まず、空調制御システム1は、空調設備12の省エネ制御を行うことを主たる目的としている。よって、ここでは、評価指標として、最も代表的な指標を採用する。具体的には、空調制御システム1は、評価指標として消費電力量を採用し、空調設備12の計画対象期間全体にわたり、消費電力量を最小化する運転計画を立案する。
次に、制約条件の概要について説明する。室内の温度を予め設定された快適温度範囲内に維持することを制約条件と想定した場合について説明する。予め設定された快適温度範囲は、条件設定部31で設定される。ここでは、一例として、設定温度±1[℃]を、予め設定された快適温度範囲として想定する。制約条件のうち、このような温度に関する温度制約条件を、運転計画が満たすか否かは、温度予測手段43の予測結果に基づいて計画評価手段44で判定される。
なお、運転計画立案部33で実行される問題の解法そのものは特に限定されない。例えば、運転計画立案部33は、問題を一般化することで、2次計画問題等を用いて最適化問題に変換したものを解いてもよい。また、運転計画立案部33は、対象の空調制御システム1に限定した特定の解法を用いて解いてもよい。いずれにしても、運転計画立案部33は、上記で説明した制約条件下で、評価指標を最小化する問題を解けばよい。
(運転計画補正部34)
次に、運転計画補正部34について説明する。運転計画補正部34では、空調設備12の制御実行時、予め設定された補正ルールに従い、運転計画立案部33で立案した運転計画を補正する。この機能を実現するために、図3に示すように、運転計画補正部34は、温度誤差評価手段46、温度予測手段47、補正計画作成手段48、及び補正計画評価手段49を備える。
温度誤差評価手段46は、運転計画立案部33の結果である予測温度と、データ計測部35の計測データとの誤差を評価する。温度予測手段47は、与えられた第2の温度予測用データに基づいて、室内の温度の時間変化を予測する。補正計画評価手段49は、空調設備12の運転計画のさまざまな補正パターンを作成する。補正計画評価手段49は、作成した補正パターンが制約条件を満たすか否かを判定し、評価指標の値を計算して、計算した評価指標の値に基づいて、最終的に出力する補正計画とするか否かを判定する。なお、温度予測手段47は、本発明における第2の温度予測手段に相当する。次に、温度予測手段47の詳細について説明する。
(温度予測手段47)
温度予測手段47は、温度予測手段43と同一の機能構成であってもよく、異なる機能構成であってもよい。例えば、温度を1[℃]変化させるために必要な空調機の出力の変更幅を、空調機の特性又は上記で説明した熱伝導方程式の熱抵抗及び熱容量等から決定し、決定した空調機の出力の変更幅に基づいて簡易的に温度を予測してもよい。
(データ計測部35)
データ計測部35は、空調設備12の運転データを計測し、計測結果を、熱負荷予測部32、運転計画立案部33、及び運転計画補正部34等に供給する。また、データ計測部35は、運転計画立案部33の温度予測手段43と、運転計画補正部34の温度予測手段47とにも計測結果を供給する。なお、データ計測部35は、熱負荷予測部32に実装されている熱負荷予測モデルに必要な各種データを計測し、計測結果を熱負荷予測部32に供給してもよい。また、データ計測部35は、温度予測手段43及び温度予測手段47のそれぞれに実装されている室温予測モデルに必要な各種データを計測し、計測結果を温度予測手段43及び温度予測手段47のそれぞれに供給してもよい。
また、データ計測部35は、必要であれば、室内の温度センサ、室内の湿度センサ、室内のCO濃度センサ、外気温センサ、及び日射量センサ等の空調設備12とは独立して設定されたセンサ19から各種データを計測してもよい。
なお、データ計測部35は、予め設定された周期、例えば、データ計測周期で、計測を実行する。データ計測周期は、例えば、5分周期である。
(制御指令部36)
制御指令部36は、予め設定された周期、例えば、制御指令実行周期で、空調設備12に、運転計画補正部34が補正した運転計画である制御指令を送信する。制御指令実行周期は、例えば、5分周期である。
なお、予め設定された補正ルールのうち、基本ルールとして、運転計画の補正は、予め設定された運転計画補正周期、例えば、30分周期で実行される。具体的には、運転計画の補正は、毎時25分と、55分とに実行される。また、運転計画の補正対象期間は、例えば、2時間として説明する。このような設定の結果、例えば、9:55に10:00〜12:00の運転計画の補正が実行される。ただし、10:00〜12:00の運転計画は、前日に立案した計画そのものとしてもよく、1回前の補正時、すなわち、9:30〜11:30を対象として9:25に実行した運転計画の補正結果としてもよい。
以下、特に断らない限り、補正した後の運転計画も、単に、運転計画と称する。なお、運転計画補正周期である30分周期及び運転計画の補正対象期間である2時間等は一例を示しただけであって、特にこれらに限定されない。例えば、運転計画補正周期は、15分周期であってもよい。また、条件設定部31で補正を実行するか否かの判定基準を設定し、設定した判定基準に基づいて必要時にだけ補正を実行させてもよい。
ここでは、予め設定された補正ルールとして、運転計画を立案したときの制約条件に加え、補正対象期間に含まれる1時刻又は複数時刻に対応する温度が、運転計画を立案したときに予測した同時刻に対応する温度と、予め設定された差の範囲内であるか否かを制約条件とする。すなわち、補正対象期間に含まれる1時刻又は複数時刻に対応する温度が、運転計画を立案したときに予測した同時刻に対応する温度の許容温度変動幅に収まっているか否かを制約条件とする。
そこで、ここでも、補正対象期間において、予め設定された評価指標を、予め設定された計算時間内で、予め設定された目標設定範囲内で最小化又は最大化するように、補正対象期間における運転計画を補正する。
このとき、補正を実行する時刻における温度は、データ計測部35で計測した温度データが利用される。なお、温度データは、空調設備12の構成要素のうち、例えば、室内機12bが備える温度センサの計測値であってもよい。室内機12bが備える温度センサが計測するデータは、例えば、室内機12bの吸込温度である。また、温度データは、空調設備12とは別に室内に設置されたセンサ19の計測値であってもよい。
予め設定された評価指標は、運転計画を立案したときと同一と想定する。ただし、運転計画の立案時では、対象期間が計画対象期間であり、運転計画の補正時では、対象期間が補正対象期間である。この点が運転計画を立案したときと異なる。また、運転計画補正部34では、補正対象期間での消費電力量を最小化させるように補正していく。また、運転計画補正部34では、予め設定された計算時間については、上記で説明したように、実行時刻として、例えば、毎時25分と55分との場合には、5分以内を想定している。なお、プロセッサ等の計算能力の制約によっては、運転計画の補正の実行に5分以上かかる場合が想定される。そのように運転計画の補正にある程度の時間がかかる場合には、かかる時間に応じて、条件設定部31の各種設定条件が変更されればよい。
ここで、条件設定部31で設定された各種設定条件が、運転計画立案部33及び運転計画補正部34で設定される一例について図4を用いて説明する。図4は、本発明の実施の形態1における各種設定条件の一例を示す図である。図4に示すように、各種条件として、例えば、評価指標と、制約条件とが、条件設定部31で設定されたものが、運転計画立案部33と、運転計画補正部34とにそれぞれ供給される。
評価指標は、例えば、消費電力量である。制約条件は、例えば、温度制約条件である。温度制約条件は、例えば、快適温度範囲と、許容温度変動幅とが設定されている。
次に、室内における温度、すなわち、室温の空間的なばらつき状態と、室内における温度、すなわち、室温の時間的なばらつき状態とを想定した運転計画について図5及び図6を用いて説明する。図5は、本発明の実施の形態1における室温の空間的なばらつき状態の一例を説明する図である。図6は、本発明の実施の形態1における室温の時間的なばらつき状態の一例を説明する図である。
まず、運転計画立案部33で立案した空調設備12の運転計画と、立案した運転計画に従い空調設備12を運転したと仮定して温度予測手段43で予測した予測温度とについて説明する。
予測温度は、制約条件の範囲内で推移するが、必ずしも、設定温度に追従しているわけではない。この理由は、運転計画立案部33で立案した運転計画では、熱負荷を効率よく処理するために、時間的及び空間的に処理する熱負荷を分散するからである。時間的に熱負荷を分散するという意味について説明する。例えば、室外機12aに、各時刻で発生する熱負荷をその時刻だけで処理させるのではなく、少し前後の時刻にずらして、熱負荷を処理させる動作を行わせる。つまり、一つの目標時刻で熱負荷を処理させるのではなく、複数の目標時刻に分散させて熱負荷を処理させるという動作が、時間的に熱負荷を分散するという意味である。
この動作が実行されることで、例えば、室外機12aをできるだけ効率のよいポイントで運転させることができる。この結果、室温は、時間的なばらつきが生じる。
次に、空間的に分散するという意味について説明する。例えば、室外機12aが複数台存在したと想定する。すると、それぞれの室外機12aが担当するゾーンは、互いに隣接する。よって、隣のゾーンへの熱移動が想定される。つまり、一つのゾーンで熱負荷を処理させるのではなく、複数のゾーンに分散させて熱負荷を処理させるという動作が、空間的に熱負荷を分散するという意味である。
なお、本発明では、複数台の室外機12aのそれぞれに割り当てられる範囲を、1つのゾーンとして説明する。すなわち、室外機12aの数だけゾーンが存在するものと想定する。ただし、ゾーンの分割方法は、このような方法に限定されるものではない。
この動作が実行されることで、例えば、図5に示すように、室温は空間的なばらつきが生じる。図5に示すように、ゾーン分割されたフロア61において、ゾーン#2はゾーン#1とゾーン#3とゾーン#5と隣合っている。つまり、ゾーン#2の隣接ゾーンはゾーン#1とゾーン#3とゾーン#5である。ゾーン毎の室温変動曲線63に着目すると、各ゾーンで室温が異なる、すなわち空間的なばらつきが生じているが、快適温度範囲である制約条件71の範囲内で、各ゾーンの室温は推移している。よって、全ゾーンで、制約条件71が満たされている。
つまり、運転計画立案時の計画で、室内の温度が時間的及び空間的にばらつく状態は意味がある。そこで、運転計画立案時のばらつき状態を踏襲するように、運転計画の補正を実行する。図6に示すように、現在時刻における室温を点Aとする。点Aは、設定温度と一致しており、通常の考え方からすると、運転計画を補正する必要はない。しかし、運転計画立案時の予測温度と比べると、やや高めである。そこで、現在時刻から2時間後の時刻までを補正対象期間と想定して、運転計画を補正する。
このとき、例えば、1時間後と、2時間後とにおける補正の結果得られる予測温度が、運転計画立案時の予測温度と比べて、予め設定された差の範囲内であることを制約とする。つまり、補正の結果得られる予測温度が、運転計画立案時の予測温度と比べて、許容温度変動幅である制約条件72を満たすことを制約とする。
なお、1時間後と、2時間後との2点の場合について説明するが、特にこれに限定されない。例えば、2時間後の1点だけでもよく、3点以上の複数点であってもよい。
具体的には、運転計画立案時における時刻が1時間後に相当する予測温度を点B、運転計画立案時における時刻が2時間後に相当する予測温度を点Cと想定する。例えば、点Bは26.5[℃]、点Cは27.1[℃]とする。予め設定された差を0.2[℃]、すなわち、許容温度変動幅を0.4[℃]と設定した場合、運転計画の補正では、点Bで26.3〜26.7[℃]、点Cで26.9〜27.3[℃]の範囲となるようにしつつ、この2時間で消費する電力量を最小化する。
