WO2014174871A1 - 空調制御システム及び空調制御方法 - Google Patents

空調制御システム及び空調制御方法 Download PDF

Info

Publication number
WO2014174871A1
WO2014174871A1 PCT/JP2014/052805 JP2014052805W WO2014174871A1 WO 2014174871 A1 WO2014174871 A1 WO 2014174871A1 JP 2014052805 W JP2014052805 W JP 2014052805W WO 2014174871 A1 WO2014174871 A1 WO 2014174871A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
operation plan
temperature
period
planning
Prior art date
Application number
PCT/JP2014/052805
Other languages
English (en)
French (fr)
Inventor
隆也 山本
義隆 宇野
美緒 元谷
博 米谷
理 中島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480022799.2A priority Critical patent/CN105143781B/zh
Priority to US14/771,685 priority patent/US9784464B2/en
Priority to EP14788634.5A priority patent/EP2990734B1/en
Priority to JP2015513583A priority patent/JP5951120B2/ja
Publication of WO2014174871A1 publication Critical patent/WO2014174871A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/026Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system using a predictor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1932Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/57Remote control using telephone networks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioning control system and an air conditioning control method.
  • the air conditioning control system described in Patent Document 1 predicts the thermal load of a building, creates an operation plan of the air conditioner based on the predicted thermal load, and operates the air conditioner with the created operation plan. Therefore, an operation plan that takes into account the thermal load of the building, that is, the thermal characteristics of the building is drawn up, and the air conditioner is operating according to the operation plan that has been made in that way, so that energy saving is realized.
  • the air conditioning control system described in Patent Document 1 does not correct the operation plan even when the predicted thermal load deviates from the actual while the operation plan planned in advance is being executed. That is, the air conditioning control system described in Patent Document 1 has a problem in that an operation plan prepared in advance is not appropriately corrected according to a situation at the time of execution.
  • the present invention has been made in order to solve the above-described problems, and an air conditioning control system and an air conditioning control method capable of appropriately correcting an operation plan prepared in advance according to a situation at the time of execution. It is intended to provide.
  • the air conditioning control system is a system for controlling an air conditioning facility installed in a building. Based on the given heat load prediction data, the air conditioning control system according to the present invention predicts a temporal change in the amount of heat processed by the air conditioning facility.
  • the air conditioning which is an evaluation index under the first constraint condition in which the load prediction unit and the total processing heat load are within the same or within a predetermined amount of difference and the room temperature is maintained within a predetermined comfortable temperature range
  • An operation plan planning unit for planning in advance an operation plan for the air conditioning equipment in the target period for air conditioning operation so as to reduce either power consumption or running cost of the equipment, and control of the air conditioning equipment by the operation plan
  • An operation plan correction unit that corrects the operation plan at a predetermined period, and a temperature sensor that measures the indoor temperature, and the operation plan planning unit and the operation plan supplement
  • the unit has temperature prediction means for predicting a temporal change in the indoor temperature based on the given temperature prediction data, and the operation plan correction unit is configured such that the measured temperature measured by the temperature sensor is the operation plan.
  • the second constraint condition is that an error between the predicted temperature predicted by the operation plan correction unit and the predicted temperature predicted by the operation plan planning unit at one or a plurality of times is within a predetermined allowable fluctuation range.
  • the operation plan is corrected so that the evaluation index is minimized under the first constraint condition.
  • the operation plan prepared in advance can be appropriately corrected according to the situation at the time of execution, so that the indoor temperature or humidity can be comfortably adjusted. It is possible to improve the energy saving performance while maintaining the above-mentioned effect.
  • Embodiment 1 of this invention It is a flowchart explaining the control example of the air-conditioning control system 1 in Embodiment 1 of this invention. It is a figure which shows an example which tries an operation plan by including the power consumption in Embodiment 1 of this invention in an evaluation parameter
  • step of describing the program for performing the operation of the embodiment of the present invention is a process performed in time series in the order described, but it is not always necessary to process in time series.
  • the processing executed may be included.
  • each block diagram described in this embodiment may be considered as a hardware block diagram or a software functional block diagram.
  • each block diagram may be realized by hardware such as a circuit device, or may be realized by software executed on an arithmetic device such as a processor (not shown).
  • each block in the block diagram described in the present embodiment only needs to perform its function, and the configuration may not be separated by each block. That is, each block is only an example.
  • each block may be a superset of the blocks described in the present embodiment, or may be a subset of the blocks described in the present embodiment. May be a subset of each of the blocks described in.
  • Embodiments 1 to 5 may be implemented independently or in combination. In either case, the advantageous effects described below can be obtained.
  • FIG. 1 is a diagram showing an example of a schematic configuration of an air conditioning control system 1 according to Embodiment 1 of the present invention.
  • the air conditioning control system 1 includes an air conditioning controller 11 and an air conditioning facility 12.
  • the air conditioning controller 11 and the air conditioning equipment 12 are connected via an air conditioning network 13.
  • the air conditioning controller 11 controls the air conditioning equipment 12 or monitors the air conditioning equipment 12 by performing various communications with the air conditioning equipment 12.
  • FIG. 1 an example in which only one air conditioning controller 11 is provided is described, but the present invention is not particularly limited thereto.
  • a plurality of air conditioning controllers 11 may be installed.
  • a plurality of air conditioning controllers 11 may be provided at locations separated from each other.
  • the air-conditioning controller 11 is generally installed in the management room etc. inside a building, for example, it is not limited to this in particular.
  • the air conditioner 12 includes an outdoor unit 12a, an indoor unit 12b, a ventilation facility 12c, a total heat exchanger 12d, a humidifier 12e, a dehumidifier 12f, a heater 12g, an external air conditioner 12h, and the like. Prepare as. In general, a plurality of such components are installed.
  • the component of the air conditioning equipment 12 demonstrated above only shows an example, Comprising: It does not specifically limit to these, All of these do not need to be a component.
  • other types of devices that control the indoor air condition may be components. That is, the air conditioning equipment 12 is assumed to be any one or more of the components of the air conditioning equipment 12 described above.
  • a plurality of air conditioning facilities 12 including a plurality of components may be provided.
  • the air conditioning network 13 may be formed, for example, as a communication medium that performs communication based on a communication protocol that is not disclosed to the outside, or is formed as a communication medium that performs communication based on a communication protocol that is disclosed to the outside. May be.
  • the air conditioning network 13 may have a configuration in which a plurality of different types of networks are mixed depending on, for example, the type of cable or the communication protocol.
  • a dedicated network for measuring and controlling the air conditioning equipment 12 a LAN (Local Area Network), and individual dedicated lines that differ for each component of the air conditioning equipment 12 are assumed as examples.
  • the air conditioning controller 11 and the air conditioning equipment 12 may be connected via a device connection controller 14.
  • the device connection controller 14 has a function of relaying data communication between the air conditioning controller 11 and the air conditioning equipment 12. For example, among the components of the air conditioner 12, some components of the air conditioner 12 are directly connected to the air conditioning network 13, and other components of the air conditioner 12 are connected to the device connection controller 14. It may be.
  • the device connection controller 14 may conceal the difference in communication protocol between the air conditioning equipment 12 and the air conditioning controller 11 or may monitor the communication content between the air conditioning equipment 12 and the air conditioning controller 11.
  • the air conditioning control system 1 may include a sensor 19.
  • the sensor 19 is a device that performs sensing such as a temperature sensor, a humidity sensor, and a CO 2 concentration sensor.
  • FIG. 1 shows an example in which only one sensor 19 is installed, but the present invention is not particularly limited to this.
  • a plurality of sensors 19 may be installed.
  • the sensor 19 may be provided with a plurality of devices that perform different types of sensing.
  • the sensor 19 may be a device that performs different types of sensing.
  • the installation location of the sensor 19 is, for example, a room that is an air-conditioning target space of the air conditioning equipment 12. When sensing the outside temperature, the amount of solar radiation, etc., the sensor 19 may be installed outdoors.
  • FIG. 2 is a diagram illustrating another example of a schematic configuration of the air-conditioning control system 1 according to Embodiment 1 of the present invention.
  • the air conditioning control system 1 is provided with an air conditioning control computer 15.
  • the air conditioning control computer 15 is connected to the air conditioning controller 11 via a general-purpose network 16.
  • the air conditioning control computer 15 performs various communications with the air conditioning controller 11 via the general-purpose network 16.
  • the general-purpose network 16 is a communication medium compliant with a communication protocol such as a LAN or a telephone line. Therefore, when various communications are performed between the air conditioning control computer 15 and the air conditioning controller 11, various communications may be performed based on the IP address or the like.
  • the air conditioning control computer 15 may perform various communications with the sensor 19 or the air conditioning equipment 12 via the air conditioning controller 11 or the device connection controller 14.
  • the air conditioning control computer 15 performs various calculations by performing various communications with the air conditioning equipment 12 via the general-purpose network 16.
  • the air conditioning control computer 15 may acquire various data by performing various communications with the device connection controller 14 or the sensor 19 via the general-purpose network 16, the air conditioning controller 11, the air conditioning network 13, and the like.
  • the air conditioning control computer 15 may be provided in a room or the like that is the air conditioning target space of the air conditioning equipment 12, and is installed in a center or the like that manages a plurality of buildings within the site or from a remote location. Also good.
  • each function is implemented in the air-conditioning controller 11 and an example in which each function is shared by the air-conditioning controller 11 and the air-conditioning control computer 15 are described.
  • the present invention is not particularly limited thereto.
  • the functions of the air conditioning controller 11 may be distributed and implemented in a plurality of server devices (not shown).
  • the function of the air conditioning controller 11 and the function of the air conditioning control computer 15 may be implemented in a logically different form in one server device (not shown). That is, since each function described above may be executed, the physical storage location or the physical execution location is not particularly limited.
  • a series of processing may be executed while the functions described above are distributed to a plurality of server devices or the like provided in remote locations, and the operation results are synchronized with each other.
  • the function of the air conditioning controller 11 and the function of the air conditioning control computer 15 function as a virtualized device in a logically different form, so that one server device has two functions. May be implemented.
  • FIG. 3 is a diagram illustrating an example of a functional configuration of the air-conditioning control system 1 according to Embodiment 1 of the present invention.
  • the air conditioning control system 1 includes a condition setting unit 31, a thermal load prediction unit 32, an operation plan planning unit 33, an operation plan correction unit 34, a data measurement unit 35, and a control command unit 36 as functional configurations. Etc.
  • the thermal load predicting unit 32 predicts the heat load in accordance with various setting conditions acquired from the condition setting unit 31 in the air conditioner supply heat amount that satisfies the set temperature in the target period, that is, in the set time increment.
  • the operation plan of the air conditioning equipment 12 that processes the thermal load predicted by the thermal load prediction unit 32 in the target period is planned in time increments according to various setting conditions acquired from the condition setting unit 31.
  • the operation plan correction unit 34 the operation plan prepared by the operation plan planning unit 33 is corrected based on the deviation between the predicted temperature and the measurement result of the data measurement unit 35 in accordance with various setting conditions acquired from the condition setting unit 31. To do.
  • the control command unit 36 transmits the operation plan corrected by the operation plan correction unit 34 to the air conditioning equipment 12.
  • Condition setting unit 31 In the condition setting unit 31, various settings such as an air conditioning operation plan target period, time increment, comfortable temperature range, and set temperature, which are execution conditions of the thermal load prediction unit 32, the operation plan planning unit 33, and the operation plan correction unit 34. A condition is set.
  • the condition setting unit 31 as various setting conditions necessary for predicting the heat load and temperature, the outside air temperature, the amount of solar radiation, the internal heat generation amount, the characteristics and connection relations of each device that is a component of the air conditioning equipment 12, and the air conditioning equipment 12 The arrangement or the like on the floor of each device which is a constituent element of is set.
  • the comfort maintenance period may be set as a period during which the room temperature is maintained in the comfortable temperature range during the planning target period.
  • various setting conditions may be set by manual setting by a building administrator or the like.
  • various setting conditions may be automatically set in accordance with a default setting previously determined as an initial value. Therefore, for example, the execution timing of the air conditioning control system 1 may be controlled by a manual setting of a building administrator.
  • the manager of the building may stop the execution of the air conditioning control system 1 on a specific day.
  • the manager of the building may be interrupted during the execution of the air conditioning control system 1. That is, the execution timing of the air conditioning control system 1 is arbitrarily controlled by setting from the outside.
  • input means such as a keyboard, mouse, touch panel, and various switches provided in advance and display means such as a display may be used.
  • the thermal load prediction unit 32 includes a thermal load prediction unit 41.
  • the thermal load predicting means 41 predicts a temporal change in the amount of heat processed by the air conditioning equipment 12 during the planning target period based on various input data that are various setting conditions.
  • the various input data are, for example, the set temperature of the air conditioning equipment 12 during the planning target period, weather data, and internal heat generation data.
  • the weather data is data including at least one of the outside air temperature and the amount of solar radiation.
  • the internal heat generation data is data relating to heat generated inside the building.
  • the thermal load prediction means 41 is mounted with a thermal load prediction model that models the thermal characteristics of the building.
  • the heat load prediction model is, for example, a mathematical model based on a heat conduction equation.
  • the heat load prediction model can be derived from the room temperature prediction model defined by the heat conduction equation.
  • the thermal load prediction model is derived by changing the equation so that the air conditioner supply heat amount which is one of the inputs and the room temperature which is the output are interchanged.
  • the heat load prediction model need not be defined based on the heat conduction equation.
  • the heat load prediction model is not particularly limited as long as it is a model in which the heat load is predicted from available input data.
  • the operation planning unit 33 predetermines either the power consumption or the running cost, which is an evaluation index, under a constraint condition such as maintaining the room temperature within a predetermined comfortable temperature range during the planning period.
  • An operation plan of the air conditioning equipment 12 is drawn up so as to minimize within the calculation time.
  • the operation plan drafting unit 33 includes an operation plan creation unit 42, a temperature prediction unit 43, and a plan evaluation unit 44.
  • the operation plan creation means 42 creates various operation patterns that differ for each device that is a component of the air conditioning equipment 12.
  • the temperature predicting unit 43 predicts a temporal change in the indoor temperature based on the given first temperature prediction data.
  • the plan evaluation unit 44 determines whether or not the operation pattern created by the operation plan creation unit 42 satisfies the constraint condition set by the condition setting unit 31, calculates the value of the evaluation index, and calculates the calculated evaluation index. Based on the above, it is determined whether or not the operation plan to be finally output is set. Next, details of the temperature predicting means 43 will be described.
  • the temperature predicting means 43 corresponds to the first temperature predicting means in the present invention.
  • the temperature predicting means 43 predicts the time change of the room temperature during the planning target period using the operation pattern, weather data, and internal heat generation data as input data.
  • the operation pattern is an operation pattern of the air conditioning equipment 12 during the planning period.
  • the weather data is data including at least one of the outside air temperature and the amount of solar radiation.
  • the internal heat generation data is heat generation data generated inside the building.
  • the temperature prediction means 43 is mounted with a room temperature prediction model that models the thermal characteristics of a building that predicts the temporal change in indoor temperature.
  • the room temperature prediction model is, for example, a mathematical model based on the heat conduction equations of the following expressions (1) to (3). By giving input data to such a heat conduction equation, the indoor temperature as an output can be obtained.
  • Equations (1) to (3) Q S is the amount of solar radiation [kW]
  • Q OCC is the amount of heat generated by the human body [kW]
  • Q EQP is the amount of heat generated by the equipment [kW]
  • Q HVAC is the amount of heat supplied by the air conditioner. [KW].
  • T O is the outside air temperature [K]
  • T 1 is the outside wall outside surface temperature [K]
  • T 2 is the outside wall indoor surface temperature [K]
  • TZ is the room temperature [K]
  • T OZ is the adjacent zone. [K].
  • R 1 is the outer wall outer surface thermal resistance [K / kW]
  • R 2 is the outer wall thermal resistance [K / kW]
  • R Z is the outer wall inner surface resistance [K / kW]
  • R OZ is between the adjacent zones.
  • R 3 is the thermal resistance in addition to the outer wall [K / kW].
  • C 1 is the outer wall exterior side heat capacity [kJ / K]
  • C 2 is the outer wall indoor heat capacity [kJ / K]
  • C Z is the indoor heat capacity [kJ / K].
  • is the correction factor [ ⁇ ] of the amount of solar radiation that penetrates into the room
  • is the correction factor [ ⁇ ] of the amount of solar radiation that irradiates the outer wall
  • is the correction factor [ ⁇ ] of the device calorific value that affects the indoor temperature
  • is Correction coefficient [ ⁇ ] of the heat supply supplied to the air conditioner
  • is a correction coefficient [ ⁇ ] of the human body heat generation that affects the room temperature
  • is a correction coefficient [ ⁇ ] of the human body heat generation that affects the surface temperature inside the outer wall
  • is a correction coefficient [ ⁇ ] of the device heat generation amount that affects the surface temperature on the outer wall indoor side.
  • the heat conduction equation includes unknown parameters such as thermal resistance, heat capacity, and correction coefficient, but these estimation methods are not particularly limited.
  • the structural data of the building that is, the values calculated from the building data such as the wall material, wall thickness, wall area, and room size, are represented by the equations (1) to (3). It may be given to the conduction equation.
  • the input / output relationship is derived as a black box model or gray box model based on the measurement data. May be.
  • the room temperature prediction model is not necessarily a mathematical model based on the heat conduction equation.
  • the model is not particularly limited as long as it is a model that can predict indoor temperature from available input data.
  • the planning of the operation plan will be described on the premise of the functional configuration of the operation plan creation means 42, temperature prediction means 43, and plan evaluation means 44 described above.
  • the time when the operation planning unit 33 makes an operation plan for the air conditioning equipment 12 is referred to as a planning time.
  • the planning target period is one of various setting conditions set by the condition setting unit 31, and is targeted for the previous time compared to the planning time. Show.
  • the predetermined calculation time described above is one of various setting conditions set by the condition setting unit 31, and the planning target period is started without affecting the measurement control of the air conditioning equipment 12. It is a time that has enough time to complete.
  • the planning time is assumed to be 21 o'clock the day before the control is executed.
  • the planning target period is assumed to be from 0:00 to 24:00 on the day of executing the control. That is, a case will be described in which an operation plan for the air conditioning facility 12 for the next day is prepared at 21:00 every day. It is not always necessary to make a plan on the previous day. If the time zone for actually controlling the air conditioning equipment 12 is, for example, 8:00 to 22:00, control is executed at the planning time. It may be 2:00 on the day of the night. That is, the planning of the operation plan is executed at every preset operation plan planning cycle, for example, every day, but is not particularly limited thereto.
  • the operation plan is a plan value of a time-series control command corresponding to the air conditioning equipment 12.
  • the items to be commanded differ depending on the equipment to be controlled. Moreover, it is good also as a different item according to a model with respect to the same kind of installation. For example, when the equipment to be controlled is the outdoor unit 12a, the compressor frequency [Hz] with a time increment of 5 minutes, and when the heater 12g, the ON state and the OFF state with a time step of 5 minutes It is an example of the item which each value state signal commands.
  • the compressor frequency [Hz] and the binary state signal of the ON state and the OFF state are merely examples, and items to be commanded to the outdoor unit 12a include, for example, output [%], capability It may be a save rate [%] and other items. Further, items to be commanded to the heater 12g may be output [%] and other items. Further, when the control target equipment is the indoor unit 12b, there may be a set temperature as an example of the commanded item.
  • time increment of the control command has been described as an example in increments of 5 minutes, in the actual operation, such as the processing capacity of the air conditioning controller 11, the processing capacity of the air conditioning control computer 15, and the number of control target facilities Depending on the system configuration and constraints, the time increment may be 10 minutes or 15 minutes, and is not limited to 5 minutes.
  • the air conditioning control system 1 is mainly intended to perform energy saving control of the air conditioning equipment 12. Therefore, here, the most representative index is adopted as the evaluation index. Specifically, the air conditioning control system 1 adopts the power consumption amount as an evaluation index, and formulates an operation plan that minimizes the power consumption amount throughout the planning target period of the air conditioning facility 12.
  • the comfortable temperature range set in advance is set by the condition setting unit 31.
  • the set temperature ⁇ 1 [° C.] is assumed as a preset comfortable temperature range. It is determined by the plan evaluation means 44 based on the prediction result of the temperature prediction means 43 whether or not the operation plan satisfies such temperature restriction conditions related to temperature.
  • the solution itself of the problem executed by the operation planning unit 33 is not particularly limited.
  • the operation planning unit 33 may solve a problem that is converted into an optimization problem using a secondary planning problem or the like by generalizing the problem. Further, the operation planning unit 33 may solve using a specific solution limited to the target air conditioning control system 1. In any case, the operation planning unit 33 may solve the problem of minimizing the evaluation index under the constraint conditions described above.
  • the operation plan correction unit 34 corrects the operation plan created by the operation plan planning unit 33 according to a preset correction rule when the control of the air conditioning equipment 12 is executed.
  • the operation plan correction unit 34 includes a temperature error evaluation unit 46, a temperature prediction unit 47, a correction plan creation unit 48, and a correction plan evaluation unit 49.
  • the temperature error evaluation means 46 evaluates an error between the predicted temperature that is the result of the operation planning unit 33 and the measurement data of the data measurement unit 35.
  • the temperature predicting unit 47 predicts a temporal change in the indoor temperature based on the given second temperature prediction data.
  • the correction plan evaluation means 49 creates various correction patterns for the operation plan of the air conditioning equipment 12.
  • the correction plan evaluation means 49 determines whether or not the created correction pattern satisfies the constraint condition, calculates an evaluation index value, and finally outputs a correction plan based on the calculated evaluation index value It is determined whether or not to do.
  • the temperature predicting means 47 corresponds to the second temperature predicting means in the present invention. Next, details of the temperature predicting means 47 will be described.
  • the temperature prediction unit 47 may have the same functional configuration as the temperature prediction unit 43 or may have a different functional configuration.
  • the change width of the output of the air conditioner necessary for changing the temperature by 1 [° C.] is determined from the characteristics of the air conditioner or the thermal resistance and heat capacity of the heat conduction equation described above, and the determined air conditioner The temperature may be simply predicted based on the change width of the output.
  • the data measurement unit 35 measures the operation data of the air conditioning equipment 12 and supplies the measurement results to the thermal load prediction unit 32, the operation plan planning unit 33, the operation plan correction unit 34, and the like.
  • the data measuring unit 35 also supplies the measurement results to the temperature predicting unit 43 of the operation plan planning unit 33 and the temperature predicting unit 47 of the operation plan correcting unit 34.
  • the data measurement unit 35 may measure various data necessary for the thermal load prediction model mounted on the thermal load prediction unit 32 and supply the measurement result to the thermal load prediction unit 32. Further, the data measuring unit 35 measures various data necessary for the room temperature prediction model mounted on each of the temperature prediction unit 43 and the temperature prediction unit 47, and the measurement result is each of the temperature prediction unit 43 and the temperature prediction unit 47. May be supplied.
  • the data measuring unit 35 is set independently of the air conditioning equipment 12 such as an indoor temperature sensor, an indoor humidity sensor, an indoor CO 2 concentration sensor, an outside air temperature sensor, and a solar radiation sensor, if necessary.
  • the air conditioning equipment 12 such as an indoor temperature sensor, an indoor humidity sensor, an indoor CO 2 concentration sensor, an outside air temperature sensor, and a solar radiation sensor, if necessary.
  • Various data may be measured from the sensor 19.
  • the data measurement unit 35 performs measurement at a preset period, for example, a data measurement period.
  • the data measurement cycle is, for example, a 5-minute cycle.
  • Control command part 36 The control command unit 36 transmits a control command that is an operation plan corrected by the operation plan correction unit 34 to the air conditioning equipment 12 at a preset cycle, for example, a control command execution cycle.
  • the control command execution cycle is, for example, a 5-minute cycle.
  • the correction of the operation plan is executed at a preset operation plan correction cycle, for example, a 30-minute cycle. Specifically, the operation plan is corrected at 25 minutes and 55 minutes every hour.
  • the correction target period of the operation plan will be described as 2 hours, for example.
  • correction of the operation plan from 10:00 to 12:00 is executed at 9:55.
  • the operation plan from 10:00 to 12:00 may be the plan prepared on the previous day, or the operation executed at 9:25 at the time of the previous correction, that is, 9:30 to 11:30. It may be a plan correction result.
  • the corrected operation plan is also simply referred to as an operation plan.
  • the operation plan correction period of 30 minutes and the operation plan correction target period of 2 hours are merely examples, and are not particularly limited thereto.
  • the operation plan correction cycle may be a 15 minute cycle.
  • the condition setting unit 31 may set a criterion for determining whether or not to execute correction, and the correction may be executed only when necessary based on the set criterion.
  • the temperature corresponding to one time or a plurality of times included in the correction target period is predicted in addition to the constraint condition when the operation plan is made, as predicted when the operation plan is made. Whether the temperature corresponds to the time and whether it is within a preset difference range is set as a constraint. That is, whether or not the temperature corresponding to one time or a plurality of times included in the correction target period is within the allowable temperature fluctuation range of the temperature corresponding to the same time predicted when the operation plan is made is set as a constraint condition. .
