WO2017170039A1 - 熱モデル作成装置、方法およびプログラム - Google Patents

熱モデル作成装置、方法およびプログラム Download PDF

Info

Publication number
WO2017170039A1
WO2017170039A1 PCT/JP2017/011451 JP2017011451W WO2017170039A1 WO 2017170039 A1 WO2017170039 A1 WO 2017170039A1 JP 2017011451 W JP2017011451 W JP 2017011451W WO 2017170039 A1 WO2017170039 A1 WO 2017170039A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
thermal model
constraint condition
parameter
model creation
Prior art date
Application number
PCT/JP2017/011451
Other languages
English (en)
French (fr)
Inventor
卓磨 向後
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US16/072,564 priority Critical patent/US11328099B2/en
Priority to JP2018509122A priority patent/JPWO2017170039A1/ja
Publication of WO2017170039A1 publication Critical patent/WO2017170039A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Definitions

  • the present invention relates to a thermal model creation device, a thermal model creation method, and a thermal model creation program for creating a thermal model representing a temperature change in a zone defined by air conditioning zoning.
  • the floor of an office building or the like is divided into a plurality of zones by air conditioning zoning at the time of building design, for example.
  • an operator who works on the floor of a building sets the set temperature of the air conditioning system to a desired temperature.
  • the temperature of the zone where the worker is located does not reach the temperature desired by the worker. This is because the actual temperature is determined not only by the set temperature of the air conditioning system but also by various factors such as influence from surrounding zones.
  • Patent Document 1 describes that an air conditioning heat load model is used to calculate the heat load of the entire building at each time and create a time unit heat load generation model.
  • Patent Document 2 describes a BIM data supply system including a BIM (Building Information Modeling) server and a client.
  • BIM Building Information Modeling
  • the inventor of the present invention thought that if the temperature change of a zone can be expressed by one or more mathematical formulas including explanatory variables and parameters, the temperature of the zone in the future can be predicted. Furthermore, the inventor of the present invention thought that the temperature of the zone can be controlled to a desired temperature by controlling the value of the explanatory variable representing the controllable event among the explanatory variables. For this purpose, it is necessary to create one or more mathematical expressions (hereinafter referred to as a thermal model).
  • the thermal model includes a number of parameters.
  • parameters include a parameter specific to a zone and a parameter corresponding to a combination of zones.
  • An example of a parameter specific to the zone is a parameter related to heat transfer due to a temperature gradient between the zone and the outside air. The value of the parameter specific to such a zone needs to be determined for each zone.
  • An example of a parameter corresponding to a combination of zones is a parameter related to heat transfer due to a temperature gradient between zones. A parameter corresponding to such a combination of zones needs to be determined for each combination of zones.
  • the greater the number of zones the greater the number of parameters whose values must be determined.
  • creating a thermal model is determining the values of all these parameters.
  • parameter values in a thermal model are determined by a technique such as parameter estimation, if the number of parameters is very large, combinations of parameter values that cancel each other out are derived at the time of parameter estimation. . As a result, the accuracy of the thermal model decreases.
  • an object of the present invention is to provide a thermal model creation device, a thermal model creation method, and a thermal model creation program capable of creating a highly accurate thermal model.
  • a thermal model creation apparatus is a thermal model creation apparatus that creates a thermal model that represents a temperature change of a zone by a mathematical expression including explanatory variables and parameters, and is a constraint that sets a constraint condition for parameters in the thermal model. It is characterized by comprising condition setting means and parameter determination means for determining all values of unknown parameters in the thermal model under the constraint conditions.
  • the thermal model creation method is a thermal model creation method for creating a thermal model that represents a change in the temperature of a zone using mathematical formulas including explanatory variables and parameters, and sets parameter constraint conditions in the thermal model. Then, all the unknown parameter values in the thermal model are determined under the constraint conditions.
  • a thermal model creation program is a thermal model creation program installed in a computer that creates a thermal model that represents a temperature change of a zone by a mathematical expression including explanatory variables and parameters.
  • a highly accurate thermal model can be created.
  • a zone is an individual area obtained by dividing a floor by air conditioning zoning.
  • the air conditioning zoning is performed by a designer at the time of designing a building, for example.
  • FIG. 1 is a schematic diagram illustrating an example of a plurality of zones defined by air conditioning zoning.
  • FIG. 1 illustrates 15 zones. In the following description, each zone shown in FIG. 1 is identified by reference numerals 1 to 15.
  • the two adjacent zones may be separated by a structure (specifically, a wall) that blocks the flow of air, or the two adjacent zones may not be separated by a wall.
  • a boundary where a wall exists is indicated by a solid line
  • a boundary where no wall exists is indicated by a broken line.
  • partitions do not correspond to walls because they do not block airflow between zones.
  • a door 51 is provided in a zone surrounded by walls (zones 6, 10, 11, and 15 in the example shown in FIG. 1).
  • a zone whose temperature is easily affected by outside air temperature or solar radiation is called a perimeter zone.
  • a zone other than the perimeter zone is called a non-perimeter zone.
  • a designer determines whether an individual zone is a perimeter zone or a non-perimeter zone when designing a building.
  • the temperature of a zone in which a glass window is provided between the outside air is easily affected by outside air temperature, solar radiation, and the like. Therefore, the zone is determined as a perimeter zone.
  • the perimeta zone is represented by diagonal lines
  • the non-perimeta zone is represented by white.
  • a zone that can be a perimeter zone is a zone along the outer wall of the building.
  • FIG. 1 illustrates a case where each zone is a quadrangle and the area of each zone is equal, but the shape and area of each zone may be different for each zone. Further, the number of zones is not particularly limited.
  • FIG. 2 is a schematic diagram showing an example of an air conditioner and a variable air volume control device.
  • the air conditioner is referred to as AHU (Air Handling Unit).
  • the variable air volume control device is referred to as VAV (Variable Air Volume).
  • a plurality of VAVs 62 are connected to the AHU 61.
  • Each VAV 62 has a one-to-one correspondence with each zone.
  • the VAVs 62 are represented by symbols with suffixes such as “62a” and “62b”.
  • the number of VAVs 62 connected to the AHU 61 is not particularly limited.
  • each VAV 62 and each zone correspond to each other on a one-to-one basis.
  • each VAV 62 and each zone may not correspond to each other on a one-to-one basis.
  • a certain VAV 62 can supply air to a plurality of zones.
  • the AHU 61 supplies air of the set temperature to the zone via the VAV 62.
  • VAV 62a corresponds to zone 1
  • VAV 62b corresponds to zone 2.
  • the AHU 61 supplies air having a set temperature to the zone 1 through the VAV 62a and supplies it to the zone 2 through the VAV 62b.
  • the supply air temperature for each zone depends on the AHU 61 supplying air to the VAV 62 corresponding to that zone. That is, when one AHU 61 supplies air to a plurality of zones, the supply air temperature for the plurality of zones is common. Therefore, in the above example, the supply air temperatures for the zones 1 and 2 are common. Further, the supply air temperature of the AHU 61 can be controlled.
  • the VAV 62 is supplied with air from the AHU 61 and supplies the air to the corresponding zone.
  • the VAV 62 is a device that adjusts the air volume when supplying air to the corresponding zone.
  • the air volume can be controlled, and the VAV 62 supplies air to the corresponding zone with the set air volume.
  • the VAV 62 includes an outlet 63 for supplying air to the corresponding zone.
  • the air outlet 63 of the VAV 62 is provided in a zone corresponding to the VAV 62.
  • the number of the air outlets 63 included in the VAV 62 may be different for each VAV 62.
  • FIG. 2 illustrates a case where the VAV 62 a includes one outlet 63 and the VAV 62 b includes two outlets 63.
  • the amount of air supplied when one VAV 62 supplies air to the zone is the sum of the amount of air supplied from each outlet 63 provided in the VAV 62. Therefore, the amount of air when one VAV 62 supplies air to the zone does not depend on the number of outlets 63 provided in the VAV 62.
  • one AHU 61 is shown, but a plurality of AHUs 61 may be provided.
  • the first AHU 61 may supply air to the zones 1, 2, etc. at the temperature T 1
  • the second AHU 61 may supply air to the zones 6, 7, etc. at the temperature T 2 .
  • the thermal model creation device of the present invention creates a thermal model in which the temperature change of the zone is expressed by a mathematical expression including explanatory variables and parameters.
  • a thermal model is one or more mathematical expressions that represent temperature changes in each zone.
  • the temperature change is expressed for each zone in the form of the following expression (1), and the case where the thermal model is a set of expressions of the form of the expression (1) corresponding to each zone will be described as an example. To do.
  • the expression mode of the thermal model is not limited to this example.
  • i and j are variables indicating zone identification numbers.
  • zone i the zone specified by the identification number i
  • zone j the zone of interest
  • the thermal model creation device of the present embodiment creates a thermal model constituted by 15 mathematical expressions represented in the form of the formula (1). Each of these 15 mathematical expressions represents a temperature change of the corresponding zone.
  • the thermal model creation device of the present invention sets a constraint condition for a parameter in the thermal model, and determines a parameter value in the thermal model by parameter estimation (for example, least square method) under the constraint condition. .
  • Equation (1) T i (t), T j (t), Q ac i (t), T ac i (t), T oa (t), I (t), O j (t), E j (t) is an explanatory variable, respectively.
  • T i (t) is the temperature of zone i at time t. Therefore, the temperature at the time t in the zone j of interest is represented as T j (t).
  • Q ac i (t) is the air volume of air supplied to zone i by VAV 62 corresponding to zone i at time t.
  • T ac i (t) is the temperature of air supplied from the AHU 61 connected to the VAV 62 corresponding to the zone i to the zone i via the VAV 62 at the time t.
  • T oa (t) is the outside air temperature at time t.
  • I (t) is the amount of solar radiation at time t.
  • O j (t) is the number of people present in zone j at time t.
  • E j (t) is the power consumption of the electrical equipment existing in zone j at time t.
  • T oa (t) and I (t) are zone independent.
  • Equation (1) The parameters included in Equation (1) will be described.
  • c ac i, j , c z i, j , c oa j , c sr j , c hh , and c dh are parameters. These parameters can also be referred to as coefficients.
  • c ac i, j is a parameter related to heat transfer to zone j by air flowing from zone i.
  • c z i, j is a parameter related to heat transfer due to a temperature gradient between zone i and zone j.
  • c oa i is a parameter related to heat transfer by a temperature gradient between the zone i and the outside air. Therefore, a parameter related to heat transfer due to a temperature gradient between the zone j and the outside air of interest is expressed as c oa j .
  • c sr i is a parameter related to the thermal effects of solar radiation for the zone i. Therefore, the parameter relating to the thermal action of solar radiation for the zone j of interest is expressed as c sr j .
  • chh is a parameter relating to the thermal action of the heat generated from the human body to room temperature.
  • c dh is a parameter related to the thermal action of the heat generated from the electrical equipment to room temperature.
  • Equation (1) is the amount of change in temperature (differential value of the temperature) of the zone j of interest.
  • the zone temperature means the room temperature in the zone.
  • Equation (1) represents heat transfer from the supply air to the other zone to the zone j of interest.
  • Equation (1) The second term on the right side of Equation (1) represents heat transfer between the zone j of interest and another zone.
  • Equation (1) The third term on the right side of Equation (1) represents heat transfer between the zone j of interest and the outside air.
  • Equation (1) represents the thermal effect of solar radiation on the zone j of interest.