このような時間的なばらつき状態を想定した動作の有効性について説明する。予冷運転又は予熱運転を例にして説明する。オフィスビルにおいては、一般的に、室外機12aが効率の悪い運転をしている時間帯の1つが、朝の出勤時間帯である。例えば、夏では、朝の出勤時間帯は高い出力で冷房をする必要があり、室外機12aとしては効率の悪い出力で運転している。予冷運転とは、朝の出勤時間と比べて前に、事前に冷房をしておくことをいい、室外機12aを効率のよい中間的な出力で、しかも、効率のいい低外気温時に運転させることができるため、省エネを実現することができる。運転計画立案部33では、このような空調機の運転が計画される。
次に、上記で説明した機能構成を前提とした動作例について図7を用いて説明する。図7は、本発明の実施の形態1における空調制御システム1の制御例を説明するフローチャートである。図7に示すように、運転計画準備処理は、主に、条件設定処理と、熱負荷予測処理と、運転計画立案処理とから構成され、空調設備12の制御実行に先立って実行する動作であり、例えば、空調設備12の制御を実行する前日に1日1回実行される。つまり、この場合、運転計画立案周期は、1日である。すなわち、運転計画準備処理は、運転計画立案周期毎、つまり、制御前日に1日毎に実行される。
また、図7に示すように、運転計画補正処理は、運転計画準備処理の後に実行される処理であって、運転計画補正周期毎、例えば、制御当日に30分周期毎に実行される。データ計測処理は、データ計測周期毎、例えば、制御当日に5分周期毎に実行される。制御指令処理は、制御指令実行周期毎、例えば、制御当日に5分周期毎に実行される。つまり、運転計画準備処理、運転計画補正処理、データ計測処理、及び制御指令処理のそれぞれは、予め設定された周期毎に並列実行される処理である。なお、並列実行されなくてもよい。例えば、運転計画準備処理、データ計測処理、運転計画補正処理、及び制御指令処理の順に逐次的に実行されてもよい。
(運転計画準備処理)
(ステップS11)
空調制御システム1は、運転計画立案周期であるか否かを判定する。空調制御システム1は、運転計画立案周期でない場合、ステップS11に戻る。一方、空調制御システム1は、運転計画立案周期である場合、ステップS12に進む。
(ステップS12)
空調制御システム1は、立案フラグを0に設定する。
(条件設定処理)
(ステップS13)
空調制御システム1は、各種条件を設定する。具体的には、空調制御システム1は、ステップS14の熱負荷予測処理と、ステップS15〜ステップS17の運転計画立案処理とで必要となる各種条件を設定する。そのような各種条件は、例えば、外気温の予測値、日射量の予測値、内部発熱量の予測値、及び設定温度等である。各予測値の設定方法については特に限定されない。例えば、外気温の予測値と、日射量の予測値とについては、インターネット経由で入手する気象データに基づいて設定してもよい。内部発熱量の予測値については、平日と、休日との標準的な内部発熱量パターンを事前に準備しておいたものを設定してもよい。なお、必要となる各種条件は、熱負荷予測処理と、運転計画立案処理とでは、一般的にそれぞれ異なる。
(熱負荷予測処理)
(ステップS14)
空調制御システム1は、設定した各種条件に基づいて熱負荷を予測する。具体的には、空調制御システム1は、条件設定処理で設定した各種条件に従い、条件設定処理、熱負荷予測処理、及び運転計画立案処理を実行する時刻と比べて未来の時刻であって、先のある期間、例えば、計画対象期間における予め定めた時間刻みの熱負荷を予測する。さらに具体的には、計画対象期間を翌日0時から24時とし、条件設定処理で設定した外気温の予測値と、日射量の予測値と、内部発熱量の予測値と、設定温度とを入力として、設定温度を満足するために必要な5分刻みの空調機供給熱量を出力する。なお、ここでは、空調機供給熱量として説明したが、実際の空調機の動作としては、暖房の場合は供給熱量であって、冷房の場合は除去熱量である。ただし、除去熱量はマイナスの供給熱量として考えればよいため、統一して供給熱量として説明する。また、空調機供給熱量の符号を反転したものが、熱負荷である。
(運転計画立案処理)
(ステップS15)
空調制御システム1は、予測した熱負荷と、制約条件と、評価指標とに基づいて、運転計画を立案する。運転計画とは、例えば、室外機12aに対応する5分刻みの圧縮機周波数又は能力セーブ率等の指令値等である。空調設備12は、通常、複数の種類、複数の台数の機器から構成されるので、各機器のさまざまな運転パターンのうち、制約条件を満たしつつ、消費電力量等の評価指標を最小化するような運転計画を立案する。評価指標によっては、例えば、快適性の場合には、最大化するような運転計画を立案する。
(ステップS16)
空調制御システム1は、設定した各種条件と、立案した運転計画とに基づいて室温を予測する。具体的には、空調制御システム1は、計画対象期間における予め設定された時間刻みの室内の温度を予測する。さらに具体的には、空調制御システム1は、計画対象期間は、翌日0時から24時とし、条件設定処理で設定した外気温の予測値と、日射量の予測値と、内部発熱量の予測値と、空調設備12の運転計画とを入力として、5分刻みの室内の温度の予測値を出力する。
(ステップS17)
空調制御システム1は、立案フラグを1に設定し、ステップS11に戻る。なお、立案フラグが1に設定された場合、立案した運転計画が運転計画補正部34に出力されると想定する。
(運転計画補正処理)
(ステップS41)
空調制御システム1は、運転計画補正周期であるか否かを判定する。空調制御システム1は、運転計画補正周期である場合、ステップS42に進む。一方、空調制御システム1は、運転計画補正周期でない場合、ステップS41に戻る。
(ステップS42)
空調制御システム1は、計測結果を受信したか否かを判定する。空調制御システム1は、計測結果を受信した場合、ステップS43に進む。一方、空調制御システム1は、計測結果を受信しない場合、ステップS42に戻る。データ計測処理と運転計画補正処理を並列に実行する場合には、ステップS42では受信したものと判定してステップS43に進む。この場合には、直前に受信した計測結果を用いてステップS43以降の補正を行う。
(ステップS43)
空調制御システム1は、立案フラグが1であるか否かを判定する。空調制御システム1は、立案フラグが1である場合、ステップS44に進む。一方、空調制御システム1は、立案フラグが1でない場合、ステップS41に戻る。ただし、この立案フラグは制御実行当日を対象とした立案フラグであり、前日21:00に運転計画立案中に設定する翌日分の立案フラグとは異なる。
(ステップS44)
空調制御システム1は、運転計画立案処理で予測した室温と、計測した室温とに基づいて、制約条件を満たしつつ予め設定された目標設定範囲内で評価指標を最小化するように運転計画を補正する。
(ステップS45)
空調制御システム1は、設定した各種条件と、補正した運転計画とに基づいて室温を予測する。そして、ステップS41に戻る。
(データ計測処理)
(ステップS61)
空調制御システム1は、データ計測周期であるか否かを判定する。空調制御システム1は、データ計測周期である場合、ステップS62に進む。一方、空調制御システム1は、データ計測周期でない場合、ステップS61に戻る。
(ステップS62)
空調制御システム1は、データを計測する。
(ステップS63)
空調制御システム1は、計測結果を送信し、ステップS61に戻る。
(制御指令処理)
(ステップS71)
空調制御システム1は、制御指令実行周期であるか否かを判定する。空調制御システム1は、制御指令実行周期である場合、ステップS72に進む。一方、空調制御システム1は、制御指令実行周期でない場合、ステップS71に戻る。
(ステップS72)
空調制御システム1は、補正した運転計画に基づいて空調設備12に制御指令値を送信し、ステップS71に戻る。
なお、上記で説明した各種フラグ及びそのフラグの設定は一例を示すだけであって、特にこれに限定されない。
図8は、本発明の実施の形態1における消費電力量を評価指標に含めて運転計画を試行する一例を示す図である。図8においては、評価指標として、消費電力量が採用され、消費電力量を最小化する問題として、さまざまな運転計画が試行されている一例が示されている。例えば、図8においては、横軸が時刻を示し、縦軸が電力を示している。
そして、点線で囲まれた領域は、消費電力量が大の場合を示す。破線で囲まれた領域は、消費電力量が中の場合を示す。実線で囲まれた領域は、消費電力量が小の場合を示す。図8に示すように、消費電力量を小さく設定するために、上記で説明した一連の処理が実行される過程が示されている。
(効果)
上記で説明した一例の動作で運転計画を補正することで、運転計画立案時に立案した、評価指標を最大化又は最小化するような空調設備12の運転計画を踏襲しつつ、制御実行時の状況の変化に応じて、評価指標を最大化又は最小化する空調設備12の制御を実行することができるので、快適性を維持しつつ、省エネを実現することができる。
以上、本実施の形態1において、建物に設置された空調設備12を制御する空調制御システム1において、与えられた熱負荷予測用データに基づいて、空調設備12が処理する熱量の時間変化を予測する熱負荷予測部32と、合計の処理熱負荷を同一又は所定量の差の範囲内にすると共に、室内の温度を所定の快適温度範囲内に維持させる第1制約条件下において、評価指標である空調設備12の消費電力量又はランニングコストの何れかを削減するように、空調運転の計画対象期間における空調設備12の運転計画を事前に立案する運転計画立案部33と、運転計画で空調設備12の制御を実行中、所定の周期で運転計画を補正する運転計画補正部34と、室内の温度を測定する温度センサと、を備え、運転計画立案部33と運転計画補正部34は、与えられた温度予測用データに基づいて室内の温度の時間変化を予測する温度予測手段43を有し、運転計画補正部34は、温度センサで測定した実測温度が、運転計画の立案時に予測する運転計画立案部33による予測温度と異なる場合、計画対象期間のうち、補正を行う期間である補正対象期間における室内の温度の時間変化を予測し、補正対象期間中の1又は複数の時刻において、当該運転計画補正部34で予測した予測温度と、運転計画立案部33で予測した予測温度との誤差を所定の許容変動幅内に収めることを第2制約条件として、評価指標が第1制約条件下で最小となるように、運転計画を補正する空調制御システム1が構成される。
上記構成のため、事前に立案した運転計画を、実行時の状況に応じて適切に補正することができるので、室内の温度又は湿度等を快適に維持しつつ、省エネ性を向上させることができるという従来にはない顕著な効果を奏する。
実施の形態2.
(評価指標及び制約条件のバリエーション)
実施の形態1との相違点は、評価指標及び制約条件である。実施の形態1においては、運転計画立案部33及び運転計画補正部34の評価指標として、消費電力量を採用したが、ランニングコストが採用されてもよい。図9は、本発明の実施の形態2におけるランニングコストを評価指標に含めた一例を示す図である。図9に示すように、評価指標として、条件設定部31で設定されたランニングコストが、運転計画立案部33及び運転計画補正部34のそれぞれに供給される。このときには、必要に応じて、条件設定部31において、時間帯別の電力量料金等が設定されてもよい。
さらに、快適性も考慮した評価指標とするため、消費電力量及びランニングコストに、設定温度からの室温のずれ度合いと、室温の時間変化率とを組み合わせた式(4)に示す評価指標Jが設定されてもよい。
Figure 2014174871