  • the operation in the correction target period is performed so that the preset evaluation index is minimized or maximized within the preset target setting range within the preset calculation time. Correct the plan.
  • the temperature data measured by the data measuring unit 35 is used as the temperature at the time of executing the correction.
  • the temperature data may be, for example, a measurement value of a temperature sensor provided in the indoor unit 12b among the components of the air conditioning equipment 12.
  • the data measured by the temperature sensor provided in the indoor unit 12b is, for example, the suction temperature of the indoor unit 12b.
  • the temperature data may be a measurement value of a sensor 19 installed indoors separately from the air conditioning equipment 12.
  • the preset evaluation index is the same as when the operation plan was formulated.
  • the target period is the plan target period
  • the target period is the correction target period. This is different from when an operation plan is made.
  • the operation plan correction unit 34 performs correction so as to minimize the power consumption amount in the correction target period.
  • amendment part 34 about the calculation time set beforehand, as above-mentioned, as an execution time, for example in the case of 25 minutes and 55 minutes per hour, within 5 minutes is assumed. Yes.
  • various setting conditions of the condition setting unit 31 may be changed according to the time required.
  • FIG. 4 is a diagram showing an example of various setting conditions in the first embodiment of the present invention.
  • various conditions for example, evaluation indexes and constraint conditions set by the condition setting unit 31 are supplied to the operation plan planning unit 33 and the operation plan correction unit 34, respectively.
  • the evaluation index is, for example, power consumption.
  • the constraint condition is, for example, a temperature constraint condition.
  • As the temperature constraint condition for example, a comfortable temperature range and an allowable temperature fluctuation range are set.
  • FIG. 5 is a diagram illustrating an example of a spatial variation state at room temperature according to Embodiment 1 of the present invention.
  • FIG. 6 is a diagram for explaining an example of a temporal variation state of the room temperature in the first embodiment of the present invention.
  • the predicted temperature changes within the range of the constraints, but does not necessarily follow the set temperature. This is because in the operation plan prepared by the operation plan planning unit 33, the heat load to be processed temporally and spatially is dispersed in order to efficiently process the heat load.
  • the meaning of distributing the heat load over time will be described.
  • the outdoor unit 12a is caused not to process the heat load generated at each time only at that time, but to shift the heat load slightly before and after the heat load.
  • the operation of processing the thermal load by distributing it at a plurality of target times instead of processing the thermal load at one target time means that the thermal load is distributed over time.
  • the outdoor unit 12a can be operated at an efficient point. As a result, the room temperature varies with time.
  • a range assigned to each of the plurality of outdoor units 12a will be described as one zone. That is, it is assumed that there are as many zones as the number of outdoor units 12a.
  • the zone dividing method is not limited to such a method.
  • the room temperature varies spatially.
  • zone # 2 is adjacent to zone # 1, zone # 3, and zone # 5. That is, the adjacent zones of zone # 2 are zone # 1, zone # 3, and zone # 5.
  • the room temperature fluctuation curve 63 for each zone the room temperature differs in each zone, that is, spatial variation occurs, but the room temperature of each zone changes within the range of the constraint condition 71 which is the comfortable temperature range. Yes. Therefore, the constraint condition 71 is satisfied in all zones.
  • the operation plan is corrected so as to follow the variation state at the time of the operation plan formulation.
  • the room temperature at the current time be a point A.
  • the point A coincides with the set temperature, and it is not necessary to correct the operation plan from the normal viewpoint.
  • the operation plan is corrected assuming that the correction target period is from the current time to the time 2 hours later.
  • the predicted temperature obtained as a result of the correction after 1 hour and after 2 hours is within the range of a preset difference as compared with the predicted temperature at the time of operation planning.
  • the restriction is that the predicted temperature obtained as a result of the correction satisfies the constraint condition 72 that is the allowable temperature fluctuation range as compared with the predicted temperature at the time of the operation planning.
  • a predicted temperature corresponding to one hour after the time at the time of operation planning is point B
  • a predicted temperature corresponding to two hours after the time at the time of operation planning is point C.
  • point B is 26.5 [° C.]
  • point C is 27.1 [° C.].
  • the preset difference is set to 0.2 [° C.]
  • the allowable temperature fluctuation range is set to 0.4 [° C.], 26.3 to 26.7 [° C.] at point B in the correction of the operation plan.
  • the amount of power consumed in the two hours is minimized while the point C falls within the range of 26.9 to 27.3 [° C.].
  • a precooling operation or a preheating operation will be described as an example.
  • one of the time zones when the outdoor unit 12a is operating inefficiently is the morning work hours zone.
  • Pre-cooling operation refers to cooling in advance before the morning work hours, and the outdoor unit 12a is operated at an efficient intermediate output and at an efficient low outdoor temperature. Energy saving can be realized.
  • the operation planning unit 33 the operation of such an air conditioner is planned.
  • FIG. 7 is a flowchart for explaining a control example of the air conditioning control system 1 according to Embodiment 1 of the present invention.
  • the operation plan preparation process is mainly composed of a condition setting process, a heat load prediction process, and an operation plan planning process, and is an operation executed prior to the control execution of the air conditioning equipment 12. For example, it is executed once a day the day before the control of the air conditioning equipment 12 is executed. That is, in this case, the operation planning period is one day. That is, the operation plan preparation process is executed every operation plan formulation cycle, that is, every day on the day before the control.
  • the operation plan correction process is a process executed after the operation plan preparation process, and is executed every operation plan correction period, for example, every 30 minutes on the control day.
  • the data measurement process is executed every data measurement cycle, for example, every 5 minutes on the control day.
  • the control command process is executed every control command execution cycle, for example, every 5 minutes on the control day. That is, each of the operation plan preparation process, the operation plan correction process, the data measurement process, and the control command process is a process that is executed in parallel for each preset period. It is not necessary to execute in parallel.
  • the operation plan preparation process, the data measurement process, the operation plan correction process, and the control command process may be sequentially performed.
  • Step S11 The air conditioning control system 1 determines whether or not it is the operation planning period. The air-conditioning control system 1 returns to step S11 when it is not the operation planning period. On the other hand, the air conditioning control system 1 proceeds to step S12 when the operation planning period is reached.
  • Step S12 The air conditioning control system 1 sets the planning flag to 0.
  • the air conditioning control system 1 sets various conditions. Specifically, the air conditioning control system 1 sets various conditions necessary for the heat load prediction process in step S14 and the operation plan planning process in steps S15 to S17. Such various conditions are, for example, a predicted value of the outside air temperature, a predicted value of the amount of solar radiation, a predicted value of the internal heat generation amount, a set temperature, and the like.
  • the method for setting each predicted value is not particularly limited.
  • the predicted value of the outside air temperature and the predicted value of the solar radiation amount may be set based on weather data obtained via the Internet.
  • As the predicted value of the internal heat generation amount a standard internal heat generation amount pattern for weekdays and holidays may be set in advance.
  • Various necessary conditions are generally different between the thermal load prediction process and the operation planning process.
  • the air conditioning control system 1 predicts the heat load based on the set various conditions. Specifically, the air-conditioning control system 1 is a future time compared to the time when the condition setting process, the thermal load prediction process, and the operation planning process are executed according to various conditions set in the condition setting process. In a certain period, for example, a thermal load at a predetermined time interval in the planning target period is predicted. More specifically, the plan target period is set to 2:00 to 24:00 on the next day, and the predicted value of the outside air temperature, the predicted value of the solar radiation amount, the predicted value of the internal heating value, and the set temperature set in the condition setting process are set.
  • the amount of heat supplied to the air conditioner every 5 minutes necessary to satisfy the set temperature is output.
  • air-conditioner supply heat amount here, as operation
  • it is supply heat amount in the case of heating, and is removal heat amount in the case of cooling.
  • the removal heat amount may be considered as a negative supply heat amount, it will be described as a supply heat amount in a unified manner.
  • the heat load is obtained by reversing the sign of the amount of heat supplied from the air conditioner.
  • the air conditioning control system 1 makes an operation plan based on the predicted thermal load, the constraint condition, and the evaluation index.
  • the operation plan is, for example, a command value such as a compressor frequency or a capacity saving rate every 5 minutes corresponding to the outdoor unit 12a. Since the air conditioner 12 is usually composed of a plurality of types and a plurality of devices, among the various operation patterns of each device, the evaluation index such as power consumption is minimized while satisfying the constraint conditions. A proper operation plan. Depending on the evaluation index, for example, in the case of comfort, an operation plan that maximizes is created.
  • the air conditioning control system 1 predicts the room temperature based on various set conditions and a planned operation plan. Specifically, the air conditioning control system 1 predicts the indoor temperature at a preset time interval in the planning target period. More specifically, the air-conditioning control system 1 sets the planning target period from 0:00 to 24:00 on the next day, the predicted value of the outside air temperature, the predicted value of the solar radiation amount, and the predicted value of the internal heating value set in the condition setting process. The value and the operation plan of the air conditioner 12 are input, and a predicted value of the indoor temperature in units of 5 minutes is output.
  • Step S17 The air conditioning control system 1 sets the planning flag to 1, and returns to step S11.
  • the planning flag is set to 1, it is assumed that the planned operation plan is output to the operation plan correction unit 34.
  • Step S41 The air conditioning control system 1 determines whether or not it is the operation plan correction cycle. If the air conditioning control system 1 is in the operation plan correction cycle, the process proceeds to step S42. On the other hand, if it is not the operation plan correction cycle, the air conditioning control system 1 returns to step S41.
  • Step S42 The air conditioning control system 1 determines whether a measurement result has been received. When the air conditioning control system 1 receives the measurement result, the process proceeds to step S43. On the other hand, the air conditioning control system 1 returns to step S42, when not receiving a measurement result.
  • the data measurement process and the operation plan correction process are executed in parallel, it is determined in step S42 that the data has been received and the process proceeds to step S43. In this case, the correction after step S43 is performed using the measurement result received immediately before.
  • Step S43 The air conditioning control system 1 determines whether or not the planning flag is 1. If the planning flag is 1, the air conditioning control system 1 proceeds to step S44. On the other hand, if the planning flag is not 1, the air conditioning control system 1 returns to step S41. However, this planning flag is a planning flag for the day of control execution, and is different from the planning flag for the next day set during the operation plan planning at 21:00 on the previous day.
  • Step S44 The air-conditioning control system 1 corrects the operation plan so as to minimize the evaluation index within the target setting range set in advance while satisfying the constraint condition based on the room temperature predicted in the operation plan planning process and the measured room temperature. To do.
  • Step S45 The air conditioning control system 1 predicts the room temperature based on the set various conditions and the corrected operation plan. Then, the process returns to step S41.
  • Step S61 The air conditioning control system 1 determines whether or not it is a data measurement cycle. If it is the data measurement cycle, the air conditioning control system 1 proceeds to step S62. On the other hand, if it is not the data measurement cycle, the air conditioning control system 1 returns to step S61.
  • Step S62 The air conditioning control system 1 measures data.
  • Step S63 The air conditioning control system 1 transmits the measurement result and returns to step S61.
  • Step S71 The air conditioning control system 1 determines whether or not it is a control command execution cycle. If it is the control command execution cycle, the air conditioning control system 1 proceeds to step S72. On the other hand, if it is not the control command execution cycle, the air conditioning control system 1 returns to step S71.
  • Step S72 The air conditioning control system 1 transmits a control command value to the air conditioning equipment 12 based on the corrected operation plan, and returns to step S71.
  • FIG. 8 is a diagram showing an example in which an operation plan is tried by including the power consumption amount in the evaluation index according to Embodiment 1 of the present invention.
  • FIG. 8 shows an example in which power consumption is adopted as an evaluation index, and various operation plans are tried as a problem of minimizing power consumption.
  • the horizontal axis indicates time and the vertical axis indicates power.
  • a region surrounded by a broken line indicates a case where the power consumption is medium.
  • a region surrounded by a solid line indicates a case where the power consumption is small.
  • effect The situation at the time of control execution while following the operation plan of the air conditioner 12 that maximizes or minimizes the evaluation index made at the time of the operation plan by correcting the operation plan with the operation of the example described above. Since the control of the air conditioning equipment 12 that maximizes or minimizes the evaluation index can be executed according to the change in the energy consumption, energy saving can be realized while maintaining comfort.
  • the temporal change in the amount of heat processed by the air conditioning equipment 12 is predicted based on the given heat load prediction data.
  • the heat load predicting unit 32 and the total processing heat load are within the same or a predetermined amount of difference range and the room temperature is maintained within the predetermined comfortable temperature range.
  • an operation plan planning unit 33 for planning an air conditioner 12 operation plan in advance during the air conditioning operation plan target period, and the air conditioner in the operation plan 12 an operation plan correction unit 34 that corrects the operation plan at a predetermined cycle and a temperature sensor that measures the indoor temperature are provided.
  • the unit 34 includes temperature prediction means 43 that predicts a temporal change in the indoor temperature based on the given temperature prediction data.
  • the operation plan correction unit 34 uses the measured temperature measured by the temperature sensor as the operation plan.
  • the predicted temperature is different from the predicted temperature by the operation planning unit 33 that is predicted at the time of planning, the time change of the room temperature in the correction target period, which is the correction period, is predicted in the planning target period, and one or more in the correction target period
  • the second constraint is that the error between the predicted temperature predicted by the operation plan correction unit 34 and the predicted temperature predicted by the operation plan planning unit 33 falls within a predetermined allowable fluctuation range at the time of
  • the air conditioning control system 1 that corrects the operation plan is configured so as to be minimized under the first constraint condition.
  • the operation plan prepared in advance can be corrected appropriately according to the situation at the time of execution, so that the indoor temperature or humidity can be maintained comfortably and energy saving can be improved. There is a remarkable effect that is not found in the past.
  • FIG. 9 is a diagram showing an example in which the running cost in Embodiment 2 of the present invention is included in the evaluation index.
  • the running cost set by the condition setting unit 31 is supplied to each of the operation plan planning unit 33 and the operation plan correction unit 34 as an evaluation index.
  • the condition setting unit 31 may set a power charge for each time zone.
  • the evaluation index J shown in the equation (4) that combines the power consumption and running cost with the degree of deviation of the room temperature from the set temperature and the time change rate of the room temperature is It may be set.
  • J1 is the power consumption over the entire planning target period in the air conditioning equipment 12
  • J2 is the running cost over the entire planning target period in the air conditioning equipment 12
  • J3 is the root mean square value of the degree of deviation of the room temperature from the set temperature
  • J4 is the mean square value of the rate of time change at room temperature
  • ⁇ 1 to ⁇ 4 are weighting factors.
  • J3 and J4 it is not necessary to incorporate the mean square value into the evaluation index.
  • J3 may be an evaluation index that also considers the maximum absolute value of the deviation degree.
  • J4 may be an evaluation index that also considers the maximum absolute value of the time change rate.
  • FIG. 10 is a diagram illustrating an example in which the power consumption, the running cost, the degree of deviation of the room temperature from the set temperature, and the time change rate of the room temperature are included in the evaluation index according to the second embodiment of the present invention.
  • the power consumption amount, running cost, degree of deviation of room temperature from the set temperature, and time change rate of room temperature as the evaluation index are the operation plan planning unit 33 and the operation plan. It is supplied to each of the correction units 34.
  • the operation plan correction unit 34 may be an operation in which the plan target period described above is replaced with the correction target period.
  • the temperature-related restriction condition is that the temperature is maintained within a preset comfortable temperature range.
  • the time change rate of the temperature is within a preset temperature change rate. Maintaining may be added to the constraints. That is, the restriction condition may be that the time change rate of the temperature does not exceed the upper limit value of the temperature change rate.
  • FIG. 11 is a diagram illustrating an example in which the temperature-related condition in the second embodiment of the present invention is included in the constraint condition. As shown in FIG. 11, the upper limit value of the time change rate of temperature is added to a new temperature constraint condition.
  • a restriction such as 0.2 [° C / 5 minutes or less] is set for the time change rate of temperature. With such a restriction, it is possible to avoid control of the air conditioning equipment 12 accompanied by a rapid temperature change, and comfort is further improved.
  • the operation pattern that minimizes the power consumption is the operation plan.
  • a predetermined weight is given to the deviation amount from the constraint conditions.
  • the deviation amount from the constraint condition is multiplied by a predetermined weight, and the result obtained by adding the multiplication result and the evaluation index is redefined as an evaluation index. It supplies to each of the part 33 and the driving
  • Embodiment 3 (Demand response)
  • peak power reduction that is, peak cut
  • the target value of peak power corresponding to the first period may be referred to as first target power.
  • FIG. 13 is a diagram illustrating an example of various setting conditions according to the third embodiment of the present invention. As shown in FIG. 13, in the temperature constraint condition, a first comfortable temperature range corresponding to the first period and a second comfortable temperature range corresponding to the second period are set. Further, in the power constraint condition, a first peak power upper limit value corresponding to the first period and a second peak power upper limit value corresponding to the second period are set.
  • FIG. 14 is a diagram showing an example of an operation plan assuming reduction of peak power in Embodiment 3 of the present invention.
  • FIG. 14 is an example assuming that a peak cut under the condition that the first period is 13:00 to 16:00 and the first target power is 100 kW is required. Hereinafter, this condition will be described as an example.
  • the condition setting unit 31 sets the peak cut as one of the constraint conditions. That is, the peak power from 13:00 to 16:00 is set to 100 kW. However, the first period, which is the peak cut time zone, and the maximum power can be arbitrarily set.
  • the operation plan drafting unit 33 drafts an operation plan for the air conditioning equipment 12 under the constraint conditions described above.
  • the operation planning unit 33 tries to make a plan so that the room temperature maintains the comfortable temperature range.
  • a case where there is no operation pattern that satisfies the constraint condition is assumed.
  • Such a situation can be dealt with by assigning an operation pattern by applying a constraint condition that allows deviation from the constraint condition among the various constraint conditions described in the second embodiment.
  • simply allowing such an operation pattern may cause the room temperature to greatly deviate from the comfortable temperature range during the first period.
  • a comfortable temperature range corresponding to the past period that is, the second period, which is the previous period
  • the comfortable temperature range corresponding to the first period is set to 26 to 28 [° C.]
  • the comfortable temperature range corresponding to the second period is set to 25 to 27 [° C.].
  • the increment of the evaluation index regarding the deviation amount of the constraint condition on the evaluation index may be set to zero.
  • the setting of the length of the second period and the comfortable temperature range may be set manually by the building manager, or may be automatically determined by the operation planning unit 33.
  • FIG. 15 is a control example of the air-conditioning control system 1 that determines a part of the comfortable temperature range and the period of the part of the comfortable temperature range in the operation plan assuming the reduction of the peak power in the third embodiment of the present invention. It is a flowchart explaining these. Here, the operation plan is drawn on the assumption that the second period is not initially set.
  • Step S91 The air conditioning control system 1 determines whether or not it is the operation planning period. If the air conditioning control system 1 is in the operation planning period, the process proceeds to step S92. On the other hand, the air conditioning control system 1 returns to step S91, when it is not an operation planning period.
  • Step S92 The air conditioning control system 1 sets the planning flag to 0.
  • Step S93 The air conditioning control system 1 sets various conditions.
  • Step S94 The air conditioning control system 1 predicts the heat load based on the set various conditions.
  • the air conditioning control system 1 makes an operation plan based on the predicted heat load, the constraint conditions, and the evaluation index.
  • Step S96 The air conditioning control system 1 predicts the room temperature based on various set conditions and a planned operation plan.
  • Step S97 The air conditioning control system 1 determines whether the predicted room temperature has deviated from the first comfortable temperature range. If the predicted room temperature deviates from the first comfortable temperature range, the air conditioning control system 1 proceeds to step S98. On the other hand, if the predicted room temperature does not deviate from the first comfortable temperature range, the air conditioning control system 1 ends the process.
  • Step S98 The air conditioning control system 1 sets the temperature flag to 1.
  • Step S99 The air conditioning control system 1 sets the time flag to 1.
  • Step S100 The air conditioning control system 1 sets the second period to ⁇ minutes and adds it to the constraint condition.
  • the ⁇ component is, for example, 30 minutes.
  • Step S101 The air conditioning control system 1 determines whether or not the time flag is 0. If the time flag is 0, the air conditioning control system 1 proceeds to step S103. On the other hand, if the time flag is not 0, the air conditioning control system 1 proceeds to step S102.
  • Step S102 The air conditioning control system 1 sets the second comfortable temperature range to the first comfortable temperature range ⁇ ° C. and adds it to the constraint condition.
  • ⁇ [° C.] is, for example, 0.5 [° C.].
  • Step S103 The air conditioning control system 1 re-plans the operation plan based on the predicted heat load, the constraint condition, and the evaluation index.
  • Step S104 The air conditioning control system 1 predicts the room temperature based on the set various conditions and the re-planned operation plan.
  • Step S105 The air conditioning control system 1 determines whether the predicted room temperature has deviated from the first comfortable temperature range. When the predicted room temperature deviates from the first comfortable temperature range, the air conditioning control system 1 proceeds to step S106. On the other hand, if the predicted room temperature does not deviate from the first comfortable temperature range, the air conditioning control system 1 ends the process.
  • Step S106 The air conditioning control system 1 determines whether or not the temperature flag is 0. If the temperature flag is 0, the air conditioning control system 1 proceeds to step S110. On the other hand, if the temperature flag is not 0, the air conditioning control system 1 proceeds to step S107.
  • Step S107 The air conditioning control system 1 sets the time flag to 1.
  • Step S108 The air conditioning control system 1 sets ⁇ to ⁇ a preset temperature reduction range.
  • the newly set ⁇ is, for example, a value that is lowered by 1 [° C.] from the temperature range corresponding to the first period. That is, in this case, as compared with the process of step S102, the preset temperature decrease range is an example in which 0.5 [° C.] is set.
  • Step S109 The air conditioning control system 1 sets the temperature flag to 0 and returns to step S102.
  • Step S110 The air conditioning control system 1 determines whether or not the time flag is 0. If the time flag is 0, the air conditioning control system 1 returns to step S103. On the other hand, if the time flag is not 0, the air conditioning control system 1 proceeds to step S111.
  • Step S111 The air conditioning control system 1 sets the temperature flag to 1.
  • Step S112 The air conditioning control system 1 sets ⁇ to ⁇ a preset time increment, and proceeds to step S113.
  • the newly set ⁇ is, for example, 1 hour. That is, in this case, as compared with the process of step S100, the preset time increment is set to 30 minutes.
  • Step S113 The air conditioning control system 1 sets the time flag to 0, and returns to step S100.
  • the operation plan correction unit 34 may correct the operation plan prepared as described above by the method described in the first embodiment or the second embodiment. As described in the first embodiment, since the correction is performed so that the predicted temperature at the time of planning is followed at one time or a plurality of times of the correction target period, the pre-cooling before the peak cut executed in the second period is surely performed. Can be executed.
  • the operation plan correction unit 34 may change the set temperature corresponding to the second period.
  • the upper limit value of electric power was not provided outside the first period
  • the target electric power corresponding to the period other than the first period is set so that the power consumption does not increase extremely even outside the first period.
  • a second target power may be provided, and an operation plan may be drafted and corrected.
  • movement corresponding to a peak cut was demonstrated, for example, when it is known beforehand that the electric power charge of a specific time slot
  • an operation plan may be drawn for the previous day for each of them, and the most appropriate operation plan may be selected and corrected on the day according to the peak cut situation. For example, no peak cut as case 0, 100 kW from 13:00 to 16:00 as case 1, 80 kW from 13:00 to 16:00 as case 2, 100 kW from 13:00 to 15:00 as case 3 If the peak cut is not necessary, select case 0. If the peak cut is necessary, select either case 1 to case 3 according to the situation at that time. It is sufficient to correct the operation plan.
  • FIG. 16 is a diagram illustrating an example of a functional configuration of the air-conditioning control system 1 according to Embodiment 4 of the present invention.
  • the air conditioning control system 1 further includes at least one of a humidity predicting unit 91 and a CO 2 concentration predicting unit 92 in the operation planning unit 33.
  • the air conditioning control system 1 further includes at least one or more of a humidity prediction unit 101 and a CO 2 concentration prediction unit 102 in the operation plan correction unit 34.
  • each of the humidity predicting unit 91 and the humidity predicting unit 101 is mounted with a humidity prediction model that takes into account the humidity of the outside air or the generation of moisture released from the human body, etc., based on the given humidity prediction data, Predict the time change of indoor humidity.
  • Each of the CO 2 concentration prediction means 92 and the CO 2 concentration prediction means 102 is provided with a CO 2 concentration prediction model that takes into account ventilation with the outside air or generation of CO 2 released from the human body, etc. Based on the CO 2 concentration prediction data, the temporal change in the indoor CO 2 concentration is predicted.
  • the evaluation index J in the operation plan planning unit 33 and the operation plan correction unit 34 is expanded as the following formula (5), and the evaluation index considering the humidity or the CO 2 concentration is derived.
  • J1 is the power consumption over the entire planning period of the air conditioning equipment 12
  • J2 is the running cost over the entire planning period of the air conditioning equipment 12
  • J3 is the root mean square value of the degree of deviation of the room temperature from the set temperature
  • J4 is the mean square value of the time change rate of the indoor temperature
  • J5 is the mean square value of the degree of deviation of the humidity from the set humidity
  • J6 is the mean square value of the time change rate of the humidity
  • J7 is the set CO 2 concentration.
  • J8 is the mean square value of the time change rate of the CO 2 concentration
  • ⁇ 1 to ⁇ 8 are the respective weighting factors.
