JP2020041755A - 空調制御システム - Google Patents

空調制御システム Download PDF

Info

Publication number
JP2020041755A
JP2020041755A JP2018169847A JP2018169847A JP2020041755A JP 2020041755 A JP2020041755 A JP 2020041755A JP 2018169847 A JP2018169847 A JP 2018169847A JP 2018169847 A JP2018169847 A JP 2018169847A JP 2020041755 A JP2020041755 A JP 2020041755A
Authority
JP
Japan
Prior art keywords
air
room
target value
human body
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018169847A
Other languages
English (en)
Other versions
JP2020041755A5 (ja
JP7219392B2 (ja
Inventor
詩織 繪本
Shiori Emoto
詩織 繪本
翔太 堀
Shota Hori
翔太 堀
橋本 哲
Satoru Hashimoto
哲 橋本
ラール ジャイヴァードハン
Lal Jayvirdhan
ラール ジャイヴァードハン
奈保 尾崎
Naho Ozaki
奈保 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2018169847A priority Critical patent/JP7219392B2/ja
Publication of JP2020041755A publication Critical patent/JP2020041755A/ja
Publication of JP2020041755A5 publication Critical patent/JP2020041755A5/ja
Application granted granted Critical
Publication of JP7219392B2 publication Critical patent/JP7219392B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】部屋にいる人が長時間快適に感じる状態を維持することができる空調制御システムを提供する。【解決手段】空調制御システムは、少なくとも冷房機能を有する空気調和装置を制御するシステムである。空調制御システムは、取得部と、算出部と、制御部とを備える。取得部は、部屋にいる人が感じた温冷感を示す指標を取得する。算出部は、少なくとも部屋の温度及び湿度に基づいて、部屋にいる人の人体エクセルギー消費を算出する。制御部は、取得部が取得した指標が第1目標値となり、かつ、算出部が算出した人体エクセルギー消費が第2目標値まで低下するように、空気調和装置を制御する。【選択図】図5