  • Equation (1) represents the heat dissipation from the human body for the zone j of interest.
  • Equation (1) represents heat dissipation from the electrical equipment for the zone j of interest.
  • FIG. 3 is a block diagram showing a configuration example of the thermal model creation device of the present invention.
  • the thermal model creation device 20 of the present invention includes information acquisition means 21, constraint condition setting means 22, and thermal model creation means 23.
  • the information acquisition unit 21 accesses an external system that holds information (for example, BIM (Building Information Modeling)) of a building having a floor for which a thermal model is to be created, and acquires information shown below.
  • Information acquired by the information acquisition unit 21 from the external system includes information indicating the adjacent relationship between the zones, information indicating whether each zone is a peri-meta zone or a non-peri-meta zone, It includes information indicating whether or not the zone has a door and information on characteristic values of the structure when the structure is provided on the outer periphery of the zone.
  • the information indicating the adjacent relationship between the zones is specifically information indicating a set of zones adjacent to each other and a set of zones not adjacent to each other.
  • FIG. 4 is a schematic diagram illustrating an example of information indicating the adjacent relationship between zones.
  • FIG. 4 shows the adjacency relationship between the zones shown in FIG. 1, but is partially omitted.
  • each number shown in the top row and each number shown in the leftmost column are identification numbers of individual zones.
  • one row and one column represent a combination of two zone identification numbers.
  • “1” or “0” is described as information indicating whether or not the two zones are adjacent to each other.
  • “1” means that two zones are adjacent.
  • “0” means that the two zones are not adjacent.
  • “1” is described at the intersection of the column of identification number “1” and the row of identification number “2”. This indicates that the zones 1 and 2 are adjacent to each other (see FIGS. 1 and 4).
  • “0” is described at the intersection of the column of the identification number “4” and the row of the identification number “1”. This indicates that the zones 1 and 4 are not adjacent zones (see FIGS. 1 and 4).
  • zone 1 is considered to be adjacent to zone 1.
  • the format based on the adjacency matrix is shown as the format representing the adjacency relationship between the zones, but the format representing the adjacency relationship between the zones is not particularly limited.
  • the format representing the adjacency relationship between zones may be a format based on the adjacency list.
  • FIG. 5 shows an example of information indicating whether each zone is a perimeter zone or a non-perimeter zone, and information indicating whether each zone corresponds to a “zone surrounded by a wall and having a door”. It is a schematic diagram shown. FIG. 5 corresponds to FIG. 1 but is partially omitted.
  • each number shown in the leftmost column is an identification number of each zone.
  • “1” or “0” is described as a value indicating whether each zone is a perimeta zone or a non-perimeta zone. “1” means that it is a perimetazone, and “0” means that it is a non-perimetazone.
  • zones 5, 10, 11, 12 and the like are perimeta zones, and zones 1 to 4 and zones 6 to 9 are non-perimeta zones (see FIGS. 1 and 5).
  • the third column from the left describes “1” or “0” as a value indicating whether each zone corresponds to a “zone surrounded by a wall and having a door”. Yes. “1” means “a zone surrounded by walls and having doors”, and “0” means “a zone surrounded by walls and having doors” is not applicable.
  • zones 6, 10, 11 etc. correspond to “zones surrounded by walls and have doors”, and zones 1-5, zones 7-9, zone 12 etc. are “walled and doors”. It represents that it does not correspond to a "zone having" (see FIGS. 1 and 5). Note that zone 1 shown in FIG. 1 does not correspond to a “zone surrounded by a wall and having a door” because no wall is provided at the boundary with zone 2 and no door is provided. The same applies to zone 5.
  • the information acquisition means 21 acquires information indicating from which zone the door is provided in the “zone surrounded by the wall and having the door” from the external system. For example, the information acquisition unit 21 also acquires information indicating that the door is provided at the boundary with the zone 7 in the zone 6 illustrated in FIG. 1. The information acquisition unit 21 acquires similar information regarding the zones 10, 11, and 15. Note that these pieces of information are omitted in FIG.
  • characteristic values of the structure provided on the outer periphery of the zone include the thickness, thermal conductivity, area, and the like of the wall and glass provided on the outer periphery of the zone. More specific examples include the thickness, thermal conductivity, area, and the like of a wall or glass provided between the perimeter zone and the outside air.
  • the information acquisition means 21 may directly acquire the above information from the external system. Or the information acquisition means 21 may acquire said information by processing the information which the external system hold
  • the thermal model creation device 20 may include an input interface (for example, an input device, not shown) for the operator of the thermal model creation device 20 to input information instead of the information acquisition unit 21. . Then, the operator may create the above information and input the above information to the thermal model creation device 20 via the input interface.
  • an input interface for example, an input device, not shown
  • Constraint condition setting means 22 sets a parameter constraint condition in the thermal model.
  • the constraint condition setting means 22 sets the parameter constraint conditions in the thermal model according to the information acquired by the information acquisition means 21.
  • Constraint mode setting modes include, for example, a mode in which a specific parameter is set to a fixed value, a mode in which the magnitude relationship between parameter values is specified, and the like, but the mode of setting a constraint condition is not limited to these. Details of the operation in which the constraint condition setting unit 22 sets the parameter constraint condition according to the information acquired by the information acquisition unit 21 will be described later.
  • the thermal model creation unit 23 determines a thermal model by determining all parameter values in the thermal model under the constraint conditions set by the constraint condition setting unit 22.
  • the actual value of each explanatory variable included in Equation (1) is input to the thermal model creation means 23 from the operator of the thermal model creation device 20.
  • the actual value includes the actual value of the zone temperature (T i (t)).
  • the thermal model creation means 23 obtains the actual value of the temperature change amount by calculating the difference between the actual values of the zone temperature (T i (t)) at a constant time interval (for example, every 15 minutes). This amount of change in temperature corresponds to the left side of equation (1).
  • the thermal model creation means 23 performs parameter estimation (for example, the least square method) based on the actual value of each explanatory variable for each time and the actual value of the temperature change amount, thereby making it possible to identify unknowns in the thermal model. Determine all parameter values. The fact that the values of all parameters in equation (1) are determined means that a thermal model has been created. If the value of the explanatory variable at a future time is substituted into this thermal model, the amount of change in the temperature of the zone from that time can be calculated.
  • the information acquisition unit 21, the constraint condition setting unit 22, and the thermal model creation unit 23 are realized by a CPU of a computer that operates according to a thermal model creation program, for example.
  • the CPU reads a thermal model creation program from a program recording medium such as a program storage device (not shown) of the computer, and in accordance with the program, the information acquisition means 21, the constraint condition setting means 22 and the thermal model creation means 23 are read. As long as it operates.
  • FIG. 6 and 7 are flow charts showing an example of processing progress of the thermal model creation device of the present invention.
  • the information acquisition unit 21 receives information indicating an adjacent relationship between zones from an external system, information indicating whether each zone is a perimeta zone or a non-perimeta zone, Information indicating whether or not it corresponds to a zone having “,” and information on the characteristic value of the structure provided between the perimeter zone and the outside air (step S1).
  • the information acquisition unit 21 acquires information illustrated in FIG. 4 as information indicating the adjacent relationship between zones.
  • the information acquisition unit 21 corresponds to information indicating whether each zone is a perimeter zone or a non-perimeter zone, and whether each zone corresponds to a “zone surrounded by a wall and having a door”.
  • information illustrated in FIG. 5 is acquired.
  • the information acquisition unit 21 also acquires information indicating in which zone the door is provided in the “zone surrounded by a wall and having a door”.
  • the information acquisition unit 21 uses, for example, the thickness and thermal conductivity of the wall or glass provided between the perimeter zone and the outside air as information on the characteristic value of the structure provided between the perimeter zone and the outside air. Get the area, etc.
  • step S1 the information acquisition means 21 may extract the above information by processing the information held by the external system.
  • the information acquisition unit 21 sends the information acquired in step S1 to the constraint condition setting unit 22.
  • Constraint condition setting means 22 sets various constraint conditions of parameters in steps S2 to S7 described later based on the information.
  • Constraint condition setting means 22 sets the value of the parameter related to heat transfer due to the temperature gradient between the two zones to a fixed value when the two zones are not adjacent (step S2).
  • the constraint condition setting means 22 may adopt, for example, “0” as the fixed value in step S2.
  • step S2 adopting “0” as a fixed value means that the heat transfer coefficient between two non-adjacent zones is regarded as zero.
  • Constraint condition setting means 22 may identify each set of two zones that are not adjacent based on information indicating the adjacent relationship between the zones (for example, information illustrated in FIG. 4).
  • the constraint condition setting means 22 sets the parameter value relating to the thermal action of solar radiation to the non-perimeta zone to a fixed value (step S3).
  • the constraint condition setting means 22 may adopt, for example, “0” as the fixed value in step S3.
  • Constraint condition setting means 22 may identify each zone corresponding to a non-perimeta zone based on information (for example, information illustrated in FIG. 5) indicating whether each zone is a perimeta zone or a non-perimeta zone. This also applies to step S4 described later.
  • the constraint condition setting means 22 determines the value of the parameter relating to heat transfer due to the temperature gradient between the non-perimeta zone and the outside air as a fixed value (step S4).
  • the constraint condition setting means 22 may adopt, for example, “0” as the fixed value in step S4.
  • step S3 and step S4 are processes for setting the value of a predetermined parameter of the non-perimeta zone to a fixed value.
  • the constraint condition setting means 22 sets an upper limit value and a lower limit value of parameters related to heat transfer due to a temperature gradient between the perimeter zone and the outside air according to the characteristic value of the structure provided between the perimeter zone and the outside air. Is determined (step S5).
  • the zone 13 shown in FIG. 1 is a perimeter zone.
  • the upper limit value and the lower limit value of the parameters related to heat transfer due to the temperature gradient with the outside air in the zone 13 are denoted as c oa_upper 13 and c oa_lower 13 , respectively.
  • the constraint condition setting means 22 calculates c oa_upper 13 and c oa_lower 13 using the thickness, thermal conductivity, and area of a structure (for example, a wall, glass, etc.) provided between the zone 13 and the outside air. do it. This calculation method may be a known calculation method.
  • c oa_lower 13 0.
  • the constraint condition setting means 22 defines a constraint condition of 0 ⁇ c oa 13 ⁇ c oa_upper 13 .
  • the constraint condition setting unit 22 performs the same processing for each zone corresponding to the perimeter zone.
  • Constraint condition setting means 22 may identify each zone corresponding to a perimeter zone based on information (for example, information illustrated in FIG. 5) indicating whether each zone is a perimeter zone or a non-perimeter zone.