  • J3 may be an evaluation index that also considers the maximum absolute value of the deviation degree
  • J4 may be an evaluation index that also considers the absolute value of the time change rate.
  • FIG. 17 is a diagram illustrating a detailed example of the evaluation index among various setting conditions according to Embodiment 4 of the present invention. As shown in FIG. 17, an evaluation index related to humidity and an evaluation index related to CO 2 concentration are added.
  • the constraint condition related to the humidity and the CO 2 concentration may be added.
  • a constraint condition a first condition for maintaining the indoor temperature within a preset comfortable temperature range in the planning target period, and a temperature in which the time change rate of the indoor temperature in the planning target period is set in advance.
  • the second condition to be maintained within the rate of change, the third condition to maintain the indoor humidity within the preset comfortable humidity range during the planning period, and the time rate of change of the indoor humidity during the planning period are preset.
  • FIG. 18 is a diagram illustrating a detailed example of constraint conditions among various setting conditions according to Embodiment 4 of the present invention. As shown in FIG. 18, in addition to the temperature constraint condition, a humidity constraint condition, a temperature / humidity constraint condition, and a CO 2 concentration constraint condition are added. An example of the comfortable temperature / humidity range is PMV (Predicted Mean Vote). Further, the first condition to the seventh condition may be combined to provide a constraint condition that satisfies the comfort defined by ASHRAE (American Society of Heating Refrigeration and Air-Conditioning Engineers).
  • ASHRAE American Society of Heating Refrigeration and Air-Conditioning Engineers
  • Embodiment 5 In the first embodiment, the temporal variation in room temperature and the spatial variation in room temperature have been described. Such a variation is caused not by operating the air conditioner so that the room temperature becomes constant at the set temperature but by allowing the room temperature to change within a certain comfortable temperature range as a constraint.
  • FIG. 19 is a diagram illustrating general characteristics of the air conditioner.
  • FIG. 19 is a graph of air conditioning efficiency (COP: Coefficient of Performance) against the output of the air conditioner.
  • COP represents the ratio of output (processed heat kW) to input (electric power kW) to the air conditioner.
  • COP represents the ratio of output (processed heat kW) to input (electric power kW) to the air conditioner.
  • an air conditioner has a characteristic that efficiency is low in a range of low output and high output. In the example shown in FIG. 19, 60% of the rated output is the most efficient characteristic.
  • the temporal dispersion of the treatment heat load and the spatial dispersion of the treatment heat load are treatments utilizing such characteristics of the air conditioner.
  • temporal dispersion of processing heat load At least a part of the heat load in any time zone in the planning target period of the air conditioning operation is processed in another time zone.
  • the system has a temperature prediction model based on the heat conduction equation, such a system can predict a time variation of room temperature. Therefore, such a system can make an operation plan based on processing based on temporal dispersion while maintaining a comfortable temperature range.
  • the output in one time zone is shifted to an output with high air conditioning efficiency, and the output in another time zone is changed accordingly.
  • the output for maintaining the set temperature in a certain time zone is lower than 60%, for example, the output is shifted in the increasing direction. Instead, the output is shifted downward in any other time zone.
  • a shift in the lowering direction includes at least one of a case where the air conditioning efficiency is high and a case where the air conditioning efficiency is low. Either may be sufficient.
  • the output for maintaining the set temperature in a certain time zone is higher than 60%, for example, the output is shifted in the direction of decreasing. Instead, the output is shifted in the direction of increasing the output at any other time.
  • a shift in the increasing direction includes at least one of a case where the air conditioning efficiency is high and a case where the air conditioning efficiency is low. Either may be sufficient.
  • the output is balanced, and if the air conditioning efficiency is set to be high in at least one of the shifts, Energy consumption is reduced while the total amount of heat processed is equal.
  • the output of one zone is shifted to an output with high air conditioning efficiency, and the output of another adjacent zone is changed accordingly.
  • the output for maintaining the set temperature in a certain zone is lower than 60%, for example, the output is shifted in the increasing direction. Instead, the output is shifted downward in any of the other zones.
  • a shift in the lowering direction includes at least one of a case where the air conditioning efficiency is high and a case where the air conditioning efficiency is low. Either may be sufficient.
  • the output for maintaining the set temperature in a certain zone is higher than 60%, for example, the output is shifted in the direction of decreasing. Instead, the output is shifted in one of the other zones.
  • a shift in the increasing direction includes at least one of a case where the air conditioning efficiency is high and a case where the air conditioning efficiency is low. Either may be sufficient.
  • the output is balanced, and if the air conditioning efficiency is set to be high in at least one of the shifts, Energy consumption is reduced while the total amount of heat processed is equal.
  • the processing heat amount changing operation is different for each segment such as a time zone and a zone.
  • the air conditioning control system 1 operates to increase the air conditioning efficiency as the processing heat amount changing operation corresponding to the first partition, as the processing heat amount changing operation corresponding to the second partition different from the first partition.
  • the operation of canceling the change in the amount of heat processed in the first segment is performed.
  • the air conditioning control system 1 selects the operation for increasing the output to increase the air conditioning efficiency as the processing heat amount changing operation corresponding to the time zone N, the output is reduced as the processing heat amount changing operation corresponding to the time zone M. Select an action.
  • the air conditioning control system 1 selects the operation for decreasing the output to increase the air conditioning efficiency as the processing heat amount changing operation corresponding to the time zone N, the air conditioning control system 1 increases the output as the processing heat amount changing operation corresponding to the time zone M. Select an action.
  • the air conditioning control system 1 selects the operation to increase the output in order to increase the air conditioning efficiency as the processing heat amount changing operation corresponding to the zone A
  • the output is output as the processing heat amount changing operation corresponding to the adjacent zone of the zone A. Select the action to lower.
  • the air conditioning control system 1 selects the operation for decreasing the output in order to increase the air conditioning efficiency as the processing heat amount changing operation corresponding to the zone A
  • the output is output as the processing heat amount changing operation corresponding to the adjacent zone of the zone A. Select the action to raise.
  • FIG. 20 is a diagram illustrating an example of a functional configuration of an operation plan according to Embodiment 5 of the present invention.
  • FIG. 20 is an example of an internal functional configuration of the operation plan creation means 42.
  • the air conditioning operation plan is referred to as a schedule.
  • the distribution method selection unit 141 selects one of creation of a schedule for processing temporal dispersion of the processing heat load and creation of a schedule for processing spatial dispersion of the processing heat load. In the process of creating a schedule, generally, the distribution method selection unit 141 creates a plurality of schedules as final schedule candidates. In creating a plurality of schedules, there is no particular limitation on a method for selecting which one of temporal dispersion and spatial dispersion is performed.
  • temporal dispersion and spatial dispersion may be selected cyclically in order.
  • the higher reduction effect of the power consumption reduction effect or the running cost reduction effect may be preferentially selected.
  • the one that has a probabilistic reduction effect may be selected. That is, any one may be selected alternatively.
  • the temporal dispersion schedule creation unit 142a creates a schedule for processing temporal dispersion of the processing heat load.
  • the temporal distribution schedule creation unit 142a includes a zone selection unit 142a1, a distribution source time zone selection unit 142a2, a thermal load change amount determination unit 142a3, a distribution destination time zone selection unit 142a4, and a temporal distribution schedule determination unit 142a5. Is composed of.
  • the zone selection unit 142a1 selects a zone for performing temporal dispersion of the processing heat load.
  • the zone selection unit 142a1 selects a zone having the lowest average air conditioning efficiency in the entire planning target period, but is not particularly limited thereto.
  • the zone selection unit 142a1 may select a zone to which an air conditioner having the lowest air conditioning efficiency is assigned through all time zones and all zones.
  • the zone selection part 142a1 may select each zone cyclically in order, when selecting a zone in multiple times.
  • the zone selection part 142a1 may select a zone stochastically regardless of the air conditioning efficiency. That is, any one of the zones may be selected alternatively.
  • the distribution source time zone selection unit 142a2 selects the time zone from which the processing heat load is distributed in the zone selected by the zone selection unit 142a1.
  • the distribution source time zone selection unit 142a2 divides the planning target period in units of, for example, 5 minutes, and the air conditioner to which this zone is allocated among the divided time zones operates with the worst efficiency.
  • the present invention is not particularly limited to this.
  • the source time zone selection unit 142a2 may select a plurality of time zones during which the air conditioning efficiency is poor and select a time zone stochastically from the plurality of time zones. That is, any time zone may be selected alternatively.
  • the heat load change amount determination unit 142a3 is the heat load change amount in the time zone selected by the distribution source time zone selection unit 142a2 in the zone selected by the zone selection unit 142a1, that is, the amount of heat load to be dispersed in time. To decide. As a determination method, for example, the heat load change amount determination unit 142a3 may determine the heat load change amount to the change amount until the air conditioning efficiency becomes the maximum output, but is not particularly limited thereto. For example, the heat load change amount determination unit 142a3 may determine the heat load change amount as a preset change amount. Further, the thermal load change amount determination unit 142a3 may determine an amount obtained by multiplying a preset change amount by a probabilistic coefficient as the thermal load change amount. Further, the heat load change amount determination unit 142a3 may determine the heat load change amount by estimating the change amount capable of maintaining the comfortable temperature range from the parameters of the heat load prediction model or the temperature prediction model.
  • the distribution destination time zone selection unit 142a4 selects the time zone of the processing heat load distribution destination in the zone selected by the zone selection unit 142a1.
  • the distribution destination time zone selection unit 142a4 divides the planning target period into, for example, increments of 5 minutes, and the air conditioner to which this zone is assigned has the highest air conditioning efficiency among the divided time zones. You may select the time zone which is carrying out bad driving, but it is not limited to this especially.
  • the distribution destination time zone selection unit 142a4 may select a plurality of time zones during which the air conditioning efficiency is poor and select a time zone stochastically from the plurality of time zones. Further, the distribution destination time zone selection unit 142a4 may select a time zone stochastically from all the time zones.
  • the distribution destination time zone selection unit 142a4 sets the air conditioner operating at an output higher than the maximum air conditioning efficiency.
  • the assigned time zone is preferentially selected, and if it is negative, the time zone assigned to the air conditioner operating at an output lower than the maximum air conditioning efficiency may be preferentially selected. . That is, any time zone may be selected alternatively.
  • the temporal distribution schedule determination unit 142a5 first recalculates the thermal load in the planning target period after distributing the thermal load with each function described above. That is, when the thermal load change amount determined by the thermal load change amount determination unit 142a3 is a positive value, the temporal distribution schedule determination unit 142a5 has the heat load in the distribution source time zone in the zone selected by the zone selection unit 142a1. Is increased by the heat load change amount, and the heat load in the distribution destination time zone is decreased by the heat load change amount.
  • the temporal distribution schedule determination unit 142a5 has the heat load in the distribution source time zone in the zone selected by the zone selection unit 142a1. Is reduced by the heat load change amount, and the heat load in the distribution destination time zone is increased by the heat load change amount.
  • the temporal dispersion schedule determination unit 142a5 obtains the air conditioning operation for processing the heat load recalculated as described above, and determines a temporary schedule based on the temporal dispersion.
  • the spatial dispersion schedule creation unit 142b creates a schedule for performing spatial dispersion of the processing heat load.
  • the spatial distribution schedule creation unit 142b includes a time zone selection unit 142b1, a distribution source zone selection unit 142b2, a thermal load change amount determination unit 142b3, a distribution destination zone selection unit 142b4, a spatial distribution schedule determination unit 142b5, Consists of
  • the time zone selection unit 142b1 selects a time zone for performing spatial dispersion of the processing heat load.
  • the time zone selection unit 142b1 may select a time zone in which the total average air conditioning efficiency of all zones is the worst, but is not particularly limited thereto.
  • the time zone selection unit 142b1 may select a time zone in which an air conditioner having the lowest air conditioning efficiency exists in all time zones and all zones.
  • zone selection part 142b1 may select each time slot
  • the time zone selection unit 142b1 may select the time zone stochastically regardless of the air conditioning efficiency. That is, any time zone may be selected alternatively.
  • the distribution source zone selection unit 142b2 selects the distribution source zone of the processing heat load in the time zone selected by the time zone selection unit 142b1.
  • the distribution source zone selection unit 142b2 selects a zone in which the air conditioner is operating with the lowest air conditioning efficiency, but is not particularly limited thereto.
  • the distribution source zone selection unit 142b2 may select a plurality of zones that are operating with poor air conditioning efficiency, and may select the zones stochastically from the plurality of zones. Further, the distribution source zone selection unit 142b2 may select a zone stochastically from all the zones. That is, any one of the zones may be selected alternatively.
  • the thermal load change amount determination unit 142b3 is a thermal load change amount corresponding to the zone selected by the distribution source zone selection unit 142b2 in the time zone selected by the time zone selection unit 142b1, that is, the thermal load to be spatially dispersed. Determine the amount.
  • the heat load change amount determination unit 142b3 determines the heat load change amount as the change amount until the air conditioning efficiency becomes the maximum output, but is not particularly limited thereto.
  • the heat load change amount determination unit 142b3 may determine the heat load change amount as a preset change amount. Further, the heat load change amount determination unit 142b3 may determine an amount obtained by multiplying a preset change amount by a probabilistic coefficient as the heat load change amount. Further, the heat load change amount determination unit 142b3 may determine the heat load change amount by estimating a change amount capable of maintaining the comfortable temperature range from the parameters of the heat load prediction model or the temperature prediction model.
  • the distribution destination zone selection unit 142b4 selects a zone to which the processing heat load is distributed in the time zone selected by the time zone selection unit 142b1.
  • the distribution destination zone selection unit 142b4 may select a zone in which the air conditioner performs the operation with the lowest air conditioning efficiency, but is not particularly limited thereto.
  • the distribution destination zone selection unit 142b4 may select a plurality of zones that are operating with poor air conditioning efficiency, and select a zone stochastically from the plurality of zones. Further, the distribution destination zone selection unit 142b4 may select a zone in a probabilistic manner from all the zones.
  • the distribution destination zone selecting unit 142b4 is assigned to the air conditioner that is operating at an output higher than the maximum air conditioning efficiency.
  • a zone that is assigned to an air conditioner that is operating at an output lower than the maximum air conditioning efficiency may be preferentially selected. That is, any one of the zones may be selected alternatively.
  • the spatial distribution schedule determination unit 142b5 first recalculates the thermal load in the planning target period after distributing the thermal load with each function described above. In other words, when the thermal load change amount determined by the thermal load change amount determination unit 142b3 is a positive value, the spatial distribution schedule determination unit 142b5 determines the heat of the distribution source zone in the time zone selected by the time zone selection unit 142b1. The load is increased by the heat load change amount, and the heat load of the distribution destination zone is decreased by the heat load change amount.
  • the spatial distribution schedule determination unit 142b5 determines the heat of the distribution source zone in the time zone selected by the time zone selection unit 142b1. The load is decreased by the heat load change amount, and the heat load of the distribution destination zone is increased by the heat load change amount. And the spatial dispersion
  • FIG. 21 is a flowchart illustrating an example of an operation plan creation operation according to the fifth embodiment of the present invention.
  • FIG. 22 is a flowchart for explaining the temporal dispersion process of the processing heat load in the fifth embodiment of the present invention.
  • FIG. 23 is a flowchart for explaining the spatial dispersion processing of the processing heat load in the fifth embodiment of the present invention.
  • FIG. 21 is a flowchart showing an example of creating an operation plan, that is, a schedule according to the fifth embodiment of the present invention. As shown in FIG. 21, it is composed of an initial schedule creation process, a distribution method selection process, a temporal distribution process, a spatial distribution process, a temperature prediction process, a schedule candidate update process, and an end determination process.
  • the initial schedule creation process a distribution method selection process, a temporal distribution process, a spatial distribution process, a temperature prediction process, a schedule candidate update process, and an end determination process.
  • the temporal distribution process includes a zone selection process, a distribution source time zone selection process, a heat load change amount determination process, a distribution destination time zone selection process, a temporal distribution schedule determination process, Consists of
  • the spatial distribution process includes a time zone selection process, a distribution source zone selection process, a heat load change amount determination process, a distribution destination zone selection process, and a spatial distribution schedule determination process. Is done.
  • Step S201 The air conditioning control system 1 creates a schedule without dispersion. That is, the air conditioning control system 1 creates an air conditioning operation schedule assuming a state in which the processing heat load is not distributed.
  • Step S202 The air conditioning control system 1 uses the created schedule as a schedule candidate.
  • Step S203 The air conditioning control system 1 obtains an evaluation index corresponding to the schedule candidate.
  • Step S204 The air conditioning control system 1 selects either spatial dispersion of the processing heat load or temporal dispersion of the processing heat load. If the air conditioning control system 1 selects the temporal dispersion of the processing heat load, the process proceeds to step S205. On the other hand, if the air conditioning control system 1 selects the spatial distribution of the processing heat load, the process proceeds to step S206.
  • Step S205 Processing heat load distributed over time
  • the air conditioning control system 1 performs a temporal dispersion process of the processing heat load.
  • the temporary schedule is determined as a result of the temporal dispersion processing of the processing heat load.
  • Step S206 the air conditioning control system 1 executes a spatially distributed process of the processing heat load.
  • the provisional schedule is determined as a result of the spatial dispersion processing of the processing heat load.
  • Step S207 The air conditioning control system 1 predicts the indoor temperature in the planning target period when it is assumed that the temporary schedule is executed.
  • Step S208 The air conditioning control system 1 determines whether or not the comfortable temperature range is maintained. If the comfortable temperature range is maintained, the air conditioning control system 1 proceeds to step S209. On the other hand, the air conditioning control system 1 proceeds to step S212 when the comfortable temperature range is not maintained.
  • the air conditioning control system 1 predicts the temperature of the planning target period corresponding to the temporary schedule determined in step S205 or step S206. When the predicted room temperature does not maintain the comfortable temperature range, the evaluation corresponding to the temporary schedule is not performed, and the process proceeds to step S212.
  • Step S209 The air conditioning control system 1 obtains an evaluation index corresponding to the temporary schedule.
  • Step S210 The air conditioning control system 1 determines whether or not the value of the evaluation index corresponding to the temporary schedule is decreased as compared to the value of the evaluation index corresponding to the schedule candidate. When the value of the evaluation index corresponding to the temporary schedule is decreased compared to the value of the evaluation index corresponding to the schedule candidate, the air conditioning control system 1 proceeds to step S211. On the other hand, if the value of the evaluation index corresponding to the temporary schedule has not decreased compared to the value of the evaluation index corresponding to the schedule candidate, the air conditioning control system 1 proceeds to step S212.
  • Step S211 The air conditioning control system 1 sets the temporary schedule as a new schedule candidate.
  • the air conditioning control system 1 calculates the evaluation index corresponding to the temporary schedule determined in step S205 or step S206. When the evaluation index is smaller than the current schedule candidate, the air conditioning control system 1 sets the temporary schedule as a new schedule candidate.
  • the air conditioning control system 1 may probabilistically set the temporary schedule as a new schedule candidate even when the evaluation index is larger than the current schedule candidate.
  • Step S212 The air conditioning control system 1 determines whether or not the end condition is satisfied. If the air conditioning control system 1 satisfies the end condition, the process proceeds to step S213. On the other hand, if the air conditioning control system 1 does not satisfy the termination condition, the process proceeds to step S204.
  • Step S213 The air conditioning control system 1 outputs the current schedule candidate as a final schedule.
  • the air conditioning control system 1 determines whether to end the schedule creation process. For example, the air conditioning control system 1 ends the schedule creation when the evaluation index becomes smaller than a predetermined target value, but the end condition is not particularly limited thereto.
  • the air conditioning control system 1 ends the schedule creation when the time required for the schedule creation exceeds a predetermined time. Further, the air conditioning control system 1 ends the schedule creation when the decrease in the evaluation index of the schedule candidate becomes smaller than a predetermined decrease rate. Further, the air conditioning control system 1 ends the schedule creation when the schedule candidate has not been updated a predetermined number of times or more.
  • the air conditioning control system 1 selects a zone for performing temporal dispersion of the processing heat load.
  • Step S232 The air conditioning control system 1 selects a time zone from which the processing heat load corresponding to the selected zone is distributed.
  • the air conditioning control system 1 determines the heat load change amount corresponding to the selected zone and the selected time zone. That is, the air conditioning control system 1 determines the amount of heat load to be dispersed over time.
  • Step S234 The air conditioning control system 1 selects a time zone to which the processing heat load corresponding to the selected zone is distributed.
  • Step S235 The air conditioning control system 1 determines which is the heat load change amount. If the heat load change amount is a positive value, the air conditioning control system 1 proceeds to step S236. On the other hand, if the heat load change amount is a negative value, the air conditioning control system 1 proceeds to step S238.
  • Step S236 The air conditioning control system 1 increases the thermal load corresponding to the time zone of the distribution source by the thermal load change amount.
  • Step S237) The air conditioning control system 1 reduces the thermal load corresponding to the time zone of the distribution destination by the thermal load change amount.
  • Step S2378 The air conditioning control system 1 reduces the heat load corresponding to the time zone of the distribution source by the heat load change amount.
  • Step S239) The air conditioning control system 1 increases the heat load corresponding to the time zone of the distribution destination by the heat load change amount.
  • Step S240 The air conditioning control system 1 obtains a schedule for processing the recalculated heat load.
  • Step S241 The air conditioning control system 1 ends the processing by using the obtained schedule as a temporary schedule based on temporal dispersion.
  • the air conditioning control system 1 first recalculates the thermal load in the planning target period assuming a state after the processing thermal load is distributed. That is, when the heat load change amount determined in step S233 is a positive value, the heat load in the distribution source time zone selected in step S232 is increased by the heat load change amount, and the heat load in the distribution destination time zone selected in step S234. Is reduced by the heat load change amount.
  • the air conditioning control system 1 decreases the heat load in the distribution source time zone selected in step S232 by the heat load change amount, and the variance selected in step S234. Increase the heat load in the previous time period by the amount of heat load change. And the air-conditioning control system 1 calculates
  • Step S261 The air conditioning control system 1 selects a time zone in which the processing heat load is spatially distributed.
  • Step S262 The air conditioning control system 1 selects a zone from which the processing heat load corresponding to the selected time zone is distributed.
  • the air conditioning control system 1 determines the heat load change amount corresponding to the selected time zone and the selected zone. That is, the air conditioning control system 1 determines the amount of heat load to be spatially dispersed.
  • Step S264 The air conditioning control system 1 selects a zone to which the processing heat load corresponding to the selected zone is distributed.
  • Step S265 The air conditioning control system 1 determines which one of the heat load change amounts is. If the heat load change amount is a positive value, the air conditioning control system 1 proceeds to step S266. On the other hand, if the heat load change amount is a negative value, the air conditioning control system 1 proceeds to step S268.
  • Step S266 The air conditioning control system 1 increases the thermal load corresponding to the distribution source zone by the thermal load change amount.
  • Step S267 The air conditioning control system 1 reduces the thermal load corresponding to the distribution destination zone by the thermal load change amount.
  • Step S268 The air conditioning control system 1 reduces the thermal load corresponding to the distribution source zone by the thermal load change amount.
  • Step S269 The air conditioning control system 1 increases the thermal load corresponding to the distribution destination zone by the thermal load change amount.
  • Step S270 The air conditioning control system 1 obtains a schedule for processing the recalculated heat load.
  • Step S271 The air conditioning control system 1 sets the obtained schedule as a temporary schedule based on spatial dispersion.
  • the air conditioning control system 1 first recalculates the thermal load in the planning target period assuming a state after the processing thermal load is distributed. That is, the air conditioning control system 1 increases the thermal load of the distribution source zone selected in step S262 by the thermal load change amount when the thermal load change amount determined in step S263 is a positive value, and the distribution selected in step S264. Reduce the heat load of the previous zone by the heat load change amount.
  • the air conditioning control system 1 decreases the heat load of the distribution source zone selected in step S262 by the heat load change amount, and the distribution selected in step S264. Increase the heat load of the previous zone by the heat load change amount. And the air-conditioning control system 1 calculates
  • the processing heat load is distributed at least temporally and spatially to bring the room temperature into a comfortable temperature range. Since the air conditioning operation with high overall air conditioning efficiency can be performed while maintaining the power consumption, the power consumption can be reduced.
  • Air conditioning control system 11 Air conditioning controller, 12 Air conditioning equipment, 12a Outdoor unit, 12b Indoor unit, 12c Ventilation equipment, 12d Total heat exchanger, 12e Humidifier, 12f Dehumidifier, 12g Heater, 12h Air conditioner, 13 Air conditioning network , 14 Device connection controller, 15 Air conditioning control computer, 16 General-purpose network, 19 Sensor, 31 Condition setting section, 32 Thermal load prediction section, 33 Operation plan planning section, 34 Operation plan correction section, 35 Data measurement section, 36 Control Command section, 41 Thermal load prediction means, 42 Operation plan creation means, 43 Temperature prediction means, 44 Plan evaluation means, 46 Temperature error evaluation means, 47 Temperature prediction means, 48 Correction plan creation means, 49 Correction plan evaluation means, 61 zone Divided floors, 62 adjacent zones, 63 room temperature fluctuation curves for each zone, 71, 72, 81, 82 Constraints, 91, 101 Humidity prediction means, 92, 102 CO 2 concentration prediction means, 141 Dispersion method selection section, 142