ここで、J1は空調設備12での計画対象期間全体にわたる消費電力量、J2は空調設備12での計画対象期間全体にわたるランニングコスト、J3は設定温度からの室温のずれ度合いの2乗平均値、J4は室温の時間変化率の2乗平均値、α1〜α4はそれぞれ重み係数である。ただし、J3と、J4とについては、2乗平均値を評価指標に組み込む必要はない。例えば、J3では、ずれ度合いの絶対値の最大値も考慮した評価指標であってもよい。また、J4では、時間変化率の絶対値の最大値も考慮した評価指標であってもよい。
図10は、本発明の実施の形態2における消費電力量、ランニングコスト、設定温度からの室温のずれ度合い、及び室温の時間変化率を評価指標に含めた一例を示す図である。図10に示すように、評価指標として、条件設定部31で設定された消費電力量、ランニングコスト、設定温度からの室温のずれ度合い、及び室温の時間変化率が運転計画立案部33及び運転計画補正部34のそれぞれに供給される。なお、運転計画補正部34においては、上記で説明した計画対象期間を補正対象期間と置換した動作であればよい。
(効果)
上記で説明した構成で、単に、消費電力量及びランニングコストを最小化するための評価指標ではなく、快適性も含めた評価指標となり、省エネ性と快適性とのバランスを考慮した空調設備12の運転計画を立案し、補正することができる。
(制約条件のバリエーション)
また、実施の形態1では、温度を予め設定された快適温度範囲内に維持することを温度に関する制約条件としたが、これに加え、温度の時間変化率を予め設定された温度変化率内に維持することを制約条件に加えてもよい。つまり、温度の時間変化率が、温度の時間変化率上限値を超えないことを制約条件としてもよい。図11は、本発明の実施の形態2における温度に関する条件を制約条件に含めた一例を示す図である。図11に示すように、温度の時間変化率上限値が新たな温度制約条件に追加されている。
例えば、温度の時間変化率に0.2[℃/5分以下]等の制約を設ける。このような制約で、急激な温度変化を伴う空調設備12の制御を回避することができ、快適性がさらに向上する。
(効果)
上記で説明した構成で、さまざまな視点での快適性を考慮した空調設備12の運転計画を立案し、補正することができる。
(制約条件からの逸脱を許容)
また、実施の形態1では、制約条件を満たす空調設備12の運転パターンのうち、消費電力量を最小化する運転パターンを運転計画としたが、制約条件からの逸脱量に予め定めた重みをつけたものと、本来の評価指標とを加算したものを、評価指標として再定義することで、制約条件を若干逸脱したとしても、省エネ性を高くすることができる空調設備12の運転計画が許容される。図12は、本発明の実施の形態2における制約条件からの逸脱量を評価指標に含めた一例を示す図である。図12に示すように、制約条件からの逸脱量に、予め定めた重みを乗算し、乗算結果と、評価指標とを加算した結果を評価指標として再定義し、条件設定部31から運転計画立案部33及び運転計画補正部34のそれぞれに供給している。
(効果)
上記で説明した構成で、制約条件を若干逸脱していても、省エネ性を高くできる空調設備12の運転計画を立案し、補正することができる。
実施の形態3.
(デマンドレスポンス)
翌日であって、ある時間帯、例えば、第1の期間に、ピーク電力の削減、つまり、ピークカットが必要になることが想定される。また、第1の期間にピークカットが必要となることが事前に分かっていることが想定される。なお、説明の便宜上、第1の期間に対応するピーク電力の目標値を、第1の目標電力と称する場合がある。図13は、本発明の実施の形態3における各種設定条件の一例を示す図である。図13に示すように、温度制約条件には、第1の期間に対応する第1の快適温度範囲と、第2の期間に対応する第2の快適温度範囲とが設定されている。また、電力制約条件には、第1の期間に対応する第1のピーク電力上限値と、第2の期間に対応する第2のピーク電力上限値とが設定されている。
図14は、本発明の実施の形態3におけるピーク電力の削減を想定した運転計画の一例を示す図である。図14は、第1の期間を13:00〜16:00とし、第1の目標電力を100kWという条件のピークカットが必要となることを想定した一例である。以下、この条件を例として説明する。
条件設定部31は、ピークカットを制約条件の一つとして設定する。すなわち、13:00〜16:00のピーク電力を100kWに設定する。ただし、ピークカットの時間帯である第1の期間及び最大電力は任意に設定することができる。
運転計画立案部33では、空調設備12の運転計画を、上記で説明した制約条件下で立案する。このとき、実施の形態1で説明したように、運転計画立案部33は、室内の温度が快適温度範囲を維持するように計画を立案しようとする。しかし、ピークカットの制約条件が設定されているため、制約条件を満たす運転パターンが存在しない場合が想定される。このような事態に対しては、実施の形態2で説明した各種制約条件のうち、制約条件からの逸脱を許容する制約条件を適用することで、運転パターンを割り当て、対応することができる。しかし、単に、このような運転パターンを許容しただけでは、第1の期間中に、室内の温度が快適温度範囲を大きく外れてしまう虞がある。
そこで、第1の期間と比べて過去の期間、すなわち、前の期間である第2の期間に対応する快適温度範囲を、第1の期間に対応する快適温度範囲とは異なる範囲を設定する。例えば、夏の場合には、第1の期間に対応する快適温度範囲を26〜28[℃]に設定し、第2の期間に対応する快適温度範囲を25〜27[℃]に設定する。このような設定をすることで、ピークカットの前工程として、第1の期間に対応する予冷を実行することで、第1の期間の快適性を維持することができる。第2の期間に対応する快適温度範囲を変更したことに伴い、第1の期間の温度が、第1の期間に対応する快適温度範囲を逸脱することが想定される。
例えば、図14の13:00〜13:40付近ではその虞がある。ただし、このような逸脱は、さらなる快適側への逸脱と考えることもできる。その理由は、例えば、夏では、室温が低めに制御されるためである。よって、評価指標への制約条件の逸脱量に関する評価指標の増分は0に設定してもよい。
第2の期間の長さと快適温度範囲の設定は、建物の管理者が手動で設定してもよく、運転計画立案部33が自動的に決定してもよい。
図15は、本発明の実施の形態3におけるピーク電力の削減を想定した運転計画のうちの一部の快適温度範囲及びその一部の快適温度範囲の期間を決定する空調制御システム1の制御例を説明するフローチャートである。ここでは、第2の期間が最初は設定されていないと想定して、運転計画が立案される。
(ステップS91)
空調制御システム1は、運転計画立案周期であるか否かを判定する。空調制御システム1は、運転計画立案周期である場合、ステップS92に進む。一方、空調制御システム1は、運転計画立案周期でない場合、ステップS91に戻る。
(ステップS92)
空調制御システム1は、立案フラグを0に設定する。
(条件設定処理)
(ステップS93)
空調制御システム1は、各種条件を設定する。
(熱負荷予測処理)
(ステップS94)
空調制御システム1は、設定した各種条件に基づいて熱負荷を予測する。
(運転計画立案処理)
(ステップS95)
空調制御システム1は、予測した熱負荷と、制約条件と、評価指標とに基づいて運転計画を立案する。
(ステップS96)
空調制御システム1は、設定した各種条件と、立案した運転計画とに基づいて室温を予測する。
(ステップS97)
空調制御システム1は、予測した室温が第1の快適温度範囲から逸脱しているか否かを判定する。空調制御システム1は、予測した室温が第1の快適温度範囲から逸脱している場合、ステップS98に進む。一方、空調制御システム1は、予測した室温が第1の快適温度範囲から逸脱していない場合、処理を終了する。
(ステップS98)
空調制御システム1は、温度フラグを1に設定する。
(ステップS99)
空調制御システム1は、時間フラグを1に設定する。
(ステップS100)
空調制御システム1は、第2の期間をα分に設定して制約条件に追加する。α分は、例えば、30分である。
(ステップS101)
空調制御システム1は、時間フラグが0であるか否かを判定する。空調制御システム1は、時間フラグが0である場合、ステップS103に進む。一方、空調制御システム1は、時間フラグが0でない場合、ステップS102に進む。
(ステップS102)
空調制御システム1は、第2の快適温度範囲を第1の快適温度範囲−β℃に設定して制約条件に追加する。β[℃]は、例えば、0.5[℃]である。
(ステップS103)
空調制御システム1は、予測した熱負荷と、制約条件と、評価指標とに基づいて、運転計画を再立案する。
(ステップS104)
空調制御システム1は、設定した各種条件と、再立案した運転計画とに基づいて室温を予測する。
(ステップS105)
空調制御システム1は、予測した室温が第1の快適温度範囲から逸脱しているか否かを判定する。空調制御システム1は、予測した室温が第1の快適温度範囲から逸脱している場合、ステップS106に進む。一方、空調制御システム1は、予測した室温が第1の快適温度範囲から逸脱していない場合、処理を終了する。
(ステップS106)
空調制御システム1は、温度フラグが0であるか否かを判定する。空調制御システム1は、温度フラグが0である場合、ステップS110に進む。一方、空調制御システム1は、温度フラグが0でない場合、ステップS107に進む。
(ステップS107)
空調制御システム1は、時間フラグを1に設定する。
(ステップS108)
空調制御システム1は、βをβ−予め設定した温度下げ幅に設定する。新たに設定されたβは、例えば、第1の期間に対応する温度範囲から1[℃]下げた値である。つまり、この場合には、ステップS102の処理と対比すると、予め設定した温度下げ幅が、0.5[℃]に設定された一例である。
(ステップS109)
空調制御システム1は、温度フラグを0に設定し、ステップS102に戻る。
(ステップS110)
空調制御システム1は、時間フラグが0であるか否かを判定する。空調制御システム1は、時間フラグが0である場合、ステップS103に戻る。一方、空調制御システム1は、時間フラグが0でない場合、ステップS111に進む。
(ステップS111)
空調制御システム1は、温度フラグを1に設定する。
(ステップS112)
空調制御システム1は、αをα−予め設定した時間増加幅に設定し、ステップS113に進む。新たに設定されたαは、例えば、1時間である。つまり、この場合には、ステップS100の処理と対比すると、予め設定した時間増加幅が、30分に設定された一例である。
(ステップS113)
空調制御システム1は、時間フラグを0に設定し、ステップS100に戻る。
なお、上記で説明した各種フラグ及びその設定例は一例を示し、特にこれらに限定されない。
上記の動作で、第2の期間を段階的に延ばし、快適温度範囲を段階的に下げる。ただし、第2の期間の最大長さと、快適温度範囲の第1の期間との差を最大何度にするかは、条件設定部31で設定される。また、上記で説明した30分、1時間、0.5[℃]、及び1[℃]等は一例を示すだけであって、特にこれらに限定されない。
運転計画補正部34は、上記で説明したように立案した運転計画を、実施の形態1又は実施の形態2で説明した方法で補正すればよい。実施の形態1で説明したように、補正対象期間の1時刻又は複数時刻で、計画時の予測温度を踏襲するように補正するため、第2の期間に実行するピークカット前の予冷を確実に実行できる。
また、上記の説明では、第2の期間に対応する快適温度範囲を変更する一例を示したが、運転計画補正部34は、第2の期間に対応する設定温度を変更してもよい。また、第1の期間以外については、電力の上限値を設けなかったが、第1の期間以外においても、極端に消費電力が上昇しないように、第1の期間以外の期間に対応する目標電力、例えば、第2の目標電力を設け、運転計画を立案し、補正してもよい。また、ピークカットに対応する動作を説明したが、例えば、特定の時間帯の電力料金が高いことが事前に分かっている場合には、上記で説明した動作と同様の動作を適用することで、ランニングコストを低減するような運転計画を立案し、補正することができる。