  • the constraint setting means 22 determines that the value of the parameter related to heat transfer due to the temperature gradient between two adjacent zones that are not separated by a wall is the temperature between two adjacent zones that are separated by a wall.
  • a constraint condition that the value is equal to or greater than a parameter value related to heat transfer by the gradient is determined (step S6).
  • the constraint condition setting means 22 defines a constraint condition of c z 6,7 ⁇ c z 7,8 .
  • the constraint condition setting unit 22 performs the same process for each combination of two adjacent zones separated by a wall and two adjacent zones not separated by a wall.
  • the constraint condition setting means 22 includes information indicating the adjacency relationship between the zones, each of two adjacent zones separated by a wall and two adjacent zones not separated by a wall (for example, illustrated in FIG. 4). Information) and information indicating whether each zone corresponds to “a zone surrounded by walls and having a door” (for example, information illustrated in FIG. 5).
  • step S6 a constraint condition is established that the heat transfer coefficient between two zones between which no wall exists is equal to or higher than the heat transfer coefficient between two zones between which there is a wall.
  • the constraint condition setting means 22 sets the parameter related to heat transfer by the temperature gradient of two adjacent zones separated by the wall including the door, depending on whether the door is open or closed. Expressed using explanatory variables that take one of the values. Further, the constraint condition setting means 22 defines a constraint condition that the value of the parameter when the door is open is equal to or greater than the value of the parameter when the door is closed (step S7).
  • the constraint condition setting means 22 is based on the information indicating which zone the door is provided in the “zone surrounded by the wall and having the door” and is separated by two walls having the door. Identify adjacent zones.
  • the value of the parameter c z p, q relating to the heat transfer due to the temperature gradient between the zone p and the zone q varies depending on whether the door between the zone p and the zone q is open or closed.
  • the parameter when the door is open is denoted as c z — open p, q .
  • the parameter when the door is in the closed state is denoted as c z_close p, q .
  • the constraint condition setting means 22 uses a parameter c z p, q related to heat transfer due to a temperature gradient between adjacent zones p and q using the above-described explanatory variables b d p, q ( 2). Equation (2) is a constraint condition.
  • c z p, q is expressed by a binary explanatory variable b d p, q and two parameters c z_open p, q and c z_close p, q .
  • the constraint condition setting means 22 defines a constraint condition such that c z_open p, q ⁇ c z_close p, q .
  • This constraint means that the heat transfer coefficient when the door is open is greater than or equal to the heat transfer coefficient when the door is closed.
  • zone 6 and zone 7 shown in FIG. 1 are separated by a wall having a door.
  • the parameter for heat transfer between the two zones 6 and 7 is c z 6 and 7 .
  • the constraint condition of 6 and 7 is defined.
  • Constraint condition setting means 22 performs the same processing for each two adjacent zones separated by a wall having a door.
  • the thermal model creating means 23 creates a thermal model by determining all the unknown parameter values in the thermal model under the constraints defined in steps S2 to S7 (step S8). .
  • the actual value for each explanatory variable included in Equation (1) is input to the thermal model creation means 23 from the operator of the thermal model creation device 20.
  • the actual value of binary explanatory variables b d p, q representing the state (open state or closed state) of each door at each time is also input to the thermal model creation means 23 by the operator.
  • the binary explanatory variables b d p, q may be unknown parameters without inputting actual values. That is, the actual values of the individual door states (open state or closed state) at each time may not be input, but may be treated as unknown parameters and the values of b d p, q may be determined.
  • the timing at which these actual values are input is not particularly limited as long as it is before execution of step S8.
  • the thermal model creating means 23 calculates the actual value of the change in temperature for each zone by calculating the difference between the actual values of the temperature (T i (t)) of the zone at regular time intervals (for example, every 15 minutes). Ask.
  • the thermal model creating means 23 performs parameter estimation by, for example, the least square method based on the input actual value of each explanatory variable for each time and the actual value of the amount of change in temperature. Determine all unknown parameter values. As a result, a thermal model is obtained.
  • the constraint condition setting means 22 sets the parameter constraint conditions in the thermal model. Then, the thermal model creation means 23 determines the value of an unknown parameter in the thermal model under the constraint condition. Since the unknown parameter value is determined under the constraint condition, it is possible to prevent a combination of parameter values that are mutually offset. As a result, the thermal model creation device 20 can create a highly accurate thermal model.
  • steps S2 to S4 the values of some parameters are set to fixed values.
  • the number of parameters whose values are unknown can be reduced, and it is possible to prevent the combination of parameter values that cancel each other out.
  • the number of parameters for example, c z ij
  • step 2 some of them can be set to fixed values, and parameters whose values are unknown. The number can be greatly reduced.
  • steps S2 to S7 is not particularly limited.
  • the constraint condition setting means 22 may execute only a part of steps S2 to S7 as a process for setting a constraint condition.
  • the constraint condition setting unit 22 may execute only one of the steps S2 to S7.
  • the constraint condition setting unit 22 may execute only any two steps of steps S2 to S7.
  • the constraint condition setting means 22 may execute only any three steps of steps S2 to S7.
  • the constraint condition setting means 22 may execute only any four steps of steps S2 to S7.
  • the constraint condition setting means 22 may execute only any one of the steps S2 to S7.
  • the temperature of each zone in the future can be predicted by the thermal model obtained as described above.
  • Expression (3) shown below is an example of a prediction expression for obtaining a predicted value of the temperature of zone j in the future.
  • the first term (T j (t)) on the right side of Equation (3) is the temperature of zone j at time t.
  • T j (t) is given as an initial value.
  • ⁇ t on the right side of Equation (3) represents a certain time. Therefore, by substituting the value of the explanatory variable at a desired future time into the equation (3), the temperature T j (t + ⁇ t) after a certain time of the zone j can be calculated. Further, by using the temperature as the initial value T j (t), the temperature of the future zone j can be calculated sequentially. That is, a predicted value of the temperature of the future zone j can be obtained.
  • predicted value obtained by the weather forecast for example as the value of the explanatory variables T oa (t) and I (t) at the future time.
  • predicted values may be used for the values of O j (t) and E j (t) at a future time.
  • Q ac i (t) and T ac i (t) are explanatory variables representing controllable events. Therefore, a desired value may be used as Q ac i (t) and T ac i (t) at a future time.
  • the values of Q ac i (t) and T ac i (t) at the future time can be obtained. Therefore, by controlling Q ac i (t) and T ac i (t) at each future time to the values, the temperature of zone j at the future time can be set to a desired temperature.
  • the air conditioning energy of the building can be made efficient by performing air conditioning control based on the thermal model created by the thermal model creation device 20 and the air conditioning equipment model. As a result, a large energy saving effect can be obtained.
  • the present invention does not depend on the configuration of the air conditioning system.
  • the present invention can also be applied when the air conditioning system is a packaged air conditioner. This is because the package type air conditioner can simultaneously control the supply air temperature and the supply air volume, and one package type air conditioner can be handled equivalently to the AHU 61 and the VAV 62.
  • the formula (1) has been described as an example of the formula indicating the temperature change for each zone.
  • the format of the formula indicating the temperature change for each zone is not limited to the formula (1).
  • the formula showing the temperature change for each zone represents the temperature change of the zone, and has at least zone temperature, supply air temperature, supply air volume, outside air temperature, solar radiation amount and internal heat load as explanatory variables, and at least between zones Any mathematical model may be used as long as it represents the heat transfer between the supply air and the zone, the heat transfer between the outside air and the zone, the heat action by solar radiation, and the heat action by the internal heat load.
  • the present invention can be applied to a mathematical model in which an explanatory variable such as an average temperature of the zone walls, floors, and ceilings is introduced into Equation (1) and a term related to heat transfer with the zone temperature due to a temperature gradient is added. is there.
  • FIG. 8 is a block diagram showing an outline of the thermal model creation device of the present invention.
  • the thermal model creation device of the present invention includes a constraint condition setting unit 72 and a parameter determination unit 73.
  • Constraint condition setting means 72 sets the parameter constraint conditions in the thermal model.
  • the parameter determining means 73 determines all the unknown parameter values in the thermal model under the constraint conditions.
  • a thermal model creation device for creating a thermal model that represents a temperature change of a zone by a mathematical expression including explanatory variables and parameters, A constraint condition setting means for setting a constraint condition of parameters in the thermal model;
  • a thermal model creation device comprising: parameter determination means for determining all values of unknown parameters in the thermal model under the constraint condition.
  • the constraint condition setting means sets a constraint condition including one or both of one or more inequalities representing a range that one or more unknown parameters can take and one or more relational expressions related to one or more unknown parameters.
  • the thermal model creation device according to attachment 1.
  • the constraint condition setting means The thermal model creation device according to Supplementary Note 1 or Supplementary Note 2, wherein a value of a parameter relating to heat transfer between the two zones is set to a fixed value when the two zones are not adjacent to each other.
  • the constraint condition setting means The thermal model creation device according to any one of supplementary notes 1 to 3, wherein a value of a predetermined parameter of the non-perimeta zone is set to a fixed value.
  • the constraint condition setting means The thermal model creation device according to any one of appendix 1 to appendix 4, wherein the parameter value relating to the thermal action of solar radiation on the non-perimeta zone is set to a fixed value.
  • the constraint condition setting means The thermal model creation device according to any one of appendix 1 to appendix 5, wherein a value of a parameter related to heat transfer between the non-perimeta zone and the outside air is set to a fixed value.
  • the constraint condition setting means The upper limit value and the lower limit value of a parameter relating to heat transfer between the perimeter zone and the outside air are determined according to the characteristics of the structure provided between the perimeter zone and the outside air. Thermal model creation device.
  • the constraint condition setting means Define a constraint that the value of the parameter for heat transfer between two adjacent zones not separated by a wall is greater than or equal to the value of the parameter for heat transfer between two adjacent zones separated by a wall.
  • the constraint condition setting means Using an explanatory variable that takes one of two values for the parameter for heat transfer between two adjacent zones separated by the wall containing the door, depending on whether the door is open or closed
  • the thermal model according to any one of appendix 1 to appendix 8, wherein the thermal model represents a constraint condition that the value of the parameter when the door is open is greater than or equal to the value of the parameter when the door is closed Creation device.
  • the present invention is suitably applied to a thermal model creation device that creates a thermal model representing a temperature change in a zone defined by air conditioning zoning.
  • thermal model creation device 21 information acquisition means 22 constraint condition setting means 23 thermal model creation means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Air Conditioning Control Device (AREA)
  • Architecture (AREA)
  • Software Systems (AREA)