Description

空調制御システム
従来、特許文献1(特開平5−71793号公報)に開示されているように、部屋の温熱環境に関する快適指標の目標値が変更された場合に、部屋の温度の目標値を自動で設定して、設定された目標値に応じて空気調和機の吹き出し風量を制御する方法が知られている。これにより、部屋にいる人が快適に感じる状態を短時間で実現することができる。
部屋の温熱環境に関する快適指標の目標値に基づく制御のみでは、部屋にいる人が長時間快適に感じる状態を維持することが難しいという課題がある。
第1観点の空調制御システムは、少なくとも冷房機能を有する空気調和装置を制御するシステムである。空調制御システムは、取得部と、算出部と、制御部とを備える。取得部は、部屋にいる人が感じた温冷感を示す指標を取得する。算出部は、少なくとも部屋の温度及び湿度に基づいて、部屋にいる人の人体エクセルギー消費を算出する。制御部は、取得部が取得した指標が第1目標値となり、かつ、算出部が算出した人体エクセルギー消費が第2目標値まで低下するように、空気調和装置を制御する。
第2観点の空調制御システムは、第1観点の空調制御システムであって、制御部は、空気調和装置の運転開始後に、第1目標値及び第2目標値の少なくとも一方を変更する。
第3観点の空調制御システムは、第1観点又は第2観点の空調制御システムであって、制御部は、最初に、取得部が取得した指標が第1目標値となるように空気調和装置を制御し、指標が第1目標値となった後に、算出部が算出した人体エクセルギー消費が第2目標値まで低下するように空気調和装置を制御する。
第4観点の空調制御システムは、第1観点から第3観点のいずれかの空調制御システムであって、算出部は、少なくとも部屋の温度及び湿度を含む複数の環境条件のそれぞれに対して人体エクセルギー消費を算出する。制御部は、算出部が算出した人体エクセルギー消費に基づいて、複数の環境条件に対して優先順位を設定し、優先順位に従って空気調和装置を制御する。
第5観点の空調制御システムは、第4観点の空調制御システムであって、制御部は、算出部が算出した人体エクセルギー消費が最も低い環境条件に基づいて空気調和装置を制御する。
第6観点の空調制御システムは、第1観点から第5観点のいずれかの空調制御システムであって、第1目標値は、部屋にいる人が感じた温冷感が中立となるような値である。
第7観点の空調制御システムは、第1観点から第6観点のいずれかの空調制御システムであって、制御部は、さらに、部屋の温度及び湿度が所定の範囲内になるように空気調和装置を制御する。
第8観点の空調制御システムは、第1観点から第7観点のいずれかの空調制御システムであって、空気調和装置は、部屋の環境条件を調整するための機器と連動する。
第9観点の空調制御システムは、少なくとも冷房機能を有する空気調和装置を制御するシステムである。空調制御システムは、取得部と、制御部とを備える。取得部は、部屋にいる人が感じた温冷感を示す指標を取得する。制御部は、空気調和装置を制御する。制御部は、部屋の温度及び湿度が第1目標値になるように空気調和装置を制御する第1制御と、部屋の温度及び湿度が第1目標値になった後、部屋の温度及び湿度が第2目標値になるように空気調和装置を制御する第2制御とを行う。制御部は、第1制御によって取得部が取得した指標が所定の目標値になったときの部屋の湿度よりも、第2制御によって取得部が取得した指標が所定の目標値になったときの部屋の湿度が高くなるように空気調和装置を制御する。
第1実施形態に係る空調制御システム100の概念図である。 空調制御システム100の全体構成図である。 環境条件記憶部40に記憶される環境条件の一例である。 環境温度に対する人体エクセルギー収支の変化を表すグラフである。 空調制御システム100の制御のフローチャートである。 第2実施形態に係る空調制御システム100の制御のフローチャートである。 部屋Rの環境条件である気温及び相対湿度の関係を表すグラフである。
―第1実施形態―
第1実施形態に係る空調制御システム100について、図面を参照しながら説明する。図1は、空調制御システム100の概念図である。空調制御システム100は、部屋Rにいる人(以下、「在室者P」と呼ぶ。)が快適と感じる温熱環境を実現するために、部屋Rの空調環境を制御するためのシステムである。
空調制御システム100は、部屋Rに設置された空気調和装置110を制御することで、部屋Rの空調環境を制御する。空気調和装置110は、少なくとも冷房機能を有する。また、在室者Pは、例えば、リモコン120を用いて、空気調和装置110を制御することができる。
空気調和装置110は、マイクロコンピュータと、当該マイクロコンピュータを動作させるためのソフトウェアを記憶するメモリとを備える。リモコン120は、赤外線等を用いて空気調和装置110との間でデータを送受信する機能を有する。
空調制御システム100は、空気調和装置110のメモリに記憶されているソフトウェア、及び、空気調和装置110に設けられているセンサ等のハードウェアから構成される。以下、空気調和装置110が冷房運転を行う場合における空調制御システム100の動作及び機能について説明する。
(1)全体構成
図2は、空調制御システム100の全体構成図である。空調制御システム100は、主として、温冷感取得部10と、目標値設定部20と、環境条件生成部30と、環境条件記憶部40と、熱負荷算出部50と、環境条件選択部60と、空調機制御部70とを備える。
(1−1)温冷感取得部10
温冷感取得部10は、在室者Pが感じた温冷感を示す指標を取得する。このような指標としては、PMV(予測平均温冷感)が知られている。本実施形態では、温冷感を示す指標としてPMVが用いられる。この場合、温冷感取得部10は、PMVの現在の値を取得する。
PMVは、気温、放射温度、相対湿度及び風速の4つの環境側の要素と、着衣量及び作業量の2つの人体側の要素とからなる合計6つの要素から算出される。気温とは、部屋Rの内部の空気の温度である。放射温度とは、部屋Rの中において赤外線及び可視光線等を放射する物体の温度であり、具体的には、部屋Rの内部の床、壁及び天井等の表面温度である。相対湿度とは、部屋Rの内部の空気の水蒸気圧と飽和水蒸気圧との比である。風速とは、例えば、在室者Pの位置における気流の速さである。着衣量とは、在室者Pの着衣の熱抵抗である。着衣量の単位は、cloである。作業量とは、在室者Pのエネルギー代謝率である。作業量の単位は、Metである。温冷感取得部10は、これらの6つの要素に関するパラメータを取得して所定の公式に代入してPMVを算出する。
上記6つの要素のうち、4つの環境側の要素に関するパラメータとして、温冷感取得部10は、空気調和装置110が備えるセンサ等が取得した値を用いることができる。例えば、温冷感取得部10は、空気調和装置110の温度センサ、放射温度計及び湿度センサから、それぞれ、部屋Rの気温、放射温度及び相対湿度の現在の値を取得してもよい。また、温冷感取得部10は、空気調和装置110の吹き出し風量に基づいて、部屋Rの風速の現在の値を取得してもよい。
上記6つの要素のうち、2つの人体側の要素に関するパラメータとして、温冷感取得部10は、標準的な環境を想定した所定の値を用いてもよい。例えば、温冷感取得部10は、着衣量の値として0.8cloを採用し、作業量の値として1.2Metを採用してもよい。なお、温冷感取得部10は、季節に応じて異なる着衣量の値を用いてもよい。また、温冷感取得部10は、所定の値を用いる代わりに、空気調和装置110のカメラ等から取得した在室者Pの状態に基づいて、着衣量及び作業量の値を算出して用いてもよい。
PMVは、在室者Pの温冷感に関する快適性の度合いを表すパラメータである。PMVは、−3から+3までの範囲を取り得る。PMVは、−3(かなり寒い)、−2(寒い)、−1(やや寒い)、0(中立)、+1(やや暑い)、+2(暑い)及び+3(かなり暑い)の7段階の快適性で判定される。一般的に、在室者Pが快適と感じているときのPMVは、−0.5〜+0.5である。
(1−2)目標値設定部20
目標値設定部20は、温冷感の目標値を設定する。温冷感の目標値とは、具体的には、PMVの目標値である。空気調和装置110が、冷房運転により部屋Rの空調環境を制御することで、PMVが変化する。目標値設定部20は、空気調和装置110による部屋Rの空調環境の制御により達成されるべきPMVの値又は範囲を設定する。
目標値設定部20は、PMVの目標値として、一般的に在室者Pが快適と感じるとされる範囲である−0.5〜+0.5を設定してもよい。また、目標値設定部20は、PMVの目標値として、中立の値である0を設定してもよい。以下において、目標値設定部20は、PMVの目標値として0を設定するものとする。
(1−3)環境条件生成部30
環境条件生成部30は、目標値設定部20が設定した温冷感(PMV)の目標値を満たすための環境条件を生成する。環境条件とは、空気調和装置110の制御によって実現することができる、部屋Rの空調環境に関する条件である。具体的には、環境条件は、PMVを算出するための6つの要素のうちの4つの環境側の要素の少なくとも1つを含む。以下において、環境条件は、部屋Rの気温、放射温度、相対湿度及び風速の各値から構成されるものとする。