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Remote Sensing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 空調設備12が処理する熱量の時間変化を予測する熱負荷予測部32と、合計の処理熱負荷を同一又は所定量の差の範囲内にすると共に、室内の温度を所定の快適温度範囲内に維持させる第1制約条件下において、評価指標を削減するように、空調設備12の運転計画を事前に立案する運転計画立案部33と、運転計画で空調設備12の制御を実行中、運転計画を補正する運転計画補正部34と、を備え、運転計画補正部34は、温度センサで測定した実測温度が、運転計画の立案時に予測する運転計画立案部33による予測温度と異なる場合、室内の温度の時間変化を予測し、補正対象期間中の1又は複数の時刻において、当該運転計画補正部34で予測した予測温度と、運転計画立案部33で予測した予測温度との誤差を所定の許容変動幅内に収めることを第2制約条件として、評価指標が第1制約条件下で最小となるように、運転計画を補正する。

Description

空調制御システム及び空調制御方法
 本発明は、空調制御システム及び空調制御方法に関する。
 従来から、室外機及び室内機で構成される空調機、加湿器、除湿器、ヒータ、及び外調機等の空調設備がビル等の建物に設置されている。このような空調設備では省エネ制御が行われているが、そのような省エネ制御のうち、熱負荷予測に基づいて空調機を制御する空調制御システムがある(例えば、特許文献1参照)。
 特許文献1に記載の空調制御システムは、建物の熱負荷を予測し、予測した熱負荷に基づいて空調機の運転計画を作成し、作成した運転計画で空調機を稼働させている。よって、建物の熱負荷、すなわち、建物の熱特性を考慮した運転計画が立案され、そのように立案された運転計画で空調機が稼働しているため、省エネが実現されている。
特開2011-214794号公報(段落[0077])
 しかしながら、特許文献1に記載の空調制御システムは、事前に立案した運転計画を実行中に、予測した熱負荷が実際と逸脱した場合であっても、運転計画が補正されなかった。つまり、特許文献1に記載の空調制御システムは、事前に立案した運転計画を、実行時の状況に応じて適切に補正していないという問題点があった。
 本発明は、上記のような問題点を解決するためになされたもので、事前に立案した運転計画を、実行時の状況に応じて適切に補正することができる空調制御システム及び空調制御方法を提供することを目的とするものである。
 本発明に係る空調制御システムは、建物に設置された空調設備を制御する空調制御システムにおいて、与えられた熱負荷予測用データに基づいて、前記空調設備が処理する熱量の時間変化を予測する熱負荷予測部と、合計の処理熱負荷を同一又は所定量の差の範囲内にすると共に、室内の温度を所定の快適温度範囲内に維持させる第1制約条件下において、評価指標である前記空調設備の消費電力量又はランニングコストの何れかを削減するように、空調運転の計画対象期間における前記空調設備の運転計画を事前に立案する運転計画立案部と、前記運転計画で前記空調設備の制御を実行中、所定の周期で前記運転計画を補正する運転計画補正部と、前記室内の温度を測定する温度センサと、を備え、前記運転計画立案部と前記運転計画補正部は、与えられた温度予測用データに基づいて前記室内の温度の時間変化を予測する温度予測手段を有し、前記運転計画補正部は、前記温度センサで測定した実測温度が、前記運転計画の立案時に予測する前記運転計画立案部による予測温度と異なる場合、前記計画対象期間のうち、補正を行う期間である補正対象期間における前記室内の温度の時間変化を予測し、前記補正対象期間中の1又は複数の時刻において、当該運転計画補正部で予測した予測温度と、前記運転計画立案部で予測した予測温度との誤差を所定の許容変動幅内に収めることを第2制約条件として、前記評価指標が前記第1制約条件下で最小となるように、前記運転計画を補正するものである。
 本発明は、室温の偏差を予め定めた期間で制御することで、事前に立案した運転計画を、実行時の状況に応じて適切に補正することができるので、室内の温度又は湿度等を快適に維持しつつ、省エネ性を向上させることができるという従来にはない顕著な効果を奏するものである。
本発明の実施の形態1における空調制御システム1の概略構成の一例を示す図である。 本発明の実施の形態1における空調制御システム1の概略構成の別の一例を示す図である。 本発明の実施の形態1における空調制御システム1の機能構成の一例を示す図である。 本発明の実施の形態1における各種設定条件の一例を示す図である。 本発明の実施の形態1における室温の空間的なばらつき状態の一例を説明する図である。 本発明の実施の形態1における室温の時間的なばらつき状態の一例を説明する図である。 本発明の実施の形態1における空調制御システム1の制御例を説明するフローチャートである。 本発明の実施の形態1における消費電力量を評価指標に含めて運転計画を試行する一例を示す図である。 本発明の実施の形態2におけるランニングコストを評価指標に含めた一例を示す図である。 本発明の実施の形態2における消費電力量、ランニングコスト、設定温度からの室温のずれ度合い、及び室温の時間変化率を評価指標に含めた一例を示す図である。 本発明の実施の形態2における温度に関する条件を制約条件に含めた一例を示す図である。 本発明の実施の形態2における制約条件からの逸脱量を評価指標に含めた一例を示す図である。 本発明の実施の形態3における各種設定条件の一例を示す図である。 本発明の実施の形態3におけるピーク電力の削減を想定した運転計画の一例を示す図である。 本発明の実施の形態3におけるピーク電力の削減を想定した運転計画のうちの一部の快適温度範囲及びその一部の快適温度範囲の期間を決定する空調制御システム1の制御例を説明するフローチャートである。 本発明の実施の形態4における空調制御システム1の機能構成の一例を示す図である。 本発明の実施の形態4における各種設定条件のうちの評価指標の詳細例を示す図である。 本発明の実施の形態4における各種設定条件のうちの制約条件の詳細例を示す図である。 空調機の一般的な特性を示す図である。 本発明の実施の形態5における運転計画の機能構成の一例を示す図である。 本発明の実施の形態5における運転計画の作成動作例を説明するフローチャートである。 本発明の実施の形態5における処理熱負荷の時間的分散処理を説明するフローチャートである。 本発明の実施の形態5における処理熱負荷の空間的分散処理を説明するフローチャートである。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、本発明の実施の形態の動作を行うプログラムを記述するステップは、記載された順序に沿って時系列に行われる処理であるが、必ずしも時系列に処理されなくても、並列的又は個別に実行される処理をも含んでもよい。
 また、本実施の形態で説明される各機能をハードウェアで実現するか、ソフトウェアで実現するかは問わない。つまり、本実施の形態で説明される各ブロック図は、ハードウェアのブロック図と考えても、ソフトウェアの機能ブロック図と考えてもよい。例えば、各ブロック図は、回路デバイス等のハードウェアで実現されてもよく、図示しないプロセッサ等の演算装置上で実行されるソフトウェアで実現されてもよい。
 また、本実施の形態で説明されるブロック図の各ブロックは、その機能が実施されればよく、それらの各ブロックで構成が分離されなくてもよい。すなわち、各ブロックは一例にすぎない。例えば、各ブロックは、本実施の形態で説明されるブロックのそれぞれの上位集合であってもよく、本実施の形態で説明されるブロックのそれぞれの下位集合であってもよく、本実施の形態で説明されるブロックのそれぞれの部分集合であってもよい。
 なお、本実施の形態1~5のそれぞれにおいて、特に記述しない項目については実施の形態1~5と同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。
 また、本実施の形態1~5は、単独で実施されてもよく、組み合わせて実施されてもよい。いずれの場合においても、下記で説明する有利な効果を奏することとなる。
 また、本実施の形態で説明する各種値及びフラグ等の設定例は一例を示すだけであり、特にこれらに限定しない。
実施の形態1.
(空調制御システム1の構成例1)
 図1は、本発明の実施の形態1における空調制御システム1の概略構成の一例を示す図である。図1に示すように、空調制御システム1は、空調コントローラ11と、空調設備12とを備える。空調コントローラ11と、空調設備12とは、空調ネットワーク13を介して接続されている。
 空調コントローラ11は、空調設備12と各種通信を行うことで、空調設備12を制御したり、空調設備12を監視したりする。なお、図1においては、空調コントローラ11は、1台のみが設けられている一例について説明しているが、特にこれに限定されない。例えば、複数台の空調コントローラ11が設置されていてもよい。また、複数台の空調コントローラ11が互いに離れた箇所にそれぞれ設けられていてもよい。なお、空調コントローラ11は、例えば、一般的に建物の内部の管理室等に設置されるが、特にこれに限定されない。
 空調設備12は、図1に示すように、室外機12a、室内機12b、換気設備12c、全熱交換器12d、加湿器12e、除湿器12f、ヒータ12g、及び外調機12h等を構成要素として備える。このような構成要素は、一般的には、それぞれ複数台が設置される。なお、上記で説明した空調設備12の構成要素は、一例を示すだけであって、特にこれらに限定されず、これら全てが構成要素である必要はない。また、上記で説明した空調設備12の構成要素以外であっても、室内の空気状態を制御するその他の種類の機器が構成要素であってもよい。すなわち、空調設備12とは、上記で説明した空調設備12の構成要素の何れか1台、又は、複数台を想定する。また、複数台の構成要素を備える空調設備12が複数台設けられていてもよい。
 空調ネットワーク13は、例えば、外部に非公開の通信プロトコルに準拠した通信が行われる通信媒体として形成されてもよく、外部に公開されている通信プロトコルに準拠した通信が行われる通信媒体として形成されてもよい。空調ネットワーク13は、例えば、ケーブルの種類又は通信プロトコルに応じて、複数の異なる種類のネットワークが混在する構成であってもよい。複数の異なる種類のネットワークとしては、例えば、空調設備12を計測制御する専用ネットワーク、LAN(Local Area Network)、及び空調設備12の構成要素毎に異なる個別専用線等が一例として想定される。
 なお、空調コントローラ11と、空調設備12とは、機器接続用コントローラ14を介して接続された構成であってもよい。機器接続用コントローラ14は、空調コントローラ11と、空調設備12との間のデータ通信を中継する機能が実装されている。例えば、空調設備12の構成要素のうち、一部の空調設備12の構成要素が空調ネットワーク13に直接接続し、他の一部の空調設備12の構成要素が機器接続用コントローラ14に接続する構成であってもよい。
 そこで、機器接続用コントローラ14に、空調設備12と、空調コントローラ11との通信プロトコルの違いを隠蔽させたり、空調設備12と、空調コントローラ11との通信内容を監視させたりしてもよい。
 また、空調制御システム1は、センサ19を備えてもよい。センサ19は、例えば、温度センサ、湿度センサ、及びCO濃度センサ等のセンシングを行う機器である。なお、図1においては、センサ19は、1台だけ設置されている一例を示すが、特にこれに限定されない。センサ19は、複数台設置されてもよい。センサ19は、異なる種類のセンシングを行う機器が複数台設置されてもよい。センサ19は、1台で異なる種類のセンシングを行う機器であってもよい。センサ19の設置場所は、例えば、空調設備12の空調対象空間である室内等である。外気温、日射量等をセンシングするような場合には、センサ19を屋外に設置してもよい。
 図1に示すように、空調制御システム1に空調コントローラ11が設けられている場合、図3で後述する各種機能が空調コントローラ11上で実行される。
 上記では、空調制御システム1の構成の一例について説明したが、特にこれに限定されない。他の空調制御システム1の構成の一例として図2を用いて説明する。
(空調制御システム1の構成例2)
 図2は、本発明の実施の形態1における空調制御システム1の概略構成の別の一例を示す図である。図2に示すように、空調制御システム1には、空調制御用計算機15が設けられている。空調制御用計算機15は、汎用ネットワーク16を介して、空調コントローラ11と接続されている。空調制御用計算機15は、汎用ネットワーク16を介して、空調コントローラ11と各種通信が行われる。
 汎用ネットワーク16は、例えば、LAN又は電話回線等の通信プロトコルに準拠した通信媒体である。よって、空調制御用計算機15と、空調コントローラ11とで各種通信が行われる場合、IPアドレス等に基づいて各種通信が行われてもよい。また、空調制御用計算機15は、空調コントローラ11又は機器接続用コントローラ14を介して、センサ19又は空調設備12と各種通信が行われてもよい。
 空調制御用計算機15は、汎用ネットワーク16を介して、空調設備12と各種通信を行うことで、各種演算を実行する。空調制御用計算機15は、汎用ネットワーク16、空調コントローラ11、及び空調ネットワーク13等を介して、機器接続用コントローラ14又はセンサ19と各種通信を行い、各種データを取得してもよい。
 図2に示すように、空調制御システム1に空調コントローラ11及び空調制御用計算機15が設けられている場合、図3で後述する各種機能が、空調コントローラ11と、空調制御用計算機15とに分担されてもよい。空調制御用計算機15は、空調コントローラ11と同様に、空調設備12の空調対象空間である室内等に設けられてもよく、敷地内又は遠隔地から複数の建物を管理するセンター等に設置されてもよい。
 なお、上記の説明では、空調コントローラ11に各機能が実装される一例と、空調コントローラ11及び空調制御用計算機15で各機能が分担される一例とをそれぞれ説明したが、特にこれらに限定されない。例えば、図示しない複数のサーバー装置に、空調コントローラ11の機能が分散して実装されてもよい。また、例えば、図示しない一つのサーバー装置に、空調コントローラ11の機能と、空調制御用計算機15の機能とがそれぞれ論理的に異なる形態で実装されてもよい。つまり、上記で説明した各機能がそれぞれ実行されればよいため、その物理的な格納場所又はその物理的な実行場所は特に限定されない。
 例えば、それぞれ遠隔地に設けられた複数のサーバー装置等に、上記で説明した各機能を分散処理させ、互いに演算結果の同期を取りながら一連の処理が実行されてもよい。また、上記で説明したように、空調コントローラ11の機能と、空調制御用計算機15の機能とが論理的に異なる形態で仮想化された装置として機能させることで、一つのサーバー装置に二つの機能が実装されてもよい。
(機能ブロック図:概要)
 次に、上記で説明した空調制御システム1に実装される機能について図3を用いて説明する。図3は、本発明の実施の形態1における空調制御システム1の機能構成の一例を示す図である。図3に示すように、空調制御システム1は、機能構成として、条件設定部31、熱負荷予測部32、運転計画立案部33、運転計画補正部34、データ計測部35、及び制御指令部36等を備える。
 条件設定部31では、熱負荷予測部32と、運転計画立案部33と、運転計画補正部34とに入力される各種設定条件として、空調運転計画の対象期間、時間刻み、快適温度範囲、及び設定温度等が設定される。熱負荷予測部32では、条件設定部31から取得する各種設定条件に従い、対象期間において設定温度を満たす空調機供給熱量、すなわち、設定した時間刻みで熱負荷を予測する。
 運転計画立案部33では、条件設定部31から取得する各種設定条件に従い、対象期間において熱負荷予測部32で予測した熱負荷を処理する空調設備12の運転計画を設定した時間刻みで立案する。運転計画補正部34では、条件設定部31から取得する各種設定条件に従い、予測した温度と、データ計測部35の計測結果との偏差に基づいて、運転計画立案部33で立案した運転計画を補正する。制御指令部36では、運転計画補正部34で補正した運転計画を空調設備12に送信する。
(機能ブロック図の詳細な説明)
 以下、各部の詳細について説明する。
(条件設定部31)
 条件設定部31では、熱負荷予測部32、運転計画立案部33、及び運転計画補正部34の実行条件である空調運転の計画対象期間、時間刻み、快適温度範囲、及び設定温度等の各種設定条件が設定される。条件設定部31では、熱負荷及び温度の予測に必要な各種設定条件として、外気温、日射量、内部発熱量、空調設備12の構成要素である各機器の特性及び接続関係、並びに空調設備12の構成要素である各機器のフロア内での配置等が設定される。また、計画対象期間中、室温を快適温度範囲に維持させる期間として、快適維持期間が設定されてもよい。
 条件設定部31では、例えば、ビルの管理者等の手動設定で各種設定条件が設定されてもよい。また、条件設定部31では、予め初期値として定めたデフォルト設定に従い、自動的に各種設定条件が設定されてもよい。よって、例えば、ビルの管理者の手動設定で、空調制御システム1の実行タイミングが制御されてもよい。具体的には、ビルの管理者が、ある特定の日に、空調制御システム1の実行を停止させてもよい。また、ビルの管理者が、空調制御システム1の実行途中に中断させてもよい。すなわち、空調制御システム1は、外部からの設定で、任意に実行タイミングが制御される。外部からの設定用インターフェースとしては、例えば、予め備えつけられているキーボート、マウス、タッチパネル、各種スイッチ等の入力手段と、ディスプレイ等の表示手段とが利用されればよい。
(熱負荷予測部32)
 熱負荷予測部32は、熱負荷予測手段41を備える。熱負荷予測手段41は、各種設定条件である各種入力データに基づいて、計画対象期間中に、空調設備12で処理される熱量の時間変化を予測する。各種入力データは、例えば、計画対象期間中の空調設備12の設定温度と、気象データと、内部発熱データとである。気象データは、外気温及び日射量の少なくとも一方を含むデータである。内部発熱データは、建物内部で発生する熱に関するデータである。
 熱負荷予測手段41は、建物の熱特性をモデル化した熱負荷予測モデルが実装されている。熱負荷予測モデルは、例えば、熱伝導方程式に基づく数式モデルである。熱負荷予測モデルは、熱伝導方程式で定義される室温予測モデルから導出できる。例えば、入力の1つである空調機供給熱量と、出力である室温とを入れ替えるように式変形することで、熱負荷予測モデルが導出される。なお、熱負荷予測モデルは、熱伝導方程式に基づいて定義される必要はない。例えば、熱負荷予測モデルは、入手できる入力データから熱負荷が予測されるモデルであれば、特に限定されない。
(運転計画立案部33)
 運転計画立案部33は、計画対象期間において、室内の温度を所定の快適温度範囲内に維持させる等の制約条件下で、評価指標である消費電力量又はランニングコストの何れかを、予め定めた計算時間内で、最小化するように、空調設備12の運転計画を立案する。この機能を実現するために、運転計画立案部33は、運転計画作成手段42と、温度予測手段43と、計画評価手段44とを備える。
 運転計画作成手段42は、空調設備12の構成要素である機器毎に異なるさまざまな運転パターンを作成する。温度予測手段43は、与えられた第1の温度予測用データに基づいて、室内の温度の時間変化を予測する。計画評価手段44は、運転計画作成手段42で作成した運転パターンが、条件設定部31で設定された制約条件を満たすか否かを判定し、評価指標の値を計算して、計算した評価指標に基づいて、最終的に出力する運転計画とするか否かを判定する。次に、温度予測手段43の詳細について説明する。なお、温度予測手段43は、本発明における第1の温度予測手段に相当する。
(温度予測手段43)
 温度予測手段43では、運転パターンと、気象データと、内部発熱データとを入力データとして、計画対象期間の室内の温度の時間変化を予測する。運転パターンは、計画対象期間の空調設備12の運転パターンである。気象データは、外気温及び日射量の少なくとも一方を含むデータである。内部発熱データは、建物内部で発生する発熱データである。温度予測手段43には、室内の温度の時間変化を予測する建物の熱特性をモデル化した室温予測モデルが実装されている。室温予測モデルは、例えば、次に表される式(1)~(3)の熱伝導方程式に基づく数式モデルである。このような熱伝導方程式に、入力データを与えることで、出力である室内の温度が求まる。
Figure JPOXMLDOC01-appb-M000001
 式(1)~(3)において、Qは、日射量[kW]、QOCCは、人体発熱量[kW]、QEQPは、機器発熱量[kW]、QHVACは、空調機供給熱量[kW]である。
 また、Tは外気温[K]、Tは外壁室外側表面温度[K]、Tは外壁室内側表面温度[K]、Tは室内温度[K]、TOZは、隣接ゾーンの温度[K]である。
 Rは外壁室外側表面熱抵抗[K/kW]、Rは外壁熱抵抗[K/kW]、Rは外壁室内側表面抵抗[K/kW]、ROZは隣接ゾーンとの間の熱抵抗[K/kW]、Rは外壁以外の熱抵抗[K/kW]である。
 Cは外壁室外側熱容量[kJ/K]、Cは外壁室内側熱容量[kJ/K]、Cは室内熱容量[kJ/K]である。
 αは室内へ透過する日射量の補正係数[-]、βは外壁へ照射する日射量の補正係数[-]、γは室内温度に影響を与える機器発熱量の補正係数[-]、δは空調機供給熱量の補正係数[-]、ρは室内温度に影響を与える人体発熱量の補正係数[-]、μは外壁室内側表面温度に影響を与える人体発熱量の補正係数[-]、λは外壁室内側表面温度に影響を与える機器発熱量の補正係数[-]である。
 式(1)~(3)では、隣接ゾーンが1ゾーンのみである場合を想定した式であるが、複数のゾーンと接している場合には、TOZとROZとを対応するゾーン毎に与えるように式を変更すればよい。なお、式(1)~(3)では、1ゾーンに対応した式であるが、各ゾーンで個別の数式モデルを利用してもよい。また、全ゾーンに対応する式を導出し、導出した式を組み合わせることで、空調制御対象エリア全体の数式モデルを導出してもよい。
 式(1)~(3)から、熱伝導方程式には、熱抵抗、熱容量、及び補正係数等の未知パラメータが含まれるが、これらの推定方法については特に限定されない。例えば、建物の構造データ、すなわち、壁の材料、壁の厚さ、壁の面積、及び部屋の広さ等の建物データから計算した値を、式(1)~(3)で表される熱伝導方程式に与えてもよい。また、熱伝導方程式を、制御理論及びシステム同定で用いられる状態空間モデル等の標準形に変換するなどして、計測データをもとに、ブラックボックスモデル又はグレーボックスモデルとして入出力関係を導出してもよい。なお、室温予測モデルは、必ずしも、熱伝導方程式に基づいた数式モデルである必要はない。例えば、入手できる入力データから室内の温度を予測できるモデルであれば特に限定されない。
 次に、上記で説明した運転計画作成手段42、温度予測手段43、及び計画評価手段44の機能構成を前提として、運転計画の立案について説明する。まず、以下では、運転計画立案部33で、空調設備12の運転計画を立案する時刻を、計画立案時刻と称する。計画対象期間は、上記で説明したように、条件設定部31で設定される各種設定条件のうちの1つであって、計画立案時刻と比べて先の時刻を対象としており、ある時間帯を示す。上記で説明した予め定めた計算時間は、条件設定部31で設定される各種設定条件のうちの1つであって、空調設備12の計測制御に影響を与えることなく、計画対象期間が開始されるまでに十分な時間的余裕がある時間である。
 ここでは、一例として、計画立案時刻は、制御を実行する前日の21時として想定する。また、計画対象期間は、制御を実行する当日の0時から24時として想定する。すなわち、毎日21時に翌日1日分の空調設備12の運転計画が立案される事例について説明する。なお、必ずしも、前日に計画を立案する必要はなく、実際に空調設備12を制御する時間帯が、例えば、8:00~22:00である場合には、計画立案時刻は、制御を実行する当日の深夜の2:00等としてもよい。つまり、運転計画の立案は、予め設定された運転計画立案周期毎に実行されるものであって、例えば、1日毎に実行されるものであるが、特にこれに限定されない。