Abstract

精度の高い熱モデルを作成することができる熱モデル作成装置を提供する。制約条件設定手段72は、熱モデル内のパラメータの制約条件を設定する。パラメータ決定手段73は、その制約条件のもとで、その熱モデル内の未知のパラメータの値を全て決定する。

Description

熱モデル作成装置、方法およびプログラム
 本発明は、空調ゾーニングによって定められたゾーンの温度変化を表す熱モデルを作成する熱モデル作成装置、熱モデル作成方法および熱モデル作成プログラムに関する。
 オフィスビル等のフロアは、例えば、建物の設計時に、空調ゾーニングによって複数のゾーンに分割されている。
 一般に、建物のフロアで作業等を行う作業者は、空調システムの設定温度を所望の温度にする。しかし、実際には、その作業者のいるゾーンの温度は作業者の所望の温度にならない。実際の温度は、空調システムの設定温度だけでなく、周囲のゾーンからの影響等の種々の要因によって決まるからである。
 なお、特許文献1には、空調熱負荷モデルを用いて時刻毎の建物全体の熱負荷を演算し、時間単位熱負荷発生モデルを作成することが記載されている。
 また、特許文献2には、BIM(Building Information Modeling )サーバとクライアントとを含むBIMデータ供給システムが記載されている。
特開平8-240335号公報 特開2013-171579号公報
 本発明の発明者は、ゾーンの温度変化を、説明変数とパラメータとを含む1つ以上の数式で表すことができれば、将来におけるそのゾーンの温度を予測できると考えた。さらに、本発明の発明者は、その説明変数のうち、制御可能な事象を表す説明変数の値を制御することで、ゾーンの温度を所望の温度に制御できると考えた。そのためには、上記の1つ以上の数式(以下、熱モデルと記す。)を作成する必要がある。
 しかし、熱モデルには、多数のパラメータが含まれる。パラメータの例として、ゾーンに固有のパラメータや、ゾーンの組み合わせに対応するパラメータ等がある。ゾーンに固有のパラメータの一例として、ゾーンと外気との間の温度勾配による熱伝達に関するパラメータが挙げられる。このようなゾーンに固有のパラメータの値は、ゾーン毎に決定する必要がある。また、ゾーンの組み合わせに対応するパラメータの一例として、ゾーン間の温度勾配による熱伝達に関するパラメータが挙げられる。このようなゾーンの組み合わせに対応するパラメータは、ゾーンの組み合わせ毎に決定する必要がある。そのため、ゾーンの数が多くなるほど、値を決定しなければならないパラメータの数は増加する。
 熱モデルを作成することは、これら全てのパラメータの値を決定することであると言うことができる。しかし、パラメータ推定等の手法で、熱モデル内のパラメータの値を決定する場合、パラメータの数が非常に多いと、パラメータ推定時に、互いに相殺し合うようなパラメータの値の組み合わせが導出されてしまう。その結果、熱モデルの精度は低下する。
 そこで、本発明は、精度の高い熱モデルを作成することができる熱モデル作成装置、熱モデル作成方法および熱モデル作成プログラムを提供することを目的とする。
 本発明による熱モデル作成装置は、説明変数とパラメータとを含む数式でゾーンの温度変化を表した熱モデルを作成する熱モデル作成装置であって、熱モデル内のパラメータの制約条件を設定する制約条件設定手段と、その制約条件のもとで、その熱モデル内の未知のパラメータの値を全て決定するパラメータ決定手段とを備えることを特徴とする。
 また、本発明による熱モデル作成方法は、説明変数とパラメータとを含む数式でゾーンの温度変化を表した熱モデルを作成する熱モデル作成方法であって、熱モデル内のパラメータの制約条件を設定し、その制約条件のもとで、その熱モデル内の未知のパラメータの値を全て決定することを特徴とする。
 また、本発明による熱モデル作成プログラムは、説明変数とパラメータとを含む数式でゾーンの温度変化を表した熱モデルを作成するコンピュータに搭載される熱モデル作成プログラムであって、コンピュータに、熱モデル内のパラメータの制約条件を設定する制約条件設定処理、および、その制約条件のもとで、その熱モデル内の未知のパラメータの値を全て決定するパラメータ決定処理を実行させることを特徴とする。
 本発明によれば、精度の高い熱モデルを作成することができる。
空調ゾーニングによって定められた複数のゾーンの例を示す模式図である。 空気調和機および可変風量制御装置の例を示す模式図である。 本発明の熱モデル作成装置の構成例を示すブロック図である。 ゾーン間の隣接関係を示す情報の例を示す模式図である。 個々のゾーンがペリメタゾーンであるか非ペリメタゾーンであるかを示す情報、および個々のゾーンが「壁に囲まれていてドアを有するゾーン」に該当するか否かを示す情報の例を示す模式図である。 本発明の熱モデル作成装置の処理経過の例を示すフローチャートである。 本発明の熱モデル作成装置の処理経過の例を示すフローチャートである。 本発明の熱モデル作成装置の概要を示すブロック図である。
 以下、本発明の実施形態を図面を参照して説明する。
 まず、ゾーンについて説明する。ゾーンは、空調ゾーニングによってフロアを分割することによって得られる個々の領域である。なお、空調ゾーニングは、例えば、建物の設計時に設計者によって行われる。図1は、空調ゾーニングによって定められた複数のゾーンの例を示す模式図である。図1では、15個のゾーンを例示しており、以下の説明では、図1に示す各ゾーンを1~15の符号で識別する。
 隣接する2つのゾーンは、空気の流れを遮断する構造物(具体的には壁)によって隔てられていてもよいし、あるいは、隣接する2つのゾーンが壁で隔てられていなくてもよい。図1では、ゾーンの境界のうち、壁が存在する境界を実線で示し、壁が存在しない境界を破線で示している。なお、パーティションは、ゾーン間の空気の流れを遮断しないので、壁に該当しない。また、壁によって囲まれたゾーン(図1に示す例ではゾーン6,10,11,15)には、ドア51が設けられている。
 また、外気温度や日射等によって温度が影響を受けやすいゾーンをペリメタゾーンという。また、ペリメタゾーン以外のゾーンを非ペリメタゾーンという。例えば、設計者が、建物の設計時に、個々のゾーンがペリメタゾーンであるか非ペリメタゾーンであるかを決定する。例えば、外気との間にガラス窓が設けられているゾーンの温度は、外気温度や日射等の影響を受けやすい。そのため、そのゾーンは、ペリメタゾーンと決定される。図1に示す例では、ペリメタゾーンを斜線で表し、非ペリメタゾーンを白色で表している。ペリメタゾーンになり得るゾーンは、建物の外壁に沿ったゾーンである。
 図1では、各ゾーンが四角形であり、また各ゾーンの面積が等しい場合を例示しているが、各ゾーンの形状や面積は、ゾーン毎に異なっていてもよい。また、ゾーンの数は、特に限定されない。
 図2は、空気調和機および可変風量制御装置の例を示す模式図である。以下、空気調和機をAHU(Air Handling Unit )と記す。また、可変風量制御装置をVAV(Variable Air Volume)と記す。
 AHU61には、複数のVAV62が接続されている。個々のVAV62は、個々のゾーンと一対一に対応している。なお、個々のVAV62を区別する場合には、“62a”,“62b”等の添え字を付した符号で表すこととする。AHU61に接続されるVAV62の数は特に限定されない。
 なお、ここでは説明を簡単にするために、個々のVAV62と個々のゾーンとが一対一に対応するものとしたが、個々のVAV62と個々のゾーンとが一対一に対応していなくてもよい。具体的には、あるVAV62が複数のゾーンに給気する構成とすることもできる。
 AHU61は、設定された温度の空気を、VAV62を介してゾーンに供給する。例えば、VAV62aがゾーン1に対応し、VAV62bがゾーン2に対応しているとする。AHU61は、設定された温度の空気を、VAV62aを介してゾーン1に供給し、VAV62bを介してゾーン2に供給する。各ゾーンについての給気温度は、そのゾーンに対応するVAV62に給気するAHU61に依存する。すなわち、1台のAHU61が複数のゾーンに給気する場合、その複数のゾーンについての給気温度は共通である。従って、上記の例では、ゾーン1,2についての給気温度は共通である。また、AHU61の給気温度は制御可能である。
 VAV62は、AHU61から給気され、その空気を対応するゾーンに供給する。VAV62は、対応するゾーンに給気する際の風量を調節する装置である。風量は制御可能であり、VAV62は、設定された風量で、対応するゾーンに給気する。
 VAV62は、対応するゾーンに給気するための吹出口63を備える。VAV62の吹出口63は、そのVAV62に対応するゾーン内に設けられる。VAV62が備える吹出口63の数は、VAV62毎に異なっていてよい。例えば、図2では、VAV62aは1つの吹出口63を備え、VAV62bは2つの吹出口63を備える場合を例示している。1つのVAV62がゾーンに給気する際の風量は、そのVAV62が備える各吹出口63からの給気風量の総和である。従って、1つのVAV62がゾーンに給気する際の風量は、そのVAV62が備える各吹出口63の数に依存しない。
 また、図2では、1つのAHU61を示しているが、AHU61が複数台設けられていてもよい。例えば、1台目のAHU61が、ゾーン1,2等に温度Tで給気し、2台目のAHU61が、ゾーン6,7等に温度Tで給気してもよい。
 本発明の熱モデル作成装置は、ゾーンの温度変化を、説明変数とパラメータとを含む数式で表した熱モデルを作成する。熱モデルは、各ゾーンの温度変化を表す1つ以上の数式である。
 本実施形態では、ゾーン毎に温度変化が以下に示す式(1)の形式で表され、熱モデルが各ゾーンに対応する式(1)の形式の式の集合である場合を例にして説明する。ただし、熱モデルの表現態様は、この例に限定されない。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、i,jは、ゾーンの識別番号を示す変数である。
 以下、識別番号iによって特定されるゾーンを、ゾーンiと記す。また、着目しているゾーンを、ゾーンjと記す。