環境条件生成部30は、温冷感取得部10が取得した現在のPMVの値を、目標値設定部20が設定した目標値である0にするために必要な環境条件を複数生成する。
(1−4)環境条件記憶部40
環境条件記憶部40は、環境条件生成部30が生成した複数の環境条件を記憶する。図3は、環境条件記憶部40に記憶される環境条件の一例である。図3には、環境条件を一意に識別するためのIDと、環境条件を構成するパラメータとから構成されるレコードを複数有するデータベースが示されている。環境条件を構成するパラメータとは、PMVを算出するための6つの要素のうちの4つの環境側の要素である、部屋Rの気温、放射温度、相対湿度及び風速の各値である。
(1−5)熱負荷算出部50
熱負荷算出部50は、在室者Pの体にかかる熱ストレス負荷の推定値を算出する。熱ストレス負荷とは、人体の体温調節機能の活動の度合いである。温冷感が同じ環境条件であっても、人体の体温調節機能の活動の度合いが大きいほど、自律神経の作用によって血管の拡張収縮が起こりやすくなる。例えば、空気調和装置110が冷房運転をしている環境では、在室者Pの体にかかる熱ストレス負荷により、在室者Pの血管が収縮しやすくなる。そして、血管の収縮が長時間続くと、血行不良が引き起こされる可能性がある。そのため、たとえ在室者Pが感じる温冷感が適切に維持されている環境(PMVが中立の値である環境)においても、在室者Pは、熱ストレス負荷に長時間曝されることによって、快適と感じなくなる場合がある。
熱負荷算出部50は、在室者Pにかかる熱ストレス負荷の推定値を表すパラメータとして、在室者Pの人体エクセルギー消費を算出する。人体エクセルギー消費は、人体のエクセルギー収支に関する次の計算式に含まれる。
[人体エクセルギー入力]−[人体エクセルギー消費]=[人体エクセルギー蓄積]+[人体エクセルギー出力]
上の式において、人体エクセルギー入力、人体エクセルギー消費、人体エクセルギー蓄積及び人体エクセルギー出力は、それぞれ、人体の体表面1m当たりについて求めたエクセルギーの発生、消費、蓄積及び放出の速さを表すパラメータである。各パラメータの単位は、W/mである。
人体エクセルギー入力とは、体内で発生するエクセルギー、及び、体外から体内に取り込まれるエクセルギーである。人体エクセルギー入力は、主として、代謝によって発生するエクセルギー、吸気によるエクセルギー、代謝水によるエクセルギー、及び、着衣が吸収する放射熱によるエクセルギーから構成される。代謝によって発生するエクセルギーとは、飲食によって人体に取り込まれたグルコース中に蓄えられたエクセルギーが細胞活動のために消費された結果、体内で発生したエクセルギーである。吸気によるエクセルギーとは、吸気の熱の拡散、及び、吸気に含まれる水蒸気の拡散等によって発生するエクセルギーである。代謝水によるエクセルギーとは、代謝水の熱の拡散、及び、代謝水の体外への拡散等によって発生するエクセルギーである。代謝水とは、体内において代謝によって生じる水であり、例えば、体内のグルコースの燃焼によって発生する水である。
人体エクセルギー消費とは、体内で消費されるエクセルギーである。人体エクセルギー消費は、人体内部の温度差による熱拡散、人体と着衣との間の温度差による熱拡散、及び、人体と着衣との間の水蒸気圧力差による汗と空気との相互拡散に起因する。
人体エクセルギー蓄積とは、周囲の環境に応じて体内に蓄積されるエクセルギーである。周囲の環境の温度が高いほど、人体エクセルギー蓄積は増加する傾向にある。
人体エクセルギー出力とは、体内から体外に放出されるエクセルギーである。人体エクセルギー出力は、主として、呼気によるエクセルギー、汗の蒸発後に発生する湿り空気の拡散によって発生するエクセルギー、着衣が放出する放射熱によるエクセルギー、及び、着衣が放出する対流熱によるエクセルギーから構成される。呼気によるエクセルギーとは、呼気の熱の拡散、及び、呼気に含まれる水蒸気の拡散等によって発生するエクセルギーである。
人体エクセルギー消費は、在室者Pが温冷感に関して快適と感じる環境(例えば、PMVが0である等の適温環境)において、人体の血管の拡張収縮の度合いと相関関係がある。在室者Pが温冷感に関して快適と感じる環境では、人体エクセルギー消費が低いほど、人体の血管の拡張収縮の度合いが小さく、人体にかかる熱ストレス負荷が小さい。人体エクセルギー消費は、後述するように、寒い環境及び暑い環境において高くなり、寒くも暑くもない環境において低くなる傾向にある。人体エクセルギー消費が最小となる環境とは、人体エクセルギー消費の要因となる、人体内部の温度差による熱拡散、人体と着衣との間の温度差による熱拡散、及び、人体と着衣との間の水蒸気圧力差による汗と空気との相互拡散の3つの項目のうち、3番目の項目の比率が小さい環境である。人体エクセルギー消費が最小となる環境は、人体にかかる熱ストレス負荷が最も小さい環境である。
図4は、環境温度に対する人体エクセルギー収支の変化を表すグラフである。グラフの横軸は、環境温度(℃)であり、例えば、在室者Pがいる部屋Rの気温である。グラフの縦軸は、エクセルギー(W/m)である。図4には、人体エクセルギー収支の式に含まれる4つのパラメータである、人体エクセルギー入力、人体エクセルギー消費、人体エクセルギー蓄積及び人体エクセルギー出力のグラフが、それぞれ、「入力」、「消費」、「蓄積」及び「出力」のラベルを付されて示されている。人体エクセルギー入力及び人体エクセルギー出力は、在室者Pの体温と環境温度との差が大きくなるほど、すなわち、環境温度が低くなるほど、高くなる傾向がある。人体エクセルギー蓄積は、環境温度が高くなるほど、高くなる傾向がある。しかし、環境温度が所定の値以上になると、発汗によって体内にエクセルギーが蓄積されにくくなるので、人体エクセルギー蓄積はほぼ一定となる。人体エクセルギー消費は、人体エクセルギー収支の式から算出され、図4において二点鎖線で示されるように、23.5℃付近において最小値を取る。人体エクセルギー消費の最小値は、環境条件にも依るが、2.2W/m〜2.5W/mである。
なお、人体エクセルギー収支に関する参考文献としては、「エクセルギーと環境の理論―流れ・循環のデザインとは何か[改訂版](宿谷昌則編著)」が挙げられる。
熱負荷算出部50は、在室者Pの人体エクセルギー消費を、在室者Pがいる部屋Rの環境条件に基づいて算出する。熱負荷算出部50が人体エクセルギー消費を算出するために用いる環境条件は、環境条件記憶部40に記憶されている複数の環境条件である。
熱負荷算出部50が入力された環境条件に基づいて人体エクセルギー消費を算出する方法は特に限定されない。例えば、熱負荷算出部50は、入力された環境条件に含まれるパラメータ(気温及び相対湿度等)を所定の公式に代入することで、人体エクセルギー消費を直接算出してもよい。また、熱負荷算出部50は、所定のアルゴリズムを用いて、入力された環境条件から人体エクセルギー消費を算出してもよい。例えば、熱負荷算出部50は、入力された環境条件から人体エクセルギー入力、人体エクセルギー蓄積及び人体エクセルギー出力を算出して、上記の人体エクセルギー収支の式を用いて人体エクセルギー消費を算出してもよい。また、熱負荷算出部50は、環境条件と人体エクセルギー消費とを関連付けるテーブル又はデータベース等を予め作成しておき、入力された環境条件に基づいて人体エクセルギー消費を算出してもよい。
(1−6)環境条件選択部60
環境条件選択部60は、熱負荷算出部50が算出した人体エクセルギー消費に基づいて、環境条件記憶部40に記憶されている複数の環境条件の中から、適切な環境条件を選択する。
具体的には、環境条件選択部60は、熱負荷算出部50が算出した人体エクセルギー消費に基づいて、環境条件記憶部40に記憶されている複数の環境条件のそれぞれを評価して優先順位を設定する。例えば、環境条件選択部60は、人体エクセルギー消費が低いほど優先順位が高くなるように、複数の環境条件に優先順位を設定する。そして、環境条件選択部60は、複数の環境条件の中から、設定された優先順位に基づいて環境条件を1つ選択する。例えば、環境条件選択部60は、複数の環境条件の中から、優先順位が最も高い環境条件を選択する。環境条件選択部60が選択した環境条件に関する情報は、空調機制御部70に送られる。
(1−7)空調機制御部70
空調機制御部70は、環境条件選択部60が選択した環境条件に基づいて、空気調和装置110を制御する。具体的には、最初に、空調機制御部70は、環境条件選択部60が選択した環境条件に含まれる気温、放射温度、相対湿度及び風速を目標値として設定する。次に、空調機制御部70は、現在の部屋Rの環境条件を検出する。次に、空調機制御部70は、現在の部屋Rの環境条件から、目標値として設定した環境条件に移行するための制御信号を生成して、空気調和装置110に送信する。空気調和装置110は、空調機制御部70から受信した制御信号に基づいて、部屋Rの空気環境を制御する。
(2)動作
図5は、空調制御システム100の制御のフローチャートである。図5は、空調制御システム100が、在室者Pの人体エクセルギー消費に基づいて選択した環境条件に基づいて空気調和装置110を制御する方法を示す。