また、ピークカットを想定した運転計画を前日に立案したが、当日になってピークカットが不要となったような場合には、必ずしも前日に立案した運転計画に基づいて空調制御をする必要はない。
さらに、ピークカットとして複数のケースを想定し、それぞれに対して前日に運転計画を立案し、当日はピークカットの状況に応じて最もふさわしい運転計画を選択し補正してもよい。例えば、ケース0としてピークカットなし、ケース1として13:00〜16:00に100kW、ケース2として13:00〜16:00に80kW、ケース3として13:00〜15:00に100kW等に対して運転計画を立案し、ピークカットが必要なければケース0を選択し、ピークカットが必要であれば、そのときの状況に応じてケース1からケース3のいずれかを選択し、これをもとに運転計画を補正すればよい。
(効果)
上記の構成で、ピークカット直前の予冷及び予熱をすることで、デマンドレスポンス等による特定の時間帯でのピークカットに事前に準備できるため、ピークカット期間で、ピークカットを達成するとともに、室内の温度が快適温度範囲を逸脱しないようにしつつ、期間全体にわたって消費電力量を削減することができる。
実施の形態4.
本実施の形態4においては、快適性に関連する制約条件及び評価指標として、温度に関するものに加え、さらに湿度及びCO濃度の少なくとも一方に関するものを考慮する。図16は、本発明の実施の形態4における空調制御システム1の機能構成の一例を示す図である。図16に示すように、空調制御システム1は、運転計画立案部33に、湿度予測手段91と、CO濃度予測手段92との少なくとも1つ以上をさらに備える。また、空調制御システム1は、運転計画補正部34に、湿度予測手段101と、CO濃度予測手段102との少なくとも1つ以上をさらに備える。
湿度予測手段91及び湿度予測手段101のそれぞれは、外気の湿度又は人体から放出される水分の発生等を考慮した湿度予測モデルが実装されているため、与えられた湿度予測用データに基づいて、室内の湿度の時間変化を予測する。
CO濃度予測手段92及びCO濃度予測手段102のそれぞれは、外気との換気又は人体から放出されるCOの発生等を考慮したCO濃度予測モデルが実装されているため、与えられたCO濃度予測用データに基づいて、室内のCO濃度の時間変化を予測する。
本実施の形態4においては、運転計画立案部33及び運転計画補正部34における評価指標Jを以下の式(5)のように拡張し、湿度又はCO濃度を考慮した評価指標を導出する。
Figure 2014174871
ここで、J1は空調設備12の計画対象期間全体にわたる消費電力量、J2は空調設備12の計画対象期間全体にわたるランニングコスト、J3は設定温度からの室内の温度のずれ度合いの2乗平均値、J4は室内の温度の時間変化率の2乗平均値、J5は設定湿度からの湿度のずれ度合いの2乗平均値、J6は湿度の時間変化率の2乗平均値、J7は設定CO濃度からのCO濃度のずれ度合いの2乗平均値、J8はCO濃度の時間変化率の2乗平均値、及びα1〜α8はそれぞれの重み係数である。
ただし、J3〜J8については、2乗平均値を評価指標とする必要はない。例えば、J3では、ずれ度合いの絶対値の最大値も考慮した評価指標、J4では、時間変化率の絶対値の最大値も考慮した評価指標としてもよい。
なお、運転計画補正部34では、計画対象期間を補正対象期間に置換した場合の動作となる。図17は、本発明の実施の形態4における各種設定条件のうちの評価指標の詳細例を示す図である。図17に示すように、湿度に関する評価指標と、CO濃度に関する評価指標とが追加されている。
また、実施の形態1では、温度に関する制約条件のみを説明したが、これに加え、湿度及びCO濃度に関する制約条件を加えてもよい。具体的には、制約条件として、計画対象期間における、室内の温度を予め設定した快適温度範囲内に維持させる第1条件と、計画対象期間における、室内の温度の時間変化率を予め設定した温度変化率内に維持させる第2条件と、計画対象期間における、室内の湿度を予め設定した快適湿度範囲内に維持させる第3条件と、計画対象期間における、室内の湿度の時間変化率を予め設定した湿度変化率内に維持させる第4条件と、計画対象期間における、室内の温度及び室内の湿度の両方から決定される温湿度快適性を予め設定した快適温湿度範囲内に維持させる第5条件と、計画対象期間における、室内のCO濃度を予め設定した快適CO濃度範囲内に維持させる第6条件と、計画対象期間における、室内のCO濃度の時間変化率を予め設定したCO濃度変化率内に維持させる第7条件と、の何れか1つ、又は、2つ以上の組み合わせが設定される。
なお、運転計画補正部34では、計画対象期間を補正対象期間に置換した場合の動作となる。図18は、本発明の実施の形態4における各種設定条件のうちの制約条件の詳細例を示す図である。図18に示すように、温度制約条件の他に、湿度制約条件、温湿度制約条件、CO濃度制約条件が追加されている。なお、快適温湿度範囲の一例として、PMV(Predicted Mean Vote)等がある。また、第1条件から第7条件を組み合わせて、ASHRAE(American Society of Heating Refrigerating and Air−Conditioning Engineers)で定められている快適性を満たすような制約条件としてもよい。
(効果)
上記で説明した構成で、温度だけでなく、湿度及びCO濃度も含めたさまざまな視点での快適性を考慮した空調設備12の運転計画を立案し、補正することができる。
実施の形態5.
実施の形態1において、室温の時間的なばらつきと、室温の空間的なばらつきとについて説明した。このようなばらつきは、室温が設定温度で一定となるように空調機を運転するのではなく、制約条件として、室温がある快適温度範囲で推移することを許容することによって生じるものである。
本実施の形態5では、このような室温の時間的及び空間的なばらつきを発生させる要因について説明する。具体的には、運転計画立案部33で実行する動作の一つ、すなわち、処理熱負荷の時間的分散と、処理熱負荷の空間的分散と、に基づいた運転計画の立案について説明する。なお、実施の形態1〜4と共通する部分についてはその説明を省略する。
(空調機の特性)
まず、空調機の一般的な特性を図19を用いて説明する。図19は、空調機の一般的な特性を示す図である。図19は、空調機の出力に対する空調効率(COP:Coefficient Of Performance)のグラフである。COPとは、空調機への入力(電力kW)に対する出力(処理熱量kW)の比を表したものである。図19に示すように、一般的には、空調機は、低出力及び高出力の範囲で効率が悪いという特性がある。図19に示す一例では、定格出力に対して60%が最も効率がよい特性となっている。処理熱負荷の時間的分散及び処理熱負荷の空間的分散は、このような空調機の特性を利用した処理である。
(処理熱負荷の時間的分散の概要)
次に、処理熱負荷の時間的分散の概要について説明する。処理熱負荷の時間的分散では、空調運転の計画対象期間における何れかの時間帯の熱負荷の少なくとも一部が、別の時間帯で処理される。例えば、実施の形態1で説明したように、熱伝導方程式に基づく温度予測モデルをシステムが持つ場合、このようなシステムは、室温の時間変動を予測することができる。よって、このようなシステムは、快適温度範囲を維持しつつ、時間的分散に基づいた処理による運転計画を立案することができる。
具体的には、ある時間帯の出力を空調効率が高い出力にシフトさせ、別の時間帯の出力をそれに応じて変更させる。図19の一例では、ある時間帯で設定温度を維持するための出力が、例えば60%よりも低い場合、出力を上げる方向にシフトさせる。その代わり、別の時間帯の何れかで出力を下げる方向にシフトさせる。ここで、このような下げる方向のシフトは、空調効率が高くなるようなシフトである場合と、空調効率が低くなるようなシフトである場合と、の少なくとも何れかが含まれるものであって、何れであってもよい。
一方、ある時間帯で設定温度を維持するための出力が、例えば60%よりも高い場合、出力を下げる方向にシフトさせる。その代わり、別の時間の何れかで出力を上げる方向にシフトさせる。ここで、このような上げる方向のシフトは、空調効率が高くなるようなシフトである場合と、空調効率が低くなるようなシフトである場合と、の少なくとも何れかが含まれるものであって、何れであってもよい。
このように、出力を上げる方向のシフトと、出力を下げる方向のシフトとが行われることによって、出力の均衡がとれ、少なくとも何れかの方向のシフトで空調効率が高いものに設定されれば、合計の処理熱量が同等になりつつも、消費エネルギーが削減される。
(処理熱負荷の空間的分散の概要)
次に、処理熱負荷の空間的分散の概要について説明する。処理熱負荷の空間的分散では、何れかのゾーンの熱負荷の少なくとも一部が、隣接するゾーンが割り当てられている空調機で処理される。実施の形態1で説明したように、熱伝導方程式に基づくゾーン毎の熱負荷予測モデルをシステムが持つ場合、このようなシステムは、ゾーン間の熱移動を考慮しつつ、ゾーン毎の室温と、ゾーン毎の熱負荷とを予測することができる。よって、このようなシステムは、快適温度範囲を維持しつつ、空間的分散に基づいた処理による運転計画を立案することができる。
具体的には、あるゾーンの出力を空調効率が高い出力にシフトさせ、隣接する別のゾーンの出力をそれに応じて変更させる。図19の一例では、あるゾーンで設定温度を維持するための出力が、例えば60%よりも低い場合、出力を上げる方向にシフトさせる。その代わり、別のゾーンの何れかで出力を下げる方向にシフトさせる。ここで、このような下げる方向のシフトは、空調効率が高くなるようなシフトである場合と、空調効率が低くなるようなシフトである場合と、の少なくとも何れかが含まれるものであって、何れであってもよい。
一方、あるゾーンで設定温度を維持するための出力が、例えば60%よりも高い場合、出力を下げる方向にシフトさせる。その代わり、別のゾーンの何れかで出力を上げる方向にシフトさせる。ここで、このような上げる方向のシフトは、空調効率が高くなるようなシフトである場合と、空調効率が低くなるようなシフトである場合と、の少なくとも何れかが含まれるものであって、何れであってもよい。
このように、出力を上げる方向のシフトと、出力を下げる方向のシフトとが行われることによって、出力の均衡がとれ、少なくとも何れかの方向のシフトで空調効率が高いものに設定されれば、合計の処理熱量が同等になりつつも、消費エネルギーが削減される。
つまり、空調制御システム1は、時間帯及びゾーンのような区切りごとに処理熱量変更動作が異なる。例えば、空調制御システム1は、第1の区切りに対応する処理熱量変更動作として、空調効率を上げる動作をした場合、第1の区切りとは異なる第2の区切りに対応する処理熱量の変更動作として、第1の区切りの処理熱量の変更を相殺する動作をする。
例えば、空調制御システム1は、時間帯Nに対応する処理熱量変更動作として、空調効率を上げるために出力を上げる動作を選択した場合、時間帯Mに対応する処理熱量変更動作として、出力を下げる動作を選択する。
また、空調制御システム1は、時間帯Nに対応する処理熱量変更動作として、空調効率を上げるために出力を下げる動作を選択した場合、時間帯Mに対応する処理熱量変更動作として、出力を上げる動作を選択する。
また、空調制御システム1は、ゾーンAに対応する処理熱量変更動作として、空調効率を上げるために出力を上げる動作を選択した場合、ゾーンAの隣接ゾーンに対応する処理熱量変更動作として、出力を下げる動作を選択する。