 上述のように、ゾーンが15個存在する場合、本実施形態の熱モデル作成装置は、式(1)の形式で表される15個の数式によって構成される熱モデルを作成する。この15個の数式はそれぞれ、対応するゾーンの温度変化を表す。
 本発明の熱モデル作成装置は、熱モデル内のパラメータに対する制約条件を設定し、その制約条件のもとで、パラメータ推定(例えば、最小二乗法)によって、熱モデル内のパラメータの値を決定する。
 式(1)に含まれる説明変数について説明する。式(1)において、T(t),T(t),Qac (t),Tac (t),Toa(t),I(t),O(t),E(t)が、それぞれ説明変数である。
 T(t)は、時刻tにおけるゾーンiの温度である。従って、着目しているゾーンjの時刻tにおける温度は、T(t)と表される。
 Qac (t)は、時刻tにおいて、ゾーンiに対応するVAV62がゾーンiに供給する空気の風量である。
 Tac (t)は、時刻tにおいて、ゾーンiに対応するVAV62に接続されているAHU61から、そのVAV62を介してゾーンiに供給される空気の温度である。
 Toa(t)は、時刻tにおける外気温度である。
 I(t)は、時刻tにおける日射量である。
 O(t)は、時刻tにゾーンjに存在する人の数である。
 E(t)は、時刻tにおける、ゾーンjに存在する電気機器の消費電力である。
 Toa(t)およびI(t)は、ゾーンに依存しない。
 式(1)に含まれるパラメータについて説明する。式(1)において、cac i,j,c i,j,coa ,csr ,chh,cdhが、それぞれパラメータである。これらのパラメータは、係数と称することもできる。
 cac i,jは、ゾーンiから流れてくる空気によるゾーンjへの熱伝達に関するパラメータである。
 c i,jは、ゾーンiとゾーンjとの間の温度勾配による熱伝達に関するパラメータである。
 coa は、ゾーンiと外気との間の温度勾配による熱伝達に関するパラメータである。従って、着目しているゾーンjと外気との間の温度勾配による熱伝達に関するパラメータは、coa と表される。
 csr は、ゾーンiに対する日射の熱作用に関するパラメータである。従って、着目しているゾーンjに対する日射の熱作用に関するパラメータは、csr と表される。
 chhは、人体から発せられた熱の室温への熱作用に関するパラメータである。
 cdhは、電気機器から発せられた熱の室温への熱作用に関するパラメータである。
 次に、式(1)の各項の意味を説明する。
 式(1)の左辺は、着目しているゾーンjの温度の変化量(温度の微分値)である。なお、ゾーンの温度は、ゾーン内の室温を意味する。
 また、式(1)の右辺の第1項は、他のゾーンへの給気から、着目しているゾーンjへの熱伝達を表している。
 式(1)の右辺の第2項は、着目しているゾーンjと他のゾーンとの間の熱伝達を表している。
 式(1)の右辺の第3項は、着目しているゾーンjと外気との間の熱伝達を表している。
 式(1)の右辺の第4項は、着目しているゾーンjに対する日射の熱作用を表している。
 式(1)の右辺の第5項は、着目しているゾーンjに対する人体からの放熱を表している。
 式(1)の右辺の第6項は、着目しているゾーンjに対する電気機器からの放熱を表している。
 図3は、本発明の熱モデル作成装置の構成例を示すブロック図である。本発明の熱モデル作成装置20は、情報取得手段21と、制約条件設定手段22と、熱モデル作成手段23とを備える。
 情報取得手段21は、熱モデルの作成対象となるフロアを有する建物の情報(例えば、BIM(Building Information Modeling ))を保持する外部システムにアクセスして、以下に示す情報を取得する。情報取得手段21が外部システムから取得する情報は、ゾーン間の隣接関係を示す情報、個々のゾーンがペリメタゾーンであるか非ペリメタゾーンであるかを示す情報、個々のゾーンが「壁に囲まれていてドアを有するゾーン」に該当するか否かを示す情報、ゾーンの外周に構造物が設けられている場合におけるその構造物の特性値の情報を含む。
 ゾーン間の隣接関係を示す情報は、具体的には、互いに隣接するゾーンの組、および、隣接していないゾーンの組を示す情報である。図4は、ゾーン間の隣接関係を示す情報の例を示す模式図である。図4は、図1に示すゾーン間の隣接関係を示しているが、一部省略している。
 図4において、1番上の行に示した各番号と、1番左側の列に示した各番号は、個々のゾーンの識別番号である。従って、1つの行と1つの列は、2つのゾーンの識別番号の組み合わせを表す。そして、1つの行と1つの列の交差部分には、その2つのゾーンが隣接するか否かを示す情報として、“1”または“0”が記述されている。“1”は、2つのゾーンが隣接することを意味している。“0”は、2つのゾーンが隣接していないことを意味している。例えば、識別番号“1”の列と識別番号“2”の行の交差部分には、“1”が記述されている。これは、ゾーン1,2が互いに隣接するゾーンであることを表している(図1、図4参照)。また、例えば、識別番号“4”の列と識別番号“1”の行の交差部分には、“0”が記述されている。これは、ゾーン1,4は隣接するゾーンではないことを表している(図1、図4参照)。
 図4に示す例では、頂点のみで接している2つのゾーンは、隣接するゾーンであるとみなしている。例えば、図1に示すゾーン3,7は、互いに隣接するゾーンであるとみなしている。
 なお、図4に示す例では、任意のゾーンは、そのゾーン自身と隣接しているものとしている。例えば、ゾーン1はゾーン1と隣接しているとみなしている。
 また、図4に示す例では、ゾーン間の隣接関係を表す形式として隣接行列に基づいた形式を示したが、ゾーン間の隣接関係を表す形式は、特に限定されない。例えば、ゾーン間の隣接関係を表す形式は、隣接リストに基づいた形式であってもよい。
 図5は、個々のゾーンがペリメタゾーンであるか非ペリメタゾーンであるかを示す情報、および個々のゾーンが「壁に囲まれていてドアを有するゾーン」に該当するか否かを示す情報の例を示す模式図である。図5は、図1に対応しているが、一部省略している。
 図5において、1番左側の列に示した各番号は、個々のゾーンの識別番号である。左から2列目には、各ゾーンがペリメタゾーンであるか非ペリメタゾーンであるかを示す値として、“1”または“0”が記述されている。“1”は、ペリメタゾーンであることを意味し、“0”は、非ペリメタゾーンであることを意味する。図5では、ゾーン5,10,11,12等がペリメタゾーンであり、ゾーン1~4およびゾーン6~9が非ペリメタゾーンであることを表している(図1、図5参照)。
 また、図5において、左から3列目は、各ゾーンが「壁に囲まれていてドアを有するゾーン」に該当するか否かを示す値として、“1”または“0”が記述されている。“1”は、「壁に囲まれていてドアを有するゾーン」に該当することを意味し、“0”は、「壁に囲まれていてドアを有するゾーン」に該当しないことを意味する。図5では、ゾーン6,10,11等が「壁に囲まれていてドアを有するゾーン」に該当し、ゾーン1~5、ゾーン7~9、ゾーン12等が「壁に囲まれていてドアを有するゾーン」に該当しないことを表している(図1、図5参照)。なお、図1に示すゾーン1は、ゾーン2との境界に壁が設けられておらず、また、ドアも有していないので、「壁に囲まれていてドアを有するゾーン」に該当しない。ゾーン5も同様である。
 また、情報取得手段21は、外部システムから、「壁に囲まれていてドアを有するゾーン」において、ドアがどのゾーンとの間に設けられているかを示す情報も取得する。例えば、情報取得手段21は、図1に示すゾーン6において、ドアがゾーン7との境界に設けられていることを示す情報も取得する。情報取得手段21は、ゾーン10,11,15に関しても同様の情報を取得する。なお、これらの情報は、図5では省略している。
 ゾーンの外周に設けられている構造物の特性値の例として、ゾーンの外周に設けられている壁やガラスの、厚さ、熱伝導率、面積等が挙げられる。より具体的な例として、ペリメタゾーンと外気との間に設けられた壁やガラスの、厚さ、熱伝導率、面積等が挙げられる。
 なお、外部システムが上記の情報を保持していて、情報取得手段21は、外部システムから上記の情報を直接取得してもよい。あるいは、情報取得手段21は、外部システムが図4、図5等とは異なる形式で保持している情報を加工することによって、上記の情報を取得してもよい。
 また、熱モデル作成装置20は、情報取得手段21の代わりに、熱モデル作成装置20の操作者が情報を入力するための入力インタフェース(例えば、入力デバイス。図示略。)を備えていてもよい。そして、その操作者が上記の情報を作成し、入力インタフェースを介して、上記の情報を熱モデル作成装置20に入力してもよい。
 制約条件設定手段22は、熱モデル内のパラメータの制約条件を設定する。
 制約条件設定手段22は、熱モデル内のパラメータの制約条件を、情報取得手段21が取得した情報に応じて設定する。
 制約条件の設定態様として、例えば、特定のパラメータを固定値に定める態様や、パラメータの値の大小関係を規定する態様等があるが、制約条件の設定態様は、これらに限定されない。制約条件設定手段22が、情報取得手段21が取得した情報に応じてパラメータの制約条件を設定する動作の詳細については、後述する。
 熱モデル作成手段23は、制約条件設定手段22が設定した制約条件のもとで、熱モデル内のパラメータの値を全て決定することによって、熱モデルを決定する。
 具体的には、熱モデル作成手段23には、式(1)に含まれる各説明変数の時刻毎の実績値が熱モデル作成装置20の操作者から入力される。また、この実績値の中には、ゾーンの温度(T(t))の実績値も含まれる。熱モデル作成手段23には、一定時間間隔(例えば、15分間隔)でゾーンの温度(T(t))の実績値の差を計算することにより、温度の変化量の実績値を求める。この温度の変化量は、式(1)の左辺に相当する。熱モデル作成手段23は、各説明変数の時刻毎の実績値、および、温度の変化量の実績値に基づいて、パラメータ推定(例えば、最小二乗法)を行うことによって、熱モデル内の未知のパラメータの値を全て決定する。式(1)内の全てのパラメータの値が決定されるということは、熱モデルが作成されたことを意味する。この熱モデルに、将来の時刻における説明変数の値を代入すれば、その時刻からのゾーンの温度の変化量が計算できる。