 さて、運転計画とは、空調設備12に対応する時系列の制御指令の計画値である。指令する項目は、制御対象の設備に応じて異なる。また、同一の種類の設備に対して、機種に応じて異なる項目としてもよい。例えば、制御対象設備が室外機12aの場合には、時間刻みが5分刻みの圧縮機周波数[Hz]、ヒータ12gの場合には、時間刻みが5分刻みのON状態とOFF状態との2値状態信号がそれぞれ指令する項目の一例である。ただし、圧縮機周波数[Hz]及びON状態とOFF状態との2値状態信号は、単に一例を示しただけであって、室外機12aに指令する項目としては、例えば、出力[%]、能力セーブ率[%]、及びその他の項目であってもよい。また、ヒータ12gに指令する項目としては、出力[%]及びその他の項目であってもよい。また、制御対象設備が室内機12bの場合には、指令する項目の一例として、設定温度があってもよい。
 なお、制御指令の時間刻みは、一例として、5分刻みについて説明したが、空調コントローラ11の処理能力、空調制御用計算機15の処理能力、及び制御対象設備の数等のように、実運用時のシステム構成及び制約条件に応じて、時間刻みは、10分刻み又は15分刻み等であってもよく、5分刻みに限定されない。
 次に、評価指標の概要について説明する。まず、空調制御システム1は、空調設備12の省エネ制御を行うことを主たる目的としている。よって、ここでは、評価指標として、最も代表的な指標を採用する。具体的には、空調制御システム1は、評価指標として消費電力量を採用し、空調設備12の計画対象期間全体にわたり、消費電力量を最小化する運転計画を立案する。
 次に、制約条件の概要について説明する。室内の温度を予め設定された快適温度範囲内に維持することを制約条件と想定した場合について説明する。予め設定された快適温度範囲は、条件設定部31で設定される。ここでは、一例として、設定温度±1[℃]を、予め設定された快適温度範囲として想定する。制約条件のうち、このような温度に関する温度制約条件を、運転計画が満たすか否かは、温度予測手段43の予測結果に基づいて計画評価手段44で判定される。
 なお、運転計画立案部33で実行される問題の解法そのものは特に限定されない。例えば、運転計画立案部33は、問題を一般化することで、2次計画問題等を用いて最適化問題に変換したものを解いてもよい。また、運転計画立案部33は、対象の空調制御システム1に限定した特定の解法を用いて解いてもよい。いずれにしても、運転計画立案部33は、上記で説明した制約条件下で、評価指標を最小化する問題を解けばよい。
(運転計画補正部34)
 次に、運転計画補正部34について説明する。運転計画補正部34では、空調設備12の制御実行時、予め設定された補正ルールに従い、運転計画立案部33で立案した運転計画を補正する。この機能を実現するために、図3に示すように、運転計画補正部34は、温度誤差評価手段46、温度予測手段47、補正計画作成手段48、及び補正計画評価手段49を備える。
 温度誤差評価手段46は、運転計画立案部33の結果である予測温度と、データ計測部35の計測データとの誤差を評価する。温度予測手段47は、与えられた第2の温度予測用データに基づいて、室内の温度の時間変化を予測する。補正計画評価手段49は、空調設備12の運転計画のさまざまな補正パターンを作成する。補正計画評価手段49は、作成した補正パターンが制約条件を満たすか否かを判定し、評価指標の値を計算して、計算した評価指標の値に基づいて、最終的に出力する補正計画とするか否かを判定する。なお、温度予測手段47は、本発明における第2の温度予測手段に相当する。次に、温度予測手段47の詳細について説明する。
(温度予測手段47)
 温度予測手段47は、温度予測手段43と同一の機能構成であってもよく、異なる機能構成であってもよい。例えば、温度を1[℃]変化させるために必要な空調機の出力の変更幅を、空調機の特性又は上記で説明した熱伝導方程式の熱抵抗及び熱容量等から決定し、決定した空調機の出力の変更幅に基づいて簡易的に温度を予測してもよい。
(データ計測部35)
 データ計測部35は、空調設備12の運転データを計測し、計測結果を、熱負荷予測部32、運転計画立案部33、及び運転計画補正部34等に供給する。また、データ計測部35は、運転計画立案部33の温度予測手段43と、運転計画補正部34の温度予測手段47とにも計測結果を供給する。なお、データ計測部35は、熱負荷予測部32に実装されている熱負荷予測モデルに必要な各種データを計測し、計測結果を熱負荷予測部32に供給してもよい。また、データ計測部35は、温度予測手段43及び温度予測手段47のそれぞれに実装されている室温予測モデルに必要な各種データを計測し、計測結果を温度予測手段43及び温度予測手段47のそれぞれに供給してもよい。
 また、データ計測部35は、必要であれば、室内の温度センサ、室内の湿度センサ、室内のCO濃度センサ、外気温センサ、及び日射量センサ等の空調設備12とは独立して設定されたセンサ19から各種データを計測してもよい。
 なお、データ計測部35は、予め設定された周期、例えば、データ計測周期で、計測を実行する。データ計測周期は、例えば、5分周期である。
(制御指令部36)
 制御指令部36は、予め設定された周期、例えば、制御指令実行周期で、空調設備12に、運転計画補正部34が補正した運転計画である制御指令を送信する。制御指令実行周期は、例えば、5分周期である。
 なお、予め設定された補正ルールのうち、基本ルールとして、運転計画の補正は、予め設定された運転計画補正周期、例えば、30分周期で実行される。具体的には、運転計画の補正は、毎時25分と、55分とに実行される。また、運転計画の補正対象期間は、例えば、2時間として説明する。このような設定の結果、例えば、9:55に10:00~12:00の運転計画の補正が実行される。ただし、10:00~12:00の運転計画は、前日に立案した計画そのものとしてもよく、1回前の補正時、すなわち、9:30~11:30を対象として9:25に実行した運転計画の補正結果としてもよい。
 以下、特に断らない限り、補正した後の運転計画も、単に、運転計画と称する。なお、運転計画補正周期である30分周期及び運転計画の補正対象期間である2時間等は一例を示しただけであって、特にこれらに限定されない。例えば、運転計画補正周期は、15分周期であってもよい。また、条件設定部31で補正を実行するか否かの判定基準を設定し、設定した判定基準に基づいて必要時にだけ補正を実行させてもよい。
 ここでは、予め設定された補正ルールとして、運転計画を立案したときの制約条件に加え、補正対象期間に含まれる1時刻又は複数時刻に対応する温度が、運転計画を立案したときに予測した同時刻に対応する温度と、予め設定された差の範囲内であるか否かを制約条件とする。すなわち、補正対象期間に含まれる1時刻又は複数時刻に対応する温度が、運転計画を立案したときに予測した同時刻に対応する温度の許容温度変動幅に収まっているか否かを制約条件とする。
 そこで、ここでも、補正対象期間において、予め設定された評価指標を、予め設定された計算時間内で、予め設定された目標設定範囲内で最小化又は最大化するように、補正対象期間における運転計画を補正する。
 このとき、補正を実行する時刻における温度は、データ計測部35で計測した温度データが利用される。なお、温度データは、空調設備12の構成要素のうち、例えば、室内機12bが備える温度センサの計測値であってもよい。室内機12bが備える温度センサが計測するデータは、例えば、室内機12bの吸込温度である。また、温度データは、空調設備12とは別に室内に設置されたセンサ19の計測値であってもよい。
 予め設定された評価指標は、運転計画を立案したときと同一と想定する。ただし、運転計画の立案時では、対象期間が計画対象期間であり、運転計画の補正時では、対象期間が補正対象期間である。この点が運転計画を立案したときと異なる。また、運転計画補正部34では、補正対象期間での消費電力量を最小化させるように補正していく。また、運転計画補正部34では、予め設定された計算時間については、上記で説明したように、実行時刻として、例えば、毎時25分と55分との場合には、5分以内を想定している。なお、プロセッサ等の計算能力の制約によっては、運転計画の補正の実行に5分以上かかる場合が想定される。そのように運転計画の補正にある程度の時間がかかる場合には、かかる時間に応じて、条件設定部31の各種設定条件が変更されればよい。
 ここで、条件設定部31で設定された各種設定条件が、運転計画立案部33及び運転計画補正部34で設定される一例について図4を用いて説明する。図4は、本発明の実施の形態1における各種設定条件の一例を示す図である。図4に示すように、各種条件として、例えば、評価指標と、制約条件とが、条件設定部31で設定されたものが、運転計画立案部33と、運転計画補正部34とにそれぞれ供給される。
 評価指標は、例えば、消費電力量である。制約条件は、例えば、温度制約条件である。温度制約条件は、例えば、快適温度範囲と、許容温度変動幅とが設定されている。
 次に、室内における温度、すなわち、室温の空間的なばらつき状態と、室内における温度、すなわち、室温の時間的なばらつき状態とを想定した運転計画について図5及び図6を用いて説明する。図5は、本発明の実施の形態1における室温の空間的なばらつき状態の一例を説明する図である。図6は、本発明の実施の形態1における室温の時間的なばらつき状態の一例を説明する図である。
 まず、運転計画立案部33で立案した空調設備12の運転計画と、立案した運転計画に従い空調設備12を運転したと仮定して温度予測手段43で予測した予測温度とについて説明する。
 予測温度は、制約条件の範囲内で推移するが、必ずしも、設定温度に追従しているわけではない。この理由は、運転計画立案部33で立案した運転計画では、熱負荷を効率よく処理するために、時間的及び空間的に処理する熱負荷を分散するからである。時間的に熱負荷を分散するという意味について説明する。例えば、室外機12aに、各時刻で発生する熱負荷をその時刻だけで処理させるのではなく、少し前後の時刻にずらして、熱負荷を処理させる動作を行わせる。つまり、一つの目標時刻で熱負荷を処理させるのではなく、複数の目標時刻に分散させて熱負荷を処理させるという動作が、時間的に熱負荷を分散するという意味である。
 この動作が実行されることで、例えば、室外機12aをできるだけ効率のよいポイントで運転させることができる。この結果、室温は、時間的なばらつきが生じる。
 次に、空間的に分散するという意味について説明する。例えば、室外機12aが複数台存在したと想定する。すると、それぞれの室外機12aが担当するゾーンは、互いに隣接する。よって、隣のゾーンへの熱移動が想定される。つまり、一つのゾーンで熱負荷を処理させるのではなく、複数のゾーンに分散させて熱負荷を処理させるという動作が、空間的に熱負荷を分散するという意味である。
 なお、本発明では、複数台の室外機12aのそれぞれに割り当てられる範囲を、1つのゾーンとして説明する。すなわち、室外機12aの数だけゾーンが存在するものと想定する。ただし、ゾーンの分割方法は、このような方法に限定されるものではない。
 この動作が実行されることで、例えば、図5に示すように、室温は空間的なばらつきが生じる。図5に示すように、ゾーン分割されたフロア61において、ゾーン#2はゾーン#1とゾーン#3とゾーン#5と隣合っている。つまり、ゾーン#2の隣接ゾーンはゾーン#1とゾーン#3とゾーン#5である。ゾーン毎の室温変動曲線63に着目すると、各ゾーンで室温が異なる、すなわち空間的なばらつきが生じているが、快適温度範囲である制約条件71の範囲内で、各ゾーンの室温は推移している。よって、全ゾーンで、制約条件71が満たされている。
 つまり、運転計画立案時の計画で、室内の温度が時間的及び空間的にばらつく状態は意味がある。そこで、運転計画立案時のばらつき状態を踏襲するように、運転計画の補正を実行する。図6に示すように、現在時刻における室温を点Aとする。点Aは、設定温度と一致しており、通常の考え方からすると、運転計画を補正する必要はない。しかし、運転計画立案時の予測温度と比べると、やや高めである。そこで、現在時刻から2時間後の時刻までを補正対象期間と想定して、運転計画を補正する。
 このとき、例えば、1時間後と、2時間後とにおける補正の結果得られる予測温度が、運転計画立案時の予測温度と比べて、予め設定された差の範囲内であることを制約とする。つまり、補正の結果得られる予測温度が、運転計画立案時の予測温度と比べて、許容温度変動幅である制約条件72を満たすことを制約とする。
 なお、1時間後と、2時間後との2点の場合について説明するが、特にこれに限定されない。例えば、2時間後の1点だけでもよく、3点以上の複数点であってもよい。
 具体的には、運転計画立案時における時刻が1時間後に相当する予測温度を点B、運転計画立案時における時刻が2時間後に相当する予測温度を点Cと想定する。例えば、点Bは26.5[℃]、点Cは27.1[℃]とする。予め設定された差を0.2[℃]、すなわち、許容温度変動幅を0.4[℃]と設定した場合、運転計画の補正では、点Bで26.3~26.7[℃]、点Cで26.9~27.3[℃]の範囲となるようにしつつ、この2時間で消費する電力量を最小化する。
 このような時間的なばらつき状態を想定した動作の有効性について説明する。予冷運転又は予熱運転を例にして説明する。オフィスビルにおいては、一般的に、室外機12aが効率の悪い運転をしている時間帯の1つが、朝の出勤時間帯である。例えば、夏では、朝の出勤時間帯は高い出力で冷房をする必要があり、室外機12aとしては効率の悪い出力で運転している。予冷運転とは、朝の出勤時間と比べて前に、事前に冷房をしておくことをいい、室外機12aを効率のよい中間的な出力で、しかも、効率のいい低外気温時に運転させることができるため、省エネを実現することができる。運転計画立案部33では、このような空調機の運転が計画される。
 次に、上記で説明した機能構成を前提とした動作例について図7を用いて説明する。図7は、本発明の実施の形態1における空調制御システム1の制御例を説明するフローチャートである。図7に示すように、運転計画準備処理は、主に、条件設定処理と、熱負荷予測処理と、運転計画立案処理とから構成され、空調設備12の制御実行に先立って実行する動作であり、例えば、空調設備12の制御を実行する前日に1日1回実行される。つまり、この場合、運転計画立案周期は、1日である。すなわち、運転計画準備処理は、運転計画立案周期毎、つまり、制御前日に1日毎に実行される。
 また、図7に示すように、運転計画補正処理は、運転計画準備処理の後に実行される処理であって、運転計画補正周期毎、例えば、制御当日に30分周期毎に実行される。データ計測処理は、データ計測周期毎、例えば、制御当日に5分周期毎に実行される。制御指令処理は、制御指令実行周期毎、例えば、制御当日に5分周期毎に実行される。つまり、運転計画準備処理、運転計画補正処理、データ計測処理、及び制御指令処理のそれぞれは、予め設定された周期毎に並列実行される処理である。なお、並列実行されなくてもよい。例えば、運転計画準備処理、データ計測処理、運転計画補正処理、及び制御指令処理の順に逐次的に実行されてもよい。
(運転計画準備処理)
(ステップS11)
 空調制御システム1は、運転計画立案周期であるか否かを判定する。空調制御システム1は、運転計画立案周期でない場合、ステップS11に戻る。一方、空調制御システム1は、運転計画立案周期である場合、ステップS12に進む。
(ステップS12)
 空調制御システム1は、立案フラグを0に設定する。
(条件設定処理)
(ステップS13)
 空調制御システム1は、各種条件を設定する。具体的には、空調制御システム1は、ステップS14の熱負荷予測処理と、ステップS15~ステップS17の運転計画立案処理とで必要となる各種条件を設定する。そのような各種条件は、例えば、外気温の予測値、日射量の予測値、内部発熱量の予測値、及び設定温度等である。各予測値の設定方法については特に限定されない。例えば、外気温の予測値と、日射量の予測値とについては、インターネット経由で入手する気象データに基づいて設定してもよい。内部発熱量の予測値については、平日と、休日との標準的な内部発熱量パターンを事前に準備しておいたものを設定してもよい。なお、必要となる各種条件は、熱負荷予測処理と、運転計画立案処理とでは、一般的にそれぞれ異なる。
(熱負荷予測処理)
(ステップS14)
 空調制御システム1は、設定した各種条件に基づいて熱負荷を予測する。具体的には、空調制御システム1は、条件設定処理で設定した各種条件に従い、条件設定処理、熱負荷予測処理、及び運転計画立案処理を実行する時刻と比べて未来の時刻であって、先のある期間、例えば、計画対象期間における予め定めた時間刻みの熱負荷を予測する。さらに具体的には、計画対象期間を翌日0時から24時とし、条件設定処理で設定した外気温の予測値と、日射量の予測値と、内部発熱量の予測値と、設定温度とを入力として、設定温度を満足するために必要な5分刻みの空調機供給熱量を出力する。なお、ここでは、空調機供給熱量として説明したが、実際の空調機の動作としては、暖房の場合は供給熱量であって、冷房の場合は除去熱量である。ただし、除去熱量はマイナスの供給熱量として考えればよいため、統一して供給熱量として説明する。また、空調機供給熱量の符号を反転したものが、熱負荷である。
(運転計画立案処理)
(ステップS15)
 空調制御システム1は、予測した熱負荷と、制約条件と、評価指標とに基づいて、運転計画を立案する。運転計画とは、例えば、室外機12aに対応する5分刻みの圧縮機周波数又は能力セーブ率等の指令値等である。空調設備12は、通常、複数の種類、複数の台数の機器から構成されるので、各機器のさまざまな運転パターンのうち、制約条件を満たしつつ、消費電力量等の評価指標を最小化するような運転計画を立案する。評価指標によっては、例えば、快適性の場合には、最大化するような運転計画を立案する。
(ステップS16)
 空調制御システム1は、設定した各種条件と、立案した運転計画とに基づいて室温を予測する。具体的には、空調制御システム1は、計画対象期間における予め設定された時間刻みの室内の温度を予測する。さらに具体的には、空調制御システム1は、計画対象期間は、翌日0時から24時とし、条件設定処理で設定した外気温の予測値と、日射量の予測値と、内部発熱量の予測値と、空調設備12の運転計画とを入力として、5分刻みの室内の温度の予測値を出力する。
(ステップS17)
 空調制御システム1は、立案フラグを1に設定し、ステップS11に戻る。なお、立案フラグが1に設定された場合、立案した運転計画が運転計画補正部34に出力されると想定する。
(運転計画補正処理)
(ステップS41)
 空調制御システム1は、運転計画補正周期であるか否かを判定する。空調制御システム1は、運転計画補正周期である場合、ステップS42に進む。一方、空調制御システム1は、運転計画補正周期でない場合、ステップS41に戻る。
(ステップS42)
 空調制御システム1は、計測結果を受信したか否かを判定する。空調制御システム1は、計測結果を受信した場合、ステップS43に進む。一方、空調制御システム1は、計測結果を受信しない場合、ステップS42に戻る。データ計測処理と運転計画補正処理を並列に実行する場合には、ステップS42では受信したものと判定してステップS43に進む。この場合には、直前に受信した計測結果を用いてステップS43以降の補正を行う。
(ステップS43)
 空調制御システム1は、立案フラグが1であるか否かを判定する。空調制御システム1は、立案フラグが1である場合、ステップS44に進む。一方、空調制御システム1は、立案フラグが1でない場合、ステップS41に戻る。ただし、この立案フラグは制御実行当日を対象とした立案フラグであり、前日21:00に運転計画立案中に設定する翌日分の立案フラグとは異なる。
(ステップS44)
 空調制御システム1は、運転計画立案処理で予測した室温と、計測した室温とに基づいて、制約条件を満たしつつ予め設定された目標設定範囲内で評価指標を最小化するように運転計画を補正する。
(ステップS45)
 空調制御システム1は、設定した各種条件と、補正した運転計画とに基づいて室温を予測する。そして、ステップS41に戻る。
(データ計測処理)
(ステップS61)
 空調制御システム1は、データ計測周期であるか否かを判定する。空調制御システム1は、データ計測周期である場合、ステップS62に進む。一方、空調制御システム1は、データ計測周期でない場合、ステップS61に戻る。
(ステップS62)
 空調制御システム1は、データを計測する。
(ステップS63)
 空調制御システム1は、計測結果を送信し、ステップS61に戻る。
(制御指令処理)
(ステップS71)
 空調制御システム1は、制御指令実行周期であるか否かを判定する。空調制御システム1は、制御指令実行周期である場合、ステップS72に進む。一方、空調制御システム1は、制御指令実行周期でない場合、ステップS71に戻る。
(ステップS72)
 空調制御システム1は、補正した運転計画に基づいて空調設備12に制御指令値を送信し、ステップS71に戻る。
 なお、上記で説明した各種フラグ及びそのフラグの設定は一例を示すだけであって、特にこれに限定されない。
 図8は、本発明の実施の形態1における消費電力量を評価指標に含めて運転計画を試行する一例を示す図である。図8においては、評価指標として、消費電力量が採用され、消費電力量を最小化する問題として、さまざまな運転計画が試行されている一例が示されている。例えば、図8においては、横軸が時刻を示し、縦軸が電力を示している。
 そして、点線で囲まれた領域は、消費電力量が大の場合を示す。破線で囲まれた領域は、消費電力量が中の場合を示す。実線で囲まれた領域は、消費電力量が小の場合を示す。図8に示すように、消費電力量を小さく設定するために、上記で説明した一連の処理が実行される過程が示されている。
(効果)
 上記で説明した一例の動作で運転計画を補正することで、運転計画立案時に立案した、評価指標を最大化又は最小化するような空調設備12の運転計画を踏襲しつつ、制御実行時の状況の変化に応じて、評価指標を最大化又は最小化する空調設備12の制御を実行することができるので、快適性を維持しつつ、省エネを実現することができる。
 以上、本実施の形態1において、建物に設置された空調設備12を制御する空調制御システム1において、与えられた熱負荷予測用データに基づいて、空調設備12が処理する熱量の時間変化を予測する熱負荷予測部32と、合計の処理熱負荷を同一又は所定量の差の範囲内にすると共に、室内の温度を所定の快適温度範囲内に維持させる第1制約条件下において、評価指標である空調設備12の消費電力量又はランニングコストの何れかを削減するように、空調運転の計画対象期間における空調設備12の運転計画を事前に立案する運転計画立案部33と、運転計画で空調設備12の制御を実行中、所定の周期で運転計画を補正する運転計画補正部34と、室内の温度を測定する温度センサと、を備え、運転計画立案部33と運転計画補正部34は、与えられた温度予測用データに基づいて室内の温度の時間変化を予測する温度予測手段43を有し、運転計画補正部34は、温度センサで測定した実測温度が、運転計画の立案時に予測する運転計画立案部33による予測温度と異なる場合、計画対象期間のうち、補正を行う期間である補正対象期間における室内の温度の時間変化を予測し、補正対象期間中の1又は複数の時刻において、当該運転計画補正部34で予測した予測温度と、運転計画立案部33で予測した予測温度との誤差を所定の許容変動幅内に収めることを第2制約条件として、評価指標が第1制約条件下で最小となるように、運転計画を補正する空調制御システム1が構成される。
 上記構成のため、事前に立案した運転計画を、実行時の状況に応じて適切に補正することができるので、室内の温度又は湿度等を快適に維持しつつ、省エネ性を向上させることができるという従来にはない顕著な効果を奏する。
実施の形態2.
(評価指標及び制約条件のバリエーション)