また、空調制御システム1は、ゾーンAに対応する処理熱量変更動作として、空調効率を上げるために出力を下げる動作を選択した場合、ゾーンAの隣接ゾーンに対応する処理熱量変更動作として、出力を上げる動作を選択する。
(機能構成)
次に、本実施の形態5における運転計画を実施する機能構成について図20を用いて説明する。図20は、本発明の実施の形態5における運転計画の機能構成の一例を示す図である。図20は、運転計画作成手段42の内部的な機能構成の一例である。なお、以後の説明において、本実施の形態5では、空調運転の計画のことをスケジュールと記載するものとする。
(機能構成:分散方法選択部)
分散方法選択部141は、処理熱負荷の時間的分散を処理するスケジュールの作成と、処理熱負荷の空間的分散を処理するスケジュールの作成と、の何れかを選択する。スケジュールを作成する過程において、一般的には、分散方法選択部141は、最終的なスケジュールの候補として、複数のスケジュールを作成する。複数のスケジュールの作成において、時間的分散及び空間的分散のうち、何れの分散を行うかの選択方法は、特に限定されない。
例えば、時間的分散と、空間的分散とが、サイクリックに順番に選択されてもよい。また、過去のスケジュール作成履歴に基づいて、消費電力の削減効果又はランニングコストの削減効果の何れか高い方の削減効果が優先的に選択されてもよい。また、確率的に削減効果の高い方が選択されてもよい。すなわち、択一的に何れかが選択されればよい。
(機能構成:時間的分散スケジュール作成部)
時間的分散スケジュール作成部142aは、処理熱負荷の時間的分散を処理するスケジュールを作成する。時間的分散スケジュール作成部142aは、ゾーン選択部142a1と、分散元時間帯選択部142a2と、熱負荷変更量決定部142a3と、分散先時間帯選択部142a4と、時間的分散スケジュール決定部142a5と、から構成される。
ゾーン選択部142a1は、処理熱負荷の時間的分散を行うゾーンを選択する。選択方法としては、例えば、ゾーン選択部142a1は、計画対象期間全体で平均空調効率が最も悪いゾーンを選択するが、特にこれに限定されない。例えば、ゾーン選択部142a1は、全時間帯及び全ゾーンを通して、空調効率が最も悪い空調機が割り当てられているゾーンを選択してもよい。また、ゾーン選択部142a1は、ゾーンを複数回選択する場合、各ゾーンをサイクリックに順番に選択してもよい。また、ゾーン選択部142a1は、空調効率とは無関係に確率的にゾーンを選択してもよい。すなわち、択一的に何れかのゾーンが選択されればよい。
分散元時間帯選択部142a2は、ゾーン選択部142a1で選択されたゾーンにおいて、処理熱負荷の分散元の時間帯を選択する。選択方法としては、例えば、分散元時間帯選択部142a2は、計画対象期間を例えば5分刻みで分割し、分割した時間帯のうち、このゾーンが割り当てられている空調機が最も悪い効率で運転をしている時間帯を選択してもよいが、特にこれに限定されない。例えば、分散元時間帯選択部142a2は、空調効率が悪い運転をしている時間帯を複数選択し、これらの複数の時間帯の中から確率的に時間帯を選択してもよい。すなわち、択一的に何れかの時間帯が選択されればよい。
熱負荷変更量決定部142a3は、ゾーン選択部142a1で選択されたゾーンにおいて、分散元時間帯選択部142a2で選択された時間帯における熱負荷変更量、すなわち、時間的に分散させる熱負荷の量を決定する。決定方法としては、例えば、熱負荷変更量決定部142a3は、空調効率が最大となる出力になるまでの変更量に熱負荷変更量を決定すればよいが、特にこれに限定されない。例えば、熱負荷変更量決定部142a3は、熱負荷変更量を予め設定した変更量に決定してもよい。また、熱負荷変更量決定部142a3は、予め設定した変更量に確率的な係数を乗じた量を熱負荷変更量に決定してもよい。また、熱負荷変更量決定部142a3は、快適温度範囲の維持が可能な変更量を熱負荷予測モデル又は温度予測モデルのパラメータから推定して熱負荷変更量を決定してもよい。
分散先時間帯選択部142a4は、ゾーン選択部142a1で選択されたゾーンにおいて、処理熱負荷の分散先の時間帯を選択する。選択方法としては、例えば、分散先時間帯選択部142a4は、計画対象期間を例えば5分刻みに分割し、分割された時間帯のうち、このゾーンが割り当てられている空調機が最も空調効率が悪い運転をしている時間帯を選択してもよいが、特にこれに限定されない。例えば、分散先時間帯選択部142a4は、空調効率が悪い運転をしている時間帯を複数選択し、これら複数の時間帯の中から確率的に時間帯を選択してもよい。また、分散先時間帯選択部142a4は、全時間帯の中から確率的に時間帯を選択してもよい。
また、分散先時間帯選択部142a4は、熱負荷変更量決定部142a3で決定された熱負荷変更量が、プラス値であるときは、最大空調効率よりも高い出力で運転している空調機に割り当てられている時間帯を優先的に選択し、マイナス値であるときは、最大空調効率よりも低い出力で運転している空調機に割り当てられている時間帯を優先的に選択してもよい。すなわち、択一的に何れかの時間帯が選択されればよい。
時間的分散スケジュール決定部142a5は、まず、上記で説明した各機能で熱負荷を分散させた後、計画対象期間の熱負荷を再計算する。すなわち、時間的分散スケジュール決定部142a5は、熱負荷変更量決定部142a3で決定された熱負荷変更量がプラス値である場合、ゾーン選択部142a1で選択したゾーンにおける、分散元時間帯の熱負荷を熱負荷変更量だけ増加させ、分散先時間帯の熱負荷を熱負荷変更量だけ減少させる。
一方、時間的分散スケジュール決定部142a5は、熱負荷変更量決定部142a3で決定された熱負荷変更量がマイナス値である場合、ゾーン選択部142a1で選択したゾーンにおける、分散元時間帯の熱負荷を熱負荷変更量だけ減少させ、分散先時間帯の熱負荷を熱負荷変更量だけ増加させる。
そして、時間的分散スケジュール決定部142a5は、このように再計算した熱負荷を処理するための空調運転を求め、時間的分散に基づいた仮スケジュールを決定する。
(機能:空間的分散スケジュール作成部)
空間的分散スケジュール作成部142bは、処理熱負荷の空間的分散を行うスケジュールを作成する。空間的分散スケジュール作成部142bは、時間帯選択部142b1と、分散元ゾーン選択部142b2と、熱負荷変更量決定部142b3と、分散先ゾーン選択部142b4と、空間的分散スケジュール決定部142b5と、から構成される。
時間帯選択部142b1は、処理熱負荷の空間的分散を行う時間帯を選択する。選択方法としては、例えば、時間帯選択部142b1は、全ゾーンの合計の平均空調効率が最も悪い時間帯を選択すればよいが、特にこれに限定されない。例えば、時間帯選択部142b1は、全時間帯及び全ゾーンを通して空調効率が最も悪い空調機が存在する時間帯を選択してもよい。また、時間帯選択部142b1は、時間帯を複数回選択する場合は、各時間帯をサイクリックに順番に選択してもよい。また、時間帯選択部142b1は、空調効率とは無関係に確率的に時間帯を選択してもよい。すなわち、択一的に何れかの時間帯が選択されればよい。
分散元ゾーン選択部142b2は、時間帯選択部142b1で選択された時間帯において、処理熱負荷の分散元のゾーンを選択する。選択方法としては、例えば、分散元ゾーン選択部142b2は、空調機が最も空調効率が悪い運転をしているゾーンを選択するが、特にこれに限定されない。例えば、分散元ゾーン選択部142b2は、空調効率が悪い運転をしているゾーンを複数選択し、これら複数のゾーンの中から確率的にゾーンを選択してもよい。また、分散元ゾーン選択部142b2は、全ゾーンの中から確率的にゾーンを選択してもよい。すなわち、択一的に何れかのゾーンが選択されればよい。
熱負荷変更量決定部142b3は、時間帯選択部142b1で選択された時間帯において、分散元ゾーン選択部142b2で選択されたゾーンに対応する熱負荷変更量、すなわち空間的に分散させる熱負荷の量を決定する。決定方法としては、例えば、熱負荷変更量決定部142b3は、空調効率が最大となる出力になるまでの変更量に熱負荷変更量を決定するが、特にこれに限定されない。例えば、熱負荷変更量決定部142b3は、熱負荷変更量を予め設定した変更量に決定してもよい。また、熱負荷変更量決定部142b3は、予め設定した変更量に確率的な係数を乗じた量を熱負荷変更量に決定してもよい。また、熱負荷変更量決定部142b3は、快適温度範囲の維持が可能な変更量を熱負荷予測モデル又は温度予測モデルのパラメータから推定して熱負荷変更量を決定してもよい。
分散先ゾーン選択部142b4は、時間帯選択部142b1で選択された時間帯において、処理熱負荷の分散先のゾーンを選択する。選択方法としては、例えば、分散先ゾーン選択部142b4は、空調機が最も空調効率が悪い運転をしているゾーンを選択すればよいが、特にこれに限定されない。例えば、分散先ゾーン選択部142b4は、空調効率が悪い運転をしているゾーンを複数選択し、これら複数のゾーンの中から確率的にゾーンを選択してもよい。また、分散先ゾーン選択部142b4は、全ゾーンの中から確率的にゾーンを選択してもよい。
また、分散先ゾーン選択部142b4は、熱負荷変更量決定部142b3で決定された熱負荷変更量が、プラス値であるときは、最大空調効率よりも高い出力で運転している空調機に割り当てられているゾーンを優先的に選択し、マイナス値であるときは、最大空調効率よりも低い出力で運転している空調機に割り当てられているゾーンを優先的に選択してもよい。すなわち、択一的に何れかのゾーンが選択されればよい。
空間的分散スケジュール決定部142b5は、まず、上記で説明した各機能で熱負荷を分散させた後、計画対象期間における熱負荷を再計算する。すなわち、空間的分散スケジュール決定部142b5は、熱負荷変更量決定部142b3で決定された熱負荷変更量がプラス値の場合は、時間帯選択部142b1で選択した時間帯における、分散元ゾーンの熱負荷を熱負荷変更量だけ増加させ、分散先ゾーンの熱負荷を熱負荷変更量だけ減少させる。
一方、空間的分散スケジュール決定部142b5は、熱負荷変更量決定部142a3で決定された熱負荷変更量がマイナス値の場合は、時間帯選択部142b1で選択した時間帯における、分散元ゾーンの熱負荷を熱負荷変更量だけ減少させ、分散先ゾーンの熱負荷を熱負荷変更量だけ増加させる。そして、空間的分散スケジュール決定部142b5は、このように再計算された熱負荷を処理するための空調運転を求め、空間的分散に基づいた仮スケジュールを決定する。
(動作)
次に、上記で説明した機能構成を前提とした動作例について、図21〜23を用いて説明する。図21は、本発明の実施の形態5における運転計画の作成動作例を説明するフローチャートである。図22は、本発明の実施の形態5における処理熱負荷の時間的分散処理を説明するフローチャートである。図23は、本発明の実施の形態5における処理熱負荷の空間的分散処理を説明するフローチャートである。
図21は、本発明の実施の形態5における運転計画すなわちスケジュールの作成例を示すフローチャートである。図21に示すように、初期スケジュール作成処理と、分散方法選択処理と、時間的分散処理と、空間的分散処理と、温度予測処理と、スケジュール候補更新処理と、終了判定処理と、から構成される。
図22に示すように、時間的分散処理は、ゾーン選択処理と、分散元時間帯選択処理と、熱負荷変更量決定処理と、分散先時間帯選択処理と、時間的分散スケジュール決定処理と、から構成される。
図23に示すように、空間的分散処理は、時間帯選択処理と、分散元ゾーン選択処理と、熱負荷変更量決定処理と、分散先ゾーン選択処理、空間的分散スケジュール決定処理と、から構成される。
(初期スケジュール作成処理)
(ステップS201)