 情報取得手段21、制約条件設定手段22および熱モデル作成手段23は、例えば、熱モデル作成プログラムに従って動作するコンピュータのCPUによって実現される。この場合、CPUは、例えば、コンピュータのプログラム記憶装置(図示略)等のプログラム記録媒体から熱モデル作成プログラムを読み込み、そのプログラムに従って、情報取得手段21、制約条件設定手段22および熱モデル作成手段23として動作すればよい。
 次に、本発明の熱モデル作成装置の処理経過について説明する。図6および図7は、本発明の熱モデル作成装置の処理経過の例を示すフローチャートである。
 まず、情報取得手段21が、外部システムから、ゾーン間の隣接関係を示す情報、個々のゾーンがペリメタゾーンであるか非ペリメタゾーンであるかを示す情報、個々のゾーンが「壁に囲まれていてドアを有するゾーン」に該当するか否かを示す情報、ペリメタゾーンと外気との間に設けられた構造物の特性値の情報を取得する(ステップS1)。
 例えば、情報取得手段21は、ゾーン間の隣接関係を示す情報として、図4に例示する情報を取得する。また、例えば、情報取得手段21は、個々のゾーンがペリメタゾーンであるか非ペリメタゾーンであるかを示す情報、および、個々のゾーンが「壁に囲まれていてドアを有するゾーン」に該当するか否かを示す情報として、図5に例示する情報を取得する。既に説明したように、情報取得手段21は、「壁に囲まれていてドアを有するゾーン」において、ドアがどのゾーンとの間に設けられているかを示す情報も取得する。また、情報取得手段21は、ペリメタゾーンと外気との間に設けられた構造物の特性値の情報として、例えば、ペリメタゾーンと外気との間に設けられた壁やガラスの、厚さ、熱伝導率、面積等を取得する。
 ステップS1において、情報取得手段21は、外部システムが保持している情報を加工することによって、上記の情報を抽出してもよい。
 情報取得手段21は、ステップS1で取得した情報を制約条件設定手段22に送る。
 制約条件設定手段22は、その情報に基づいて、後述のステップS2~S7で、パラメータの種々の制約条件を設定する。
 制約条件設定手段22は、2つのゾーン間の温度勾配による熱伝達に関するパラメータの値を、その2つのゾーンが隣接していない場合に、固定値に定める(ステップS2)。制約条件設定手段22は、ステップS2における固定値として、例えば“0”を採用してもよい。
 例えば、図1に示すゾーン7とゾーン9は、隣接していない。従って、制約条件設定手段22は、c 7,9=0と定める。制約条件設定手段22は、隣接していない2つのゾーンの組毎に同様の処理を行う。なお、ステップS2において、固定値として“0”を採用するということは、隣接していない2つのゾーン間の熱伝達率が0であるとみなすことを意味する。
 制約条件設定手段22は、隣接していない2つのゾーンの各組を、ゾーン間の隣接関係を示す情報(例えば、図4に例示する情報)に基づいて特定すればよい。
 次に、制約条件設定手段22は、非ペリメタゾーンに対する日射の熱作用に関するパラメータの値を固定値に定める(ステップS3)。制約条件設定手段22は、ステップS3における固定値として、例えば“0”を採用してもよい。
 例えば、図1に示すゾーン8は、非ペリメタゾーンである。従って、制約条件設定手段22は、csr =0と定める。制約条件設定手段22は、非ペリメタゾーンに該当するゾーン毎に同様の処理を行う。なお、ステップS3において、固定値として“0”を採用するということは、非ペリメタゾーンへの日射による熱作用がないとみなすことを意味する。
 制約条件設定手段22は、個々のゾーンがペリメタゾーンであるか非ペリメタゾーンであるかを示す情報(例えば、図5に例示する情報)に基づいて、非ペリメタゾーンに該当する各ゾーンを特定すればよい。この点は、後述のステップS4においても同様である。
 次に、制約条件設定手段22は、非ペリメタゾーンと外気との間の温度勾配による熱伝達に関するパラメータの値を固定値に定める(ステップS4)。制約条件設定手段22は、ステップS4における固定値として、例えば“0”を採用してもよい。
 例えば、図1に示すゾーン8は、非ペリメタゾーンである。従って、制約条件設定手段22は、coa =0と定める。制約条件設定手段22は、非ペリメタゾーンに該当するゾーン毎に同様の処理を行う。なお、ステップS4において、固定値として“0”を採用するということは、非ペリメタゾーンと外気との間の熱伝達率が0であるとみなすことを意味する。
 ステップS3とステップS4の処理はいずれも、非ペリメタゾーンの所定のパラメータの値を固定値に定める処理であると言える。
 次に、制約条件設定手段22は、ペリメタゾーンと外気との間に設けられた構造物の特性値に応じて、そのペリメタゾーンと外気との間の温度勾配による熱伝達に関するパラメータの上限値および下限値を定める(ステップS5)。
 例えば、図1に示すゾーン13は、ペリメタゾーンである。ゾーン13における外気との間の温度勾配による熱伝達に関するパラメータの上限値、下限値をそれぞれ、coa_upper 13,coa_lower 13と記すこととする。制約条件設定手段22は、ゾーン13と外気との間に設けられた構造物(例えば、壁、ガラス等)の厚さ、熱伝導率、面積を用いて、coa_upper 13,coa_lower 13を計算すればよい。この計算方法は、公知の計算方法でよい。ここでは、coa_lower 13=0であるとする。この計算結果を用いて、制約条件設定手段22は、0≦coa 13≦coa_upper 13という制約条件を定める。制約条件設定手段22は、ペリメタゾーンに該当するゾーン毎に同様の処理を行う。
 制約条件設定手段22は、個々のゾーンがペリメタゾーンであるか非ペリメタゾーンであるかを示す情報(例えば、図5に例示する情報)に基づいて、ペリメタゾーンに該当する各ゾーンを特定すればよい。
 次に、制約条件設定手段22は、壁によって隔てられていない2つの隣接するゾーンの間の温度勾配による熱伝達に関するパラメータの値は、壁によって隔てられている2つの隣接するゾーンの間の温度勾配による熱伝達に関するパラメータの値以上であるという制約条件を定める(ステップS6)。
 例えば、図1に示すゾーン6とゾーン7との間には壁が存在する。ゾーン6とゾーン7の間の温度勾配による熱伝達に関するパラメータは、c 6,7である。また、図1に示すゾーン7とゾーン8との間に壁は存在しない。ゾーン7とゾーン8の間の温度勾配による熱伝達に関するパラメータは、c 7,8である。従って、制約条件設定手段22は、c 6,7≦c 7,8という制約条件を定める。制約条件設定手段22は、壁によって隔てられている2つの隣接するゾーンと、壁によって隔てられていない2つの隣接するゾーンとの組み合わせ毎に、同様の処理を行う。
 制約条件設定手段22は、壁によって隔てられている2つの隣接するゾーン、および、壁によって隔てられていない2つの隣接するゾーンをそれぞれ、ゾーン間の隣接関係を示す情報(例えば、図4に例示する情報)と、個々のゾーンが「壁に囲まれていてドアを有するゾーン」に該当するか否かを示す情報(例えば、図5に例示する情報)とに基づいて特定すればよい。
 ステップS6では、間に壁が存在しない2つのゾーン間の熱伝達率は、間に壁が存在する2つのゾーン間の熱伝達率以上であるという制約条件を定めていることになる。
 次に、制約条件設定手段22は、ドアを含む壁によって隔てられている2つの隣接するゾーンの温度勾配による熱伝達に関するパラメータを、ドアが開状態であるか閉状態であるかに応じて2値のいずれかを取る説明変数を用いて表す。さらに、制約条件設定手段22は、ドアが開状態である場合におけるそのパラメータの値はドアが閉状態である場合におけるそのパラメータの値以上であるという制約条件を定める(ステップS7)。
 制約条件設定手段22は、「壁に囲まれていてドアを有するゾーン」においてドアがどのゾーンとの間に設けられているかを示す情報に基づいて、ドアを有する壁によって隔てられている2つの隣接するゾーンを特定する。
 また、隣接するゾーンpとゾーンqとの間にドアを有する壁が存在する場合に、そのドアが開状態であるか閉状態であるかに応じて2値のいずれかを取る説明変数をb p,qと記す。ゾーンpとゾーンqとの間のドアが開状態である場合、b p,q=1とする。また、ゾーンpとゾーンqとの間のドアが閉状態である場合、b p,q=0とする。
 ゾーンpとゾーンqの間の温度勾配による熱伝達に関するパラメータc p,qの値は、ゾーンpとゾーンqの間のドアが開状態であるか閉状態であるかによって変化する。ドアが開状態であるときのそのパラメータを、cz_open p,qと記す。ドアが閉状態であるときのそのパラメータを、cz_close p,qと記す。制約条件設定手段22は、隣接するゾーンpとゾーンqとの間の温度勾配による熱伝達に関するパラメータc p,qを、上記の説明変数b p,qを用いて、以下に示す式(2)で表す。式(2)は、制約条件である。
 c p,q=b p,qz_open p,q+(1-b p,q)cz_close p,q
                              ・・・(2)
 従って、c p,qは、2値の説明変数b p,qと、2つのパラメータcz_open p,qおよびcz_close p,qによって表現されることになる。
 さらに、制約条件設定手段22は、cz_open p,q≧cz_close p,qという制約条件を定める。この制約条件は、ドアが開いているときの熱伝達率は、ドアが閉じているときの熱伝達率以上であるということを意味している。
 例えば、図1に示すゾーン6とゾーン7は、ドアを有する壁によって隔てられている。この2つのゾーン6,7間の熱伝達に関するパラメータは、c 6,7である。この場合、制約条件設定手段22は、c 6,7=b 6,7z_open 6,7+(1-b 6,7)cz_close 6,7およびcz_open 6,7≧cz_close 6,7という制約条件を定める。