空気調和装置110が起動した後、最初に、温冷感取得部10は、部屋Rの在室者Pが感じた温冷感を示す指標であるPMVの現在の値を取得する(ステップS1)。次に、目標値設定部20は、PMVの目標値を設定する(ステップS2)。次に、環境条件生成部30は、PMVの目標値を満たす複数の環境条件を生成する(ステップS3)。生成された複数の環境条件は、環境条件記憶部40に記憶される。次に、熱負荷算出部50は、生成された複数の環境条件のそれぞれについて、在室者Pの人体エクセルギー消費を算出する(ステップS4)。次に、環境条件選択部60は、算出された人体エクセルギー消費を考慮して、複数の環境条件に優先順位を設定する(ステップS5)。優先順位は、人体にかかる熱ストレス負荷の度合いに基づいて設定される。次に、環境条件選択部60は、優先順位に基づいて、複数の環境条件から、人体にかかる熱ストレス負荷が小さい環境条件を選択し、選択した環境条件に基づいて、制御パラメータの目標値を設定する(ステップS6)。制御パラメータとは、空気調和装置110の制御の対象となるパラメータであり、具体的には、気温、放射温度、相対湿度及び風速の少なくとも一つである。次に、空調機制御部70は、現在の部屋Rの環境条件を検出して、制御パラメータの現在の値を取得する(ステップS7)。次に、空調機制御部70は、ステップS7で取得した現在の値から、ステップS6で設定した目標値に制御パラメータを移行させるための、空気調和装置110に対する制御信号を生成する(ステップS8)。次に、空調機制御部70は、ステップS8で生成された制御信号を空気調和装置110に送信して、空気調和装置110の制御を行う(ステップS9)。
その後、空気調和装置110が運転している間に、運転を停止する信号であるOFF信号を空気調和装置110が受信した場合、空気調和装置110の運転を停止させる。一方、空気調和装置110がOFF信号を受信しない場合、所定の期間が経過した後に、ステップS1に移行する(ステップS10)。
(3)特徴
(3−1)
空調制御システム100は、在室者Pの温冷感に関するPMVの目標値を達成するための空気調和装置110の制御だけではなく、在室者Pの熱ストレス負荷を低減する環境条件を達成するための空気調和装置110の制御も行う。
PMVの目標値を達成するための空気調和装置の制御のみを行う場合、在室者の温冷感に関する快適性の度合いのみが考慮される。そのため、冷房運転の場合、在室者がいる部屋を短時間で冷却して、在室者を素早く快適にする制御が行われる。この場合、冷房が過剰に効くことにより、在室者に熱ストレス負荷がかかり、例えば、血管の収縮が引き起こされる可能性がある。血管の収縮が長時間続くと、血行不良が引き起こされ、在室者は、肩こり、頭痛及び倦怠感を感じやすくなり、冷房運転を停止したり弱めたりする。その結果、部屋Rの気温が上昇して、在室者が行っている作業の効率の低下、及び、熱中症の発症等の問題が発生する。
空調制御システム100は、人体エクセルギー消費に基づいて、在室者Pの血管の拡張収縮の度合いを推定し、在室者Pにかかる熱ストレス負荷が低減するように、空気調和装置110の制御を行う。空調制御システム100は、熱ストレス負荷の度合いを表すパラメータとして、環境条件に基づいて算出した人体エクセルギー消費を用いる。在室者Pが温冷感に関して快適と感じる環境では、人体エクセルギー消費が低いほど、在室者Pにかかる熱ストレス負荷は低い。
具体的には、空調制御システム100は、在室者Pの温冷感(PMV)の目標値を満たす複数の環境条件の中から、在室者Pの人体エクセルギー消費に基づいて設定された優先順位を用いて、適切な環境条件を選択する。そして、空調制御システム100は、選択された環境条件を実現するための空気調和装置110の制御を行う。すなわち、空調制御システム100は、在室者Pの温冷感(PMV)を所定の第1目標値にする制御の他に、在室者Pの人体エクセルギー消費を所定の第2目標値まで低下させる制御を行う。第1目標値は、在室者Pの温冷感を表す指標がPMVである場合、−0.5〜+0.5であり、好ましくは−0.1〜+0.1であり、より好ましくは0である。第2目標値は、2.2W/m〜2.5W/mであり、好ましくは2.2W/m〜2.46W/mであり、より好ましくは2.2W/mである。
これにより、空調制御システム100は、冷房運転時における空気調和装置110の制御において、在室者Pが温冷感に関して快適と感じる環境だけではなく、在室者Pにかかる熱ストレス負荷が低減される環境も実現することができる。従って、空調制御システム100は、在室者Pにかかる熱ストレス負荷を低減することにより、在室者Pが長時間快適に感じることができる状態を維持できる。
(3−2)
空調制御システム100は、在室者Pの人体エクセルギー消費に基づいて、PMVの目標値を満たす複数の環境条件の中から、適切な環境条件を選択し、選択された環境条件が実現されるように空気調和装置110を制御する。人体エクセルギー消費は、例えば、在室者Pがいる部屋Rの環境条件に基づいて算出される。このとき、算出された人体エクセルギー消費が低くなるような環境条件を選択することで、空調制御システム100は、空気調和装置110の制御によって、在室者Pにかかる熱ストレス負荷を抑制することができる。
在室者Pの人体エクセルギー消費は、部屋Rの環境条件に関するパラメータから算出することができる。環境条件に関するパラメータは、例えば、PMVの算出にも用いられる気温、放射温度、相対湿度及び風速である。この場合、例えば、これらのパラメータを所定の公式に代入して、人体エクセルギー入力、人体エクセルギー蓄積及び人体エクセルギー出力を求め、これらの値をエクセルギー収支の式に代入して人体エクセルギー消費を算出することができる。
このように、空調制御システム100は、部屋Rの環境条件に基づいて算出された人体エクセルギー消費を用いることで、在室者Pにかかる熱ストレス負荷の予測値を比較的簡単に取得できる。そのため、在室者Pにかかる熱ストレス負荷又はその予測値を取得するために、特別な機器を用いる必要がない。
また、在室者Pの人体エクセルギー消費は、在室者Pの血管の拡張収縮の度合いと相関がある。具体的には、冷房運転時において、人体エクセルギー消費が低いほど、在室者Pの血管の収縮の度合いが小さい。そのため、人体エクセルギー消費が所定の値よりも低くなる環境条件となるように空気調和装置110を制御することで、空調制御システム100は、在室者Pにかかる熱ストレス負荷が所定のレベルまで低減された環境を実現することができる。
(4)変形例
(4−1)変形例A
空調制御システム100は、在室者Pの温冷感に関するPMVの目標値を達成するための空気調和装置110の制御だけではなく、在室者Pの熱ストレス負荷を低減する環境条件を達成するための空気調和装置110の制御も行う。この場合、空調機制御部70は、在室者Pの温冷感(PMV)を所定の第1目標値にする制御の他に、在室者Pの人体エクセルギー消費を所定の第2目標値まで低下させる制御を行う。そのため、空調機制御部70は、これらの2種類の制御を実質的に同時に行う方法により空気調和装置110を制御することで、在室者Pが長時間快適に感じることができる状態を維持できる。
しかし、空調制御システム100は、他の方法により空気調和装置110を制御することで、在室者Pが長時間快適に感じることができる状態を維持してもよい。次に説明する方法では、空気調和装置110の制御は、2つの段階から構成される。第1段階では、在室者Pの温冷感の指標であるPMVの目標値を満たすための制御のみが行われる。ここで、PMVの目標値は、例えば、在室者Pの温冷感が中立となる0である。第1段階の制御では、在室者Pの温冷感が中立となる状態、すなわち、暑くも寒くもない状態が短時間で実現される。そして、温冷感が中立となる状態が達成された後、第2段階の制御が行われる。第2段階の制御では、図5に示されるステップS1〜S10が行われる。
この方法では、空調制御システム100は、第1段階において、PMVを0とする制御のみを行う。これにより、冷房運転の場合、在室者Pが快適と感じる程度まで、部屋Rの気温が短時間で低下する。次に、空調制御システム100は、第2段階において、PMVの目標値を達成するための制御だけではなく、在室者Pの熱ストレス負荷を低減する環境条件を達成するための制御も行う。
このような二段階の制御を行う方法では、空調機制御部70は、空気調和装置110の運転開始後において、第1段階の制御が完了した後、PMVの目標値、及び、人体エクセルギー消費の目標値の少なくとも一方を変更してもよい。例えば、第1段階では、PMVの目標値を0に設定し、第2段階では、PMVの目標値を−0.5〜+0.5に設定してもよい。
(4−2)変形例B
空調制御システム100は、在室者Pにかかる熱ストレス負荷の指標として、在室者Pの血管の拡張収縮の度合いと相関関係がある人体エクセルギー消費を用いて、在室者Pの熱ストレス負荷を低減する環境条件を達成するための空気調和装置110の制御を行う。