空調制御システム1は、分散無しでのスケジュールを作成する。つまり、空調制御システム1は、処理熱負荷の分散をしていない状態を想定した空調運転のスケジュールを作成する。
(ステップS202)
空調制御システム1は、作成したスケジュールをスケジュール候補とする。
(ステップS203)
空調制御システム1は、スケジュール候補に対応する評価指標を求める。
(分散方法選択処理)
(ステップS204)
空調制御システム1は、処理熱負荷の空間的分散及び処理熱負荷の時間的分散の何れかを選択する。空調制御システム1は、処理熱負荷の時間的分散を選択した場合、ステップS205に進む。一方、空調制御システム1は、処理熱負荷の空間的分散を選択した場合、ステップS206に進む。
(処理熱負荷の時間的分散処理)
(ステップS205)
詳細については後述するが、空調制御システム1は、処理熱負荷の時間的分散処理を実行する。処理熱負荷の時間的分散処理の結果、仮スケジュールが決定される。
(処理熱負荷の空間的分散処理)
(ステップS206)
詳細については後述するが、空調制御システム1は、処理熱負荷の空間的分散処理を実行する。処理熱負荷の空間的分散処理の結果、仮スケジュールが決定される。
(温度予測処理)
(ステップS207)
空調制御システム1は、仮スケジュールを実行すると仮定した時の計画対象期間における室内の温度を予測する。
(ステップS208)
空調制御システム1は、快適温度範囲が維持されているか否かを判定する。空調制御システム1は、快適温度範囲が維持されている場合、ステップS209に進む。一方、空調制御システム1は、快適温度範囲が維持されていない場合、ステップS212に進む。
つまり、空調制御システム1は、ステップS205又はステップS206で決定した仮スケジュールに対応する計画対象期間の温度を予測する。予測室温が、快適温度範囲を維持できていない場合、仮スケジュールに対応する評価を行わず、ステップS212に進む。
(スケジュール候補更新処理)
(ステップS209)
空調制御システム1は、仮スケジュールに対応する評価指標を求める。
(ステップS210)
空調制御システム1は、仮スケジュールに対応する評価指標の値がスケジュール候補に対応する評価指標の値と比べて減少しているか否かを判定する。空調制御システム1は、仮スケジュールに対応する評価指標の値がスケジュール候補に対応する評価指標の値と比べて減少している場合、ステップS211に進む。一方、空調制御システム1は、仮スケジュールに対応する評価指標の値がスケジュール候補に対応する評価指標の値と比べて減少していない場合、ステップS212に進む。
(ステップS211)
空調制御システム1は、仮スケジュールを新たなスケジュール候補とする。
つまり、空調制御システム1は、ステップS205又はステップS206で決定した仮スケジュールに対応する評価指標の計算を行う。空調制御システム1は、現在のスケジュール候補よりも評価指標が小さい場合は、仮スケジュールを新たなスケジュール候補とする。
なお、空調制御システム1は、評価指標が現在のスケジュール候補と比べて大きい場合であっても、確率的に仮スケジュールを新たなスケジュール候補としてもよい。
(終了判定処理)
(ステップS212)
空調制御システム1は、終了条件を満たすか否かを判定する。空調制御システム1は、終了条件を満たす場合、ステップS213に進む。一方、空調制御システム1は、終了条件を満たさない場合、ステップS204に進む。
(ステップS213)
空調制御システム1は、現在のスケジュール候補を最終的なスケジュールとして出力する。
つまり、空調制御システム1は、スケジュール作成の処理を終了するかを判定する。例えば、空調制御システム1は、評価指標が所定の目標値よりも小さくなった場合、スケジュール作成を終了するが、終了条件は特にこれに限定されない。
例えば、空調制御システム1は、スケジュール作成に要した時間が所定の時間を超えた場合、スケジュール作成を終了する。また、空調制御システム1は、スケジュール候補の評価指標の減少が所定の減少率よりも小さくなった場合、スケジュール作成を終了する。また、空調制御システム1は、スケジュール候補の更新が所定の回数以上行われなかった場合、スケジュール作成を終了する。
(処理熱負荷の時間的分散処理)
(ゾーン選択処理)
(ステップS231)
空調制御システム1は、処理熱負荷の時間的分散を行うゾーンを選択する。
(分散元時間帯選択処理)
(ステップS232)
空調制御システム1は、選択したゾーンに対応する処理熱負荷の分散元の時間帯を選択する。
(熱負荷変更量決定処理)
(ステップS233)
空調制御システム1は、選択したゾーン及び選択した時間帯に対応する熱負荷変更量を決定する。つまり、空調制御システム1は、時間的に分散させる熱負荷の量を決定する。
(分散先時間帯選択処理)
(ステップS234)
空調制御システム1は、選択したゾーンに対応する処理熱負荷の分散先の時間帯を選択する。
(時間的分散スケジュール決定処理)
(ステップS235)
空調制御システム1は、熱負荷変更量が何れであるかを判定する。空調制御システム1は、熱負荷変更量がプラス値である場合、ステップS236に進む。一方、空調制御システム1は、熱負荷変更量がマイナス値である場合、ステップS238に進む。
(ステップS236)
空調制御システム1は、分散元の時間帯に対応する熱負荷を熱負荷変更量だけ増加させる。
(ステップS237)
空調制御システム1は、分散先の時間帯に対応する熱負荷を熱負荷変更量だけ減少させる。
(ステップS238)
空調制御システム1は、分散元の時間帯に対応する熱負荷を熱負荷変更量だけ減少させる。
(ステップS239)
空調制御システム1は、分散先の時間帯に対応する熱負荷を熱負荷変更量だけ増加させる。
(ステップS240)
空調制御システム1は、再計算された熱負荷を処理するためのスケジュールを求める。
(ステップS241)
空調制御システム1は、求めたスケジュールを時間的分散に基づいた仮スケジュールとして処理を終了する。
つまり、空調制御システム1は、まず、処理熱負荷を分散させた後の状態を想定し、計画対象期間における熱負荷を再計算する。すなわち、ステップS233で決定した熱負荷変更量がプラス値の場合、ステップS232で選択した分散元時間帯の熱負荷を熱負荷変更量だけ増加させ、ステップS234で選択した分散先時間帯の熱負荷を熱負荷変更量だけ減少させる。
一方、空調制御システム1は、ステップS233で決定した熱負荷変更量がマイナス値の場合、ステップS232で選択した分散元時間帯の熱負荷を熱負荷変更量だけ減少させ、ステップS234で選択した分散先時間帯の熱負荷を熱負荷変更量だけ増加させる。そして、空調制御システム1は、このように再計算された熱負荷を処理するための空調運転を求め、時間的分散に基づいた仮スケジュールとする。
(処理熱負荷の空間的分散処理)
(時間帯選択処理)
(ステップS261)
空調制御システム1は、処理熱負荷の空間的分散を行う時間帯を選択する。
(分散元ゾーン選択処理)
(ステップS262)
空調制御システム1は、選択した時間帯に対応する処理熱負荷の分散元のゾーンを選択する。
(熱負荷変更量決定処理)
(ステップS263)
空調制御システム1は、選択した時間帯及び選択したゾーンに対応する熱負荷変更量を決定する。つまり、空調制御システム1は、空間的に分散させる熱負荷の量を決定する。
(分散先ゾーン選択処理)
(ステップS264)
空調制御システム1は、選択したゾーンに対応する処理熱負荷の分散先のゾーンを選択する。
(空間的分散スケジュール決定処理)
(ステップS265)
空調制御システム1は、熱負荷変更量が何れかであるかを判定する。空調制御システム1は、熱負荷変更量がプラス値である場合、ステップS266に進む。一方、空調制御システム1は、熱負荷変更量がマイナス値である場合、ステップS268に進む。
(ステップS266)
空調制御システム1は、分散元のゾーンに対応する熱負荷を熱負荷変更量だけ増加させる。
(ステップS267)
空調制御システム1は、分散先のゾーンに対応する熱負荷を熱負荷変更量だけ減少させる。
(ステップS268)
空調制御システム1は、分散元のゾーンに対応する熱負荷を熱負荷変更量だけ減少させる。
(ステップS269)
空調制御システム1は、分散先のゾーンに対応する熱負荷を熱負荷変更量だけ増加させる。
(ステップS270)
空調制御システム1は、再計算された熱負荷を処理するためのスケジュールを求める。
(ステップS271)
空調制御システム1は、求めたスケジュールを空間的分散に基づいた仮スケジュールとする。
つまり、空調制御システム1は、まず、処理熱負荷を分散させた後の状態を想定し、計画対象期間における熱負荷を再計算する。すなわち、空調制御システム1は、ステップS263で決定した熱負荷変更量がプラス値である場合、ステップS262で選択した分散元ゾーンの熱負荷を熱負荷変更量だけ増加させ、ステップS264で選択した分散先ゾーンの熱負荷を熱負荷変更量だけ減少させる。
一方、空調制御システム1は、ステップS263で決定した熱負荷変更量がマイナス値である場合、ステップS262で選択した分散元ゾーンの熱負荷を熱負荷変更量だけ減少させ、ステップS264で選択した分散先ゾーンの熱負荷を熱負荷変更量だけ増加させる。そして、空調制御システム1は、このように再計算された熱負荷を処理するための空調運転を求め、空間的分散による仮スケジュールとする。
(時間的分散及び空間的分散の一方のみ)
なお、上記の説明では、処理熱負荷の時間的分散と、処理熱負荷の空間的分散との少なくとも何れか一方を行う方法について説明したが、特にこれに限定されない。例えば、時間的分散だけであってもよく、空間的分散だけであってもよい。
(設定温度の変更)
なお、本実施の形態5では、熱負荷を分散させるために熱負荷変更量を直接決定する方法について説明した。この代わりに、時間帯毎及びゾーン毎に異なる目標温度が設定されてもよい。目標温度の設定が変更されることにより、空調設備12は事実上処理熱負荷を変更した運転を行うことになる。このような目標温度の設定は、室内機12bが保有する設定温度であってもよいし、空調コントローラ11等に実装されるソフトウェアの内部情報であってもよい。
(効果)
このように、空調機の特性、室温の時間変動、及びゾーン間の熱移動等を考慮し、少なくとも時間的及び空間的の何れかに処理熱負荷を分散することにより、室温を快適温度範囲に維持しつつ、総合的に空調効率が高い空調運転を行うことができるため、消費電力量を削減することができる。
1 空調制御システム、11 空調コントローラ、12 空調設備、12a 室外機、12b 室内機、12c 換気設備、12d 全熱交換器、12e 加湿器、12f 除湿器、12g ヒータ、12h 外調機、13 空調ネットワーク、14 機器接続用コントローラ、15 空調制御用計算機、16 汎用ネットワーク、19 センサ、31 条件設定部、32 熱負荷予測部、33 運転計画立案部、34 運転計画補正部、35 データ計測部、36 制御指令部、41 熱負荷予測手段、42 運転計画作成手段、43 温度予測手段、44 計画評価手段、46 温度誤差評価手段、47 温度予測手段、48 補正計画作成手段、49 補正計画評価手段、61 ゾーン分割されたフロア、62 隣接ゾーン、63 ゾーン毎の室温変動曲線、71、72、81、82 制約条件、91、101 湿度予測手段、92、102 CO濃度予測手段、141 分散方法選択部、142a 時間的分散スケジュール作成部、142a1 ゾーン選択部、142a2 分散元時間帯選択部、142a3 熱負荷変更量決定部、142a4 分散先時間帯選択部、142a5 時間的分散スケジュール決定部、142b 空間的分散スケジュール作成部、142b1 時間帯選択部、142b2 分散元ゾーン選択部、142b3 熱負荷変更量決定部、142b4 分散先ゾーン選択部、142b5 空間的分散スケジュール決定部。