 制約条件設定手段22は、ドアを有する壁によって隔てられている2つの隣接するゾーン毎に、同様の処理を行う。
 次に、熱モデル作成手段23は、ステップS2~S7で定められた制約条件のもとで、熱モデル内の未知のパラメータの値を全て決定することによって、熱モデルを作成する(ステップS8)。
 熱モデル作成手段23には、式(1)に含まれる各説明変数の時刻毎の実績値が熱モデル作成装置20の操作者から入力される。また、各時刻における個々のドアの状態(開状態または閉状態)を表す2値の説明変数b p,qの実績値も操作者によって、熱モデル作成手段23に入力される。ここで、2値の説明変数b p,qについては、実績値を入力せずに、未知のパラメータとしてもよい。すなわち、各時刻における個々のドアの状態(開状態または閉状態)の実績値に関しては入力せず、未知のパラメータとして扱い、b p,qの値を決定してもよい。これらの実績値が入力されるタイミングは、ステップS8の実行前であれば、特に限定されない。熱モデル作成手段23は、一定時間間隔(例えば、15分間隔)でゾーンの温度(T(t))の実績値の差を計算することにより、温度の変化量の実績値をゾーン毎に求める。
 熱モデル作成手段23は、入力された各説明変数の時刻毎の実績値、および、温度の変化量の実績値に基づいて、例えば、最小二乗法によるパラメータ推定を行うことにより、熱モデル内の未知のパラメータの値を全て決定する。この結果、熱モデルが得られる。
 本実施形態によれば、制約条件設定手段22が、熱モデル内のパラメータの制約条件を設定する。そして、熱モデル作成手段23は、その制約条件のもとで、熱モデル内の未知のパラメータの値を決定する。制約条件のもとで、未知のパラメータの値が決定されるので、互いに相殺し合うようなパラメータの値の組み合わせが導出されることを防止することができる。その結果、熱モデル作成装置20は、精度の高い熱モデルを作成することができる。
 例えば、ステップS2~S4では、一部のパラメータの値が固定値に定められる。この結果、値が未知となっているパラメータの数を削減することができ、互いに相殺し合うようなパラメータの値の組み合わせが導出されることを防止できる。特に、ゾーンの組み合わせに対応するパラメータ(例えば、c ij)の数は非常に多いが、ステップ2で、それらの一部を固定値に定めることができ、値が未知となっているパラメータの数を大きく削減することができる。
 ステップS2~S7の処理の順序は、特に限定されない。
 また、制約条件設定手段22は、制約条件を設定する処理として、ステップS2~S7のうちの一部のステップのみを実行してもよい。例えば、制約条件設定手段22は、ステップS2~S7のうちのいずれか1つのステップのみを実行してもよい。また、例えば、制約条件設定手段22は、ステップS2~S7のうちのいずれか2つのステップのみを実行してもよい。また、例えば、制約条件設定手段22は、ステップS2~S7のうちのいずれか3つのステップのみを実行してもよい。また、例えば、制約条件設定手段22は、ステップS2~S7のうちのいずれか4つのステップのみを実行してもよい。また、例えば、制約条件設定手段22は、ステップS2~S7のうちのいずれか5つのステップのみを実行してもよい。
 上記のように得られた熱モデルにより、将来における各ゾーンの温度を予測することができる。以下に示す式(3)は、将来におけるゾーンjの温度の予測値を求めるための予測式の例である。
Figure JPOXMLDOC01-appb-M000002
 式(3)の右辺の第1項(T(t))は、時刻tにおけるゾーンjの温度である。T(t)は、初期値として与えられる。式(3)の右辺のΔtは、一定時間を表す。従って、将来の所望の時刻における説明変数の値を式(3)に代入することによって、ゾーンjの一定時間後の温度T(t+Δt)を計算することができる。さらにその温度を初期値T(t)として用いることにより、将来のゾーンjの温度を順次、計算していくことができる。すなわち、将来のゾーンjの温度の予測値を求めることができる。
 なお、将来の時刻における説明変数Toa(t),I(t)の値は、例えば、気象予報によって得られた予測値を用いればよい。同様に、将来の時刻におけるO(t),E(t)の値も予測値を用いればよい。
 また、Qac (t),Tac (t)は、制御可能な事象を表す説明変数である。従って、将来の時刻におけるQac (t),Tac (t)として、所望の値を用いてよい。
 また、将来の時刻におけるゾーンjの温度を所望の温度に定めることによって、将来の時刻におけるQac (t),Tac (t)の値を求めることもできる。従って、将来の各時刻におけるQac (t),Tac (t)を、その値に制御することによって、将来の時刻におけるゾーンjの温度を所望の温度にすることができる。
 また、熱モデル作成装置20が作成した熱モデルと、空調機器のモデルとに基づいた空調制御を行うことで、建物の空調エネルギーを効率化することができる。その結果、大きな省エネルギー効果を得ることができる。
 また、上記の実施形態では、空調システムがAHU61とVAV62とを含む構成である場合を例示したが、本発明は、空調システムの構成に依存しない。具体的には、空調システムがパッケージ型エアコンディショナである場合にも、本発明を適用可能である。これは、パッケージ型エアコンディショナが給気温度と給気風量を同時に制御可能であり、1台のパッケージ型エアコンディショナを、AHU61およびVAV62と等価に扱うことができるからである。
 また、上記の実施形態では、式(1)をゾーン毎の温度変化を示す式の一例として説明したが、ゾーン毎の温度変化を示す式の形式は式(1)に限定されない。ゾーン毎の温度変化を示す式は、ゾーンの温度変化を表し、説明変数として、少なくとも、ゾーン温度、給気温度、給気風量、外気温度、日射量および内部熱負荷を持ち、少なくとも、ゾーン間の熱伝達、給気とゾーン間の熱伝達、外気とゾーン間の熱伝達、日射による熱作用および内部熱負荷による熱作用を表す数理モデルであればよい。例えば、式(1)に、ゾーンの壁、床、天井の平均温度という説明変数を導入し、温度勾配によるゾーン温度との熱伝達に関する項を追加した数理モデルにも、本発明を適用可能である。
 次に本発明の概要について説明する。図8は、本発明の熱モデル作成装置の概要を示すブロック図である。本発明の熱モデル作成装置は、制約条件設定手段72と、パラメータ決定手段73とを備える。
 制約条件設定手段72(例えば、制約条件設定手段22)は、熱モデル内のパラメータの制約条件を設定する。
 パラメータ決定手段73(例えば、熱モデル作成手段23)は、その制約条件のもとで、その熱モデル内の未知のパラメータの値を全て決定する。
 そのような構成により、精度の高い熱モデルを作成することができる。
 上記の本発明の実施形態は、以下の付記のようにも記載され得るが、以下に限定されるわけではない。
(付記1)
 説明変数とパラメータとを含む数式でゾーンの温度変化を表した熱モデルを作成する熱モデル作成装置であって、
 熱モデル内のパラメータの制約条件を設定する制約条件設定手段と、
 前記制約条件のもとで、前記熱モデル内の未知のパラメータの値を全て決定するパラメータ決定手段とを備える
 ことを特徴とする熱モデル作成装置。
(付記2)
 制約条件設定手段は、1以上の未知のパラメータが取り得る範囲を表す1以上の不等式、および、1以上の未知のパラメータに関する1以上の関係式のいずれか一方あるいは両方を含む制約条件を設定する
 付記1に記載の熱モデル作成装置。
(付記3)
 制約条件設定手段は、
 2つのゾーンの間の熱伝達に関するパラメータの値を、前記2つのゾーンが隣接していない場合に、固定値に定める
 付記1または付記2に記載の熱モデル作成装置。
(付記4)
 制約条件設定手段は、
 非ペリメタゾーンの所定のパラメータの値を固定値に定める
 付記1から付記3のうちのいずれかに記載の熱モデル作成装置。
(付記5)
 制約条件設定手段は、
 非ペリメタゾーンに対する日射の熱作用に関するパラメータの値を固定値に定める
 付記1から付記4のうちのいずれかに記載の熱モデル作成装置。
(付記6)
 制約条件設定手段は、
 非ペリメタゾーンと外気との間の熱伝達に関するパラメータの値を固定値に定める
 付記1から付記5のうちのいずれかに記載の熱モデル作成装置。
(付記7)
 制約条件設定手段は、
 ペリメタゾーンと外気との間に設けられた構造物の特性に応じて、前記ペリメタゾーンと外気との間の熱伝達に関するパラメータの上限値および下限値を定める
 付記1から付記6のうちのいずれかに記載の熱モデル作成装置。
(付記8)
 制約条件設定手段は、
 壁によって隔てられていない2つの隣接するゾーンの間の熱伝達に関するパラメータの値は、壁によって隔てられている2つの隣接するゾーンの間の熱伝達に関するパラメータの値以上であるという制約条件を定める
 付記1から付記7のうちのいずれかに記載の熱モデル作成装置。
(付記9)
 制約条件設定手段は、
 ドアを含む壁によって隔てられている2つの隣接するゾーンの間の熱伝達に関するパラメータを、ドアが開状態であるか閉状態であるかに応じて2値のいずれかを取る説明変数を用いて表し、ドアが開状態である場合における前記パラメータの値はドアが閉状態である場合における前記パラメータの値以上であるという制約条件を定める
 付記1から付記8のうちのいずれかに記載の熱モデル作成装置。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記の実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2016年3月31日に出願された日本特許出願2016-070979を基礎とする優先権を主張し、その開示の全てをここに取り込む。
産業上の利用の可能性
 本発明は、空調ゾーニングによって定められたゾーンの温度変化を表す熱モデルを作成する熱モデル作成装置に好適に適用される。
 20 熱モデル作成装置
 21 情報取得手段
 22 制約条件設定手段
 23 熱モデル作成手段