しかし、空調制御システム100は、人体エクセルギー消費の代わりに、在室者Pの血管の拡張収縮の度合いと相関関係がある他のパラメータを用いてもよい。例えば、空調制御システム100は、人体エクセルギー消費の代わりに、交感神経と副交感神経とのバランスを表すパラメータを用いてもよい。このようなパラメータとしては、在室者Pの呼吸又は心拍の変動の低周波数(LF)成分と高周波数(HF)成分との比であるLF/HFを用いることができる。比LF/HFは、血管の拡張収縮の度合いと相関関係がある。この場合、空調制御システム100は、例えば、在室者Pの脈波を測定する機器を用いて、在室者PのLF/HFの値を取得する。なお、交感神経と副交感神経とのバランスを表すパラメータは、在室者Pの精神的ストレス等の外乱による影響が大きいため、人体エクセルギー消費と比較して、在室者Pにかかる熱ストレス負荷の指標としての信頼性が低いことがある。
本変形例では、環境条件選択部60は、例えば、在室者PのLF/HFの値に基づく優先順位に基づいて、複数の環境条件から、人体にかかる熱ストレス負荷が小さい環境条件を選択することができる。
本変形例に係る空調制御システムは、
少なくとも冷房機能を有する空気調和装置を制御するシステムであって、
部屋にいる人が感じた温冷感を示す指標を取得する取得部(温冷感取得部10)と、
少なくとも部屋の温度及び湿度に基づいて、当該人にかかる熱ストレス負荷を算出する算出部(熱負荷算出部50)と、
取得部が取得した指標が第1目標値となり、かつ、算出部が算出した熱ストレス負荷が第2目標値まで低下するように、空気調和装置を制御する制御部(空調機制御部70)と、
を備える。
熱ストレス負荷は、当該人の血管の拡張収縮の度合いと相関関係があるパラメータである。当該パラメータは、例えば、当該人の交感神経と副交感神経とのバランスを表すLF/HFである。LF/HFは、当該人の呼吸又は心拍の変動の低周波数(LF)成分と高周波数(HF)成分との比である。
また、熱ストレス負荷は、当該人の血管の拡張収縮の度合いを直接計測した値である。
(4−3)変形例C
空調制御システム100は、在室者Pにかかる熱ストレス負荷の指標として、在室者Pの血管の拡張収縮の度合いと相関関係がある人体エクセルギー消費を用いて、在室者Pの熱ストレス負荷を低減する環境条件を達成するための空気調和装置110の制御を行う。人体エクセルギー消費は、部屋Rの環境条件に基づいて算出される。
しかし、空調制御システム100は、人体エクセルギー消費を算出する代わりに、在室者Pの血管の拡張収縮の度合いをセンサで直接計測してもよい。この場合、空調制御システム100は、冷房運転の場合には、血管の収縮の度合いを表すパラメータを用いて、当該パラメータが大きいほど、在室者Pにかかる熱ストレス負荷が高いと判断する。
(4−4)変形例D
空調制御システム100は、在室者Pの温冷感の指標、及び、在室者Pにかかる熱ストレス負荷の指標に基づいて、空気調和装置110の制御を行う。しかし、空調制御システム100は、さらに、部屋Rを有する建物に使われている建材、及び、部屋Rの中に置かれている家財等への影響を考慮して設定された環境条件に基づいて空気調和装置110を制御してもよい。
部屋Rの気温及び相対湿度が適切に管理されていない場合、建材及び家財等が劣化しやすくなる。そのため、空調制御システム100は、建材及び家財等に対する悪影響を抑制するために、気温及び相対湿度が所定の範囲内に維持されるように空気調和装置110を制御してもよい。例えば、一般的に、部屋Rにおいてカビが繁殖しにくい相対湿度は、60%以下であると言われている。そこで、空調制御システム100は、図5のステップS6で取得した制御パラメータの目標値に関わらず、相対湿度が60%以下であるという環境条件が満たされるように、空気調和装置110を制御してもよい。
(4−5)変形例E
空調制御システム100は、空気調和装置110を制御するだけではなく、空気調和装置110と連動する他の機器である連動機器を制御することで、部屋Rの環境条件を調整してもよい。ここで、連動機器とは、部屋Rの環境条件である気温、放射温度、相対湿度及び風速を制御することができる機器である。連動機器は、例えば、部屋Rの気温を調整するためのヒータ・空気調和装置、部屋Rの相対湿度を調整するための加湿器・除湿機、部屋Rの放射温度を調整するための床又は壁埋め込み式ヒータ・空気調和装置、及び、部屋Rの風速を調整するためのファン・送風機である。
(4−6)変形例F
空調制御システム100では、環境条件選択部60は、人体エクセルギー消費に基づく優先順位に基づいて、複数の環境条件から、人体にかかる熱ストレス負荷が小さい環境条件を選択し、選択した環境条件に基づいて空気調和装置110を制御する。しかし、環境条件選択部60は、空気調和装置110による環境条件の実現可能性をさらに考慮して、人体にかかる熱ストレス負荷が小さい環境条件を選択してもよい。この場合、例えば、環境条件選択部60は、最初に、環境条件記憶部40に記憶された複数の環境条件の中から、空気調和装置110により実現可能な環境条件を抽出し、次に、抽出された環境条件の中から、人体にかかる熱ストレス負荷が小さい環境条件を選択する。
(4−7)変形例G
空調制御システム100では、環境条件選択部60は、人体エクセルギー消費に基づく優先順位に基づいて、複数の環境条件から、人体にかかる熱ストレス負荷が小さい環境条件を選択し、選択した環境条件に基づいて空気調和装置110を制御する。しかし、環境条件選択部60は、空気調和装置110の節電効果をさらに考慮して、人体にかかる熱ストレス負荷が小さい環境条件を選択してもよい。この場合、例えば、環境条件選択部60は、最初に、環境条件記憶部40に記憶された複数の環境条件の中から、空気調和装置110の節電効果が所定の基準を満たすような環境条件を抽出し、次に、抽出された環境条件の中から、人体にかかる熱ストレス負荷が小さい環境条件を選択する。
(4−8)変形例H
空調制御システム100では、目標値設定部20は、PMVの目標値として、在室者Pの温冷感が中立となる値である0を設定する。しかし、在室者Pが快適と感じる環境のPMVには個人差がある。そのため、目標値設定部20は、PMVの目標値として、在室者Pが設定した値又は範囲を用いてもよい。この場合、在室者Pは、リモコン120を操作して、PMVの目標値を直接入力してもよく、又は、現在の温冷感を入力してもよい。在室者Pが現在の温冷感を入力する場合、目標値設定部20、又は、リモコン120内蔵のマイクロコンピュータは、在室者Pの入力に基づいてPMVの目標値を自動で設定してもよい。この場合、リモコン120は、例えば、現在の温冷感を入力するための複数のボタンを有する。これらのボタンは、在室者Pが寒いと感じたときに押すボタン、在室者Pが暑いと感じたときに押すボタン、及び、在室者Pが暑くもなく寒くもないと感じたときに押すボタン等である。目標値設定部20、又は、リモコン120内蔵のマイクロコンピュータは、在室者Pが押したボタンに応じて、PMVの目標値を自動的に設定する。
(4−9)変形例I
空調制御システム100では、環境条件選択部60は、算出された人体エクセルギー消費に基づいて、複数の環境条件に優先順位を設定する。優先順位は、環境条件の選択の際に考慮される。しかし、環境条件選択部60は、複数の環境条件に優先順位を設定する代わりに、複数の環境条件を分類してもよい。例えば、環境条件選択部60は、複数の環境条件を、「速い環境条件」と「遅い環境条件」とに分類してもよい。「速い環境条件」とは、在室者Pの体表面からの水分蒸発・放熱・吸熱が速い環境条件である。「遅い環境条件」とは、在室者Pの体表面からの水分蒸発・放熱・吸熱が遅い環境条件である。「遅い環境条件」は、「速い環境条件」よりも、人体エクセルギー消費が低いので、人体にかかる熱ストレス負荷が小さい環境条件である。
この場合、環境条件選択部60は、「遅い環境条件」に分類された環境条件の中から、他の基準を用いて最適な環境条件を選択してもよい。例えば、環境条件選択部60は、「遅い環境条件」に分類された環境条件の中から、PMVが0に最も近い環境条件を選択してもよい。
本変形例では、制御部(空調機制御部70)は、算出部(熱負荷算出部50)が算出した人体エクセルギー消費に基づいて、複数の環境条件を、複数の群に分類し、当該群に含まれる環境条件の中から、人体エクセルギー消費以外の基準に基づいて選択された環境条件に基づいて空気調和装置を制御する。
(4−10)変形例J
空調制御システム100は、在室者Pの温冷感に関するPMVの目標値を達成するための空気調和装置110の制御だけではなく、在室者Pの熱ストレス負荷を低減する環境条件を達成するための空気調和装置110の制御も行う。しかし、空調制御システム100は、在室者Pの選択に応じて、在室者Pの温冷感に関するPMVの目標値を達成するための空気調和装置110の制御のみを行ってもよい。