Claims (15)

  1. 建物に設置された空調設備を制御する空調制御システムにおいて、
    与えられた熱負荷予測用データに基づいて、前記空調設備が処理する熱量の時間変化を予測する熱負荷予測部と、
    合計の処理熱負荷を同一又は所定量の差の範囲内にすると共に、室内の温度を所定の快適温度範囲内に維持させる第1制約条件下において、評価指標である前記空調設備の消費電力量又はランニングコストの何れかを削減するように、空調運転の計画対象期間における前記空調設備の運転計画を事前に立案する運転計画立案部と、
    前記運転計画で前記空調設備の制御を実行中、所定の周期で前記運転計画を補正する運転計画補正部と、
    前記室内の温度を測定する温度センサと、
    を備え、
    前記運転計画立案部と前記運転計画補正部は、
    与えられた温度予測用データに基づいて前記室内の温度の時間変化を予測する温度予測手段を有し、
    前記運転計画補正部は、
    前記温度センサで測定した実測温度が、前記運転計画の立案時に予測する前記運転計画立案部による予測温度と異なる場合、
    前記計画対象期間のうち、補正を行う期間である補正対象期間における前記室内の温度の時間変化を予測し、
    前記補正対象期間中の1又は複数の時刻において、
    当該運転計画補正部で予測した予測温度と、前記運転計画立案部で予測した予測温度との誤差を所定の許容変動幅内に収めることを第2制約条件として、
    前記評価指標が前記第1制約条件下で最小となるように、前記運転計画を補正する
    ことを特徴とする空調制御システム。
  2. 前記第1制約条件に、
    前記計画対象期間における、前記室内の温度の時間変化率を予め設定した温度変化率内に維持させる制約を組み合わせた
    ことを特徴とする請求項1に記載の空調制御システム。
  3. 前記運転計画立案部は、
    前記第1制約条件を満たさない前記空調設備の運転パターンには、
    前記第1制約条件からの逸脱量に重みをつけたものと、前記評価指標とを加算したものを、前記評価指標として再定義し、前記再定義した前記評価指標に基づいて前記運転計画を立案する
    ことを特徴とする請求項1又は2に記載の空調制御システム。
  4. 前記運転計画補正部は、
    前記第1制約条件及び前記第2制約条件を満たさない前記空調設備の運転パターンには、
    前記第1制約条件及び前記第2制約条件からの逸脱量に重みをつけたものと、前記評価指標とを加算したものを、前記評価指標として再定義し、前記再定義した前記評価指標に基づいて前記運転計画を補正する
    ことを特徴とする請求項1〜3の何れか一項に記載の空調制御システム。
  5. 前記運転計画立案部は、
    前記第1制約条件に、
    前記計画対象期間に含まれる第1の期間に対応する消費電力を、第1の目標電力以下に抑え、
    前記計画対象期間のうち前記第1の期間を除いた期間の消費電力を、第2の目標電力以下に抑え、
    前記第1の期間と比べて前の期間である第2の期間に対応する快適温度範囲を、前記第1の期間に対応する快適温度範囲とは異なる範囲に設定する制約を組み合わせた
    ことを特徴とする請求項1〜4の何れか一項に記載の空調制御システム。
  6. 前記運転計画立案部は、
    前記第1制約条件に、
    前記計画対象期間に含まれる第1の期間に対応する消費電力を、第1の目標電力以下に抑え、
    前記計画対象期間のうち前記第1の期間を除いた期間の消費電力を、第2の目標電力以下に抑え、
    前記計画対象期間に含まれる第1の期間と比べて前の期間である第2の期間に対応する設定温度を、前記第1の期間に対応する設定温度とは異なる範囲に設定する制約を組み合わせた
    ことを特徴とする請求項1〜5の何れか一項に記載の空調制御システム。
  7. 前記運転計画立案部は、
    前記第1の期間に対応する快適温度が前記第1制約条件を満たすまで、前記第2の期間に対応する快適温度範囲又は前記第2の期間に対応する設定温度を段階的に下げる設定と、前記第2の期間を段階的に延ばす設定とを繰り返す
    ことを特徴とする請求項5又は6に記載の空調制御システム。
  8. 前記空調設備の空調対象空間である前記室内の湿度を測定する湿度センサと、
    与えられた湿度予測用データに基づいて、前記室内の湿度の時間変化を予測する湿度予測部と、の第1の組と、
    前記空調設備の空調対象空間である前記室内のCO濃度を測定するCOセンサと、
    与えられたCO濃度予測用データに基づいて、前記室内のCO濃度の時間変化を予測するCO濃度予測部と、の第2の組と、の少なくとも1組以上をさらに備えた
    ことを特徴とする請求項1〜7の何れか一項に記載の空調制御システム。
  9. 前記評価指標に、
    前記計画対象期間における、前記空調設備の設定温度からの温度のずれ度合い、前記室内の温度の時間変化率、前記室内の設定湿度からの湿度のずれ度合い、前記室内の湿度の時間変化率、前記室内の設定CO濃度からのCO濃度のずれ度合い、及び前記室内のCO濃度の時間変化率の何れか1つ、又は、2つ以上を組み合わせた
    ことを特徴とする請求項8に記載の空調制御システム。
  10. 前記第1制約条件に、
    前記計画対象期間における、前記室内の温度の時間変化率を予め設定した温度変化率内に維持させる第1条件と、
    前記計画対象期間における、前記室内の湿度を予め設定した快適湿度範囲内に維持させる第2条件と、
    前記計画対象期間における、前記室内の湿度の時間変化率を予め設定した湿度変化率内に維持させる第3条件と、
    前記計画対象期間における、前記室内の温度及び前記室内の湿度の両方から決定される温湿度快適性を予め設定した快適温湿度範囲内に維持させる第4条件と、
    前記計画対象期間における、前記室内のCO濃度を予め設定した快適CO濃度範囲内に維持させる第5条件と、
    前記計画対象期間における、前記室内のCO濃度の時間変化率を予め設定したCO濃度変化率内に維持させる第6条件と、
    の何れか1つ、又は、2つ以上の条件を組み合わせた
    ことを特徴とする請求項9に記載の空調制御システム。
  11. 建物に設置された空調設備を制御する空調制御システムにおいて、
    与えられた熱負荷予測用データに基づいて、前記空調設備が処理する熱量の時間変化を予測する熱負荷予測部と、
    合計の処理熱負荷を同一又は所定量の差の範囲内にすると共に、室内の温度を所定の快適温度範囲内に維持させる制約条件下において、前記空調設備の消費電力量又はランニングコストの何れかの評価指標が最小となるように、空調運転の計画対象期間における前記空調設備の運転計画を立案する運転計画立案部と、
    を備え、
    前記熱負荷予測部は、
    室内を複数のゾーンに分割し、ゾーン間の熱移動を考慮して、ゾーン毎の室温及び熱負荷を予測する計算モデルを有し、
    前記運転計画立案部は、
    前記熱負荷予測部で予測した、前記計画対象期間における、何れかの時間帯の熱負荷の少なくとも一部を、別の時間帯に処理する、処理熱負荷の時間的分散と、
    前記熱負荷予測部で予測した、何れかのゾーンの熱負荷の少なくとも一部を、隣接するゾーンが割り当てられた空調機で処理する、処理熱負荷の空間的分散と、
    の少なくとも何れか一方を行うことで、前記制約条件を満たしつつ、前記評価指標を最小化する
    ことを特徴とする空調制御システム。
  12. 前記運転計画立案部は、
    前記時間帯ごと及び前記ゾーン毎に異なる目標温度を設定し、前記処理熱負荷の時間的分散及び前記処理熱負荷の空間的分散の少なくとも何れか一方を行う
    ことを特徴とする請求項11に記載の空調制御システム。
  13. 建物に設置された空調設備を制御する空調制御方法において、
    与えられた熱負荷予測用データに基づいて、前記空調設備が処理する熱量の時間変化を予測する熱負荷予測ステップと、
    合計の処理熱負荷を同一又は所定量の差の範囲内にすると共に、室内の温度を所定の快適温度範囲内に維持させる第1制約条件下において、評価指標である前記空調設備の消費電力量又はランニングコストの何れかを削減するように、空調運転の計画対象期間における前記空調設備の運転計画を事前に立案する運転計画立案ステップと、
    前記運転計画で前記空調設備の制御を実行中、所定の周期で前記運転計画を補正する運転計画補正ステップと、
    前記室内の温度を測定する測定ステップと、
    が実行され、
    前記運転計画立案ステップと前記運転計画補正ステップでは、
    与えられた温度予測用データに基づいて前記室内の温度の時間変化が予測され、
    前記運転計画補正ステップで予測された予測温度と、前記運転計画立案ステップで予測された予測温度との誤差を所定の許容変動幅に収めることを第2制約条件として、
    前記評価指標が前記第1制約条件下で最小となるように、前記運転計画が補正される
    ことを特徴とする空調制御方法。
  14. 前記運転計画立案ステップでは、
    前記計画対象期間に含まれる第1の期間に対応する消費電力を、第1の目標電力以下に抑え、
    前記第1の期間と比べて前の期間である第2の期間に対応する快適温度範囲を、前記第1の期間に対応する快適温度範囲とは異なる範囲に設定する
    ことを特徴とする請求項13に記載の空調制御方法。
  15. 前記運転計画立案ステップでは、
    前記第1制約条件として、
    前記第1の期間に対応する消費電力を、第1の目標電力以下に抑え、
    前記計画対象期間のうち、前記第1の期間を除いた期間の消費電力を、第2の目標電力以下に抑える設定を含む
    ことを特徴とする請求項14に記載の空調制御方法。
JP2015513583A 2013-04-22 2014-02-06 空調制御システム及び空調制御方法 Active JP5951120B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013089269 2013-04-22
JP2013089269 2013-04-22
PCT/JP2014/052805 WO2014174871A1 (ja) 2013-04-22 2014-02-06 空調制御システム及び空調制御方法