Claims (11)

  1.  説明変数とパラメータとを含む数式でゾーンの温度変化を表した熱モデルを作成する熱モデル作成装置であって、
     熱モデル内のパラメータの制約条件を設定する制約条件設定手段と、
     前記制約条件のもとで、前記熱モデル内の未知のパラメータの値を全て決定するパラメータ決定手段とを備える
     ことを特徴とする熱モデル作成装置。
  2.  制約条件設定手段は、1以上の未知のパラメータが取り得る範囲を表す1以上の不等式、および、1以上の未知のパラメータに関する1以上の関係式のいずれか一方あるいは両方を含む制約条件を設定する
     請求項1に記載の熱モデル作成装置。
  3.  制約条件設定手段は、
     2つのゾーンの間の熱伝達に関するパラメータの値を、前記2つのゾーンが隣接していない場合に、固定値に定める
     請求項1または請求項2に記載の熱モデル作成装置。
  4.  制約条件設定手段は、
     非ペリメタゾーンの所定のパラメータの値を固定値に定める
     請求項1から請求項3のうちのいずれか1項に記載の熱モデル作成装置。
  5.  制約条件設定手段は、
     非ペリメタゾーンに対する日射の熱作用に関するパラメータの値を固定値に定める
     請求項1から請求項4のうちのいずれか1項に記載の熱モデル作成装置。
  6.  制約条件設定手段は、
     非ペリメタゾーンと外気との間の熱伝達に関するパラメータの値を固定値に定める
     請求項1から請求項5のうちのいずれか1項に記載の熱モデル作成装置。
  7.  制約条件設定手段は、
     ペリメタゾーンと外気との間に設けられた構造物の特性に応じて、前記ペリメタゾーンと外気との間の熱伝達に関するパラメータの上限値および下限値を定める
     請求項1から請求項6のうちのいずれか1項に記載の熱モデル作成装置。
  8.  制約条件設定手段は、
     壁によって隔てられていない2つの隣接するゾーンの間の熱伝達に関するパラメータの値は、壁によって隔てられている2つの隣接するゾーンの間の熱伝達に関するパラメータの値以上であるという制約条件を定める
     請求項1から請求項7のうちのいずれか1項に記載の熱モデル作成装置。
  9.  制約条件設定手段は、
     ドアを含む壁によって隔てられている2つの隣接するゾーンの間の熱伝達に関するパラメータを、ドアが開状態であるか閉状態であるかに応じて2値のいずれかを取る説明変数を用いて表し、ドアが開状態である場合における前記パラメータの値はドアが閉状態である場合における前記パラメータの値以上であるという制約条件を定める
     請求項1から請求項8のうちのいずれか1項に記載の熱モデル作成装置。
  10.  説明変数とパラメータとを含む数式でゾーンの温度変化を表した熱モデルを作成する熱モデル作成方法であって、
     熱モデル内のパラメータの制約条件を設定し、
     前記制約条件のもとで、前記熱モデル内の未知のパラメータの値を全て決定する
     ことを特徴とする熱モデル作成方法。
  11.  説明変数とパラメータとを含む数式でゾーンの温度変化を表した熱モデルを作成するコンピュータに搭載される熱モデル作成プログラムであって、
     前記コンピュータに、
     熱モデル内のパラメータの制約条件を設定する制約条件設定処理、および、
     前記制約条件のもとで、前記熱モデル内の未知のパラメータの値を全て決定するパラメータ決定処理
     を実行させるための熱モデル作成プログラム。
PCT/JP2017/011451 2016-03-31 2017-03-22 熱モデル作成装置、方法およびプログラム WO2017170039A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/072,564 US11328099B2 (en) 2016-03-31 2017-03-22 Thermal model creation device, method, and program of building
JP2018509122A JPWO2017170039A1 (ja) 2016-03-31 2017-03-22 熱モデル作成装置、方法およびプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016070979 2016-03-31
JP2016-070979 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170039A1 true WO2017170039A1 (ja) 2017-10-05

Family

ID=59964432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011451 WO2017170039A1 (ja) 2016-03-31 2017-03-22 熱モデル作成装置、方法およびプログラム

Country Status (3)

Country Link
US (1) US11328099B2 (ja)
JP (1) JPWO2017170039A1 (ja)
WO (1) WO2017170039A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019126126A (ja) * 2018-01-12 2019-07-25 ナブテスコ株式会社 エネルギ流入出量予測システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190178518A1 (en) * 2017-12-07 2019-06-13 Johnson Controls Technology Company Thermostat with energy modeling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001344294A (ja) * 2000-06-01 2001-12-14 Shimizu Corp 建物内の伝熱・空気流動設計支援システム
WO2014174871A1 (ja) * 2013-04-22 2014-10-30 三菱電機株式会社 空調制御システム及び空調制御方法
JP2015230128A (ja) * 2014-06-05 2015-12-21 株式会社日立製作所 エネルギー管理システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3350277B2 (ja) 1995-03-03 2002-11-25 株式会社東芝 ビル空調熱負荷予測装置
JP5576455B2 (ja) 2012-02-20 2014-08-20 ソリデオ システムズ カンパニー リミテッド Bimデータファイルに含まれたデータを提供する方法、それを記録した記録媒体、およびそれを含むシステム
US10794608B2 (en) * 2016-02-04 2020-10-06 Mitsubishi Electric Corporation Air-conditioning control evaluation apparatus, air-conditioning control evaluation method, and computer readable medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001344294A (ja) * 2000-06-01 2001-12-14 Shimizu Corp 建物内の伝熱・空気流動設計支援システム
WO2014174871A1 (ja) * 2013-04-22 2014-10-30 三菱電機株式会社 空調制御システム及び空調制御方法
JP2015230128A (ja) * 2014-06-05 2015-12-21 株式会社日立製作所 エネルギー管理システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019126126A (ja) * 2018-01-12 2019-07-25 ナブテスコ株式会社 エネルギ流入出量予測システム
JP7036600B2 (ja) 2018-01-12 2022-03-15 ナブテスコ株式会社 エネルギ流入出量予測システム

Also Published As

Publication number Publication date
JPWO2017170039A1 (ja) 2019-02-07
US20190034560A1 (en) 2019-01-31
US11328099B2 (en) 2022-05-10

Similar Documents

Publication Publication Date Title
US11086276B2 (en) System identification and model development
US20200143491A1 (en) Systems and methods for cascaded model predictive control
KR101644697B1 (ko) 공조 제어 장치 및 방법
DK2915080T3 (en) System and method for predicting fluid dynamics with an improved potential-flow model
US9436179B1 (en) Systems and methods for energy cost optimization in a building system
Zhang et al. Review of underfloor air distribution technology
US9200813B2 (en) Air-conditioning controlling device and method
Han et al. An open source fast fluid dynamics model for data center thermal management
Chandan et al. Decentralized predictive thermal control for buildings
CN106663142B (zh) 用于检测建筑信息的方法和设备
JP5695492B2 (ja) 空調制御装置および方法
CN104633856A (zh) Cfd数值模拟结合bp神经网络人工环境控制方法
Killian et al. Effective fuzzy black-box modeling for building heating dynamics
US20190318047A1 (en) Building thermal model generation apparatus, building thermal model generation method, and building thermal model generation program
WO2017170039A1 (ja) 熱モデル作成装置、方法およびプログラム
Petersen et al. Investigation of the displacement effect of a diffuse ceiling ventilation system
JP7459935B2 (ja) 推定方法、シミュレーション方法、推定装置、及び推定プログラム
Gao et al. Development and verification of compact transient heat exchanger models using transient effectiveness methodologies
EP3117275B1 (en) Navier-stokes based indoor climate control
Li et al. A multiple model approach for predictive control of indoor thermal environment with high resolution
Mohammed Numerical investigation of displacement ventilation effectiveness
JP2012017930A (ja) 空調システム内機器の使用エネルギー量推定方法、及び、この方法が実装された使用エネルギー量推定装置
Palmowska et al. Research on thermal conditions in ventilated large space building
Koeln et al. Multi-zone temperature modeling and control
Akinci et al. Exploratory study towards streamlining the identification of sensor locations within a facility

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509122

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774580

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774580

Country of ref document: EP

Kind code of ref document: A1