 実施の形態1との相違点は、評価指標及び制約条件である。実施の形態1においては、運転計画立案部33及び運転計画補正部34の評価指標として、消費電力量を採用したが、ランニングコストが採用されてもよい。図9は、本発明の実施の形態2におけるランニングコストを評価指標に含めた一例を示す図である。図9に示すように、評価指標として、条件設定部31で設定されたランニングコストが、運転計画立案部33及び運転計画補正部34のそれぞれに供給される。このときには、必要に応じて、条件設定部31において、時間帯別の電力量料金等が設定されてもよい。
 さらに、快適性も考慮した評価指標とするため、消費電力量及びランニングコストに、設定温度からの室温のずれ度合いと、室温の時間変化率とを組み合わせた式(4)に示す評価指標Jが設定されてもよい。
Figure JPOXMLDOC01-appb-M000002
 ここで、J1は空調設備12での計画対象期間全体にわたる消費電力量、J2は空調設備12での計画対象期間全体にわたるランニングコスト、J3は設定温度からの室温のずれ度合いの2乗平均値、J4は室温の時間変化率の2乗平均値、α1~α4はそれぞれ重み係数である。ただし、J3と、J4とについては、2乗平均値を評価指標に組み込む必要はない。例えば、J3では、ずれ度合いの絶対値の最大値も考慮した評価指標であってもよい。また、J4では、時間変化率の絶対値の最大値も考慮した評価指標であってもよい。
 図10は、本発明の実施の形態2における消費電力量、ランニングコスト、設定温度からの室温のずれ度合い、及び室温の時間変化率を評価指標に含めた一例を示す図である。図10に示すように、評価指標として、条件設定部31で設定された消費電力量、ランニングコスト、設定温度からの室温のずれ度合い、及び室温の時間変化率が運転計画立案部33及び運転計画補正部34のそれぞれに供給される。なお、運転計画補正部34においては、上記で説明した計画対象期間を補正対象期間と置換した動作であればよい。
(効果)
 上記で説明した構成で、単に、消費電力量及びランニングコストを最小化するための評価指標ではなく、快適性も含めた評価指標となり、省エネ性と快適性とのバランスを考慮した空調設備12の運転計画を立案し、補正することができる。
(制約条件のバリエーション)
 また、実施の形態1では、温度を予め設定された快適温度範囲内に維持することを温度に関する制約条件としたが、これに加え、温度の時間変化率を予め設定された温度変化率内に維持することを制約条件に加えてもよい。つまり、温度の時間変化率が、温度の時間変化率上限値を超えないことを制約条件としてもよい。図11は、本発明の実施の形態2における温度に関する条件を制約条件に含めた一例を示す図である。図11に示すように、温度の時間変化率上限値が新たな温度制約条件に追加されている。
 例えば、温度の時間変化率に0.2[℃/5分以下]等の制約を設ける。このような制約で、急激な温度変化を伴う空調設備12の制御を回避することができ、快適性がさらに向上する。
(効果)
 上記で説明した構成で、さまざまな視点での快適性を考慮した空調設備12の運転計画を立案し、補正することができる。
(制約条件からの逸脱を許容)
 また、実施の形態1では、制約条件を満たす空調設備12の運転パターンのうち、消費電力量を最小化する運転パターンを運転計画としたが、制約条件からの逸脱量に予め定めた重みをつけたものと、本来の評価指標とを加算したものを、評価指標として再定義することで、制約条件を若干逸脱したとしても、省エネ性を高くすることができる空調設備12の運転計画が許容される。図12は、本発明の実施の形態2における制約条件からの逸脱量を評価指標に含めた一例を示す図である。図12に示すように、制約条件からの逸脱量に、予め定めた重みを乗算し、乗算結果と、評価指標とを加算した結果を評価指標として再定義し、条件設定部31から運転計画立案部33及び運転計画補正部34のそれぞれに供給している。
(効果)
 上記で説明した構成で、制約条件を若干逸脱していても、省エネ性を高くできる空調設備12の運転計画を立案し、補正することができる。
実施の形態3.
(デマンドレスポンス)
 翌日であって、ある時間帯、例えば、第1の期間に、ピーク電力の削減、つまり、ピークカットが必要になることが想定される。また、第1の期間にピークカットが必要となることが事前に分かっていることが想定される。なお、説明の便宜上、第1の期間に対応するピーク電力の目標値を、第1の目標電力と称する場合がある。図13は、本発明の実施の形態3における各種設定条件の一例を示す図である。図13に示すように、温度制約条件には、第1の期間に対応する第1の快適温度範囲と、第2の期間に対応する第2の快適温度範囲とが設定されている。また、電力制約条件には、第1の期間に対応する第1のピーク電力上限値と、第2の期間に対応する第2のピーク電力上限値とが設定されている。
 図14は、本発明の実施の形態3におけるピーク電力の削減を想定した運転計画の一例を示す図である。図14は、第1の期間を13:00~16:00とし、第1の目標電力を100kWという条件のピークカットが必要となることを想定した一例である。以下、この条件を例として説明する。
 条件設定部31は、ピークカットを制約条件の一つとして設定する。すなわち、13:00~16:00のピーク電力を100kWに設定する。ただし、ピークカットの時間帯である第1の期間及び最大電力は任意に設定することができる。
 運転計画立案部33では、空調設備12の運転計画を、上記で説明した制約条件下で立案する。このとき、実施の形態1で説明したように、運転計画立案部33は、室内の温度が快適温度範囲を維持するように計画を立案しようとする。しかし、ピークカットの制約条件が設定されているため、制約条件を満たす運転パターンが存在しない場合が想定される。このような事態に対しては、実施の形態2で説明した各種制約条件のうち、制約条件からの逸脱を許容する制約条件を適用することで、運転パターンを割り当て、対応することができる。しかし、単に、このような運転パターンを許容しただけでは、第1の期間中に、室内の温度が快適温度範囲を大きく外れてしまう虞がある。
 そこで、第1の期間と比べて過去の期間、すなわち、前の期間である第2の期間に対応する快適温度範囲を、第1の期間に対応する快適温度範囲とは異なる範囲を設定する。例えば、夏の場合には、第1の期間に対応する快適温度範囲を26~28[℃]に設定し、第2の期間に対応する快適温度範囲を25~27[℃]に設定する。このような設定をすることで、ピークカットの前工程として、第1の期間に対応する予冷を実行することで、第1の期間の快適性を維持することができる。第2の期間に対応する快適温度範囲を変更したことに伴い、第1の期間の温度が、第1の期間に対応する快適温度範囲を逸脱することが想定される。
 例えば、図14の13:00~13:40付近ではその虞がある。ただし、このような逸脱は、さらなる快適側への逸脱と考えることもできる。その理由は、例えば、夏では、室温が低めに制御されるためである。よって、評価指標への制約条件の逸脱量に関する評価指標の増分は0に設定してもよい。
 第2の期間の長さと快適温度範囲の設定は、建物の管理者が手動で設定してもよく、運転計画立案部33が自動的に決定してもよい。
 図15は、本発明の実施の形態3におけるピーク電力の削減を想定した運転計画のうちの一部の快適温度範囲及びその一部の快適温度範囲の期間を決定する空調制御システム1の制御例を説明するフローチャートである。ここでは、第2の期間が最初は設定されていないと想定して、運転計画が立案される。
(ステップS91)
 空調制御システム1は、運転計画立案周期であるか否かを判定する。空調制御システム1は、運転計画立案周期である場合、ステップS92に進む。一方、空調制御システム1は、運転計画立案周期でない場合、ステップS91に戻る。
(ステップS92)
 空調制御システム1は、立案フラグを0に設定する。
(条件設定処理)
(ステップS93)
 空調制御システム1は、各種条件を設定する。
(熱負荷予測処理)
(ステップS94)
 空調制御システム1は、設定した各種条件に基づいて熱負荷を予測する。
(運転計画立案処理)
(ステップS95)
 空調制御システム1は、予測した熱負荷と、制約条件と、評価指標とに基づいて運転計画を立案する。
(ステップS96)
 空調制御システム1は、設定した各種条件と、立案した運転計画とに基づいて室温を予測する。
(ステップS97)
 空調制御システム1は、予測した室温が第1の快適温度範囲から逸脱しているか否かを判定する。空調制御システム1は、予測した室温が第1の快適温度範囲から逸脱している場合、ステップS98に進む。一方、空調制御システム1は、予測した室温が第1の快適温度範囲から逸脱していない場合、処理を終了する。
(ステップS98)
 空調制御システム1は、温度フラグを1に設定する。
(ステップS99)
 空調制御システム1は、時間フラグを1に設定する。
(ステップS100)
 空調制御システム1は、第2の期間をα分に設定して制約条件に追加する。α分は、例えば、30分である。
(ステップS101)
 空調制御システム1は、時間フラグが0であるか否かを判定する。空調制御システム1は、時間フラグが0である場合、ステップS103に進む。一方、空調制御システム1は、時間フラグが0でない場合、ステップS102に進む。
(ステップS102)
 空調制御システム1は、第2の快適温度範囲を第1の快適温度範囲-β℃に設定して制約条件に追加する。β[℃]は、例えば、0.5[℃]である。
(ステップS103)
 空調制御システム1は、予測した熱負荷と、制約条件と、評価指標とに基づいて、運転計画を再立案する。
(ステップS104)
 空調制御システム1は、設定した各種条件と、再立案した運転計画とに基づいて室温を予測する。
(ステップS105)
 空調制御システム1は、予測した室温が第1の快適温度範囲から逸脱しているか否かを判定する。空調制御システム1は、予測した室温が第1の快適温度範囲から逸脱している場合、ステップS106に進む。一方、空調制御システム1は、予測した室温が第1の快適温度範囲から逸脱していない場合、処理を終了する。
(ステップS106)
 空調制御システム1は、温度フラグが0であるか否かを判定する。空調制御システム1は、温度フラグが0である場合、ステップS110に進む。一方、空調制御システム1は、温度フラグが0でない場合、ステップS107に進む。
(ステップS107)
 空調制御システム1は、時間フラグを1に設定する。
(ステップS108)
 空調制御システム1は、βをβ-予め設定した温度下げ幅に設定する。新たに設定されたβは、例えば、第1の期間に対応する温度範囲から1[℃]下げた値である。つまり、この場合には、ステップS102の処理と対比すると、予め設定した温度下げ幅が、0.5[℃]に設定された一例である。
(ステップS109)
 空調制御システム1は、温度フラグを0に設定し、ステップS102に戻る。
(ステップS110)
 空調制御システム1は、時間フラグが0であるか否かを判定する。空調制御システム1は、時間フラグが0である場合、ステップS103に戻る。一方、空調制御システム1は、時間フラグが0でない場合、ステップS111に進む。
(ステップS111)
 空調制御システム1は、温度フラグを1に設定する。
(ステップS112)
 空調制御システム1は、αをα-予め設定した時間増加幅に設定し、ステップS113に進む。新たに設定されたαは、例えば、1時間である。つまり、この場合には、ステップS100の処理と対比すると、予め設定した時間増加幅が、30分に設定された一例である。
(ステップS113)
 空調制御システム1は、時間フラグを0に設定し、ステップS100に戻る。
 なお、上記で説明した各種フラグ及びその設定例は一例を示し、特にこれらに限定されない。
 上記の動作で、第2の期間を段階的に延ばし、快適温度範囲を段階的に下げる。ただし、第2の期間の最大長さと、快適温度範囲の第1の期間との差を最大何度にするかは、条件設定部31で設定される。また、上記で説明した30分、1時間、0.5[℃]、及び1[℃]等は一例を示すだけであって、特にこれらに限定されない。
 運転計画補正部34は、上記で説明したように立案した運転計画を、実施の形態1又は実施の形態2で説明した方法で補正すればよい。実施の形態1で説明したように、補正対象期間の1時刻又は複数時刻で、計画時の予測温度を踏襲するように補正するため、第2の期間に実行するピークカット前の予冷を確実に実行できる。
 また、上記の説明では、第2の期間に対応する快適温度範囲を変更する一例を示したが、運転計画補正部34は、第2の期間に対応する設定温度を変更してもよい。また、第1の期間以外については、電力の上限値を設けなかったが、第1の期間以外においても、極端に消費電力が上昇しないように、第1の期間以外の期間に対応する目標電力、例えば、第2の目標電力を設け、運転計画を立案し、補正してもよい。また、ピークカットに対応する動作を説明したが、例えば、特定の時間帯の電力料金が高いことが事前に分かっている場合には、上記で説明した動作と同様の動作を適用することで、ランニングコストを低減するような運転計画を立案し、補正することができる。
 また、ピークカットを想定した運転計画を前日に立案したが、当日になってピークカットが不要となったような場合には、必ずしも前日に立案した運転計画に基づいて空調制御をする必要はない。
 さらに、ピークカットとして複数のケースを想定し、それぞれに対して前日に運転計画を立案し、当日はピークカットの状況に応じて最もふさわしい運転計画を選択し補正してもよい。例えば、ケース0としてピークカットなし、ケース1として13:00~16:00に100kW、ケース2として13:00~16:00に80kW、ケース3として13:00~15:00に100kW等に対して運転計画を立案し、ピークカットが必要なければケース0を選択し、ピークカットが必要であれば、そのときの状況に応じてケース1からケース3のいずれかを選択し、これをもとに運転計画を補正すればよい。
(効果)
 上記の構成で、ピークカット直前の予冷及び予熱をすることで、デマンドレスポンス等による特定の時間帯でのピークカットに事前に準備できるため、ピークカット期間で、ピークカットを達成するとともに、室内の温度が快適温度範囲を逸脱しないようにしつつ、期間全体にわたって消費電力量を削減することができる。
実施の形態4.
 本実施の形態4においては、快適性に関連する制約条件及び評価指標として、温度に関するものに加え、さらに湿度及びCO濃度の少なくとも一方に関するものを考慮する。図16は、本発明の実施の形態4における空調制御システム1の機能構成の一例を示す図である。図16に示すように、空調制御システム1は、運転計画立案部33に、湿度予測手段91と、CO濃度予測手段92との少なくとも1つ以上をさらに備える。また、空調制御システム1は、運転計画補正部34に、湿度予測手段101と、CO濃度予測手段102との少なくとも1つ以上をさらに備える。
 湿度予測手段91及び湿度予測手段101のそれぞれは、外気の湿度又は人体から放出される水分の発生等を考慮した湿度予測モデルが実装されているため、与えられた湿度予測用データに基づいて、室内の湿度の時間変化を予測する。
 CO濃度予測手段92及びCO濃度予測手段102のそれぞれは、外気との換気又は人体から放出されるCOの発生等を考慮したCO濃度予測モデルが実装されているため、与えられたCO濃度予測用データに基づいて、室内のCO濃度の時間変化を予測する。
 本実施の形態4においては、運転計画立案部33及び運転計画補正部34における評価指標Jを以下の式(5)のように拡張し、湿度又はCO濃度を考慮した評価指標を導出する。
Figure JPOXMLDOC01-appb-M000003
 ここで、J1は空調設備12の計画対象期間全体にわたる消費電力量、J2は空調設備12の計画対象期間全体にわたるランニングコスト、J3は設定温度からの室内の温度のずれ度合いの2乗平均値、J4は室内の温度の時間変化率の2乗平均値、J5は設定湿度からの湿度のずれ度合いの2乗平均値、J6は湿度の時間変化率の2乗平均値、J7は設定CO濃度からのCO濃度のずれ度合いの2乗平均値、J8はCO濃度の時間変化率の2乗平均値、及びα1~α8はそれぞれの重み係数である。
 ただし、J3~J8については、2乗平均値を評価指標とする必要はない。例えば、J3では、ずれ度合いの絶対値の最大値も考慮した評価指標、J4では、時間変化率の絶対値の最大値も考慮した評価指標としてもよい。
 なお、運転計画補正部34では、計画対象期間を補正対象期間に置換した場合の動作となる。図17は、本発明の実施の形態4における各種設定条件のうちの評価指標の詳細例を示す図である。図17に示すように、湿度に関する評価指標と、CO濃度に関する評価指標とが追加されている。
 また、実施の形態1では、温度に関する制約条件のみを説明したが、これに加え、湿度及びCO濃度に関する制約条件を加えてもよい。具体的には、制約条件として、計画対象期間における、室内の温度を予め設定した快適温度範囲内に維持させる第1条件と、計画対象期間における、室内の温度の時間変化率を予め設定した温度変化率内に維持させる第2条件と、計画対象期間における、室内の湿度を予め設定した快適湿度範囲内に維持させる第3条件と、計画対象期間における、室内の湿度の時間変化率を予め設定した湿度変化率内に維持させる第4条件と、計画対象期間における、室内の温度及び室内の湿度の両方から決定される温湿度快適性を予め設定した快適温湿度範囲内に維持させる第5条件と、計画対象期間における、室内のCO濃度を予め設定した快適CO濃度範囲内に維持させる第6条件と、計画対象期間における、室内のCO濃度の時間変化率を予め設定したCO濃度変化率内に維持させる第7条件と、の何れか1つ、又は、2つ以上の組み合わせが設定される。
 なお、運転計画補正部34では、計画対象期間を補正対象期間に置換した場合の動作となる。図18は、本発明の実施の形態4における各種設定条件のうちの制約条件の詳細例を示す図である。図18に示すように、温度制約条件の他に、湿度制約条件、温湿度制約条件、CO濃度制約条件が追加されている。なお、快適温湿度範囲の一例として、PMV(Predicted Mean Vote)等がある。また、第1条件から第7条件を組み合わせて、ASHRAE(American Society of Heating Refrigerating and Air-Conditioning Engineers)で定められている快適性を満たすような制約条件としてもよい。
(効果)
 上記で説明した構成で、温度だけでなく、湿度及びCO濃度も含めたさまざまな視点での快適性を考慮した空調設備12の運転計画を立案し、補正することができる。
実施の形態5.
 実施の形態1において、室温の時間的なばらつきと、室温の空間的なばらつきとについて説明した。このようなばらつきは、室温が設定温度で一定となるように空調機を運転するのではなく、制約条件として、室温がある快適温度範囲で推移することを許容することによって生じるものである。
 本実施の形態5では、このような室温の時間的及び空間的なばらつきを発生させる要因について説明する。具体的には、運転計画立案部33で実行する動作の一つ、すなわち、処理熱負荷の時間的分散と、処理熱負荷の空間的分散と、に基づいた運転計画の立案について説明する。なお、実施の形態1~4と共通する部分についてはその説明を省略する。
(空調機の特性)
 まず、空調機の一般的な特性を図19を用いて説明する。図19は、空調機の一般的な特性を示す図である。図19は、空調機の出力に対する空調効率(COP:Coefficient Of Performance)のグラフである。COPとは、空調機への入力(電力kW)に対する出力(処理熱量kW)の比を表したものである。図19に示すように、一般的には、空調機は、低出力及び高出力の範囲で効率が悪いという特性がある。図19に示す一例では、定格出力に対して60%が最も効率がよい特性となっている。処理熱負荷の時間的分散及び処理熱負荷の空間的分散は、このような空調機の特性を利用した処理である。
(処理熱負荷の時間的分散の概要)
 次に、処理熱負荷の時間的分散の概要について説明する。処理熱負荷の時間的分散では、空調運転の計画対象期間における何れかの時間帯の熱負荷の少なくとも一部が、別の時間帯で処理される。例えば、実施の形態1で説明したように、熱伝導方程式に基づく温度予測モデルをシステムが持つ場合、このようなシステムは、室温の時間変動を予測することができる。よって、このようなシステムは、快適温度範囲を維持しつつ、時間的分散に基づいた処理による運転計画を立案することができる。
 具体的には、ある時間帯の出力を空調効率が高い出力にシフトさせ、別の時間帯の出力をそれに応じて変更させる。図19の一例では、ある時間帯で設定温度を維持するための出力が、例えば60%よりも低い場合、出力を上げる方向にシフトさせる。その代わり、別の時間帯の何れかで出力を下げる方向にシフトさせる。ここで、このような下げる方向のシフトは、空調効率が高くなるようなシフトである場合と、空調効率が低くなるようなシフトである場合と、の少なくとも何れかが含まれるものであって、何れであってもよい。
 一方、ある時間帯で設定温度を維持するための出力が、例えば60%よりも高い場合、出力を下げる方向にシフトさせる。その代わり、別の時間の何れかで出力を上げる方向にシフトさせる。ここで、このような上げる方向のシフトは、空調効率が高くなるようなシフトである場合と、空調効率が低くなるようなシフトである場合と、の少なくとも何れかが含まれるものであって、何れであってもよい。
 このように、出力を上げる方向のシフトと、出力を下げる方向のシフトとが行われることによって、出力の均衡がとれ、少なくとも何れかの方向のシフトで空調効率が高いものに設定されれば、合計の処理熱量が同等になりつつも、消費エネルギーが削減される。
(処理熱負荷の空間的分散の概要)
 次に、処理熱負荷の空間的分散の概要について説明する。処理熱負荷の空間的分散では、何れかのゾーンの熱負荷の少なくとも一部が、隣接するゾーンが割り当てられている空調機で処理される。実施の形態1で説明したように、熱伝導方程式に基づくゾーン毎の熱負荷予測モデルをシステムが持つ場合、このようなシステムは、ゾーン間の熱移動を考慮しつつ、ゾーン毎の室温と、ゾーン毎の熱負荷とを予測することができる。よって、このようなシステムは、快適温度範囲を維持しつつ、空間的分散に基づいた処理による運転計画を立案することができる。
 具体的には、あるゾーンの出力を空調効率が高い出力にシフトさせ、隣接する別のゾーンの出力をそれに応じて変更させる。図19の一例では、あるゾーンで設定温度を維持するための出力が、例えば60%よりも低い場合、出力を上げる方向にシフトさせる。その代わり、別のゾーンの何れかで出力を下げる方向にシフトさせる。ここで、このような下げる方向のシフトは、空調効率が高くなるようなシフトである場合と、空調効率が低くなるようなシフトである場合と、の少なくとも何れかが含まれるものであって、何れであってもよい。
 一方、あるゾーンで設定温度を維持するための出力が、例えば60%よりも高い場合、出力を下げる方向にシフトさせる。その代わり、別のゾーンの何れかで出力を上げる方向にシフトさせる。ここで、このような上げる方向のシフトは、空調効率が高くなるようなシフトである場合と、空調効率が低くなるようなシフトである場合と、の少なくとも何れかが含まれるものであって、何れであってもよい。
 このように、出力を上げる方向のシフトと、出力を下げる方向のシフトとが行われることによって、出力の均衡がとれ、少なくとも何れかの方向のシフトで空調効率が高いものに設定されれば、合計の処理熱量が同等になりつつも、消費エネルギーが削減される。
 つまり、空調制御システム1は、時間帯及びゾーンのような区切りごとに処理熱量変更動作が異なる。例えば、空調制御システム1は、第1の区切りに対応する処理熱量変更動作として、空調効率を上げる動作をした場合、第1の区切りとは異なる第2の区切りに対応する処理熱量の変更動作として、第1の区切りの処理熱量の変更を相殺する動作をする。
 例えば、空調制御システム1は、時間帯Nに対応する処理熱量変更動作として、空調効率を上げるために出力を上げる動作を選択した場合、時間帯Mに対応する処理熱量変更動作として、出力を下げる動作を選択する。