Publications (2)

Publication Number Publication Date
JP5951120B2 JP5951120B2 (ja) 2016-07-13
JPWO2014174871A1 true JPWO2014174871A1 (ja) 2017-02-23

Family

ID=51791456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015513583A Active JP5951120B2 (ja) 2013-04-22 2014-02-06 空調制御システム及び空調制御方法

Country Status (5)

Country Link
US (1) US9784464B2 (ja)
EP (1) EP2990734B1 (ja)
JP (1) JP5951120B2 (ja)
CN (1) CN105143781B (ja)
WO (1) WO2014174871A1 (ja)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105087A1 (en) * 2012-01-12 2013-07-18 Lncon Systems Ltd. Chiller control
KR102336642B1 (ko) * 2014-08-21 2021-12-07 삼성전자 주식회사 온도 조절 방법 및 장치
US10871756B2 (en) * 2014-08-26 2020-12-22 Johnson Solid State, Llc Temperature control system and methods for operating same
JP6527374B2 (ja) * 2015-04-13 2019-06-05 アズビル株式会社 情報提示装置、情報提示方法および情報提示システム
EP3299975B1 (en) * 2015-05-18 2023-08-23 Mitsubishi Electric Corporation Indoor environment model creation device
JP6652339B2 (ja) * 2015-07-15 2020-02-19 株式会社東芝 空調制御装置、空調制御システム、空調制御方法および空調制御プログラム
TWI598541B (zh) 2016-01-19 2017-09-11 台達電子工業股份有限公司 空調的空氣側設備的能源最佳化系統及能源最佳化方法
CN106979580B (zh) * 2016-01-19 2019-08-09 台达电子工业股份有限公司 空调的空气侧设备的能源优化系统及能源优化方法
JP6503305B2 (ja) * 2016-01-25 2019-04-17 株式会社日立情報通信エンジニアリング 空調制御システム、空調計画装置、及び、計画方法
US10753632B2 (en) * 2016-02-25 2020-08-25 Mitsubishi Electric Corporation Air-conditioning system
CN105605746A (zh) * 2016-03-09 2016-05-25 浙江奥乐智能系统工程有限公司 一种基于拟人情感的在线决策控制温湿度方法
WO2017170039A1 (ja) * 2016-03-31 2017-10-05 日本電気株式会社 熱モデル作成装置、方法およびプログラム
EP3495747A4 (en) * 2016-08-04 2019-07-31 Sharp Kabushiki Kaisha AIR CONDITIONING CONTROL SYSTEM
CN106225172A (zh) * 2016-08-17 2016-12-14 珠海格力电器股份有限公司 空调控制装置、方法及系统
JP2018060271A (ja) * 2016-10-03 2018-04-12 富士通株式会社 管理装置、管理装置の制御方法、管理装置の制御プログラム及び情報処理システム
US10088192B2 (en) * 2016-10-06 2018-10-02 Google Llc Thermostat algorithms and architecture for efficient operation at low temperatures
WO2018092357A1 (ja) * 2016-11-16 2018-05-24 三菱電機株式会社 空気調和制御装置及び空気調和制御方法
US20180238572A1 (en) * 2017-02-21 2018-08-23 Sunpower Corporation Modeling and controlling heating, ventilation, and air conditioning systems
US10641514B2 (en) * 2017-03-03 2020-05-05 Andreas Hieke Methods of increasing the average life time of building materials as well as reducing the consumption of other resources associated with operating buildings
AU2018243311B2 (en) * 2017-03-31 2021-06-17 Honeywell International Inc. Providing a comfort dashboard
CN107062548B (zh) * 2017-04-25 2019-10-15 天津大学 一种基于参数序列化的中央空调变负载率调节控制方法
JP6834773B2 (ja) * 2017-05-22 2021-02-24 富士通株式会社 管理装置、データセンタ管理プログラム、データセンタ管理方法及びデータセンタシステム
AU2017422574B2 (en) * 2017-07-05 2020-11-05 Mitsubishi Electric Corporation Operation control device, air conditioning system, operation control method, and operation control program
KR102379638B1 (ko) * 2017-09-27 2022-03-29 삼성전자주식회사 공기조화장치 및 그의 제어 방법
JP7074481B2 (ja) * 2018-01-16 2022-05-24 株式会社東芝 車両空調制御装置、車両の空調制御方法及びプログラム
KR102472214B1 (ko) * 2018-02-28 2022-11-30 삼성전자주식회사 에어 컨디셔닝 시스템에서 복합 제어 장치 및 방법
JP2019163920A (ja) * 2018-03-20 2019-09-26 パナソニックIpマネジメント株式会社 空気調和装置及び空調制御方法
US10962249B2 (en) * 2018-03-20 2021-03-30 Panasonic Intellectual Property Management Co., Ltd. Air conditioning apparatus and air conditioning control method
CA3054216C (en) 2018-09-05 2023-08-01 Honeywell International Inc. Methods and systems for improving infection control in a facility
JP7219392B2 (ja) * 2018-09-11 2023-02-08 ダイキン工業株式会社 空調制御システム
TWI699500B (zh) * 2019-06-20 2020-07-21 群光電能科技股份有限公司 空調負荷調整系統及空調負荷調整方法
JP6799047B2 (ja) * 2018-11-19 2020-12-09 ファナック株式会社 暖機運転評価装置、暖機運転評価方法及び暖機運転評価プログラム
CN109595762A (zh) * 2018-11-30 2019-04-09 广东美的制冷设备有限公司 一种运行控制方法、空气机及计算机可读存储介质
US10978199B2 (en) 2019-01-11 2021-04-13 Honeywell International Inc. Methods and systems for improving infection control in a building
CN113728205B (zh) * 2019-06-25 2022-07-12 日立江森自控空调有限公司 空调装置、运转控制方法以及存储介质
CN112460768B (zh) * 2019-09-09 2022-04-19 约克广州空调冷冻设备有限公司 用于控制空调系统的方法及使用其的空调系统
CN110687251B (zh) * 2019-09-19 2022-06-10 广东电网有限责任公司广州供电局 控制柜及其湿度预警方法和装置
CN110925974B (zh) * 2019-12-09 2021-08-03 广东美的暖通设备有限公司 空调器及其输出参数的控制方法和控制装置
JP2021143810A (ja) * 2020-03-13 2021-09-24 東京瓦斯株式会社 空調システム
US11620594B2 (en) 2020-06-12 2023-04-04 Honeywell International Inc. Space utilization patterns for building optimization
US11783658B2 (en) 2020-06-15 2023-10-10 Honeywell International Inc. Methods and systems for maintaining a healthy building
US11914336B2 (en) 2020-06-15 2024-02-27 Honeywell International Inc. Platform agnostic systems and methods for building management systems
US11783652B2 (en) 2020-06-15 2023-10-10 Honeywell International Inc. Occupant health monitoring for buildings
US11823295B2 (en) 2020-06-19 2023-11-21 Honeywell International, Inc. Systems and methods for reducing risk of pathogen exposure within a space
US11184739B1 (en) 2020-06-19 2021-11-23 Honeywel International Inc. Using smart occupancy detection and control in buildings to reduce disease transmission
US11619414B2 (en) 2020-07-07 2023-04-04 Honeywell International Inc. System to profile, measure, enable and monitor building air quality
US11402113B2 (en) 2020-08-04 2022-08-02 Honeywell International Inc. Methods and systems for evaluating energy conservation and guest satisfaction in hotels
US11894145B2 (en) 2020-09-30 2024-02-06 Honeywell International Inc. Dashboard for tracking healthy building performance
US11662115B2 (en) 2021-02-26 2023-05-30 Honeywell International Inc. Hierarchy model builder for building a hierarchical model of control assets
US11372383B1 (en) 2021-02-26 2022-06-28 Honeywell International Inc. Healthy building dashboard facilitated by hierarchical model of building control assets
US11474489B1 (en) 2021-03-29 2022-10-18 Honeywell International Inc. Methods and systems for improving building performance
CN113685991B (zh) * 2021-08-02 2023-01-13 重庆海尔空调器有限公司 用于智能空调的控制方法及装置、智能空调
CN117906253A (zh) * 2022-10-11 2024-04-19 广东美的制冷设备有限公司 空调的控制方法、空调器及计算机可读存储介质
CN116489978B (zh) * 2023-06-25 2023-08-29 杭州电瓦特科技有限公司 一种基于人工智能的机房节能优化控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029694A (ja) * 2004-07-16 2006-02-02 Shimizu Corp マルチエアコンの分散制御システム
JP2008082641A (ja) * 2006-09-28 2008-04-10 Shimizu Corp 蓄熱槽熱源システムの制御装置及び制御方法
JP2011144956A (ja) * 2010-01-12 2011-07-28 Mitsubishi Electric Corp 空気調和機の制御装置
JP2011214794A (ja) * 2010-04-01 2011-10-27 Mitsubishi Electric Corp 空調システム制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102908A (ja) 1992-09-24 1994-04-15 Hitachi Ltd 需要予測装置
JP2913584B2 (ja) 1997-01-10 1999-06-28 ヤキィー株式会社 設定温度可変制御による空気調和機冷凍機デマンドコントロール装置
JP5363046B2 (ja) 2008-07-25 2013-12-11 サンテック株式会社 消費電力制御装置、冷却システム及び消費電力制御方法
CN101782258B (zh) * 2009-01-19 2012-08-15 中华电信股份有限公司 空调节能方法
CN102128481B (zh) * 2010-01-20 2013-03-20 珠海格力电器股份有限公司 空调器及其控制方法及装置
CN102261717B (zh) * 2010-05-24 2013-04-10 珠海格力电器股份有限公司 空调器控制方法及装置、空调器
CA2742894A1 (en) * 2011-05-31 2012-11-30 Ecobee Inc. Hvac controller with predictive set-point control
US9016593B2 (en) * 2011-07-11 2015-04-28 Ecobee, Inc. HVAC controller with dynamic temperature compensation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029694A (ja) * 2004-07-16 2006-02-02 Shimizu Corp マルチエアコンの分散制御システム
JP2008082641A (ja) * 2006-09-28 2008-04-10 Shimizu Corp 蓄熱槽熱源システムの制御装置及び制御方法
JP2011144956A (ja) * 2010-01-12 2011-07-28 Mitsubishi Electric Corp 空気調和機の制御装置
JP2011214794A (ja) * 2010-04-01 2011-10-27 Mitsubishi Electric Corp 空調システム制御装置

Also Published As

Publication number Publication date
WO2014174871A1 (ja) 2014-10-30
US9784464B2 (en) 2017-10-10
US20160018124A1 (en) 2016-01-21
CN105143781B (zh) 2017-10-27
EP2990734A4 (en) 2016-12-21
EP2990734B1 (en) 2018-12-26
EP2990734A1 (en) 2016-03-02
CN105143781A (zh) 2015-12-09
JP5951120B2 (ja) 2016-07-13

Similar Documents

Publication Publication Date Title
JP5951120B2 (ja) 空調制御システム及び空調制御方法
JP5963959B2 (ja) 空調システム制御装置及び空調システム制御方法
US10950924B2 (en) Priority-based energy management
JP6976976B2 (ja) マルチレベルモデル予測制御のシステムと方法
US9535411B2 (en) Cloud enabled building automation system
Aswani et al. Reducing transient and steady state electricity consumption in HVAC using learning-based model-predictive control
Michailidis et al. Energy-efficient HVAC management using cooperative, self-trained, control agents: A real-life German building case study
CA2900767C (en) Cloud enabled building automation system
JP6645650B1 (ja) 制御装置、空調制御システム、制御方法及びプログラム
JP2013142494A (ja) 空調機器制御システムおよび空調機器の制御方法
JPWO2013145810A1 (ja) 空気調和機制御装置及び空気調和機制御プログラム
JP2011248568A (ja) エネルギー管理システム
KR101133894B1 (ko) 건물의 에너지 관리 방법, 관리서버 및 기록매체
JP2008025908A (ja) 最適化制御支援システム
WO2020070794A1 (ja) 情報処理装置およびこれを備えた空調システム
JP5505040B2 (ja) 空調コントローラ
JP5672088B2 (ja) 空調コントローラ
JP5584024B2 (ja) 空気調和機群制御装置及び空気調和システム
JP2015148417A (ja) 空調システム、空調装置、空調制御方法およびプログラム
JP5682566B2 (ja) 機器選択システム、機器選択方法、及び機器選択用プログラム
Yang et al. Control strategy optimization for energy efficiency and comfort management in HVAC systems
Simon et al. Energy efficient smart home heating system using renewable energy source with fuzzy control design
CN111750492B (zh) 空气调节系统、服务器系统、网络和方法
JP7117443B1 (ja) 需要調整管理サーバ、需要調整管理方法、需要調整管理プログラム
KR20160009117A (ko) 빌딩 자동 제어 시스템

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160607

R150 Certificate of patent or registration of utility model

Ref document number: 5951120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250