この場合、例えば、在室者Pは、リモコン120を用いて、次の第1運転モード及び第2運転モードのいずれか一方を選択することができる。第1運転モードでは、在室者Pの温冷感(PMV)を所定の第1目標値にする制御のみが行われる。すなわち、第1運転モードは、在室者Pが温冷感に関して快適と感じる環境を効率的に実現するための運転モードである。そのため、冷房運転時の第1運転モードでは、部屋Rの気温が短時間で低下するような空調制御が行われる。第2運転モードでは、在室者Pの温冷感(PMV)を所定の第1目標値にする制御の他に、在室者Pの人体エクセルギー消費を所定の第2目標値まで低下させる制御が行われる。すなわち、第2運転モードは、在室者Pが温冷感に関して快適と感じる環境であって、在室者Pにかかる熱ストレス負荷が低い環境を効率的に実現するための運転モードである。そのため、冷房運転時の第2運転モードでは、部屋Rの気温が短時間で低下するような空調制御は行われず、在室者Pが長時間快適と感じることができるような穏やかな空調制御が行われる。
(4−11)変形例K
以上、空気調和装置110が冷房運転を行う場合における空調制御システム100の動作及び機能について説明した。しかし、空調制御システム100は、空気調和装置110が暖房運転を行う場合にも適用することができる。
―第2実施形態―
第1実施形態に係る空調制御システム100は、在室者Pの人体エクセルギー消費に基づいて、PMVの目標値を満たす複数の環境条件の中から、適切な環境条件を選択し、選択された環境条件が実現されるように空気調和装置110を制御する。人体エクセルギー消費に基づいて環境条件を選択する理由の一つは、在室者Pにかかる熱ストレス負荷が低い環境条件を実現するためである。人体エクセルギー消費が低いほど、在室者Pにかかる熱ストレス負荷が小さくなる傾向がある。
本実施形態に係る空調制御システム100は、運転開始後に人体エクセルギー消費を算出することなく、在室者Pにかかる熱ストレス負荷が低減される環境条件を選択することができる。この空調制御システム100は、図2に示される熱負荷算出部50を有さない。その代わりに、空調機制御部70は、所定の基準に従って環境条件を少なくとも2つ選択し、選択された環境条件が所定の順番で実現されるように、空気調和装置110を制御する。
図6は、本実施形態の空調制御システム100の制御のフローチャートである。図6は、空調制御システム100が、所定の基準に従って選択した2つの環境条件に基づいて空気調和装置110を制御する方法を示す。
空気調和装置110が起動した後、最初に、温冷感取得部10は、部屋Rの在室者Pが感じた温冷感を示す指標であるPMVの現在の値を取得する(ステップS1)。次に、目標値設定部20は、PMVの目標値を設定する(ステップS2)。次に、環境条件生成部30は、PMVの目標値を満たす複数の環境条件を生成する(ステップS3)。生成された複数の環境条件は、環境条件記憶部40に記憶される。次に、環境条件選択部60は、複数の環境条件から、2つの環境条件を選択する。2つの環境条件のうち1つは、在室者Pが快適と感じる環境条件(第1環境条件)であり、もう1つは、人体にかかる熱ストレス負荷が小さい環境条件(第2環境条件)である(ステップS4)。次に、環境条件選択部60は、第1環境条件及び第2環境条件のそれぞれについて、制御パラメータの目標値を設定する(ステップS5)。制御パラメータとは、空気調和装置110の制御の対象となるパラメータであり、具体的には、気温、放射温度、相対湿度及び風速の少なくとも一つである。次に、空調機制御部70は、現在の部屋Rの環境条件を検出して、現在の制御パラメータの値を取得する(ステップS6)。次に、空調機制御部70は、ステップS6で取得した現在の値から、ステップS5で設定した第1環境条件に基づく第1目標値に制御パラメータを移行させるための、空気調和装置110に対する制御信号を生成する(ステップS7)。次に、空調機制御部70は、ステップS7で生成された制御信号を空気調和装置110に送信して、空気調和装置110の制御(第1制御)を行う(ステップS8)。次に、空調機制御部70は、制御パラメータが第1環境条件に基づく目標値になった後、さらに、ステップS5で設定した第2環境条件に基づく第2目標値に制御パラメータを移行させるための、空気調和装置110に制御信号を生成する(ステップS9)。次に、空調機制御部70は、ステップS9で生成された制御信号を空気調和装置110に送信して、空気調和装置110の制御(第2制御)を行う(ステップS10)。
その後、空気調和装置110が運転している間に、運転を停止する信号であるOFF信号を空気調和装置110が受信した場合、空気調和装置110の運転を停止させる。一方、空気調和装置110がOFF信号を受信しない場合、所定の期間が経過した後に、ステップS1に移行する(ステップS11)。
このように、本実施形態では、空調機制御部70は、第1制御及び第2制御を含む複数の制御を所定の順番で行う。第1制御では、部屋Rの環境条件(気温、放射温度、相対湿度及び風速)が、第1環境条件に基づく第1目標値になるように空気調和装置110が制御される。第2制御では、部屋Rの環境条件が第1目標値を達成した後、部屋Rの環境条件が、第2環境条件に基づく第2目標値になるように空気調和装置110が制御される。第1制御及び第2制御は、共に、PMVの所定の目標値が満たされる制御である。
空調機制御部70は、第1制御により部屋Rの環境条件が第1目標値を達成したときの部屋Rの相対湿度よりも、第2制御により部屋Rの環境条件が第2目標値を達成したときの部屋Rの相対湿度の方が高くなるように、空気調和装置110を制御してもよい。すなわち、空調機制御部70は、後述する理由により、第1制御が完了した後、部屋Rの相対湿度を上昇させる第2制御を行ってもよい。
図7は、部屋Rの環境条件に含まれる制御パラメータである気温及び相対湿度のグラフである。グラフに含まれる各点は、気温と相対湿度との組み合わせである環境条件を表す。図7には、複数の環境条件の集まりである第1グループG1及び第2グループG2が示されている。第1グループG1に属する環境条件は、PMVが−0.1〜+0.1、かつ、人体エクセルギー消費が2.46W/m以上の条件を満たす。第2グループG2に属する環境条件は、PMVが−0.1〜+0.1、かつ、人体エクセルギー消費が2.46W/m未満の条件を満たす。第2グループG2に属する環境条件は、第1グループG1に属する環境条件よりも、人体エクセルギー消費が低いので、在室者Pにかかる熱ストレス負荷も小さい。
図7に示されるように、第2グループG2に属する環境条件の相対湿度は、第1グループG1に属する環境条件の相対湿度よりも高い。そのため、相対湿度が低い環境(例えば、相対湿度40%の環境)よりも、相対湿度が高い環境(例えば、相対湿度60%の環境)の方が、人体エクセルギー消費が低いので、在室者Pにかかる熱ストレス負荷も小さい。
従って、本実施形態では、空調機制御部70は、第1制御が完了した後、部屋Rの相対湿度を上昇させる第2制御を行うことにより、在室者Pにかかる熱ストレス負荷を低減することができる。従って、空調制御システム100は、在室者Pが長時間快適に感じることができる状態を維持できる。
また、本実施形態では、空調機制御部70は、第1制御により部屋Rの環境条件が第1目標値を達成したときの部屋Rの相対湿度よりも、第2制御により部屋Rの環境条件が第2目標値を達成したときの部屋Rの相対湿度の方が高くなり、かつ、第1制御により部屋Rの環境条件が第1目標値を達成したときの部屋Rの気温よりも、第2制御により部屋Rの環境条件が第2目標値を達成したときの部屋Rの気温の方が低くなるように、空気調和装置110を制御してもよい。すなわち、空調機制御部70は、第1制御が完了した後、部屋Rの相対湿度を上昇させ、かつ、部屋Rの気温を下降させる第2制御を行ってもよい。
図7に示されるように、第2グループG2に属する環境条件の気温は、第1グループG1に属する環境条件の気温よりも低く、かつ、第2グループG2に属する環境条件の相対湿度は、第1グループG1に属する環境条件の相対湿度よりも高い。そのため、気温が高く相対湿度が低い環境(例えば、気温25.5度かつ相対湿度40%の環境)よりも、気温が低く相対湿度が高い環境(例えば、気温25.0度かつ相対湿度60%の環境)の方が、人体エクセルギー消費が低いので、在室者Pにかかる熱ストレス負荷も小さい。
従って、本実施形態では、空調機制御部70は、第1制御が完了した後、部屋Rの気温を下降させ、かつ、部屋Rの相対湿度を上昇させる第2制御を行うことにより、在室者Pにかかる熱ストレス負荷を低減することができる。従って、空調制御システム100は、在室者Pが長時間快適に感じることができる状態を維持できる。
なお、第1実施形態の変形例D〜Kは、本実施形態にも適用可能である。本実施形態では、在室者Pにかかる熱ストレス負荷が低い環境条件を実現するための制御は、第1制御が完了した後に部屋Rの相対湿度を上昇させる第2制御に相当する。
―むすび―
以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
空調制御システムは、部屋にいる人が長時間快適に感じる状態を維持することができる。
10 温冷感取得部(取得部)
50 熱負荷算出部(算出部)
70 空調機制御部(制御部)
100 空調制御システム
110 空気調和装置
特開平5−71793号公報