 また、空調制御システム1は、時間帯Nに対応する処理熱量変更動作として、空調効率を上げるために出力を下げる動作を選択した場合、時間帯Mに対応する処理熱量変更動作として、出力を上げる動作を選択する。
 また、空調制御システム1は、ゾーンAに対応する処理熱量変更動作として、空調効率を上げるために出力を上げる動作を選択した場合、ゾーンAの隣接ゾーンに対応する処理熱量変更動作として、出力を下げる動作を選択する。
 また、空調制御システム1は、ゾーンAに対応する処理熱量変更動作として、空調効率を上げるために出力を下げる動作を選択した場合、ゾーンAの隣接ゾーンに対応する処理熱量変更動作として、出力を上げる動作を選択する。
(機能構成)
 次に、本実施の形態5における運転計画を実施する機能構成について図20を用いて説明する。図20は、本発明の実施の形態5における運転計画の機能構成の一例を示す図である。図20は、運転計画作成手段42の内部的な機能構成の一例である。なお、以後の説明において、本実施の形態5では、空調運転の計画のことをスケジュールと記載するものとする。
(機能構成:分散方法選択部)
 分散方法選択部141は、処理熱負荷の時間的分散を処理するスケジュールの作成と、処理熱負荷の空間的分散を処理するスケジュールの作成と、の何れかを選択する。スケジュールを作成する過程において、一般的には、分散方法選択部141は、最終的なスケジュールの候補として、複数のスケジュールを作成する。複数のスケジュールの作成において、時間的分散及び空間的分散のうち、何れの分散を行うかの選択方法は、特に限定されない。
 例えば、時間的分散と、空間的分散とが、サイクリックに順番に選択されてもよい。また、過去のスケジュール作成履歴に基づいて、消費電力の削減効果又はランニングコストの削減効果の何れか高い方の削減効果が優先的に選択されてもよい。また、確率的に削減効果の高い方が選択されてもよい。すなわち、択一的に何れかが選択されればよい。
(機能構成:時間的分散スケジュール作成部)
 時間的分散スケジュール作成部142aは、処理熱負荷の時間的分散を処理するスケジュールを作成する。時間的分散スケジュール作成部142aは、ゾーン選択部142a1と、分散元時間帯選択部142a2と、熱負荷変更量決定部142a3と、分散先時間帯選択部142a4と、時間的分散スケジュール決定部142a5と、から構成される。
 ゾーン選択部142a1は、処理熱負荷の時間的分散を行うゾーンを選択する。選択方法としては、例えば、ゾーン選択部142a1は、計画対象期間全体で平均空調効率が最も悪いゾーンを選択するが、特にこれに限定されない。例えば、ゾーン選択部142a1は、全時間帯及び全ゾーンを通して、空調効率が最も悪い空調機が割り当てられているゾーンを選択してもよい。また、ゾーン選択部142a1は、ゾーンを複数回選択する場合、各ゾーンをサイクリックに順番に選択してもよい。また、ゾーン選択部142a1は、空調効率とは無関係に確率的にゾーンを選択してもよい。すなわち、択一的に何れかのゾーンが選択されればよい。
 分散元時間帯選択部142a2は、ゾーン選択部142a1で選択されたゾーンにおいて、処理熱負荷の分散元の時間帯を選択する。選択方法としては、例えば、分散元時間帯選択部142a2は、計画対象期間を例えば5分刻みで分割し、分割した時間帯のうち、このゾーンが割り当てられている空調機が最も悪い効率で運転をしている時間帯を選択してもよいが、特にこれに限定されない。例えば、分散元時間帯選択部142a2は、空調効率が悪い運転をしている時間帯を複数選択し、これらの複数の時間帯の中から確率的に時間帯を選択してもよい。すなわち、択一的に何れかの時間帯が選択されればよい。
 熱負荷変更量決定部142a3は、ゾーン選択部142a1で選択されたゾーンにおいて、分散元時間帯選択部142a2で選択された時間帯における熱負荷変更量、すなわち、時間的に分散させる熱負荷の量を決定する。決定方法としては、例えば、熱負荷変更量決定部142a3は、空調効率が最大となる出力になるまでの変更量に熱負荷変更量を決定すればよいが、特にこれに限定されない。例えば、熱負荷変更量決定部142a3は、熱負荷変更量を予め設定した変更量に決定してもよい。また、熱負荷変更量決定部142a3は、予め設定した変更量に確率的な係数を乗じた量を熱負荷変更量に決定してもよい。また、熱負荷変更量決定部142a3は、快適温度範囲の維持が可能な変更量を熱負荷予測モデル又は温度予測モデルのパラメータから推定して熱負荷変更量を決定してもよい。
 分散先時間帯選択部142a4は、ゾーン選択部142a1で選択されたゾーンにおいて、処理熱負荷の分散先の時間帯を選択する。選択方法としては、例えば、分散先時間帯選択部142a4は、計画対象期間を例えば5分刻みに分割し、分割された時間帯のうち、このゾーンが割り当てられている空調機が最も空調効率が悪い運転をしている時間帯を選択してもよいが、特にこれに限定されない。例えば、分散先時間帯選択部142a4は、空調効率が悪い運転をしている時間帯を複数選択し、これら複数の時間帯の中から確率的に時間帯を選択してもよい。また、分散先時間帯選択部142a4は、全時間帯の中から確率的に時間帯を選択してもよい。
 また、分散先時間帯選択部142a4は、熱負荷変更量決定部142a3で決定された熱負荷変更量が、プラス値であるときは、最大空調効率よりも高い出力で運転している空調機に割り当てられている時間帯を優先的に選択し、マイナス値であるときは、最大空調効率よりも低い出力で運転している空調機に割り当てられている時間帯を優先的に選択してもよい。すなわち、択一的に何れかの時間帯が選択されればよい。
 時間的分散スケジュール決定部142a5は、まず、上記で説明した各機能で熱負荷を分散させた後、計画対象期間の熱負荷を再計算する。すなわち、時間的分散スケジュール決定部142a5は、熱負荷変更量決定部142a3で決定された熱負荷変更量がプラス値である場合、ゾーン選択部142a1で選択したゾーンにおける、分散元時間帯の熱負荷を熱負荷変更量だけ増加させ、分散先時間帯の熱負荷を熱負荷変更量だけ減少させる。
 一方、時間的分散スケジュール決定部142a5は、熱負荷変更量決定部142a3で決定された熱負荷変更量がマイナス値である場合、ゾーン選択部142a1で選択したゾーンにおける、分散元時間帯の熱負荷を熱負荷変更量だけ減少させ、分散先時間帯の熱負荷を熱負荷変更量だけ増加させる。
 そして、時間的分散スケジュール決定部142a5は、このように再計算した熱負荷を処理するための空調運転を求め、時間的分散に基づいた仮スケジュールを決定する。
(機能:空間的分散スケジュール作成部)
 空間的分散スケジュール作成部142bは、処理熱負荷の空間的分散を行うスケジュールを作成する。空間的分散スケジュール作成部142bは、時間帯選択部142b1と、分散元ゾーン選択部142b2と、熱負荷変更量決定部142b3と、分散先ゾーン選択部142b4と、空間的分散スケジュール決定部142b5と、から構成される。
 時間帯選択部142b1は、処理熱負荷の空間的分散を行う時間帯を選択する。選択方法としては、例えば、時間帯選択部142b1は、全ゾーンの合計の平均空調効率が最も悪い時間帯を選択すればよいが、特にこれに限定されない。例えば、時間帯選択部142b1は、全時間帯及び全ゾーンを通して空調効率が最も悪い空調機が存在する時間帯を選択してもよい。また、時間帯選択部142b1は、時間帯を複数回選択する場合は、各時間帯をサイクリックに順番に選択してもよい。また、時間帯選択部142b1は、空調効率とは無関係に確率的に時間帯を選択してもよい。すなわち、択一的に何れかの時間帯が選択されればよい。
 分散元ゾーン選択部142b2は、時間帯選択部142b1で選択された時間帯において、処理熱負荷の分散元のゾーンを選択する。選択方法としては、例えば、分散元ゾーン選択部142b2は、空調機が最も空調効率が悪い運転をしているゾーンを選択するが、特にこれに限定されない。例えば、分散元ゾーン選択部142b2は、空調効率が悪い運転をしているゾーンを複数選択し、これら複数のゾーンの中から確率的にゾーンを選択してもよい。また、分散元ゾーン選択部142b2は、全ゾーンの中から確率的にゾーンを選択してもよい。すなわち、択一的に何れかのゾーンが選択されればよい。
 熱負荷変更量決定部142b3は、時間帯選択部142b1で選択された時間帯において、分散元ゾーン選択部142b2で選択されたゾーンに対応する熱負荷変更量、すなわち空間的に分散させる熱負荷の量を決定する。決定方法としては、例えば、熱負荷変更量決定部142b3は、空調効率が最大となる出力になるまでの変更量に熱負荷変更量を決定するが、特にこれに限定されない。例えば、熱負荷変更量決定部142b3は、熱負荷変更量を予め設定した変更量に決定してもよい。また、熱負荷変更量決定部142b3は、予め設定した変更量に確率的な係数を乗じた量を熱負荷変更量に決定してもよい。また、熱負荷変更量決定部142b3は、快適温度範囲の維持が可能な変更量を熱負荷予測モデル又は温度予測モデルのパラメータから推定して熱負荷変更量を決定してもよい。
 分散先ゾーン選択部142b4は、時間帯選択部142b1で選択された時間帯において、処理熱負荷の分散先のゾーンを選択する。選択方法としては、例えば、分散先ゾーン選択部142b4は、空調機が最も空調効率が悪い運転をしているゾーンを選択すればよいが、特にこれに限定されない。例えば、分散先ゾーン選択部142b4は、空調効率が悪い運転をしているゾーンを複数選択し、これら複数のゾーンの中から確率的にゾーンを選択してもよい。また、分散先ゾーン選択部142b4は、全ゾーンの中から確率的にゾーンを選択してもよい。
 また、分散先ゾーン選択部142b4は、熱負荷変更量決定部142b3で決定された熱負荷変更量が、プラス値であるときは、最大空調効率よりも高い出力で運転している空調機に割り当てられているゾーンを優先的に選択し、マイナス値であるときは、最大空調効率よりも低い出力で運転している空調機に割り当てられているゾーンを優先的に選択してもよい。すなわち、択一的に何れかのゾーンが選択されればよい。
 空間的分散スケジュール決定部142b5は、まず、上記で説明した各機能で熱負荷を分散させた後、計画対象期間における熱負荷を再計算する。すなわち、空間的分散スケジュール決定部142b5は、熱負荷変更量決定部142b3で決定された熱負荷変更量がプラス値の場合は、時間帯選択部142b1で選択した時間帯における、分散元ゾーンの熱負荷を熱負荷変更量だけ増加させ、分散先ゾーンの熱負荷を熱負荷変更量だけ減少させる。
 一方、空間的分散スケジュール決定部142b5は、熱負荷変更量決定部142a3で決定された熱負荷変更量がマイナス値の場合は、時間帯選択部142b1で選択した時間帯における、分散元ゾーンの熱負荷を熱負荷変更量だけ減少させ、分散先ゾーンの熱負荷を熱負荷変更量だけ増加させる。そして、空間的分散スケジュール決定部142b5は、このように再計算された熱負荷を処理するための空調運転を求め、空間的分散に基づいた仮スケジュールを決定する。
(動作)
 次に、上記で説明した機能構成を前提とした動作例について、図21~23を用いて説明する。図21は、本発明の実施の形態5における運転計画の作成動作例を説明するフローチャートである。図22は、本発明の実施の形態5における処理熱負荷の時間的分散処理を説明するフローチャートである。図23は、本発明の実施の形態5における処理熱負荷の空間的分散処理を説明するフローチャートである。
 図21は、本発明の実施の形態5における運転計画すなわちスケジュールの作成例を示すフローチャートである。図21に示すように、初期スケジュール作成処理と、分散方法選択処理と、時間的分散処理と、空間的分散処理と、温度予測処理と、スケジュール候補更新処理と、終了判定処理と、から構成される。
 図22に示すように、時間的分散処理は、ゾーン選択処理と、分散元時間帯選択処理と、熱負荷変更量決定処理と、分散先時間帯選択処理と、時間的分散スケジュール決定処理と、から構成される。
 図23に示すように、空間的分散処理は、時間帯選択処理と、分散元ゾーン選択処理と、熱負荷変更量決定処理と、分散先ゾーン選択処理、空間的分散スケジュール決定処理と、から構成される。
(初期スケジュール作成処理)
(ステップS201)
 空調制御システム1は、分散無しでのスケジュールを作成する。つまり、空調制御システム1は、処理熱負荷の分散をしていない状態を想定した空調運転のスケジュールを作成する。
(ステップS202)
 空調制御システム1は、作成したスケジュールをスケジュール候補とする。
(ステップS203)
 空調制御システム1は、スケジュール候補に対応する評価指標を求める。
(分散方法選択処理)
(ステップS204)
 空調制御システム1は、処理熱負荷の空間的分散及び処理熱負荷の時間的分散の何れかを選択する。空調制御システム1は、処理熱負荷の時間的分散を選択した場合、ステップS205に進む。一方、空調制御システム1は、処理熱負荷の空間的分散を選択した場合、ステップS206に進む。
(処理熱負荷の時間的分散処理)
(ステップS205)
 詳細については後述するが、空調制御システム1は、処理熱負荷の時間的分散処理を実行する。処理熱負荷の時間的分散処理の結果、仮スケジュールが決定される。
(処理熱負荷の空間的分散処理)
(ステップS206)
 詳細については後述するが、空調制御システム1は、処理熱負荷の空間的分散処理を実行する。処理熱負荷の空間的分散処理の結果、仮スケジュールが決定される。
(温度予測処理)
(ステップS207)
 空調制御システム1は、仮スケジュールを実行すると仮定した時の計画対象期間における室内の温度を予測する。
(ステップS208)
 空調制御システム1は、快適温度範囲が維持されているか否かを判定する。空調制御システム1は、快適温度範囲が維持されている場合、ステップS209に進む。一方、空調制御システム1は、快適温度範囲が維持されていない場合、ステップS212に進む。
 つまり、空調制御システム1は、ステップS205又はステップS206で決定した仮スケジュールに対応する計画対象期間の温度を予測する。予測室温が、快適温度範囲を維持できていない場合、仮スケジュールに対応する評価を行わず、ステップS212に進む。
(スケジュール候補更新処理)
(ステップS209)
 空調制御システム1は、仮スケジュールに対応する評価指標を求める。
(ステップS210)
 空調制御システム1は、仮スケジュールに対応する評価指標の値がスケジュール候補に対応する評価指標の値と比べて減少しているか否かを判定する。空調制御システム1は、仮スケジュールに対応する評価指標の値がスケジュール候補に対応する評価指標の値と比べて減少している場合、ステップS211に進む。一方、空調制御システム1は、仮スケジュールに対応する評価指標の値がスケジュール候補に対応する評価指標の値と比べて減少していない場合、ステップS212に進む。
(ステップS211)
 空調制御システム1は、仮スケジュールを新たなスケジュール候補とする。
 つまり、空調制御システム1は、ステップS205又はステップS206で決定した仮スケジュールに対応する評価指標の計算を行う。空調制御システム1は、現在のスケジュール候補よりも評価指標が小さい場合は、仮スケジュールを新たなスケジュール候補とする。
 なお、空調制御システム1は、評価指標が現在のスケジュール候補と比べて大きい場合であっても、確率的に仮スケジュールを新たなスケジュール候補としてもよい。
(終了判定処理)
(ステップS212)
 空調制御システム1は、終了条件を満たすか否かを判定する。空調制御システム1は、終了条件を満たす場合、ステップS213に進む。一方、空調制御システム1は、終了条件を満たさない場合、ステップS204に進む。
(ステップS213)
 空調制御システム1は、現在のスケジュール候補を最終的なスケジュールとして出力する。
 つまり、空調制御システム1は、スケジュール作成の処理を終了するかを判定する。例えば、空調制御システム1は、評価指標が所定の目標値よりも小さくなった場合、スケジュール作成を終了するが、終了条件は特にこれに限定されない。
 例えば、空調制御システム1は、スケジュール作成に要した時間が所定の時間を超えた場合、スケジュール作成を終了する。また、空調制御システム1は、スケジュール候補の評価指標の減少が所定の減少率よりも小さくなった場合、スケジュール作成を終了する。また、空調制御システム1は、スケジュール候補の更新が所定の回数以上行われなかった場合、スケジュール作成を終了する。
(処理熱負荷の時間的分散処理)
(ゾーン選択処理)
(ステップS231)
 空調制御システム1は、処理熱負荷の時間的分散を行うゾーンを選択する。
(分散元時間帯選択処理)
(ステップS232)
 空調制御システム1は、選択したゾーンに対応する処理熱負荷の分散元の時間帯を選択する。
(熱負荷変更量決定処理)
(ステップS233)
 空調制御システム1は、選択したゾーン及び選択した時間帯に対応する熱負荷変更量を決定する。つまり、空調制御システム1は、時間的に分散させる熱負荷の量を決定する。
(分散先時間帯選択処理)
(ステップS234)
 空調制御システム1は、選択したゾーンに対応する処理熱負荷の分散先の時間帯を選択する。
(時間的分散スケジュール決定処理)
(ステップS235)
 空調制御システム1は、熱負荷変更量が何れであるかを判定する。空調制御システム1は、熱負荷変更量がプラス値である場合、ステップS236に進む。一方、空調制御システム1は、熱負荷変更量がマイナス値である場合、ステップS238に進む。
(ステップS236)
 空調制御システム1は、分散元の時間帯に対応する熱負荷を熱負荷変更量だけ増加させる。
(ステップS237)
 空調制御システム1は、分散先の時間帯に対応する熱負荷を熱負荷変更量だけ減少させる。
(ステップS238)
 空調制御システム1は、分散元の時間帯に対応する熱負荷を熱負荷変更量だけ減少させる。
(ステップS239)
 空調制御システム1は、分散先の時間帯に対応する熱負荷を熱負荷変更量だけ増加させる。
(ステップS240)
 空調制御システム1は、再計算された熱負荷を処理するためのスケジュールを求める。
(ステップS241)
 空調制御システム1は、求めたスケジュールを時間的分散に基づいた仮スケジュールとして処理を終了する。
 つまり、空調制御システム1は、まず、処理熱負荷を分散させた後の状態を想定し、計画対象期間における熱負荷を再計算する。すなわち、ステップS233で決定した熱負荷変更量がプラス値の場合、ステップS232で選択した分散元時間帯の熱負荷を熱負荷変更量だけ増加させ、ステップS234で選択した分散先時間帯の熱負荷を熱負荷変更量だけ減少させる。
 一方、空調制御システム1は、ステップS233で決定した熱負荷変更量がマイナス値の場合、ステップS232で選択した分散元時間帯の熱負荷を熱負荷変更量だけ減少させ、ステップS234で選択した分散先時間帯の熱負荷を熱負荷変更量だけ増加させる。そして、空調制御システム1は、このように再計算された熱負荷を処理するための空調運転を求め、時間的分散に基づいた仮スケジュールとする。
(処理熱負荷の空間的分散処理)
(時間帯選択処理)
(ステップS261)
 空調制御システム1は、処理熱負荷の空間的分散を行う時間帯を選択する。
(分散元ゾーン選択処理)
(ステップS262)
 空調制御システム1は、選択した時間帯に対応する処理熱負荷の分散元のゾーンを選択する。
(熱負荷変更量決定処理)
(ステップS263)
 空調制御システム1は、選択した時間帯及び選択したゾーンに対応する熱負荷変更量を決定する。つまり、空調制御システム1は、空間的に分散させる熱負荷の量を決定する。
(分散先ゾーン選択処理)
(ステップS264)
 空調制御システム1は、選択したゾーンに対応する処理熱負荷の分散先のゾーンを選択する。
(空間的分散スケジュール決定処理)
(ステップS265)
 空調制御システム1は、熱負荷変更量が何れかであるかを判定する。空調制御システム1は、熱負荷変更量がプラス値である場合、ステップS266に進む。一方、空調制御システム1は、熱負荷変更量がマイナス値である場合、ステップS268に進む。
(ステップS266)
 空調制御システム1は、分散元のゾーンに対応する熱負荷を熱負荷変更量だけ増加させる。
(ステップS267)
 空調制御システム1は、分散先のゾーンに対応する熱負荷を熱負荷変更量だけ減少させる。
(ステップS268)
 空調制御システム1は、分散元のゾーンに対応する熱負荷を熱負荷変更量だけ減少させる。
(ステップS269)
 空調制御システム1は、分散先のゾーンに対応する熱負荷を熱負荷変更量だけ増加させる。
(ステップS270)
 空調制御システム1は、再計算された熱負荷を処理するためのスケジュールを求める。
(ステップS271)
 空調制御システム1は、求めたスケジュールを空間的分散に基づいた仮スケジュールとする。
 つまり、空調制御システム1は、まず、処理熱負荷を分散させた後の状態を想定し、計画対象期間における熱負荷を再計算する。すなわち、空調制御システム1は、ステップS263で決定した熱負荷変更量がプラス値である場合、ステップS262で選択した分散元ゾーンの熱負荷を熱負荷変更量だけ増加させ、ステップS264で選択した分散先ゾーンの熱負荷を熱負荷変更量だけ減少させる。
 一方、空調制御システム1は、ステップS263で決定した熱負荷変更量がマイナス値である場合、ステップS262で選択した分散元ゾーンの熱負荷を熱負荷変更量だけ減少させ、ステップS264で選択した分散先ゾーンの熱負荷を熱負荷変更量だけ増加させる。そして、空調制御システム1は、このように再計算された熱負荷を処理するための空調運転を求め、空間的分散による仮スケジュールとする。
(時間的分散及び空間的分散の一方のみ)
 なお、上記の説明では、処理熱負荷の時間的分散と、処理熱負荷の空間的分散との少なくとも何れか一方を行う方法について説明したが、特にこれに限定されない。例えば、時間的分散だけであってもよく、空間的分散だけであってもよい。
(設定温度の変更)
 なお、本実施の形態5では、熱負荷を分散させるために熱負荷変更量を直接決定する方法について説明した。この代わりに、時間帯毎及びゾーン毎に異なる目標温度が設定されてもよい。目標温度の設定が変更されることにより、空調設備12は事実上処理熱負荷を変更した運転を行うことになる。このような目標温度の設定は、室内機12bが保有する設定温度であってもよいし、空調コントローラ11等に実装されるソフトウェアの内部情報であってもよい。
(効果)
 このように、空調機の特性、室温の時間変動、及びゾーン間の熱移動等を考慮し、少なくとも時間的及び空間的の何れかに処理熱負荷を分散することにより、室温を快適温度範囲に維持しつつ、総合的に空調効率が高い空調運転を行うことができるため、消費電力量を削減することができる。
 1 空調制御システム、11 空調コントローラ、12 空調設備、12a 室外機、12b 室内機、12c 換気設備、12d 全熱交換器、12e 加湿器、12f 除湿器、12g ヒータ、12h 外調機、13 空調ネットワーク、14 機器接続用コントローラ、15 空調制御用計算機、16 汎用ネットワーク、19 センサ、31 条件設定部、32 熱負荷予測部、33 運転計画立案部、34 運転計画補正部、35 データ計測部、36 制御指令部、41 熱負荷予測手段、42 運転計画作成手段、43 温度予測手段、44 計画評価手段、46 温度誤差評価手段、47 温度予測手段、48 補正計画作成手段、49 補正計画評価手段、61 ゾーン分割されたフロア、62 隣接ゾーン、63 ゾーン毎の室温変動曲線、71、72、81、82 制約条件、91、101 湿度予測手段、92、102 CO濃度予測手段、141 分散方法選択部、142a 時間的分散スケジュール作成部、142a1 ゾーン選択部、142a2 分散元時間帯選択部、142a3 熱負荷変更量決定部、142a4 分散先時間帯選択部、142a5 時間的分散スケジュール決定部、142b 空間的分散スケジュール作成部、142b1 時間帯選択部、142b2 分散元ゾーン選択部、142b3 熱負荷変更量決定部、142b4 分散先ゾーン選択部、142b5 空間的分散スケジュール決定部。