Claims (9)

  1. 少なくとも冷房機能を有する空気調和装置(110)を制御するシステムであって、
    部屋にいる人が感じた温冷感を示す指標を取得する取得部(10)と、
    少なくとも前記部屋の温度及び湿度に基づいて前記人の人体エクセルギー消費を算出する算出部(50)と、
    前記取得部が取得した前記指標が第1目標値となり、かつ、前記算出部が算出した前記人体エクセルギー消費が第2目標値まで低下するように、前記空気調和装置を制御する制御部(70)と、
    を備える、空調制御システム(100)。
  2. 前記制御部は、前記空気調和装置の運転開始後に、前記第1目標値及び前記第2目標値の少なくとも一方を変更する、
    請求項1に記載の空調制御システム。
  3. 前記制御部は、最初に、前記取得部が取得した前記指標が前記第1目標値となるように前記空気調和装置を制御し、前記指標が前記第1目標値となった後に、前記算出部が算出した前記人体エクセルギー消費が前記第2目標値まで低下するように前記空気調和装置を制御する、
    請求項1又は2に記載の空調制御システム。
  4. 前記算出部は、少なくとも前記部屋の温度及び湿度を含む複数の環境条件のそれぞれに対して前記人体エクセルギー消費を算出し、
    前記制御部は、前記算出部が算出した前記人体エクセルギー消費に基づいて、前記複数の環境条件に対して優先順位を設定し、前記優先順位に従って前記空気調和装置を制御する、
    請求項1から3のいずれか1項に記載の空調制御システム。
  5. 前記制御部は、前記算出部が算出した前記人体エクセルギー消費が最も低い前記環境条件に基づいて前記空気調和装置を制御する、
    請求項4に記載の空調制御システム。
  6. 前記第1目標値は、前記人が感じた温冷感が中立となるような値である、
    請求項1から5のいずれか1項に記載の空調制御システム。
  7. 前記制御部は、さらに、前記部屋の温度及び湿度が所定の範囲内になるように前記空気調和装置を制御する、
    請求項1から6のいずれか1項に記載の空調制御システム。
  8. 前記空気調和装置は、前記部屋の環境条件を調整するための機器と連動する、
    請求項1から7のいずれか1項に記載の空調制御システム。
  9. 少なくとも冷房機能を有する空気調和装置(110)を制御するシステムであって、
    部屋にいる人が感じた温冷感を示す指標を取得する取得部(10)と、
    前記空気調和装置を制御する制御部(70)と、
    を備え、
    前記制御部は、
    前記部屋の温度及び湿度が第1目標値になるように前記空気調和装置を制御する第1制御と、
    前記部屋の温度及び湿度が第1目標値になった後、前記部屋の温度及び湿度が第2目標値になるように前記空気調和装置を制御する第2制御と、
    を行い、
    前記第1制御によって前記取得部が取得した前記指標が所定の目標値になったときの前記部屋の湿度よりも、前記第2制御によって前記取得部が取得した前記指標が所定の目標値になったときの前記部屋の湿度が高くなるように前記空気調和装置を制御する、
    空調制御システム(100)。
JP2018169847A 2018-09-11 2018-09-11 空調制御システム Active JP7219392B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018169847A JP7219392B2 (ja) 2018-09-11 2018-09-11 空調制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018169847A JP7219392B2 (ja) 2018-09-11 2018-09-11 空調制御システム

Publications (3)

Publication Number Publication Date
JP2020041755A true JP2020041755A (ja) 2020-03-19
JP2020041755A5 JP2020041755A5 (ja) 2021-10-21
JP7219392B2 JP7219392B2 (ja) 2023-02-08

Family

ID=69799277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018169847A Active JP7219392B2 (ja) 2018-09-11 2018-09-11 空調制御システム

Country Status (1)

Country Link
JP (1) JP7219392B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112361561A (zh) * 2020-10-27 2021-02-12 珠海格力电器股份有限公司 一种空调送风控制方法和装置及空调设备
JP7141002B1 (ja) 2021-07-19 2022-09-22 ダイキン工業株式会社 空気調和装置、および制御システム
CN115096033A (zh) * 2022-08-24 2022-09-23 国网山东省电力公司东营供电公司 基于体温变化的制冷策略生成方法、系统、终端及介质
WO2023002760A1 (ja) * 2021-07-19 2023-01-26 ダイキン工業株式会社 空気調和装置、および制御システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127639A (ja) * 2003-10-24 2005-05-19 Daikin Ind Ltd 空気調和装置
JP2007285579A (ja) * 2006-04-14 2007-11-01 Toshiba Corp 空調制御装置
WO2014174871A1 (ja) * 2013-04-22 2014-10-30 三菱電機株式会社 空調制御システム及び空調制御方法
JP2019147507A (ja) * 2018-02-28 2019-09-05 マツダ株式会社 車室構造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127639A (ja) * 2003-10-24 2005-05-19 Daikin Ind Ltd 空気調和装置
JP2007285579A (ja) * 2006-04-14 2007-11-01 Toshiba Corp 空調制御装置
WO2014174871A1 (ja) * 2013-04-22 2014-10-30 三菱電機株式会社 空調制御システム及び空調制御方法
JP2019147507A (ja) * 2018-02-28 2019-09-05 マツダ株式会社 車室構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
斉藤雅也: "人体のエクセルギー収支と温冷感", 日本建築学会計画系論文集, vol. 第534号, JPN6022033590, JP, pages 17 - 23, ISSN: 0004849227 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112361561A (zh) * 2020-10-27 2021-02-12 珠海格力电器股份有限公司 一种空调送风控制方法和装置及空调设备
CN112361561B (zh) * 2020-10-27 2021-08-24 珠海格力电器股份有限公司 一种空调送风控制方法和装置及空调设备
JP7141002B1 (ja) 2021-07-19 2022-09-22 ダイキン工業株式会社 空気調和装置、および制御システム
WO2023002760A1 (ja) * 2021-07-19 2023-01-26 ダイキン工業株式会社 空気調和装置、および制御システム
WO2023002958A1 (ja) 2021-07-19 2023-01-26 ダイキン工業株式会社 空気調和装置、および制御システム
WO2023002749A1 (ja) * 2021-07-19 2023-01-26 ダイキン工業株式会社 空気調和装置、および制御システム
JP2023014816A (ja) * 2021-07-19 2023-01-31 ダイキン工業株式会社 空気調和装置、および制御システム
JP2023015014A (ja) * 2021-07-19 2023-01-31 ダイキン工業株式会社 空気調和装置、および制御システム
CN115096033A (zh) * 2022-08-24 2022-09-23 国网山东省电力公司东营供电公司 基于体温变化的制冷策略生成方法、系统、终端及介质

Also Published As

Publication number Publication date
JP7219392B2 (ja) 2023-02-08

Similar Documents

Publication Publication Date Title
JP7219392B2 (ja) 空調制御システム
JP5132334B2 (ja) 空調制御装置およびこれを用いた空調制御システム
KR101162582B1 (ko) 습도 추정 장치 및 습도 추정 방법
JP2007285579A (ja) 空調制御装置
JP2016057057A (ja) エネルギー管理システム
KR101110216B1 (ko) 공기조화기 및 그 pmv쾌적 제어를 통한 에너지 최적화 관리방법
JP2018066555A (ja) 睡眠環境制御システムおよび方法
JP2011190972A (ja) 空調制御システム
JP2018091573A (ja) 空調機器制御装置
KR102369914B1 (ko) 겉보기 온도 기반 자동 전환 온도 조절기 시스템, 및 공조 공간의 겉보기 온도 결정과 겉보기 온도 자동 제어 방법
JP2010210200A (ja) 空気調和機
JP6998558B2 (ja) 空調制御方法及び空調制御システム
JP2009264608A (ja) 空気調和機
CN106642550A (zh) 一种空调的控制方法
JP2016008782A (ja) 空調システムおよび空調制御方法
JPH09217953A (ja) 空調制御装置
JP7460876B2 (ja) 空調システム
CN108317691B (zh) 基于性别补偿的温冷感空调器控制方法和空调器
CN106679073A (zh) 变频空调器控制方法
CN106679069A (zh) 一种空调控制方法
CN111322263B (zh) 风扇及风扇的控制方法、装置
JP2006112680A (ja) 空気調和方法および空気調和装置
JP2004020164A (ja) 空気調和機及び空気調和システム
JP5284528B2 (ja) 空調制御装置、空調システム、空調制御方法、空調制御用プログラム
JPH0861751A (ja) 空調制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230109

R151 Written notification of patent or utility model registration

Ref document number: 7219392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151