Claims (15)

  1.  建物に設置された空調設備を制御する空調制御システムにおいて、
     与えられた熱負荷予測用データに基づいて、前記空調設備が処理する熱量の時間変化を予測する熱負荷予測部と、
     合計の処理熱負荷を同一又は所定量の差の範囲内にすると共に、室内の温度を所定の快適温度範囲内に維持させる第1制約条件下において、評価指標である前記空調設備の消費電力量又はランニングコストの何れかを削減するように、空調運転の計画対象期間における前記空調設備の運転計画を事前に立案する運転計画立案部と、
     前記運転計画で前記空調設備の制御を実行中、所定の周期で前記運転計画を補正する運転計画補正部と、
     前記室内の温度を測定する温度センサと、
    を備え、
     前記運転計画立案部と前記運転計画補正部は、
     与えられた温度予測用データに基づいて前記室内の温度の時間変化を予測する温度予測手段を有し、
     前記運転計画補正部は、
     前記温度センサで測定した実測温度が、前記運転計画の立案時に予測する前記運転計画立案部による予測温度と異なる場合、
     前記計画対象期間のうち、補正を行う期間である補正対象期間における前記室内の温度の時間変化を予測し、
     前記補正対象期間中の1又は複数の時刻において、
     当該運転計画補正部で予測した予測温度と、前記運転計画立案部で予測した予測温度との誤差を所定の許容変動幅内に収めることを第2制約条件として、
    前記評価指標が前記第1制約条件下で最小となるように、前記運転計画を補正する
    ことを特徴とする空調制御システム。
  2.  前記第1制約条件に、
     前記計画対象期間における、前記室内の温度の時間変化率を予め設定した温度変化率内に維持させる制約を組み合わせた
    ことを特徴とする請求項1に記載の空調制御システム。
  3.  前記運転計画立案部は、
     前記第1制約条件を満たさない前記空調設備の運転パターンには、
     前記第1制約条件からの逸脱量に重みをつけたものと、前記評価指標とを加算したものを、前記評価指標として再定義し、前記再定義した前記評価指標に基づいて前記運転計画を立案する
    ことを特徴とする請求項1又は2に記載の空調制御システム。
  4.  前記運転計画補正部は、
     前記第1制約条件及び前記第2制約条件を満たさない前記空調設備の運転パターンには、
     前記第1制約条件及び前記第2制約条件からの逸脱量に重みをつけたものと、前記評価指標とを加算したものを、前記評価指標として再定義し、前記再定義した前記評価指標に基づいて前記運転計画を補正する
    ことを特徴とする請求項1~3の何れか一項に記載の空調制御システム。
  5.  前記運転計画立案部は、
     前記第1制約条件に、
     前記計画対象期間に含まれる第1の期間に対応する消費電力を、第1の目標電力以下に抑え、
     前記計画対象期間のうち前記第1の期間を除いた期間の消費電力を、第2の目標電力以下に抑え、
     前記第1の期間と比べて前の期間である第2の期間に対応する快適温度範囲を、前記第1の期間に対応する快適温度範囲とは異なる範囲に設定する制約を組み合わせた
    ことを特徴とする請求項1~4の何れか一項に記載の空調制御システム。
  6.  前記運転計画立案部は、
     前記第1制約条件に、
     前記計画対象期間に含まれる第1の期間に対応する消費電力を、第1の目標電力以下に抑え、
     前記計画対象期間のうち前記第1の期間を除いた期間の消費電力を、第2の目標電力以下に抑え、
     前記計画対象期間に含まれる第1の期間と比べて前の期間である第2の期間に対応する設定温度を、前記第1の期間に対応する設定温度とは異なる範囲に設定する制約を組み合わせた
    ことを特徴とする請求項1~5の何れか一項に記載の空調制御システム。
  7.  前記運転計画立案部は、
     前記第1の期間に対応する快適温度が前記第1制約条件を満たすまで、前記第2の期間に対応する快適温度範囲又は前記第2の期間に対応する設定温度を段階的に下げる設定と、前記第2の期間を段階的に延ばす設定とを繰り返す
    ことを特徴とする請求項5又は6に記載の空調制御システム。
  8.  前記空調設備の空調対象空間である前記室内の湿度を測定する湿度センサと、
     与えられた湿度予測用データに基づいて、前記室内の湿度の時間変化を予測する湿度予測部と、の第1の組と、
     前記空調設備の空調対象空間である前記室内のCO濃度を測定するCOセンサと、
     与えられたCO濃度予測用データに基づいて、前記室内のCO濃度の時間変化を予測するCO濃度予測部と、の第2の組と、の少なくとも1組以上をさらに備えた
    ことを特徴とする請求項1~7の何れか一項に記載の空調制御システム。
  9.  前記評価指標に、
     前記計画対象期間における、前記空調設備の設定温度からの温度のずれ度合い、前記室内の温度の時間変化率、前記室内の設定湿度からの湿度のずれ度合い、前記室内の湿度の時間変化率、前記室内の設定CO濃度からのCO濃度のずれ度合い、及び前記室内のCO濃度の時間変化率の何れか1つ、又は、2つ以上を組み合わせた
    ことを特徴とする請求項8に記載の空調制御システム。
  10.  前記第1制約条件に、
     前記計画対象期間における、前記室内の温度の時間変化率を予め設定した温度変化率内に維持させる第1条件と、
     前記計画対象期間における、前記室内の湿度を予め設定した快適湿度範囲内に維持させる第2条件と、
     前記計画対象期間における、前記室内の湿度の時間変化率を予め設定した湿度変化率内に維持させる第3条件と、
     前記計画対象期間における、前記室内の温度及び前記室内の湿度の両方から決定される温湿度快適性を予め設定した快適温湿度範囲内に維持させる第4条件と、
     前記計画対象期間における、前記室内のCO濃度を予め設定した快適CO濃度範囲内に維持させる第5条件と、
     前記計画対象期間における、前記室内のCO濃度の時間変化率を予め設定したCO濃度変化率内に維持させる第6条件と、
    の何れか1つ、又は、2つ以上の条件を組み合わせた
    ことを特徴とする請求項9に記載の空調制御システム。
  11.  建物に設置された空調設備を制御する空調制御システムにおいて、
     与えられた熱負荷予測用データに基づいて、前記空調設備が処理する熱量の時間変化を予測する熱負荷予測部と、
     合計の処理熱負荷を同一又は所定量の差の範囲内にすると共に、室内の温度を所定の快適温度範囲内に維持させる制約条件下において、前記空調設備の消費電力量又はランニングコストの何れかの評価指標が最小となるように、空調運転の計画対象期間における前記空調設備の運転計画を立案する運転計画立案部と、
    を備え、
     前記熱負荷予測部は、
     室内を複数のゾーンに分割し、ゾーン間の熱移動を考慮して、ゾーン毎の室温及び熱負荷を予測する計算モデルを有し、
     前記運転計画立案部は、
     前記熱負荷予測部で予測した、前記計画対象期間における、何れかの時間帯の熱負荷の少なくとも一部を、別の時間帯に処理する、処理熱負荷の時間的分散と、
     前記熱負荷予測部で予測した、何れかのゾーンの熱負荷の少なくとも一部を、隣接するゾーンが割り当てられた空調機で処理する、処理熱負荷の空間的分散と、
     の少なくとも何れか一方を行うことで、前記制約条件を満たしつつ、前記評価指標を最小化する
    ことを特徴とする空調制御システム。
  12.  前記運転計画立案部は、
     前記時間帯ごと及び前記ゾーン毎に異なる目標温度を設定し、前記処理熱負荷の時間的分散及び前記処理熱負荷の空間的分散の少なくとも何れか一方を行う
    ことを特徴とする請求項11に記載の空調制御システム。
  13.  建物に設置された空調設備を制御する空調制御方法において、
     与えられた熱負荷予測用データに基づいて、前記空調設備が処理する熱量の時間変化を予測する熱負荷予測ステップと、
     合計の処理熱負荷を同一又は所定量の差の範囲内にすると共に、室内の温度を所定の快適温度範囲内に維持させる第1制約条件下において、評価指標である前記空調設備の消費電力量又はランニングコストの何れかを削減するように、空調運転の計画対象期間における前記空調設備の運転計画を事前に立案する運転計画立案ステップと、
     前記運転計画で前記空調設備の制御を実行中、所定の周期で前記運転計画を補正する運転計画補正ステップと、
     前記室内の温度を測定する測定ステップと、
    が実行され、
     前記運転計画立案ステップと前記運転計画補正ステップでは、
     与えられた温度予測用データに基づいて前記室内の温度の時間変化が予測され、
     前記運転計画補正ステップで予測された予測温度と、前記運転計画立案ステップで予測された予測温度との誤差を所定の許容変動幅に収めることを第2制約条件として、
     前記評価指標が前記第1制約条件下で最小となるように、前記運転計画が補正される
    ことを特徴とする空調制御方法。
  14.  前記運転計画立案ステップでは、
     前記計画対象期間に含まれる第1の期間に対応する消費電力を、第1の目標電力以下に抑え、
     前記第1の期間と比べて前の期間である第2の期間に対応する快適温度範囲を、前記第1の期間に対応する快適温度範囲とは異なる範囲に設定する
    ことを特徴とする請求項13に記載の空調制御方法。
  15.  前記運転計画立案ステップでは、
     前記第1制約条件として、
     前記第1の期間に対応する消費電力を、第1の目標電力以下に抑え、
     前記計画対象期間のうち、前記第1の期間を除いた期間の消費電力を、第2の目標電力以下に抑える設定を含む
    ことを特徴とする請求項14に記載の空調制御方法。
PCT/JP2014/052805 2013-04-22 2014-02-06 空調制御システム及び空調制御方法 WO2014174871A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480022799.2A CN105143781B (zh) 2013-04-22 2014-02-06 空调控制系统及空调控制方法
US14/771,685 US9784464B2 (en) 2013-04-22 2014-02-06 Air-conditioning control system and air-conditioning control method
EP14788634.5A EP2990734B1 (en) 2013-04-22 2014-02-06 Air-conditioning control system and method
JP2015513583A JP5951120B2 (ja) 2013-04-22 2014-02-06 空調制御システム及び空調制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-089269 2013-04-22
JP2013089269 2013-04-22

Publications (1)

Publication Number Publication Date
WO2014174871A1 true WO2014174871A1 (ja) 2014-10-30

Family

ID=51791456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052805 WO2014174871A1 (ja) 2013-04-22 2014-02-06 空調制御システム及び空調制御方法

Country Status (5)

Country Link
US (1) US9784464B2 (ja)
EP (1) EP2990734B1 (ja)
JP (1) JP5951120B2 (ja)
CN (1) CN105143781B (ja)
WO (1) WO2014174871A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185630A1 (ja) * 2015-05-18 2016-11-24 三菱電機株式会社 室内環境モデル作成装置
JP2016200343A (ja) * 2015-04-13 2016-12-01 アズビル株式会社 情報提示装置、情報提示方法および情報提示システム
JP2017026161A (ja) * 2015-07-15 2017-02-02 株式会社東芝 空調制御装置、空調制御システム、空調制御方法および空調制御プログラム
CN107062548A (zh) * 2017-04-25 2017-08-18 天津大学 一种基于参数序列化的中央空调变负载率调节控制方法
WO2017170039A1 (ja) * 2016-03-31 2017-10-05 日本電気株式会社 熱モデル作成装置、方法およびプログラム
JP2018195238A (ja) * 2017-05-22 2018-12-06 富士通株式会社 管理装置、データセンタ管理プログラム、データセンタ管理方法及びデータセンタシステム
JP2019123364A (ja) * 2018-01-16 2019-07-25 株式会社東芝 車両空調制御装置、車両の空調制御方法及びプログラム
JP2020041755A (ja) * 2018-09-11 2020-03-19 ダイキン工業株式会社 空調制御システム
CN112113319A (zh) * 2019-06-20 2020-12-22 群光电能科技股份有限公司 空调负荷调整系统及空调负荷调整方法
JP2021143810A (ja) * 2020-03-13 2021-09-24 東京瓦斯株式会社 空調システム
US20230132347A1 (en) * 2017-03-03 2023-04-27 II William Boone Daniels Methods of increasing the average life time of building materials as well as reducing the consumption of other resources associated with operating buildings
US12117195B2 (en) 2019-08-28 2024-10-15 Fujitsu General Limited Control method, computer-readable recording medium storing control program, and air conditioning control device

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9927190B2 (en) * 2012-01-12 2018-03-27 Lacon Systems Ltd. Method of controlling a chiller
KR102336642B1 (ko) * 2014-08-21 2021-12-07 삼성전자 주식회사 온도 조절 방법 및 장치
US10871756B2 (en) * 2014-08-26 2020-12-22 Johnson Solid State, Llc Temperature control system and methods for operating same
CN106979580B (zh) * 2016-01-19 2019-08-09 台达电子工业股份有限公司 空调的空气侧设备的能源优化系统及能源优化方法
TWI598541B (zh) 2016-01-19 2017-09-11 台達電子工業股份有限公司 空調的空氣側設備的能源最佳化系統及能源最佳化方法
JP6503305B2 (ja) * 2016-01-25 2019-04-17 株式会社日立情報通信エンジニアリング 空調制御システム、空調計画装置、及び、計画方法
US20220107105A1 (en) * 2016-02-12 2022-04-07 Goodman Manufacturing Company LP Systems and methods for air temperature control using a target time based control plan
EP3421897B1 (en) * 2016-02-25 2019-12-25 Mitsubishi Electric Corporation Air-conditioning system
CN105605746A (zh) * 2016-03-09 2016-05-25 浙江奥乐智能系统工程有限公司 一种基于拟人情感的在线决策控制温湿度方法
CN109642746A (zh) * 2016-08-04 2019-04-16 夏普株式会社 空调控制系统
CN106225172A (zh) * 2016-08-17 2016-12-14 珠海格力电器股份有限公司 空调控制装置、方法及系统
JP2018060271A (ja) * 2016-10-03 2018-04-12 富士通株式会社 管理装置、管理装置の制御方法、管理装置の制御プログラム及び情報処理システム
US10088192B2 (en) * 2016-10-06 2018-10-02 Google Llc Thermostat algorithms and architecture for efficient operation at low temperatures
CN110192069B (zh) * 2016-11-16 2021-03-16 三菱电机株式会社 空调控制装置及空调控制方法
US20180238572A1 (en) * 2017-02-21 2018-08-23 Sunpower Corporation Modeling and controlling heating, ventilation, and air conditioning systems
AU2018243311B2 (en) * 2017-03-31 2021-06-17 Honeywell International Inc. Providing a comfort dashboard
EP3617607B1 (en) * 2017-07-05 2024-01-03 Mitsubishi Electric Corporation Operation control device, air conditioning system, operation control method, and operation control program
KR102379638B1 (ko) * 2017-09-27 2022-03-29 삼성전자주식회사 공기조화장치 및 그의 제어 방법
KR102472214B1 (ko) * 2018-02-28 2022-11-30 삼성전자주식회사 에어 컨디셔닝 시스템에서 복합 제어 장치 및 방법
US10962249B2 (en) * 2018-03-20 2021-03-30 Panasonic Intellectual Property Management Co., Ltd. Air conditioning apparatus and air conditioning control method
JP2019163920A (ja) * 2018-03-20 2019-09-26 パナソニックIpマネジメント株式会社 空気調和装置及び空調制御方法
EP3621050B1 (en) 2018-09-05 2022-01-26 Honeywell International Inc. Method and system for improving infection control in a facility
JP6799047B2 (ja) * 2018-11-19 2020-12-09 ファナック株式会社 暖機運転評価装置、暖機運転評価方法及び暖機運転評価プログラム
CN109595762A (zh) * 2018-11-30 2019-04-09 广东美的制冷设备有限公司 一种运行控制方法、空气机及计算机可读存储介质
US10978199B2 (en) 2019-01-11 2021-04-13 Honeywell International Inc. Methods and systems for improving infection control in a building
JP6730536B1 (ja) * 2019-06-25 2020-07-29 日立ジョンソンコントロールズ空調株式会社 空気調和装置、運転制御方法およびプログラム
CN112460768B (zh) * 2019-09-09 2022-04-19 约克广州空调冷冻设备有限公司 用于控制空调系统的方法及使用其的空调系统
CN110687251B (zh) * 2019-09-19 2022-06-10 广东电网有限责任公司广州供电局 控制柜及其湿度预警方法和装置
CN110925974B (zh) * 2019-12-09 2021-08-03 广东美的暖通设备有限公司 空调器及其输出参数的控制方法和控制装置
US11620594B2 (en) 2020-06-12 2023-04-04 Honeywell International Inc. Space utilization patterns for building optimization
US11783652B2 (en) 2020-06-15 2023-10-10 Honeywell International Inc. Occupant health monitoring for buildings
US11914336B2 (en) 2020-06-15 2024-02-27 Honeywell International Inc. Platform agnostic systems and methods for building management systems
US11783658B2 (en) 2020-06-15 2023-10-10 Honeywell International Inc. Methods and systems for maintaining a healthy building
US11184739B1 (en) 2020-06-19 2021-11-23 Honeywel International Inc. Using smart occupancy detection and control in buildings to reduce disease transmission
US11823295B2 (en) 2020-06-19 2023-11-21 Honeywell International, Inc. Systems and methods for reducing risk of pathogen exposure within a space
US11619414B2 (en) 2020-07-07 2023-04-04 Honeywell International Inc. System to profile, measure, enable and monitor building air quality
US11402113B2 (en) 2020-08-04 2022-08-02 Honeywell International Inc. Methods and systems for evaluating energy conservation and guest satisfaction in hotels
US11894145B2 (en) 2020-09-30 2024-02-06 Honeywell International Inc. Dashboard for tracking healthy building performance
US11372383B1 (en) 2021-02-26 2022-06-28 Honeywell International Inc. Healthy building dashboard facilitated by hierarchical model of building control assets
US11662115B2 (en) 2021-02-26 2023-05-30 Honeywell International Inc. Hierarchy model builder for building a hierarchical model of control assets
US11474489B1 (en) 2021-03-29 2022-10-18 Honeywell International Inc. Methods and systems for improving building performance
CN113685991B (zh) * 2021-08-02 2023-01-13 重庆海尔空调器有限公司 用于智能空调的控制方法及装置、智能空调
US12038187B2 (en) 2021-09-28 2024-07-16 Honeywell International Inc. Multi-sensor platform for a building
CN117906253A (zh) * 2022-10-11 2024-04-19 广东美的制冷设备有限公司 空调的控制方法、空调器及计算机可读存储介质
CN116489978B (zh) * 2023-06-25 2023-08-29 杭州电瓦特科技有限公司 一种基于人工智能的机房节能优化控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029694A (ja) * 2004-07-16 2006-02-02 Shimizu Corp マルチエアコンの分散制御システム
JP2008082641A (ja) * 2006-09-28 2008-04-10 Shimizu Corp 蓄熱槽熱源システムの制御装置及び制御方法
JP2011144956A (ja) * 2010-01-12 2011-07-28 Mitsubishi Electric Corp 空気調和機の制御装置
JP2011214794A (ja) 2010-04-01 2011-10-27 Mitsubishi Electric Corp 空調システム制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102908A (ja) 1992-09-24 1994-04-15 Hitachi Ltd 需要予測装置
JP2913584B2 (ja) 1997-01-10 1999-06-28 ヤキィー株式会社 設定温度可変制御による空気調和機冷凍機デマンドコントロール装置
JP5363046B2 (ja) 2008-07-25 2013-12-11 サンテック株式会社 消費電力制御装置、冷却システム及び消費電力制御方法
CN101782258B (zh) * 2009-01-19 2012-08-15 中华电信股份有限公司 空调节能方法
CN102128481B (zh) * 2010-01-20 2013-03-20 珠海格力电器股份有限公司 空调器及其控制方法及装置
CN102261717B (zh) * 2010-05-24 2013-04-10 珠海格力电器股份有限公司 空调器控制方法及装置、空调器
CA2742894A1 (en) * 2011-05-31 2012-11-30 Ecobee Inc. Hvac controller with predictive set-point control
US9016593B2 (en) * 2011-07-11 2015-04-28 Ecobee, Inc. HVAC controller with dynamic temperature compensation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029694A (ja) * 2004-07-16 2006-02-02 Shimizu Corp マルチエアコンの分散制御システム
JP2008082641A (ja) * 2006-09-28 2008-04-10 Shimizu Corp 蓄熱槽熱源システムの制御装置及び制御方法
JP2011144956A (ja) * 2010-01-12 2011-07-28 Mitsubishi Electric Corp 空気調和機の制御装置
JP2011214794A (ja) 2010-04-01 2011-10-27 Mitsubishi Electric Corp 空調システム制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2990734A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200343A (ja) * 2015-04-13 2016-12-01 アズビル株式会社 情報提示装置、情報提示方法および情報提示システム
JPWO2016185630A1 (ja) * 2015-05-18 2017-10-05 三菱電機株式会社 室内環境モデル作成装置
US10353355B2 (en) 2015-05-18 2019-07-16 Mitsubishi Electric Corporation Indoor environment model creation device
WO2016185630A1 (ja) * 2015-05-18 2016-11-24 三菱電機株式会社 室内環境モデル作成装置
JP2017026161A (ja) * 2015-07-15 2017-02-02 株式会社東芝 空調制御装置、空調制御システム、空調制御方法および空調制御プログラム
WO2017170039A1 (ja) * 2016-03-31 2017-10-05 日本電気株式会社 熱モデル作成装置、方法およびプログラム
US11328099B2 (en) 2016-03-31 2022-05-10 Nec Corporation Thermal model creation device, method, and program of building
JPWO2017170039A1 (ja) * 2016-03-31 2019-02-07 日本電気株式会社 熱モデル作成装置、方法およびプログラム
US20230132347A1 (en) * 2017-03-03 2023-04-27 II William Boone Daniels Methods of increasing the average life time of building materials as well as reducing the consumption of other resources associated with operating buildings
CN107062548A (zh) * 2017-04-25 2017-08-18 天津大学 一种基于参数序列化的中央空调变负载率调节控制方法
JP2018195238A (ja) * 2017-05-22 2018-12-06 富士通株式会社 管理装置、データセンタ管理プログラム、データセンタ管理方法及びデータセンタシステム
JP7074481B2 (ja) 2018-01-16 2022-05-24 株式会社東芝 車両空調制御装置、車両の空調制御方法及びプログラム
JP2019123364A (ja) * 2018-01-16 2019-07-25 株式会社東芝 車両空調制御装置、車両の空調制御方法及びプログラム
JP2020041755A (ja) * 2018-09-11 2020-03-19 ダイキン工業株式会社 空調制御システム
JP7219392B2 (ja) 2018-09-11 2023-02-08 ダイキン工業株式会社 空調制御システム
CN112113319B (zh) * 2019-06-20 2021-08-03 群光电能科技股份有限公司 空调负荷调整系统及空调负荷调整方法
CN112113319A (zh) * 2019-06-20 2020-12-22 群光电能科技股份有限公司 空调负荷调整系统及空调负荷调整方法
US12117195B2 (en) 2019-08-28 2024-10-15 Fujitsu General Limited Control method, computer-readable recording medium storing control program, and air conditioning control device
JP2021143810A (ja) * 2020-03-13 2021-09-24 東京瓦斯株式会社 空調システム

Also Published As

Publication number Publication date
JP5951120B2 (ja) 2016-07-13
CN105143781A (zh) 2015-12-09
EP2990734B1 (en) 2018-12-26
CN105143781B (zh) 2017-10-27
JPWO2014174871A1 (ja) 2017-02-23
EP2990734A4 (en) 2016-12-21
US9784464B2 (en) 2017-10-10
EP2990734A1 (en) 2016-03-02
US20160018124A1 (en) 2016-01-21

Similar Documents

Publication Publication Date Title
JP5951120B2 (ja) 空調制御システム及び空調制御方法
JP5963959B2 (ja) 空調システム制御装置及び空調システム制御方法
US10950924B2 (en) Priority-based energy management
JP6976976B2 (ja) マルチレベルモデル予測制御のシステムと方法
US9535411B2 (en) Cloud enabled building automation system
JP5897111B2 (ja) 空気調和機制御装置及び空気調和機制御プログラム
US9175869B2 (en) Uniform HVAC comfort across multiple systems
WO2018032241A1 (en) Controller for hvac unit
JP6645650B1 (ja) 制御装置、空調制御システム、制御方法及びプログラム
JP2013142494A (ja) 空調機器制御システムおよび空調機器の制御方法
KR101133894B1 (ko) 건물의 에너지 관리 방법, 관리서버 및 기록매체
JP2011248568A (ja) エネルギー管理システム
JP2011179722A (ja) 空調制御システム
WO2020070794A1 (ja) 情報処理装置およびこれを備えた空調システム
JP2015148417A (ja) 空調システム、空調装置、空調制御方法およびプログラム
JP2011214751A (ja) 空調コントローラ
JP5584024B2 (ja) 空気調和機群制御装置及び空気調和システム
Yang et al. Control strategy optimization for energy efficiency and comfort management in HVAC systems
Simon et al. Energy efficient smart home heating system using renewable energy source with fuzzy control design
CN111750492B (zh) 空气调节系统、服务器系统、网络和方法
JP7117443B1 (ja) 需要調整管理サーバ、需要調整管理方法、需要調整管理プログラム
KR20160009117A (ko) 빌딩 자동 제어 시스템
Kuzuhara et al. Accurate indoor condition control based on PMV prediction in BEMS environments
Gao et al. Experimental study of a bilinear control for a GSHP integrated air-conditioning system
KR20160009116A (ko) 서브 미터링 기반의 빌딩 에너지 관리 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480022799.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513583

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14771685

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014788634

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE